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Abstract Large-scale object-oriented (OO) software systems have recently been found to share global network charac-

teristics such as small world and scale free, which go beyond the scope of traditional software measurement and assessment
methodologies. To measure the complexity at various levels of granularity, namely graph, class (and object) and source code,
we propose a hierarchical set of metrics in terms of coupling and cohesion — the most important characteristics of software,
and analyze a sample of 12 open-source OO software systems to empirically validate the set. Experimental results of the
correlations between cross-level metrics indicate that the graph measures of our set complement traditional software metrics
well from the viewpoint of network thinking, and provide more effective information about fault-prone classes in practice.

Keywords complexity metrics, quality analysis and evaluation, object-oriented programming, reverse engineering, com-

plex networks

1 Introduction

It has been widely recognized that object-oriented
programming (OOP) is one of the most successful
techniques to design and implement applications and
computer programs with the support of programming
languages such as C++ and Java. Nowadays, as diver-
sified application requirements continue to grow rapidly
the Internet-based OO software systems are becoming
more and more complex, fragile, and difficult to con-
trol. “You can’t control what you can’t measure.”[1]

To quantify and evaluate software quality (or some
properties of a piece of software), software metrics deal
with the measurement of a software product (or arti-
fact) and the process by which it is developed[2], and
provide a quantitative evaluation basis for modern OO
software development.

Until now, many OO software metrics have been
proposed and applied to practical software projects. It
is well known that two of the widely accepted metrics

sets are the Chidamber and Kemerer’s Metrics Suite
(CK)[3] and the metrics for object-oriented design set
(MOOD)[4]. They have previously been shown to be
good predictors of OO design complexity as well as
software defects, and successful experiences from OO
software development practices have proved their va-
lidity for years[5]. Hence, OO software metrics play an
important role in ensuring the desired quality of soft-
ware systems.

For a metrics suite such as CK and MOOD, it
only offers a special assessment of some features of
an OO software system[6]. For example, CK ap-
pears to give a class-level evaluation with respect
to inheritance, coupling, cohesion and complexity[7],
while MOOD tends to provide a system-wide assess-
ment according to inheritance, coupling, polymorphism
and encapsulation[8]. On the other hand, previous
studies[9-12] imply that the empirical effects of these
metrics suites on large-scale OO software systems are
limited on account of design complexity, programming
languages and implementation tools. So, designing an
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appropriate metrics suite for complex OO software sys-
tems based on the Internet is more challenging.

With the popularity of the Unified Modeling Lan-
guage (UML)[13] and the Model Driven Architecture
(MDA)[14], the focus of modern software development
shifts from implementation (coding) to design (mod-
eling). A series of UML diagrams such as class dia-
gram and collaboration diagram have been employed
to model the solution to given requirements of a sys-
tem with large numbers of interacting classes and ob-
jects. Among these diagrams of a UML model, class
diagram is an important one, which describes classes
(composed of attributes and methods) and the rela-
tionships between them. Owing to the independence
of specific platforms and programming languages, it is
easier for the metrics for UML class diagrams to repre-
sent the nature of OO software design.

It is generally accepted that the quality of class
diagrams created at high-level design stage will have
a significant impact on the system which is ulti-
mately implemented[15]. Since 2000, a few new met-
rics have gradually been put forward to measure struc-
tural complexity[16-17], maintainability[18], understan-
dability and modifiability[19] of UML class diagrams.
Despite the perceived effectiveness for some special de-
sign features of OO software systems, they still have
some shortcomings, e.g., no consensus has yet been
reached on measuring structural complexity of UML
class diagrams[20]. Therefore, it is difficult to make
a sensible choice when software engineers evaluate the
quality of their design artifacts.

Overly concentrating on the details of OOP ham-
pers the effort to provide an insight into some impor-
tant properties of OO software systems at a high level
of abstraction[21] (such as graph or network model).
Obviously, a UML class diagram can be mapped di-
rectly to a graph, where nodes represent classes and
(directed) edges denote various types of relationships
between classes. Since graphs conceal the details of
OO context from developers, they are valuable in many
ways to understand (and even quantify) the underlying
properties of large-scale OO software[22].

Recently, researchers analyzed huge amounts of OO
software systems described by means of class-level de-
pendency (or collaboration) graphs, and found that
most of them possess global statistical features[23-25]

such as small world and scale free. The unexpected find-
ings raised empirical and theoretical questions about
those traditional metrics under the context of OOP.
Graph theory has long been used in several fields
of software engineering, but very little research con-
cerning this interdisciplinary field has so far been
conducted[26-27]. Even so, we argue that network think-
ing for large-scale OO software systems based on the

Internet should be encouraged so as to supply a novel
insight into the above-mentioned problems that go be-
yond the limit of OO context for software developers.

By understanding the fundamental idea that views
OO software in terms of network or graph, we can
recognize that graph-level measures for behavioral and
structural properties of software would be a necessary
complement to traditional software metrics[6]. Fur-
thermore, as indicators for defect-prone classes, these
measures may be more useful than OO software met-
rics when system-wide interactions among elements are
taken into account. Then, the contributions of this pa-
per are described as follows.

1) We proposed a hybrid set of complexity metrics,
which has a hierarchical structure with 3 layers, namely
graph, class and code. It can provide enough metrics for
software engineers to evaluate OO software complexity
at various levels and from different perspectives.

2) Based on the set, we performed experiments with
open-source OO software systems, and discovered some
significant correlations between graph-level measures
and class-level metrics. The results will help developers
to identify high-level software structural defects more
effectively.

The rest of this paper is organized as follows. Section
2 introduces the background and related work. Section
3 presents detailedly the hybrid set which is composed
of 3-layered software measurements. Section 4 offers a
case study of applying the set to measuring a medium-
sized Java system. Section 5 continues to analyze some
significant correlations between graph-level measures
and class-level metrics to identify defect-prone classes.
In the end, Section 6 concludes this paper.

2 Background and Related Work

2.1 Complex Networks

In the context of graph theory, Wikipedia defines a
complex network as “a network (graph) with non-trivial
topological features — features that do not occur in
simple networks such as lattices or random graphs.”[28]

Such features often refer to a heavy tail in the degree
distribution, a high clustering coefficient, community
structure, etc. However, many mathematical models of
networks that have been studied in the past, such as
random graphs, do not exhibit these features.

Ten years ago, small world effect[29] and scale
free property[30] were discovered successively in real-
world systems such as the Internet, World Wide Web
(WWW) and protein interaction networks. The former
is known for short path length and high clustering (this
phenomenon is also popularly known as six degrees of
separation[31]), while the latter is famous for power-law
degree distribution. Now, they have been deemed as
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the most important statistical characteristics of com-
plex networks that are different from regular graphs
such as lattice and random graphs.

The epoch-making finding attracts attention of
many famous scientists from diverse domains, which
contributes significantly to the prosperous study of
complex networks. Since the early 2000’s, these non-
trivial observations and increasingly popular researches
on real-world networks have gradually spawned a new
research field called complex networks, whose purpose
is to seek to discover general principles, algorithms and
tools that govern real-world network behaviors[32].

2.2 Software Systems as Complex Networks

Software is built up out of large amounts of inter-
acting components at various levels of granularity, e.g.,
package, class and method. The dependencies and in-
teractions between those pieces can be used to define
network models or graphs that form a skeletal descrip-
tion of software systems[21]. A few physicists first ana-
lyzed class-level dependency (or collaboration) graphs
derived from source code by using some statistical ap-
proaches, and found that most of them share global
statistical features[33-35] such as small world and scale
free. So, Myers argued that software systems represent
another important class of complex networks[33].

The interesting result not only validated the uni-
versality of small world effect and scale free property,
but also attracted scholars from the software engineer-
ing community to participate actively in the research.
OO software systems present novel perspectives to the
study of complex networks[33], so the interest has been
increasing in software’s geometric structure, system dy-
namics and evolutionary mechanisms across the disci-
plines from physics to computer science.

A number of software networks, which were defined
as dependency, collaboration or coupling graph (or net-
work) in previous literature [33, 35-36], were gene-
rated with the help of reverse engineering tools. A
comprehensive analysis on structural features of these
networks showed that most of them exhibit approxi-
mate power-law degree distribution and high cluster-
ing across different levels of granularity (viz., pack-
age, class and method)[23-25,37-44], which proved that
the topological structure of OO software based on the
Internet possesses distinct characteristics of complex
networks. Based on the ample empirical evidence,
software as a complex network (SaaCN) has gradu-
ally been recognized within the software engineering
community[24-25,45-46].

2.3 Metrics for Structural Properties

It was known long ago that the structure of software

has a significant impact on its functions and quality
attributes[47]. Recently, in order to develop better and
more robust large-scale software, some researchers be-
gan to investigate the structural properties of OO soft-
ware systems in terms of complex network. Up to now,
they have proposed several graph-level metrics to quan-
tify the specific properties such as complexity and sta-
bility independent of OOP context. In general, these
metrics are useful to evaluate the quality of software
design, and help developers to identify problematic de-
pendency structures and defect-prone nodes in software
networks.

According to structure entropy, Ma et al. proposed
a qualitative method[21] to measure structural comple-
xity of software systems. Their experiments revealed
that the heterogeneous topology with scale free pro-
perty has a strong positive correlation with structural
complexity. From the perspective of social network
analysis (SNA) related to graph theory[48], Zhao et al.
put forward a suite of metrics[49] for static structural
complexity, which overcomes the limitations of tradi-
tional OO software metrics. In addition to complexity
metrics, complex network-based measures for stability
and evolvability (associated with complexity) have also
been presented in recent literature [50-52] to facilitate
the maintainability and continuous refactoring of OO
software. However, an appropriate metrics set that can
comprehensively evaluate a large-scale OO software sys-
tem’s complexity at various levels of granularity is still
under discussion.

Other work about defect identification has been car-
ried out in [27, 36, 53]. Liu et al.[36] defined the weight
of a node in software networks in terms of CK’s WMC
(the Weighted Methods per Class) metric, and found
that there is a clear positive correlation between the
weight and the out-degree of nodes in four open-source
software systems. Further experiments indicated that
the similar correlation also exists between CK’s LCOM
(the Lack of Cohesion in Methods) metric and out-
degree. So, they suggested that out-degree may be an
indicator for defect-prone dependency structures. Zim-
mermann et al.[27] proposed a suite of SNA-based net-
work measures on dependency graphs to identify cen-
tral program units that are more likely to face defects.
Empirical data showed that these measures are able
not only to identify critical binaries of a complex soft-
ware system that are missed by traditional complex-
ity metrics, but also to predict the number of defects.
Based on Zimmermann and Nagappan’s work, Tosun
et al.[53] conducted additional experiments on public
data from open-source software systems to validate
their results[27]. Experimental results demonstrated
that network measures are important predicators of de-
fective modules for large and complex systems rather
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than small-scale projects. Hence, the multi-granularity
defect analysis method for ever-increasing complexities
of the Internet-based OO software systems is an urgent
need for software engineering research.

3 Hybrid Set of Complexity Metrics

3.1 Summary of Traditional Metrics

Early complexity metrics for software programs such
as SLOC (the Source Lines of Code) and McCabe
Cyclomatic Complexity (MCC) metric[54] have been
proved to be inadequate for modern OO software. It is
well known that the main mechanisms of OO paradigm,
namely inheritance, encapsulation and polymorphism,
are the key to achieving efficient reuse and easier main-
tainability. Considering the quantification of these par-
ticular features of OOP, CK and MOOD initiated a

new era of OO software measurement. However, there
are still some acknowledged limitations of the above-
mentioned metrics suits.

On one hand, obviously, it is difficult to measure the
macroscopic properties independent of OOP (such as
the shortest path length) in complex software systems
with OO software metrics[6] or even class diagram-scope
metrics[15,20]. For instance, there is a lack of metrics for
the influence of a class or a relationship on the whole
system. That is to say, if a random class fails, deve-
lopers will need a metric to evaluate its impact on the
global structure of the system.

On the other hand, the absence of graph-level met-
rics may affect a developer’s decisions on choosing an
appropriate metric or measure in the practical software
development. Hence, in practice developers have to go
through OO metrics all in order to decide which metric

Table 1. Summary of Traditional Software Metrics

Metric Category Description CK MOOD Genero’s Metrics

FP Size The number of function points

SLOC Size The number of code lines

NC Size The number of classes NC

DIT Inheritance The depth of a class in the inheritance hierarchy DIT

NoC Inheritance The number of the children of a class NOC

NGenH Inheritance The total number of generalization hierarchies within a class diagram NGenH

MaxDIT Inheritance The maximum DIT value obtained for each class within a class dia-
gram

MaxDIT

MIF Inheritance The number of inherited methods as a proportion of the total number
of methods

MIF

MAF Inheritance The number of inherited attributes as a proportion of the total number
of attributes

AIF

NID Coupling The number of classes that depend on or associate with a class CBO CF NAssocC, NDepIN

NOD Coupling The number of classes on/with which a class depends/associates NAssocC, NDepOUT

RFC Collaboration The number of methods that can be executed in response to a message
to the class

RFC

NAgg Aggregation The total number of aggregation relationships within a class diagram NAgg

NAggH Aggregation The total number of aggregation hierarchies within a class diagram NAggH

HAgg Aggregation The length of the longest path from the class to leaves within an
aggregation hierarchy

HAgg

MaxHAgg Aggregation The maximum HAgg value obtained for each class within a class dia-
gram

MaxHAgg

MAgg Aggregation The number of direct “whole” classes within an aggregation hierarchy MAgg

LCOM Cohesion The degree of similarity of methods by data inputs or the instance
variables of a class

LCOM

CC Complexity The complexity of a class WMC NODP, NP, NW

CCD Complexity The complexity of a UML class diagram NAssoc, NDep, NAgg,

NGen

ED Encapsulation The degree of information hiding MHF

AHF

PD Polymorphism A measure of polymorphism potential PF

SC Complexity A measure of structural complexity of an object-oriented system ?

ID Complexity The influence of a class or a relationship on the whole system ?

.

..
.
.. Metrics for macroscopic properties of large-scale software systems ?
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is most suitable for their project and adjust the metrics
set to get the right benefits according to the size and
complexity of the project.

These problems lead to an embarrassing situation
where we do not have adequate software metrics to mea-
sure the overall complexity of a large and complex soft-
ware system. For example, as we know, Windows XP
has a more complex structure than Windows 98, but we
cannot yet say it is x times more complex, where x is
some number, because the measurement of their struc-
tural complexity still remains challengeable for software
engineers[55].

Then, in Table 1 we present the summary of tradi-
tional software metrics to show the general properties
they measure and implicit limitations. The details of
CK, MOOD and Genero’s metrics please refer to [3, 4,
56], respectively.

It is apparent from Table 1 that Genero’s metrics for
UML class diagrams have overcome some limitations of
CK and MOOD by virtue of abstraction. For exam-
ple, a few novel metrics were designed to measure other
kinds of relationships between classes such as aggrega-
tion; moreover, the class diagram-scope metrics such
as NGenH were also proposed to assess some external
quality attributes, e.g., the maintainability related to
complexity. Although they can be applied not only to
a single class, but also to a class diagram, little em-
phasis has been put on measuring quality aspects of
a class diagram as a whole[15]. The study of complex
networks has led to an ongoing development and refine-
ment of network models and graph theoretical analysis
techniques with which to characterize and understand
complexity, so we argue that graph-level metrics may
provide an insight into the complexity of software struc-
tures derived from source code or class diagrams.

3.2 Generic Graph-Level Metrics

From the perspectives of complexity science and
software engineering, the following subsections will in-
troduce the basic graph theoretical measures (viz. the
so-called global topological measures of complex net-
works) that characterize the topology of a software net-
work at multiple scales.

3.2.1 Degree Distribution

In the context of graph theory, the degree of a node
in a graph is defined as the number of edges the node
has against other nodes. For a directed graph, its nodes
have two different degrees, namely in-degree and out-
degree. Degree distributions, summarizing the connec-
tivity of each node in a graph, indicate the probability
of finding a node with a specified degree k[33]. Some-
times, a cumulative degree distribution[35], the fraction

of nodes with degree greater than or equal to k, repre-
sents another form of the same information.

Now, many software networks derived from source
code have been found to possess a scale free degree dis-
tribution, implying that P (k) approximately obeys a
power law over an extended range of degrees. By and
large, the existence of heavy-tailed out-degree distribu-
tions suggests a broad spectrum of complexity, and the
existence of heavy-tailed in-degree distributions implies
a broad spectrum of reuse[33]. Hence, the metric (P (k))
may be used not only to characterize the connectivity
of a software network, but also to estimate its overall
structural complexity in terms of structure entropy[21].

3.2.2 Average Shortest Path Length

As an important concept of network topology, ave-
rage shortest path length is also known as average path
length in graph theory. It is defined as the average
number of steps along the shortest paths between eve-
ry pair of nodes through a network. If there is no path
connecting the two nodes, their distance is convention-
ally defined as an infinite. Physicists often make use of
it in practice to measure the efficiency of information
or mass transport on a network.

Many software systems have recently been found
that their average shortest path lengths are short and
change proportionally to log N [35], where N is the num-
ber of nodes in the network. For example, the average
shortest path length of JDK1.5 is around 6[35], implying
the so-called six degrees of separation phenomenon[31]

which has been found in social networks, the Internet,
WWW, etc. In general, the metric (d) has remarkable
impacts on the efficiency of messaging (or information
transfer) among classes as well as on the overall re-
sponse capability of OO software.

3.2.3 Clustering Coefficient

In a network clustering indicates the tendency for a
node’s neighbors to cluster themselves. So, clustering
coefficient is used to assess the degree to which nodes
tend to cluster together. For a single node in a net-
work, the metric quantifies how close its neighbors are
to being a clique (complete graph)[29]; for the whole
network, the metric is the average of clustering coeffi-
cients for each node.

Besides short average shortest path length, high (av-
erage) clustering coefficient is also a significant charac-
teristic of small-world networks. The average clustering
coefficients of many software networks are much higher
than those of random graphs constructed on the same
node set, possibly suggesting a high degree of cohesion
among components of these systems. Furthermore, My-
ers observed that the clustering coefficients of nodes
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with k edges follow the scaling law C(k) ∼ k−1, which
implies a hierarchical organization of modularity[57] in
experimental software systems[33]. Hence, the metric
(C) could be employed to characterize modularity and
to estimate the cohesion of community (or modular)
structures within large-scale software systems.

3.2.4 Betweenness Centrality

Betweenness is a measure of the centrality of a node
in a network, which is normally calculated as the frac-
tion of shortest paths between node pairs that pass
through the node of interest[58]. It determines the “traf-
fic” passing through the chosen node along all shor-
test paths between all node pairs in a network. So,
a node that occurs on many shortest paths between
other nodes has higher betweenness value than those
that do not. Similarly, one can define the betweenness
of an edge[58]. Both measures of betweenness centrality
give some sense of the relative linking and/or traffic-
directing capability of a node or an edge in a software
network.

Betweenness reveals the importance of a node or an
edge in the overall connectivity of a software network.
So, the metric (B) enables us to analyze the significance
of a node or an edge through the whole network, which
may facilitate our understandings on the robustness for
structural optimization of a given OO software system.

3.2.5 Degree Correlations

The correlations between the in- and out- degrees of
different nodes in a network have been found to play
an important role in many structural and dynamical
network properties[59]. They measure the linear corre-
lation of degrees over all edges of a graph, and reflect
the tendency of nodes with similar degrees to be con-
nected to one another.

An interesting observation is that essentially all so-
cial networks measured appear to be assortative, sug-
gesting that nodes with high degree tend to connect
with other similar nodes, but other types of networks

(such as information network and technological net-
work) appear to be disassortative[33,58-59]. Hence, these
correlations not only can help us to measure the collab-
oration among classes with different degrees, but also
provide a useful way to analyze the hierarchy of soft-
ware functions.

3.2.6 Summary

Although new measures such as the resilience of com-
plex networks were proposed one after another in recent
years, the above-mentioned metrics have been recog-
nized as the basis to study complex networks. As the
generic graph-level metrics for software networks, they
are capable of expressing the most relevant topological
features of large-scale OO software systems based on
the Internet. Then, a brief review of them is presented
in Table 2.

3.3 Integration of Different Levels of Metrics

3.3.1 Hierarchy of the Metrics Set

A software system is composed of large numbers of
software components. Considering their diverse levels
of granularity, e.g., procedure, class and package, soft-
ware complexity should be analyzed from the viewpoint
of system thinking with different dimensions or aspects,
mainly including source code, OO context and network
characteristics.

Hence, the metrics of our hybrid set could be classi-
fied into three categories (see Fig.1): statistical metric
(at the graph level regardless of OO context), system &
component metric (at the OO context level) and code
metric (at the implementation level of program blocks
written in programming languages).

1) By virtue of network analysis techniques, statisti-
cal metrics are mostly used to measure the global fea-
tures of a large-scale OO software system independent
of specific design techniques so as to provide an
overview or a general picture of the system for software
engineers.

Table 2. Brief Review of Generic Graph-Level Metrics

Metric Symbol Implications for Software Engineering

Number of nodes N

Number of edges L

Average degree 〈k〉 The metric for the average coupling of a software system

Average shortest path
length

d The metric for the efficiency of information transport, communication cost
among classes and the overall response capability of a software system

Degree distribution P (k) The metric for the overall complexity of a software system

Clustering coefficient C The metric for the degree of interior cohesion of a software module

Betweenness B(v)/B(e) The metric for the impact of a class or a relationship on the whole system

Correlation corr(k
in/out
i , k

in/out
j ) The metric for the hierarchy of software functions and the collaboration among

classes with different degreescoefficient

corr(ki, Ci) The metric for a hierarchical organization of modularity in a software system
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Fig.1. Hierarchy of the metrics set.

2) In the context of OOP, system & component met-
rics are mainly employed to quantify the specific pro-
perties of a system as well as a class in terms of the
main mechanisms of OOP so as to evaluate the quality
of OO software design.

3) Code metrics represent the measurement of code
complexity of program blocks such as class or module,
which is directly related to the maintainability and

testability of source code, so they can offer detailed
guidance for programmers to improve code quality.

3.3.2 Different Levels of Metrics

In Table 3, all metrics at different levels are listed
according to the properties that are measured. Note
that the symbol (x, y) represents a composite metric
that consists of two single metrics x and y.

As shown in Fig.1, statistical metrics are positioned
towards the top layer of the hierarchy. Since an OO
software system can be treated as a directed network
irrespective of OOP context, they measure global struc-
tural features of a software network in terms of coupling
(degree) and cohesion (clustering coefficient), which are
the most important characteristics of software. Thus,
these graph-level metrics can provide the measurement
of properties that are necessary but not sufficient for
software networks derived from source code or UML
class diagrams. In addition to complexity, size, etc.,
other important properties that go beyond the reach of
traditional metrics (e.g., modularity and efficiency of
information transport) are also measured at this level.

OO software metrics have long been the focus of soft-
ware engineering. The previous work lays solid founda-
tion for the design of system metrics under the context
of OOP. As we know, software structural complexity
stems from complex relationships among a very large
number of software entities[21]. Compared with tra-
ditional OO metrics suites such as CK and MOOD,
the metrics for UML class diagrams take a wider range
of relationships besides inheritance and dependency
into account, facilitating a comprehensive assessment
of system-wide structural complexity. Combining the

Table 3. Metrics of the Set

Purpose Statistical Metric System & Component Metric Code Metric

System-Scope Class-Scope

Coupling k, 〈k〉 CF CBO Fan-in & Fan-out

(NAssocC, NDepIN,

NDepOUT)

Cohesion C LCOM

Information hiding (MHF, AHF)

Polymorphism PF

Inheritance (MIF, AIF) DIT, NOC

(NGen, NGenH, MaxDIT)

Abstractness A: the ratio of abstract classes

Size N NC (NODP, NP, NW) SLOC

Efficiency of information d

transport

Complexity P (k) (NAssoc, NDep, NAgg, NGen) WMC, RFC MCC

Significance
Relationship B(e)

Component (B(v), k)

Hierarchical modularity corr(ki, Ci)

Function hierarchy corr(k
in/out
i , k

in/out
j ) corr(iFan-in/out, jFan-in/out)
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primary advantages of CK, MOOD and Genero’s met-
rics, two kinds of metrics at the level of OO context,
namely system-scope metric and class-scope metric, are
defined to measure the main features of OOP and the
related external quality attributes.

All design artifacts will be implemented by modern
programming languages that support OOP in the end.
Hence, code-level complexity metrics such as SLOC and
MCC are applied to the modules, methods and classes
within a software program to monitor code quality.
Moreover, they are also used to provide a visual es-
timation of effort or software cost for programmers.

Software metrics are often validated by using
property-based approach[60] and measurement theory-
based approach[61]. On one hand, the hybrid set of
complexity metrics covers not only the minimal pro-
perty set of OO metrics, including abstractness, inher-
itance, size, coupling, cohesion, polymorphism and en-
capsulation, but also some significant global features
of software networks such as degree distribution and
clustering coefficient. On the other hand, it is easy to
judge the constructive validity of these metrics and to
prove that they are characterized by ratio scales. Thus,
the metrics of our set can be theoretically validated. A
case study of empirical validation will be presented in
Section 4.

3.3.3 Indicator for Structural Defects

Our hybrid set aims at measuring the specific pro-
perties of large-scale OO software systems at various
levels so as to explore the probability of defect detection
in terms of these metrics. Software engineers always
seek to improve software quality by identifying fault-
prone classes (or modules) with software metrics. So,
the underlying goal of such a study is to better predict
fault-prone classes by means of statistical metrics, OO
design metrics and the significant correlations between
them.

Based on the empirical results, Zimmermann et al.
argued that network measures have advantages over
traditional complexity metrics concerning the identi-
fication of graph-level structural defects[27,53]. Hence,
we believe that statistical metrics are suitable to be the
high-level defect indicator, which may offer a glance
of the distribution of fault-prone nodes in a software
network. Moreover, an in-depth analysis under the con-
text of OOP would provide more detailed modification
guidance for developers by virtue of the correlations be-
tween statistical metrics and OO design metrics, some
of which have been reported to be significant predictors
for fault proneness of classes in previous literature [5,
7, 10-12, 26].

1) Empirical data shows that if the average shortest

path length of a software network (d) is much longer
than 6, the overall efficiency of information transport
among its nodes will be relatively poor. Hence, the
metric provides an insight into the rationality of macro-
scopic structure design, especially for the design of
“hub” nodes that are responsible for message switch-
ing.

2) Being similar to the metric CBO of CK (or Fan-
in & Fan-out of a module), the degree of a node (k)
in a software network actually indicates the degree to
which each class (or program module) relies on each of
the other classes (or modules). So, the average degree
of a software network (〈k〉) offers a graph-level metric
that measures the degree of software coupling or depen-
dency on the average, which resembles the metric CF
of MOOD for the whole system.

3) High cohesion is often contrasted with low cou-
pling. When the parts of a software entity are grouped
according to a single well-defined task, the cohesion of
the entity is high, suggesting that its parts tend to clus-
ter together in a local community. Thus, average clus-
tering coefficient (C) can assess the degree of cohesion
of large-grained software entities such as subsystem or
package at a high level, which is useful to complement
the metrics for cohesion of a class (e.g., CK’s LCOM).
In general, a software entity in question with low ave-
rage clustering coefficient demands for decomposition
into several small components with high cohesion.

4) For a legacy system, it is a hard task for tradi-
tional OO metrics to quantify the system-wide signi-
ficance of a random class or relationship. Fortunately,
the betweenness centrality of our hybrid set enables a
better understanding of the problem. The larger the
betweenness of a node or a relationship (B(v) or B(e))
is, the greater its impact on message traffic of the whole
system will be when suffering intentional attacks or fail-
ures. That is to say, if a class with high betweenness
but low connectivity fails, the link between subsystems
(or packages) may be broken off. Therefore, from the
perspective of fault-tolerance, the design of backup or
exception handling for these classes or relationships is
very important.

5) Since the era of structured programming, Fan-in
& Fan-out have been deemed as an efficient indicator
for potential design defects of a program module[62].
For complex software networks, the correlations be-
tween degrees (such as corr(kin, kout)) can also provide
an insight into their structure design independent of
OOP context. For example, a simple scatter plot of in-
degree vs. out-degree for every node is able to provide
a system-wide distribution of defect-prone nodes. As
we know, simple classes (or modules) tend to be hea-
vily reused, whereas complex classes (or modules) are
inclined to depend on other simple ones. Hence, there
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are reasons to expect that such classes (or modules)
with both high in-degree and high out-degree could be
problematic. A case study to be introduced in Section
4 will confirm such a suspicion.

6) Scale free and modularity have been found to be
important features of large-scale software networks[33].
High, size-independent clustering coefficient offers
strong evidence for modularity, whereas power-law
degree distribution strongly supports the scale-free
model[30]. The scaling law C(k) ∼ k−1 quantifies the
coexistence of a hierarchy of nodes with different de-
grees of modularity[57], which implies that the cluster-
ing coefficients of nodes generally decrease with the in-
crease of their degrees. Hence, the metric (corr (ki, Ci))
can be used to detect the design defect of nodes with
high degree in short order. For instance, due in part to
understandability and maintainability, the classes with
high out-degree but low in-degree seldom cluster to-
gether to offer a more complex function, so their clus-
tering coefficients are generally much smaller than those
of nodes with low out-degree.

7) It is known that the metrics CBO, WMC and
LCOM of CK, and the metric CF of MOOD have long
been efficient predictors to identify fault-prone classes
in OO software systems[5,7,10-12]. Even so, is there a
more simple method to detect structural defects at a
higher level? The further investigation on the correla-
tions between graph-level measures such as out-degree
and these traditional OO metrics may provide a more
intuitive and statistical means for developers to pre-
dict the probability of structural defects based on large
samples of empirical data, and to select the most rele-
vant OO metric (or metrics) for the following in-depth
analysis. In Section 5, the experiments of empirical va-
lidation on 12 open-source systems will be performed.

4 Case Study

4.1 System under Consideration

The system (SCRR) presented here is introduced
in [63], whose main function is to register and
manage software components based on domain on-
tologies. It was created with Eclipse 3.1 (available
at http://www.eclipse.org) and Jena 2.2 (available at
http://jena.sourceforge.net/), which has 4 plug-ins, 89
packages (36 packages are automatically generated by
tools), about 600 classes without the classes of JDK or
Jena, and more than 100000 lines of Java code exclud-
ing all comments and statements.

4.2 Analysis Approach

The framework of our analysis approach is shown in
Fig.2. Source code and class diagram are two kinds of

software artifacts that can help describe the function,
design and implementation of software. As the basic el-
ements of OO software, classes and the relationships be-
tween them are usually extracted from Java/C++ code
or UML class diagrams (which are not always available)
to form a collection of element and relation, which con-
stitutes an essential description of software.

Fig.2. Framework of analysis approach.

Regardless of the formal semantics of elements and
relations (with emphasis on the directivity) under the
context of OOP, a software network can be recon-
structed to characterize the global topological features
of its corresponding software system. Then, developers
can choose appropriate metrics from the hybrid set to
measure necessary properties of software at diverse le-
vels of granularity. According to numerical data of the
indicators associated with design defects, a report akin
to the result of medical diagnosis would provide help-
ful instruments or ways for programmers to improve
software quality.

4.3 Empirical Validation

Because the system under consideration was de-
signed and developed by ourselves, both Java code and
UML class diagrams are available for our experiments.
First, all Java class files that describe a class (inclu-
ding attributes and methods) and the collaboration
with others (excluding the classes of JDK and Jena)
are automatically examined by a simple algorithm. To
ensure that the collection derived from Java code is cor-
rect, we also analyze UML class diagrams in a similar
manner. For a collection of element and relation, the
relation that links an element to itself is trivial.

Second, we reconstruct a software network accord-
ing to the collection and visualize the network with
an open-source tool pajek (available at http://vla-
do.fmf.uni-lj.si/pub/networks/pajek/). In Fig.3, nodes
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with different colors belong to various plug-ins of
SCRR. As we expected, in-degree and out-degree dis-
tributions of the network exhibit rough power-law scal-
ing, with exponents rin ≈ 2.2 and rout ≈ 2.7. On the
other hand, average shortest path length d equals 4.86
(smaller than random graphs with the same node set)
and average clustering coefficient C equals 0.202 (much
larger than random graphs with the same node set),
which implies that SCRR also shares small world prop-
erty.

Fig.3. Topological structure of the experimental system.

Degree correlation of the network is shown as Fig.4,
where every node is represented by its (kin, kout) pair.
It is visually apparent that nodes with high out-degree
generally have low in-degrees, and those with high in-
degree usually have low out-degrees. Moreover, we also
find that there is a negative correlation between in- and
out-degrees for nodes with high degree. What we ob-
served implies that, for the most part, there is a clear
distinction between the levels of different functional hi-
erarchies due to the strategies of divide and conquer
and high cohesion and low coupling. So, like the tradi-
tional metric Fan-out & Fan-in, the improper ratio of
out-degree to in-degree of a class may lead to potential
defects, too. For example, the classes with both high in-
degree and high out-degree (in the area of ellipse with
dashed line of Fig.4) are conjectured to be problematic

insofar as software development is concerned.

Fig.4. Scatter plot of kin vs. kout.

Finally, we use Eclipse metrics plug-in (available
at http://sourceforge.net/projects/metrics) to calcu-
late the metrics of CK and MOOD; at the same time,
we also calculate Genero’s metrics for UML class dia-
grams by an algorithm designed based on [15, 56]. All
the experimental results are presented in Table 4. Note
that SD and FP represent standard deviation and func-
tional point, respectively.

According to the analysis of statistical metrics,
SCRR is a middle-sized scale-free system, which has
short d and large C, possibly indicating high efficiency
of message transport and sound response capability.
The metrics of CK, MOOD and Genero’s metrics are
very helpful measuring technique to evaluate software
design quality and help developers to identify software
defects. For example, a higher value of LCOM sug-
gests decreased encapsulation and increased complex-
ity, thereby increasing the likelihood of errors. So, sys-
tem & component metrics are used to ensure a better
functionality and quality as a whole under the context
of OOP. Traditional metrics such as SLOC, MCC and
Fan-in & Fan-out are employed to evaluate source-code
complexity and software cost or effort at the implemen-
tation level. Hence, we believe that the hybrid set of
metrics would contribute to measuring the complexity
of practical OO software systems at different levels.

Table 4. Experimental Data of Our Metrics Set for SCRR

Statistics
N L rin rout d C 〈k〉
601 1829 2.22 2.68 4.86 0.202 6.09

Plug-In
WMC LCOM EC NOC DIT RFC

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Model 44.99 42.51 0.20 0.33 6.66 5.80 0.72 1.74 5.44 2.32 4.13 2.12

OntoM 9.58 7.54 0.15 0.29 6.89 7.02 0.24 0.91 2.24 1.22 3.64 1.23

OntoUI 8.44 12.30 0.12 0.26 5.20 2.79 0.24 0.71 2.64 1.34 3.32 0.96
OOP Registry 7.17 7.81 0.20 0.31 6.16 3.43 0.04 0.38 2.43 1.15 6.21 3.21
Context Class Diagram NC NAssocC HAgg MAgg NAssoc NAgg NDep NGen NGenH NAggH MaxDIT MaxHAgg

SCRR 601 0.802 4 4 482 104 923 294 6 5 7 6

System AHF AIF CF MHF MIF PF

SCRR 0.622 0.114 0.102 0.183 0.342 0.045

Code
SLOC NoC FP MCC

100 216 601 426 2.017
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5 Correlations Between Different Levels of
Metrics

5.1 Data Collection

In order to investigate the significant correla-
tions between statistical metrics and OO metrics,
we collect the source code of 12 open-source OO
software systems written in Java or C++, including
aMule (an eMule-like file-sharing program available
at http://sourceforge.net/projects/freshmeat amule/),
BORG Calendar (a calendar and task tracking system
available at http://sourceforge.net/projects/borg-ca-
lendar/), db4o (an object database for Java and .NET
available at http://sourceforge.net/projects/db4o/),
FileZilla (a cross-platform graphical FTP client
available at http://sourceforge.net/projects/filezilla/),
GeOxygene (an OGC/ISO-based open framework
for GIS available at http://oxygene-project.source-
forge.net/), HtmlUnit (a GUI-Less browser for
Java programs available at http://htmlunit.source-
forge.net/), Tomcat (a servlet container available
at http://tomcat.apache.org/), MUTE file shar-
ing (a P2P-based file-sharing program available at
http://mute-net.sourceforge.net/), OpenJUMP (an
open-source Geographic Information System avail-
able at http://jump-pilot.sourceforge.net/), Roller We-
blogger (a multi-user weblogging system available
at http://sourceforge.net/projects/roller/), Tapestry
(a comprehensive component-based web application
framework available at http://sourceforge.net/projects/
tapestry/) and WinMerge (a differencing and merg-
ing tool for window available at http://winmerge.org).
Since the original UML class diagrams of these sys-
tems are unavailable, we leave Genero’s metrics out of
account when analyzing the correlations.

5.2 Data Processing and Analysis

For each experimental system, elements and the

relations between them are extracted automatically
from Java .class files or C++ .h and .cpp files. Redun-
dant and trivial relations in the collection of each sys-
tem will be deleted in the course of data pre-processing
so as to avoid computing bias.

According to the collection derived from Java or
C++ source code of each system, we reconstruct and vi-
sualize a corresponding software network (or sometimes
the maximal connected sub-graph of the network) by
means of an open-source tool pajek. The experimental
results of basic measures for 12 software networks are
presented in Table 5. The symbol r indicates the sca-
ling exponent of degree distribution. To fit the curve of
degree distribution well, the scaling region is adjusted
with about 5% cutoff. All the 12 software networks
are found to exhibit size-independent global features,
namely the well-known scale free and small world.

As mentioned earlier, graph-level measures offer
a higher level of measurement for the collaborations
among components of software. Within the software en-
gineering community, it has long been recognized that
MOOD’s CF and CK’s CBO and LCOM are important
indicators for fault-prone classes in terms of software
coupling and cohesion[7,10-12]. In order to explore the
correlations between two levels of metrics, in this pa-
per we focus mainly on the metrics of CK and MOOD
which are related to coupling, cohesion and complexity.

The values of metrics of interest are calcu-
lated by an open-source tool cccc (available at
http://cccc.sourceforge.net/). Table 6 exhibits the dis-
tribution of CBO for each class in the 12 software sys-
tems. More than 80% of classes only have less than
10 dependencies with others, whereas a small number
(less than 5%) of classes possess larger couplings more
than 20, implying an approximate power-law distribu-
tion like the degree distribution for each node in the
corresponding software network.

The metric WMC of CK is always used by software
programmers to assess the complexity of a class. A high

Table 5. Results of Graph-Level Metrics for 12 Software Networks

Software N L d drand C Crand 〈k〉 r rin rout

db4o 2556 9808 3.106 4.032 0.267 0.003 7.674 1.902 1.755 2.429

OpenJUMP 1521 6828 3.055 3.524 0.197 0.005 8.978 2.239 1.976 2.322

WinMerge 987 2262 4.486 4.973 0.068 0.004 4.584 2.597 1.989 2.923

Tomcat 782 3188 2.901 3.204 0.259 0.102 8.153 2.151 1.838 2.267

Tapestry 735 2943 2.756 3.174 0.291 0.011 8.008 2.122 1.717 2.167

HtmlUnit 603 1514 3.048 3.978 0.261 0.008 5.022 2.048 1.878 2.385

aMule 562 1709 3.340 3.534 0.140 0.011 6.082 2.318 2.053 2.399

GeOxygene 435 1127 3.450 3.775 0.171 0.011 5.182 2.141 1.872 2.222

Roller Weblogger 405 1559 2.960 3.085 0.143 0.017 7.699 2.373 1.978 2.382

FileZilla 401 1031 3.435 3.724 0.132 0.012 5.142 2.163 1.856 2.363

BORG 397 1317 3.154 4.032 0.118 0.003 7.674 2.406 1.950 2.838

MUTE 316 703 3.882 4.152 0.113 0.013 4.450 1.953 1.790 2.467
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Table 6. Distribution of CBO for Each Class

in the 12 Software Systems

Software
Rate of Classes with CBO Between (%) Average

0∼5 6∼10 11∼20 21∼30 31∼40 > 40 CBO

db4o 68.47 17.32 9.35 1.99 0.86 1.92 7.716

OpenJUMP 52.74 26.73 14.71 2.29 1.11 2.41 8.925

WinMerge 78.94 13.60 4.72 1.13 0.47 1.13 4.272

Tomcat 90.42 6.35 1.61 0.85 0.08 0.68 2.566

Tapestry 57.47 26.49 10.87 2.58 1.22 1.36 7.997

HtmlUnit 81.57 12.23 3.10 1.63 0.16 1.30 4.939

aMule 69.40 17.56 8.86 2.01 1.00 1.17 5.715

GeOxygene 74.14 15.10 7.09 2.52 0.46 0.69 5.158

Roller 54.43 26.60 13.30 2.22 1.72 1.72 7.680

Weblogger

FileZilla 73.91 16.91 6.28 1.21 0.48 1.21 4.981

BORG 60.15 23.56 12.53 2.51 0.75 0.50 6.602

MUTE 80.58 13.62 2.90 1.49 0.87 0.58 4.705

WMC value of a class, which seems disproportionately
high compared to the complexity of other classes, sug-
gests that the given class should probably be refactored
into more classes. If all methods of a class have the
same weight, the value of WMC is proportionate to the
number of its methods.

Fig.5 shows the distribution (on a log-log scale) of
WMC for each class in the 12 software systems on the
assumption that the weight of all the methods within
the system is 1. Interestingly, all distribution diagrams
of these systems obey roughly a power-law distribution,
implying an uneven distribution of software functional-
ity in OO software systems. That is to say, most classes
with few methods appear to be simple function that is
easy to be reused, whereas few classes with large num-
bers of methods seem to be very complex and more
likely to be prone to errors.

After the detailed introduction to analyzing CBO
and WMC, it is unnecessary to go into details about
LCOM. Then, we present the experimental results of
code-level metrics for the 12 software systems in Ta-
ble 7. Note that the number in italics indicates that
its value is beyond the normal range of related metric.
Although lines of source code of a class reflect an ef-
fort to construct the class, complex classes (in terms of
SLOC and MCC, e.g., SLOC > 100 and MCC > 10) de-
serve special attention and careful handling, otherwise
their readability, understandability and maintainability
would be seriously affected.

Fig.5. Distribution of WMC for each class in the 12 software systems.



1196 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

Table 7. Experimental Results of Code-Level Metrics for the 12 Software Systems

Software SLOC Comment Lines
SLOC/Comment Lines

MCC

Total Average Total Average Total Average

db4o 138 679 53.134 66 773 25.584 2.077 13 299 5.095

OpenJUMP 97 525 63.742 42 783 27.963 2.280 8 186 5.350

WinMerge 117 226 113.153 46 492 44.876 2.521 20 024 19.328

Tomcat 100 126 118.492 53 991 63.895 1.852 13 506 15.983

Tapestry 34 741 47.202 49 380 67.092 0.704 2 467 3.352

HtmlUnit 38 212 62.336 25 669 41.874 1.489 1 580 2.577

aMule 86 666 147.642 24 952 42.508 3.473 15 252 25.983

GeOxygene 30 923 70.762 18 297 41.870 1.690 4 595 10.515

Roller Webllogger 32 470 79.975 11 970 29.483 2.713 2 132 5.251

FileZilla 68 319 152.158 10 022 22.321 6.817 16 354 36.423

BORG 34 817 87.261 7 270 18.221 4.789 3 727 9.341

MUTE 28 269 82.417 15 730 45.860 1.797 4 163 12.137

5.3 Correlation Analysis

5.3.1 Degree-Degree and Degree-Clustering

As shown in the case study, there is a clear negative
correlation between in-degree and out-degree of nodes
with high degree, which may be an indicator for fault-
prone classes. Another measure of degree correlations
is the mixing by degree of a graph, which reflects the
tendency that nodes with similar degree are connected
to one another[33]. This could help developers to ana-
lyze and understand software structure better. Table 8
shows the values of all kinds of degree-degree correlation
coefficients for the 12 software networks in question.

Table 8. Correlation Coefficients of Degrees

for the 12 Software Networks

Software In-In In-Out Out-In Out-Out Degree-Degree

db4o −0.042 −0.048 −0.194 −0.058 −0.140

OpenJUMP −0.038 −0.004 −0.134 −0.047 −0.093

WinMerge −0.002 −0.117 −0.187 0.179 −0.174

Tomcat −0.071 −0.051 −0.198 −0.069 −0.147

Tapestry 0.005 0.097 −0.168 0.028 −0.066

HtmlUnit −0.037 −0.101 −0.210 0.031 −0.101

aMule 0.018 −0.038 −0.139 0.020 −0.103

GeOxygene 0.030 0.075 −0.179 0.054 −0.054

Roller −0.038 −0.067 −0.130 0.168 −0.078

Weblogger

FileZilla 0.087 0.065 −0.141 0.057 −0.098

BORG 0.060 −0.272 −0.169 0.220 −0.132

MUTE 0.088 −0.145 −0.157 0.358 −0.121

It is apparent from Table 8 that a weak negative cor-
relation of out-in pattern occurs in all the 12 software
networks. The dissortativity suggests that nodes with
high out-degree do not tend to be linked to those nodes
with high in-degree, because in part of a functional hier-
archy of software design that discourages cross-layered
collaboration. Similarly, a weaker negative correlation

between the degrees in all the experimental systems
probably reflects the tendency that classes with similar
degree are uncooperative with each other. Such design
may reduce the interactions among cross-layered classes
so as to enhance their reusability.

Ravasz et al.’s recent work[57] suggested that degree-
dependent clustering of the form C(k) ∼ k−1 (see
dashed line in Fig.6) is a signature of hierarchical orga-
nization, which serves to resolve the obvious dilemma
between power-law degree distribution and modular
structure. Most of plots in Fig.6 such as db4o display
a flat C(k) for small k which rolls over to a k−1 tail
at large k. These data of our experimental systems are
roughly in line with those presented in [33, 36].

Due in part to software reuse (which implies a re-
markable power-law in-degree distribution) and divide
and conquer (which suggests a modular structure), we
argue that this correlation reflects a hierarchical organi-
zation of software design. Classes with simple functions
tend to cluster together to offer a more complex func-
tion, whereas complex classes do not in respect that
they are highly specialized and only applicable in limi-
ted contexts. Therefore, a class with both high degree
and large clustering coefficient is likely to be defective,
which tallies with the early observation about the nega-
tive correlation between high-degree nodes in essence.

5.3.2 Correlations Between Cross-Level Metrics

On one hand, according to the property a metric
can measure, there are some intuitive correlations be-
tween cross-level metrics. For example, we guess there
must be a positive correlation between the degree of a
node (k) and the metric CK’s CBO of a class. Likewise,
a positive correlation certainly exists between the ave-
rage degree of a network (〈k〉) and the metric MOOD’s
CF (and average CBO) of a system. All the values of
this kind of correlation coefficients are introduced in
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Fig.6. Clustering coefficient C(k) vs. degree k.

Table 9. Values of Intuitive Correlation Coefficients

k 〈k〉 CBO Average CBO CF

k - - 0.683 - -

〈k〉 - - 0.586 0.020

CBO - - -

Average CBO - 0.019

CF -

Table 9. In sharp contrast with a strong positive corre-
lation between k and CBO, we are somewhat surprised
that the correlation of CF with either 〈k〉 or average
CBO is rather weak, due in part to the different defini-
tion of coupling for MOOD’s CF and CK’s CBO.

On the other hand, a few implicit correlations need
to be mined based on experimental data. For example,
CK’s WMC reflects the complexity of a class in terms
of method. If a class has more methods (assuming that
their weights are the same), we wonder whether its de-
pendencies on other classes are greater. For a software
network, an outgoing edge comes from the statements
within a class that import other classes. If this is the
case, a class with high out-degree deserves particular
analysis to identify potential defects that would harm
reusability and cohesion.

Then, we examine the correlation coefficient between

the metric WMC and degree (k), in-degree (kin), and
out-degree (kout), respectively, and find that out-degree
has a very strong positive correlation with WMC (see
Table 10) as we expected, suggesting that the more
functions a class has, the more classes it would depend
on. As we know, according to the principle of soft-
ware construction, a complex class is often composed
of many methods with simple function, which tend to
build upon other classes by reference to their variables

Table 10. Values of Different Kinds of Correlation

Coefficients Between WMC and Degree

Software WMC ∼ k WMC ∼ kin WMC ∼ kout

db4o 0.105 0.093 0.666

OpenJUMP 0.127 0.191 0.652

WinMerge 0.088 −0.043 0.739

Tomcat 0.175 0.108 0.690

Tapestry 0.126 0.181 0.783

HtmlUnit 0.094 0.069 0.360

aMule 0.174 0.068 0.612

GeOxygene 0.253 0.148 0.587

Roller Weblogger 0.161 0.020 0.551

FileZilla 0.229 0.079 0.739

BORG 0.118 0.037 0.692

MUTE 0.142 0.097 0.318
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or methods. But unfortunately, there is no clear corre-
lation between the reuse of a class (kin) and its functions
(WMC) from Table 10. We guess this may lie in part
on a programmer’s preference for heavily-reused classes
and awareness of cautious use of complex classes.

In this case we conduct further investigation on
the relationship between (average) WMC and kout

defined in [36]. As shown in Fig.7, the distribution
of WMC(kout) for all the 12 software systems (except
MUTE) fits a straight line well on a log-log scale.

The observation indicates that WMC(kout) follows
a scaling law WMC(kout) ∼ kα

out. Interestingly, α
for most of the systems in question (except MUTE)
is around 1 (between 0.805 and 1.087, sometimes the
unused import statements within classes may result in
a slight bias that α is only a little bit smaller than its
actual value), implying that average WMC of classes
with a specific out-degree kout is approximately pro-
portional to their out-degrees. If the WMC of a spe-
cific class ci with a given out-degree kout exceeds the
upper normal range (e.g., WMCci−kout

σk
� 2.5, where σk

is the standard deviation of a set of WMC for all the
classes whose out-degrees are kout), we suggest that it
needs an urgent and careful refactoring. If our obser-

vation can be empirically validated in a wider scope,
it is believed that the correlation is useful to analyze
and quantify the relationship between function distri-
bution of a class and its structural characteristics from
a system-scope viewpoint.

A high value of CK’s LCOM suggests that metho-
ds in a class are not really related to each other and
vice versa. Previous work found that the increase of
WMC may lead to a larger LCOM[36,43], because with-
out specific optimization newly-created methods often
have few interactions with all the existing methods.
Hence, based on our observation on WMC we guess
that there is a positive correlation between kout and
LCOM. The experimental results of a sample of the 12
software systems are presented in Table 11 by carrying
out a similar analysis process.

Positive correlations of the size of an OO software
system (N) with both (total) MCC and (total) SLOC
reflect a growth trend of software complexity. Besides
WMC, the out-degree of a class (kout) also has a clear
positive correlation with its LCOM, MCC, and SLOC,
respectively, which implies that on average a class be-
comes more complex as well as less cohesive along with
the increase of external dependencies. However, there

Fig.7. Distribution of WMC(kout) on a log-log scale.
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Table 11. Correlation Coefficients of Cross-Level Metrics

WMC LCOM MCC SLOC

N - - 0.328 0.781

kout 0.607 0.384 0.297 0.402

WMC - 0.269 0.371 0.796

LCOM - 0.112 0.089

MCC - 0.814

is no distinct correlation between LCOM and either
MCC or SLOC, suggesting that the complexity growth
of source code does not necessarily lead to low cohesion
of a class. Therefore, we argue that out-degree may
be a more effective and intuitive indicator to provide
fault-prone information about classes in OO software
systems at a high level of graph than traditional OO
metrics such as CK’s CBO and LCOM.

6 Conclusion

6.1 Limitations of the Set

The graph-level metrics of our set come from class-
level software networks which are defined as directed
graphs. Within the software engineering community,
the significance of various kinds of relationships be-
tween classes is different. Hence, a weighted directed
graph is more suitable to describe the topological struc-
ture of an OO software system. On the other hand,
package- and method-level software collaboration (or
dependency) graphs have also been proposed in [38-
39, 41]. Obviously, their topological features may dif-
fer from what we discussed in the paper. A general
measurement framework for multi-granularity software
entities is our future work.

Our set offers multi-level metrics for a large-scale OO
software system from the perspectives of graph, OOP
context and source code. However, it is a very hard
task to take all properties into consideration when de-
signing a suite of complexity metrics. Hence, our work
aims only at the properties that are necessary but not
sufficient (e.g., the inheritance of OOP context and the
efficiency of information transport of a network). On
the other hand, according to the metrics of our set, in
the paper we conduct experiments on the correlations
between cross-level metrics. That is to say, our empiri-
cal studies focus mainly on fault-proneness detection in
terms of software coupling and cohesion, which demand
for a theoretical validation.

6.2 Summary and Future Work

An adequate set of complexity metrics for large-scale
OO software systems based on the Internet is still a
challenge for software engineering. In traditional soft-
ware measurement methodologies, CK, MOOD and the

metrics for UML diagrams have widely been recognized
in practical software development. However, they do
not have sufficient ability to measure some significant
graph-level features, which have been found to recur in
complex software systems as small-world and scale-free
networks[6].

In order to measure a system’s complexity at diffe-
rent levels of granularity, namely graph, OOP con-
text and source code, we proposed a hierarchical set of
complexity metrics that organizes graph-level measures
(such as average shortest path length) and traditional
metrics (such as CK, MOOD and MCC) in terms of
a few necessary but not sufficient properties of a large-
scale OO software system. Then, we proved the validity
of our set through a case study that analyzes the em-
pirical data from SCRR platform.

Furthermore, we investigated some intuitive and im-
plicit correlations between cross-level metrics through
a detailed analysis of 12 open-source OO software sys-
tems, and found that the out-degree of a node in soft-
ware networks has a clear positive correlation with its
corresponding class’s WMC, LCOM, MCC and SLOC,
respectively. The more classes a class depends on,
the more complex (with low cohesion) it will become.
Hence, the correlations could be an effective and simple
indicator to detect fault-prone classes in a large-scale
OO software system.

Our hybrid set of complexity metrics needs a wide
range of empirical validation in spite of detailed empir-
ical studies presented in the paper. So, more empiri-
cal validation is welcome to really prove that the pro-
posed metrics set is fruitful in practice. On the other
hand, recent work[64-65] showed that a few special small-
scale sub-graphs (or motifs) describing the relationships
among collaborating classes or objects are basic build-
ing blocks of complex software systems. Compared with
the global measures of software networks, these metrics
for the properties of local topological structure would
provide a different insight into design quality and be
a useful predictor for some specific kinds of structural
defects.
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