
Pan WF, Li B, Ma YT et al. Measuring structural quality of object-oriented softwares via bug propagation analysis on

weighted software networks. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 25(6): 1202–1213 Nov. 2010.

DOI 10.1007/s11390-010-1095-2

Measuring Structural Quality of Object-Oriented Softwares via Bug

Propagation Analysis on Weighted Software Networks

Wei-Feng Pan1 (���), Member, CCF, Bing Li1,2,3,∗ (� �), Senior Member, CCF
Yu-Tao Ma1,3 (���), Member, CCF, ACM, Ye-Yi Qin1 (���), and Xiao-Yan Zhou1 (���)

1State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China
2School of Computer, Wuhan University, Wuhan 430072, China
3Complex Networks Research Center, Wuhan University, Wuhan 430072, China

E-mail: panweifeng1982@gmail.com; libing@sklse.org; yutaom@acm.org; qinyeyi2005@126.com; zhou0420@tom.com

Received July 15, 2009; revised May 17, 2010.

Abstract The quality of a software system is partially determined by its structure (topological structure), so the need to
quantitatively analyze the quality of the structure has become eminent. In this paper a novel metric called software quality of
structure (SQoS) is presented for quantitatively measuring the structural quality of object-oriented (OO) softwares via bug
propagation analysis on weighted software networks (WSNs). First, the software systems are modeled as a WSN, weighted

class dependency network (WCDN), in which classes are nodes and the interaction between every pair of classes if any is a
directed edge with a weight indicating the probability that a bug in one class will propagate to the other. Then we analyze
the bug propagation process in the WCDN together with the bug proneness of each class, and based on this, a metric (SQoS)
to measure the structural quality of OO softwares as a whole is developed. The approach is evaluated in two case studies
on open source Java programs using different software structures (one employs design patterns and the other does not) for
the same OO software. The results of the case studies validate the effectiveness of the proposed metric. The approach is

fully automated by a tool written in Java.

Keywords bug propagation, design pattern, object-oriented (OO) software, software network, structural quality

1 Introduction

Object-oriented (OO) has been the most widely used
development paradigm since the early 1990’s. And
there are a large number of open source object-oriented
(OSOO) software systems in free software ecosystems
such as Sourceforge[1] and Freshmeat[2]. Many of them
have equivalent or overlapping functionalities. The lack
of objective evaluation criteria makes the choice of the
best one from these candidate OSOO software systems
difficult. Furthermore, as the OSOO software systems
have considerable economic impact, and make great in-
roads into the mission-critical or life-critical real-world
applications, many organizations would like to have
object measures regarding the quality of the software
products[3]. So there is a great need for some objec-
tive metrics to quantify the quality of OSOO software

systems.
Software structure design explicates the structure of

the software in terms of software components and inter-
actions among them. Especially, in OO software sys-
tems, it describes methods, attributes, classes, packa-
ges, etc., and their interactions. With the increase of
the complexity of software systems, the overall struc-
ture of the system is becoming more and more com-
plicated, making the software structure become one of
the most important factors that influences the quality
of the final software products[4]. So the need to quanti-
tatively analyze the quality of the structure has become
eminent[5].

In recent years, researchers in the field of statisti-
cal physics and complex system used complex software
networks (hereafter, software networks) to represent
software systems by taking software components, such

Regular Paper
This work is supported by the National Basic Research 973 Program of China under Grant No. 2007CB310801, the National Natural

Science Foundation of China under Grant Nos. 60873083, 60803025, 60703009 and 60703018, the Natural Science Foundation of Hubei
Province under Grant No. 2008ABA379, the Natural Science Foundation of Hubei Province for Distinguished Young Scholars under
Grant No. 2008CDB351, the Research Fund for the Doctoral Program of Higher Education of China under Grant Nos. 20070486065
and 20090141120022, and the Fundamental Research Funds for the Central Universities of China under Grant No. 6082005.

∗Corresponding Author
�2010 Springer Science +Business Media, LLC & Science Press, China



Wei-Feng Pan et al.: Measuring SQoS of OO Softwares 1203

as methods, classes and packages, as nodes and their
interactions as edges[6]. It provides us a new way to
study complex software systems. And the research in-
terests are mainly involved in discovering the shared
topological properties of software networks, the evolu-
tion mechanisms of software networks and the metrics
for evaluating complexity of software networks. [7] gives
a detailed review of the research in this new field.

But to the best of our knowledge, quantitative stud-
ies of software quality from the perspective of software
networks (i.e., to quantify the structural quality of soft-
ware networks) are very scarce, and the assumptions
they are based on cannot meet the practice to a certain
degree. Considering the defects of the existing method-
ologies, in this paper we propose modelling OO software
systems at class level using a weighted software network
(WSN), weighted class dependency network (WCDN),
which is built on the details of the features (i.e., me-
thods and attributes) and their interactions in the spe-
cific OO software system. And then, we present a new
metric, software quality of structure (SQoS), to mea-
sure the structural quality of OO softwares by analyz-
ing the bug propagation process in WCDN and the bug
proneness of each class. We test our approach against
two case studies on open source Java programs, each
of which has two versions (one employs design patterns
and the other does not). The results of the case stud-
ies validate the effectiveness of SQoS. The approach is
fully automated by a tool written in Java.

The rest of this paper is organized as follows. Sec-
tion 2 contains a brief summary of the related work.
Section 3 describes our approach in detail. Section 4
presents the results of two case studies conducted on
two open source case studies. In Section 5 a software
tool that has been developed to automate the proposed
approach is briefly described. The limitations and fu-
ture work of our research are mentioned in Section 6.
And we conclude the paper in Section 7.

2 Related Work

Let us brief the researches on software structural
quality measurement first, and then detail some re-
search work from the perspective of software networks.

In [8], Alan MacCormack et al. adopt design struc-
ture matrices (DSMs) to represent the software net-
works at the source file level, and introduce change cost
to measure the average influence of components on the
whole system. Basically, a software system should keep
the change cost as low as possible, i.e., the influence
of any performed change should be limited to a range
as small as possible. However, it assumed that all files
have the same probability that they can be changed,
and that a change in one file will definitely propagate

to other files that point to it directly and indirectly in
software networks. This may not meet the practice.

In [9], Danmien Challet et al. propose a metric called
failure propagation basin to study the bug propagation
in function call graphs and package dependence graph.
The failure propagation basin measures the potential in-
fluenced nodes caused by a faulty node (contains a bug)
and it is defined as the number of nodes that point to
the faulty node directly or indirectly in software net-
works. They calculated the failure propagation basin of
each node, and studied the distribution curves of the
size of failure propagation basins. They, however, nei-
ther take into account the significance of the attributes
in bug propagation nor propose a metric to characte-
rize the structural quality of the software systems as a
whole.

In our preliminary work[10], we introduced an ef-
ficient statistical measure, called average propagation
ratio, to characterize the structural quality of general
complex software networks at the granularity level of
class. And several representative real-world complex
software networks were analyzed using average propa-
gation ratio. However, average propagation ration also
assumed that all classes have the same probability that
they may be changed or may be faulty (contains a bug),
and that a change or bug in one class will definitely
propagate to other classes that point to it directly and
indirectly in software networks, which may not meet
the practice.

3 The Approach

In the previous researches as we talked in Section 2,
people always make the following two assumptions: 1)
the change or bug in one software component such as a
file or a class will definitely propagate to other compo-
nents that point to the changed or faulty node directly
or indirectly in software networks; and 2) all software
components, such as classes, and files, have the same
probability that they may be changed or may be faulty.
But these two assumptions may sometimes not meet
the practice. The rationale is twofold.

1) In OO software systems, a class always contains
many attributes and methods. We treat a class as a
faulty one if it contains at least one bug. Similarly, the
attributes and methods of another class depending on
the faulty class do not all link to the faulty attributes
or methods directly or indirectly in it.

See Fig.1, class X is composed of three methods
(b(), c(), d()) and one attribute (a), and class Y is com-
posed of two methods (e() and f()). So if any attribute
or method of class X is faulty, class X will be viewed
as faulty. In previous work, people all think the bug
in class X will definitely propagate to class Y , for the



1204 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

latter depends on the former. However it is not always
the truth. For instance, if the bug exists in method c(),
the bug will propagate to class Y , for f() in class Y
depends on c() in X . However if the bug exists in other
attributes or methods but c(), it will not propagate to
class Y , for f() and e() in class Y do not directly or
indirectly depend on the faulty attributes or methods
in class X .

Fig.1. A simple example.

2) The probability that a bug arises in a class is
not always the same. Many prior researches have re-
vealed that this probability is closely related to many
kinds of information such as complexity of requirement
implementation[11] and source code complexity[12]. To
make the estimation of software structural quality more
precise, the property a bug arises probably will vary
across classes should also be taken into consideration.

Compared with the prior researches, the main contri-
butions of this paper are summarized in the following:

1) assume a class depending on a faulty class itself
becomes faulty with probability p rather than 1;

2) introduce a new concept, bug proneness index of
classes (BPIC), to represent the probability a bug arises
in a class;

3) finally present a novel approach to measure the
structural quality of OO softwares.

Fig.2. Workflow of the proposed approach.

In the following subsections, we will first detail the
way to model OO software systems as weighted class
dependency networks with the bug propagation prob-
ability p being the weight of the direct edge between
two classes. And then we analyze the bug propagation
process in such a software network, introduce the bug
proneness index of classes, and finally propose a new
metric to quantitatively measure the structural quality
of OO softwares. Fig.2 gives a short overview of the
workflow of the proposed approach.

3.1 OO Design

In this paper we mainly focus on the OO domains,
and take the OSOO software systems as our research
subjects. The rationale is threefold[13]:

1) OO has become the most widely used develop-
ment paradigm since 1990’s. And there are a lot of
OSOO software systems on the Web which can be eas-
ily got for our research objectives.

2) OSOO software systems are developed under the
OO paradigm. They have clear structures and the soft-
ware components such as attributes, methods, classes,
packages, and their dependencies are amenable to ex-
traction and analysis.

3) many software design principles[14] can be easily
used to improve the quality of OO software systems.
And the research on OO designs can reveal the interre-
lationships between design principles and software qua-
lity.

3.2 Data Collection

Data collection refers to the process to extract soft-
ware components such as attributes, methods, classes
and their dependencies. We have developed a tool that
can be used to analyze compiled Java codes (files with
.class and .jar extension) to get needed data. In this
paper, we only take into consideration two kinds of
dependencies, method accessing attribute dependency
and method call dependency, and the dependencies be-
tween classes are obtained according to these two kinds
of dependencies.

3.3 Weighted Software Networks

After data collection, two kinds of weighted software
networks can be built, weighted feature dependency
network (WFDN) and weighted class dependency net-
work (WCDN). And WFDN is mainly used to build
WCDN. We use the term feature, a concept borrowed
from Dependency Finder[15], to designate attributes
and methods. The dependencies between two features
as we talked in Subsection 3.2 are treated as the same
dependency. In this subsection, we will first give the



Wei-Feng Pan et al.: Measuring SQoS of OO Softwares 1205

formal description of WFDN and WCDN.
Definition 1 (Weighted Feature Dependency Net-

work (WFDN)). In WFDN the nodes represent features
(attributes or methods) of a specific OO software sys-
tem. And each feature is represented by only one node.
Directed edge between two nodes denotes one feature
uses another feature, i.e., if feature A uses feature B,
there will be an edge from the node denoting A to the
node denoting B. And here we only consider the pres-
ence of dependency and neglect the multiplicity of de-
pendencies such as A depends three times on B. And the
weight of each directed edge denotes the probability that
a bug in B will propagate to A. See Fig.3 for example.
Therefore WFDN can be described as:

WFDN = (Nf , Ef , Mf
P ), (1)

where Nf is the set of all features of the specific OO
software system; Ef is the set of directed edges de-
noting all relationships among features; Mf

P is a ma-
trix storing the bug propagation probabilities among all
pairs of nodes if they are linked by a directed edge in
WFDN, i.e., if node j links to node i, the entry Mf

P (i, j)
of Mf

P stores the probability that if node i is faulty
(contains a bug), the bug will propagate to node j with
probability Mf

P (i, j).
In WFDN we assume that the bug in one feature

will propagate to features directly depending on it with
probability 1. And for features that do not depend on
it directly, the bug propagation probabilities will be 0.

Fig.3. Illustration of WFDN.

Fig.3 shows a simple source code segment and its
corresponding WFDN.

Definition 2 (Weighted Class Dependency Network
(WCDN)). In WCDN the nodes represent the classes
of the specific OO software systems. And each class is
represented by only one node in the whole WCDN. Di-
rected edges between two nodes denote the interactions

between the corresponding classes. And such interac-
tions are obtained from the corresponding WFDN, i.e.,
if the features in class X use the features in class Y,
there will be an edge from the node denoting class X
to the node denoting class Y, and vice versa. Here we
only consider the presence of dependency and neglect
the multiplicity of dependencies such as class X depends
three times on class Y. And the weight of each directed
edge denotes the probability that a bug in class Y will
propagate to class X. See Fig.4 for example. Therefore
WCDN can be described as:

WCDN = (N c, Ec, Mc
p). (2)

Fig.4. Illustration of WCDN.

The meanings of the notations of N c, Ec and Mc
P

are very similar to that we talked in WFDN. Only are
they now applied to WCDN. So we will not go further
into details about these notations here. Please refer to
those in WFDN.

In the following, we will detail the way to calculate
the probability matrix Mc

P clearly. But before that,
some primary definitions should be given first.

Definition 3 (Extra-Class Method Reachability Set
(ECMRS)). Suppose there are two different classes, Ci

and Cj (Ci, Cj ∈ N c). And Ci depends on Cj directly
(i.e., there is an edge from Ci to Cj in WCDN). Then
we define the extra-class method reachability set of each
method Ci

k in Ci, ECMRS(Ci
k, Cj), as the set of fea-

tures in Cj reachable from Ci
k. A feature w in Cj is

reachable from Ci
k if in WFDN there is a directed path

from Ci
k to w. And the path is only composed of nodes

denoting features in Ci or Cj, and it travels each node
only once.

Fig.4 shows the WFDN in Fig.3 and its corre-
sponding WCDN. We can find that class Y depends
on class X . So ECMRS (Y.e(), X) = {X.c()}, and
ECMRS (Y.f(), X) = {X.c()} (for there are two paths,
Y.e() → Y.f() → X.c() and Y.f() → X.c()).

Obviously, the ECMRS of a specific method in one
class is the set of features in another class that will
have direct and indirect impact on this method espe-
cially when one of them is faulty. In order to obtain
the ECMRS of each method in every pair of classes
which are directly linked, we propose a queue-based



1206 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

level order traversal algorithm which is shown in Algo-
rithm 1, where F i is the set of features in class i, | ∗ |
denotes the counting of the elements in set ∗. Here-
after, if the notations are not explained explicitly, the
meanings are similar to that proposed first.

Algorithm 1. Queue-Based Level Order Traversal Algo-

rithm

Input: WFDN and the edge set Ec of the corresponding

WCDN.

Output: ECMRS(Ci
k, Cj), i �= j, i, j = 1, 2, . . . , |Nc|;

k = 1, 2, . . . , |F i|.
1 Prepare a queue.

2 Select a directed edge from Ec, and delete it from Ec.

3 Find the classes i and j on its two sides, and suppose

the direction is from i to j.

4 Travel through the nodes in WFDN one by one, if (node
k ∈ F i) then add node k to queue.

5 Get a node from the queue and store it in a set setF,
then add other nodes who are dependent by this node
and belong to F i or F j to queue.

6 Go to step 5 until node is NULL.

7 Let ECMRS(Ci
k, Cj) = setF ∩F j , and setF = ∅.

8 Go to step 2 until edge is NULL.

Definition 4 (Inter-Class Ripple Basin (ICRB)).
The inter-class ripple basin of class i on class j,
ICRB(i, j), describes the total set of features in class
j that are directly or indirectly used by all methods in
class i. So, in fact, it is the union of ECMRS of all
methods in class i. Therefore ICRB(i, j) can be de-
scribed as:

ICRB(i, j) =
∑

Ci
k∈F i

∪ECMRS (Ci
k, Cj). (3)

Considering that the ECMRS of the methods in class
i, all should have indirect relationships with the features
in another class via the critical methods (those directly
linked to features of another class), we only calculate
the ECMRS of the critical nodes. See Fig.4 for exam-
ple. Y.f() is a critical method. Y.e() is an ordinary
method. And Y.e() uses Y.f(). So we only need to cal-
culate ECMRS (Y.f(), X) to get ECMRS (Y.e(), X). By
the same token, ICRB(i, j) is the union of ECMRS of
all critical methods in class i. Therefore we can take a
more simple formula to calculate ICRB(i, j) which can
be described as:

ICRB(i, j) =
∑

Ci
k∈Sc

∪ECMRS (Ci
k, Cj), (4)

where Sc is the set of critical features in class i. We
can find that ICRB(i, j) in fact is the set of features

in class j whose bug will propagate to the methods
in class i, finally making class i faulty. In Fig.4,
ICRB(Y, X) = {x.c()}.

So given class i and class j of an OO software sys-
tem, the bug propagation probability from class i to
class j is denoted by Mc

p(i, j) and defined in this paper
as the following formula:

Mc
p(j, i) =

|ICRB(i, j)|
|Fj | . (5)

In Fig.4 Mc
p(X, Y ) = |{X.c()}|/|{X.a, X.b(),

X.c(), X.d()}| = 1/4 = 0.25.

3.4 Multi-Step Effect of Bug Propagation

From the definition of WCDN we can find that the
weight of each edge describes the effect a faulty class
will have on the nearest class which directly depends on
it. It in fact describes the single-step effect of a faulty
class. However, the multi-step effect should also need to
be taken into consideration when we want to evaluate
the effect of a faulty class on other classes.

Fig.5. Illustration of a simple WCDN.

In Fig.5 the bug propagation probability that class
B will be faulty if class E is faulty is not simply 0.6,
for if class E is faulty, the bug will have 0.2 probability
to propagate to class C, which in turn will propagate
its bug to class B with probability 0.3 (along with the
dashed arrow). So we can suppose that a bug in class
E may have indirect effect on the class B via class C.
Thus the bug propagation probability that class B will
be faulty if class E is faulty is more than 0.6. Similarly,
a bug in class C will have more than 0.7 probability to
propagate to class A. And a bug in class E will have
an indirect effect on class A via class B and class C
though there is no direct dependency between the two



Wei-Feng Pan et al.: Measuring SQoS of OO Softwares 1207

classes. Obviously, it is the multi-step effect of a faulty
class. So when evaluate the effect of a faulty class on
other classes, we should take into consideration both
the single-step and multi-step effect of a faulty class by
measuring all direct and indirect effect among all pairs
of classes.

After taking into consideration the multi-step effect
of a faulty class, the bug propagation probability be-
tween every pair of classes is composed of two parts,
single-step effect and multi-step effect. So we should
update the bug propagation probability matrix Mc

p .
And the updating formula for the element of Mc

p can
be written as:

Mc
p(i, j)updated = Mc

p(i, j)single-step+Mc
p(i, j)multi-step,

(6)
where Mc

p(i, j)updated is the updated bug propagation
probability between classes i and j. Mc

p(i, j)single-step
is the single-step bug propagation probability
which is equal to the Mc

p(i, j) defined in WCDN.
Mc

p(i, j)multi-step is the multi-step bug propaga-
tion probability between classes i and j. And let
Mc

p(i, j)n
multi-step be the n-step (n is an integer and n >

1) bug propagation probability, i.e., Mc
p(i, j)n

multi-step
is the probability that the bug in class i propagates
to class j by n steps. For simplicity, the n-step bug
propagation probability from class i to class j can be
calculated by the following formula:

Mc
p(i, j)n

multi-step =Mc
p(i, k1)Mc

p(kn−1, j)

·
n−2∏

l=1

Mc
p(kl, kl+1), (7)

where ki, i = 1, 2, . . . , n− 1 are the n− 1 classes on the
directed path from class j to class i with n steps.

So the multi-step bug propagation probability from
class i to class j can be calculated by the following for-
mula (where D is the diameter of the WCDN[16]):

Mc
p(i, j)multi-step =

∞∑

n=2

Mc
p(i, j)n

multi-step

=
D∑

n=2

Mc
p(i, j)n

multi-step. (8)

Because Mc
p(i, j)n

multi-step can be described
as a recursive form Mc

p(i, j)n
multi-step = Mc

p(i,
kn−1)n−1

multi-stepMc
p(kn−1, j), where kn−1 is the pre-

cursor class of class j. In order to calculate the
updated bug propagation probability Mc

p(i, j)updated

between classes i and j, we propose a recursive al-
gorithm described in Algorithm 2 to calculate the
Mc

p(i, j)multi-step, where bVisited [i] is an array with

type Bool denoting whether class i has been visited or
not.

Algorithm 2. Calculation of the Multi-Step Bug Propa-

gation Probability

Input: WCDN, M c
p multi-step with all M c

p (i, j)multi-step

= 0, class i and class j you want to calculate the

multi-step bug propagation probability, and step stp = 1.

Output: multi-step bug propagation probability M c
p (i,

j)multi-step.

1 Find class j.

2 If bVisited [j] == false, then bVisited [j] = true.

3 Find the first precursor of class j, class k which is
depended by class j and bVisited [k] = false; then let
bVisited [k] = true.

4 If class k �= class i, then let j = k,
stp ++, and call the algorithm itself; else store
the path, calculate the stp-step bug propagation

probability M c
p (i, j)stp-stepmulti-step according to (7), let

M c
p (i, j)multi-step+= M c

p (i, j)stp-stepmulti-step.

5 Find the next precursor class k which is dependent on
class j. If there is no more precursor, go to step 6, else

bVisited [k] = false, and go to step 4.

6 Let bVisited [j] = false, stp = 1 and output
M c

p (i, j)multi-step.

The multi-step bug propagation probability matrix
Mc

pmulti-step can be obtained by iteratively running Al-
gorithm 2 for every pair of classes, and then we can
get Mc

p(i, j)updated according to (6). After we get
Mc

p updated, we can measure the effect of every faulty
class on other classes by the metric class influence (CI ):

CI (i) =
|Nc|∑

j=1,j �=i

Mc
p(i, j)updated, (9)

where CI (i) is the class influence of class i.

3.5 Bug Proneness Index of Classes

As we talked above, some kinds of information can
be used to estimate the bug proneness of classes (i.e.,
the probability that a class contains a bug) such as com-
plexity of requirement implementation and source code
complexity. However, it is impossible for us to obtain
the requirements of OSOO software systems. So in this
paper, we only focus on using the source code complex-
ity metrics to estimate the bug proneness of classes.

CK metrics suite, first presented by Chidamber
and Kemerer in [17], is one of the most widely used
metrics to evaluate complexities of OO softwares from
inheritance (DIT, NOC), coupling between classes
(RFC, CBO) and complexity within each class (WMC,
LCOM). Many researches have sought to analyze the



1208 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

ability of CK metrics suite in estimating the bug prone-
ness of classes[12,18-20]. Results show that most of the
metrics in CK metrics suite are good indicators to pre-
dict bug prone classes, but there is a little difference
across different researches. In [21], the author made
a systematic comparison of the results of existing re-
searches, and found that SLOC, WMC, CBO, and RFC
are widely accepted as useful indictors for predicting
the bug proneness of classes. We also use these four
metrics to calculate the bug proneness index of classes
proposed in this paper. We summarize them as follows.
For details, please refer to [17, 22].

1) Source Lines of Code (SLOC). The SLOC is the
number of code lines in a given class. Comments and
empty lines are not counted.

2) Weighted Methods per Class (WMC). The WMC
is the sum of complexities of every method in a given
class. In this paper, we employ its simple form, where
the complexity of each method is unity, i.e., WMC is
the number of methods in a given class.

3) Coupling Between Object (CBO). The CBO is a
count of the number of classes to which a given class is
coupled.

4) Response For a Class (RFC). The RFC is a count
of the number of methods that can potentially be ex-
ecuted in response to a message being received by an
object of that class.

Based on what we have talked above, we propose
a new metric, bug proneness index of classes (BPIC),
to quantify the bug proneness of classes, and it can be
computed according to (10).

BPIC i =α
SLOC i

SLOC sum
+ β

WMC i

WMC sum
+

γ
CBO i

CBO sum
+ ϕ

RFC i

RFC sum
, (10)

where BPIC i is the BPIC of the class i. SLOC i,
WMC i, CBO i, and RFC i are the SLOC, WMC, CBO,
RFC of the class i, respectively. SLOC sum, WMC sum,
CBO sum, and RFC sum are the sum of SLOC, WMC,
CBO, RFC of all classes, respectively. α, β, γ and ϕ
are the weights for the corresponding metrics and meet
α+β+γ+ϕ = 1. They are determined according to the
effectiveness of that metric in bug proneness of classes
estimation, i.e., the better the metric in bug proneness
estimation, the larger value the metric can be set to.
In this paper, we give each metric equal weight, i.e.,
α = β = γ = ϕ = 1/4.

3.6 Metric for Structural Quality of OO
Softwares

Then, based on CI and BPIC, a novel metric for mea-
suring the structural quality of OO softwares, named

software quality of structure (SQoS), can be produced,
which can be computed according to (11).

SQoS =
∑|Nc|

i=1 CI (i) × BPIC i

N2 − N
, (11)

where |N c| is the number of classes in the OO soft-
ware systems. Obviously SQoS is a scalar whose value
is not smaller than 0. SQoS will be 0 only when
Mc

p(i, i)updated are 1s and Mc
p(i, j)updated (i �= j) are

0s. It is an ideal situation that the bug in any class will
not propagate to other classes. So SQoS can be used to
describe how far it is away from the best situation. So a
lower SQoS indicates a software structure with a better
quality, and bugs cannot easily propagate between its
classes.

4 Experiment and Data Analysis

Design patterns are generally defined as descriptions
of communicating classes that form a common solution
to a type of design problem. They are widely accepted
as a proven way to improve software quality[23-24]. Such
an improvement in software quality should be qualita-
tively captured by the applied metrics to evaluate the
software quality.

In order to investigate the applicability of the
methodology proposed in this paper, two open source
Java applications have been examined. Both applica-
tions have two versions with different software struc-
tures: one employs design patterns and the other does
not. These two Java applications are selected for anal-
ysis because they satisfy the following criteria: 1) ac-
cess to the full source code is possible since they are
both open source applications; 2) they are written in
Java which can be supported by our analysis tool; and
3) the two versions for each Java application have the
same functionality, and the only difference is the soft-
ware structure. So it can be used to evaluate the im-
provement made in software structure.

4.1 Case Study 1

The bridge design pattern is a design pattern used
in software engineering which is meant to decouple an
abstraction from its implementation so that the two
can vary independently[25]. Our first case tests the pro-
posed approach against the bridge design pattern. It is
a simple Java application. There are two versions: one
version does not employ bridge design pattern, while
the other is implemented using bridge design pattern.
The source code can be downloaded from [26].

To analyze their structural quality, we model them
by WFDN and WCDN, using our own developed ana-
lysis tool SSQAT (that will be detailed in Section



Wei-Feng Pan et al.: Measuring SQoS of OO Softwares 1209

5). Fig.A1 (see Appendix) shows the WFDN and the
corresponding WCDN of case study 1. Table 1 and Ta-
ble 2 show the values of metrics we talked above, such
as SQoS, CI and SLOC, for software structure before
and after using the bridge design pattern, respectively.
They are all computed automatically by SSQAT. As
for the calculation of CK metrics, we also can use some
open source tools such as CKJM[27] and Eclipse metrics
plug-in[28].

Based on our assumption that a lower value of SQoS
implies a better software structure, the OO Java appli-
cation after employing the bridge design pattern is bet-
ter than that before, with their SQoS being 0.020963
and 0.037174, respectively.

Table 1. Case Study 1 before Employing the Bridge

Design Pattern (SQoS = 0.037174)

Class Name CI SLOC WMC CBO RFC BPIC

BridgeDisc 0.000000 33 2 4 13 0.251084754

StackArray 3.427080 14 6 3 6 0.186029800

StackFIFO 0.666667 13 4 2 8 0.155260231

StackHanoi 0.750000 10 5 2 7 0.152205575

StackList 0.833333 17 6 2 12 0.208239725

Node 1.833330 5 1 1 1 0.047179915

Table 2. Case Study 1 after Employing the Bridge

Design Pattern (SQoS = 0.020963)

Class Name CI SLOC WMC CBO RFC BPIC

BridgeDisc 0.000000 23 2 3 9 0.133596

Stack 1.787500 13 7 6 14 0.195333

StackFIFO 0.500000 16 5 4 13 0.162834

StackHanoi 0.600000 13 6 2 9 0.125183

Node 1.783330 5 1 1 1 0.033248

StackArray 1.200000 14 6 1 6 0.105287

StackList 0.783335 17 6 3 12 0.156762

StackImpl 4.100000 6 5 2 5 0.087757

4.2 Case Study 2

The decorator design pattern allows new or ad-
ditional behavior to be added to an existing class
dynamically[23]. The second case tests the proposed
approach against the decorator design pattern. It is
also a simple Java application, with two versions: one
version does not employ the decorator design pattern,
and the other is implemented using the decorator de-
sign pattern. The source code can be downloaded from
[26].

Fig.A2 (see Appendix) shows the WFDN and
WCDN of case study 2. Tables 3 and 4 show the values
of metrics such as SQoS, CI and SLOC, for software
structure before and after using the decorator design
pattern, respectively.

Table 3. Case Study 2 before Employing the Decorator

Design Pattern (SQoS = 0.055269)

Class Name CI SLOC WMC CBO RFC BPIC

Decorator 0.000000 8 2 4 6 0.159238

Before

Decorator 10.694400 3 2 4 2 0.102449

Before�A

Decorator 3.750000 4 3 4 5 0.143378

Before�

AwithX

Decorator 0.666667 8 2 3 6 0.148821

Before�

AwithXY

Decorator 0.750000 11 2 4 8 0.190609

Before�

AwithXYZ

Decorator 2.277780 4 3 3 5 0.132961

Before�

AwithY

Decorator 1.166670 4 3 2 5 0.122544

Before�

AwithZ

Table 4. Case Study 2 after Employing the Decorator

Design Pattern (SQoS = 0.028587)

Class Name CI SLOC WMC CBO RFC BPIC

DecoratorAfter 0.000000 10 2 5 7 0.230762

DecoratorAfter�A 1.000000 3 2 1 2 0.083266

DecoratorAfter�I 6.000000 2 1 2 1 0.065845

DecoratorAfter�X 0.333333 6 3 2 5 0.159836

DecoratorAfter�Y 0.333333 6 3 2 5 0.159836

DecoratorAfter�Z 0.333333 6 3 2 5 0.159836

DecoratorAfter�D 4.000000 4 2 4 3 0.140618

The SQoS for software structure before and after
using the decorator design pattern are 0.055269 and
0.028587, respectively. So the OO Java application em-
ploying the decorator design pattern is better in struc-
tural quality than the one without the pattern.

5 Implementation

We have developed a Java program called Soft-
ware Structural Quality Analysis Tool (SSQAT), which
mainly consists of four parts: 1) a bytecode parser, 2)
a NET generator and parser, 3) a Chidamber and Ke-
merer (CK) Java metrics calculator, and 4) an SQoS
calculator.

The bytecode parser which uses that in Dependency
Finder as its core component can parse the complied
Java code (files with .class and .jar extension) to reveal
the static structure.

The NET generator, after the complied Java code
has been parsed, produces two NET files, denoting



1210 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

WFDN and WCDN, respectively. The NET files con-
tain the information about the names of the software
components (features or classes), their dependencies
and the bug propagation probability of each directed
edge. It has the same format as that used in Pajek[29].
So you can also use Pajek to give an illustration of the
software networks. For the limitation of space, here we
will not go further into details about the format of the
NET file.

The Chidamber and Kemerer (CK) Java metrics cal-
culator calculates Chidamber and Kemerer OO metrics
by processing the bytecode of compiled Java files.

The SQoS calculator applies the aforementioned ap-
proach to calculate Mc

p(i, j) for each pair of classes, CI
for each class, and SQoS for the OO software system as
a whole.

A sample screenshot of SSQAT with the concerned
CI, CK metrics, and SQoS for case study 1 is shown in
Fig.6.

Fig.6. Sample screenshot for SSQAT.

6 Limitations and Future Work

Although our approach shows some feasibilities in
measuring the structural quality of the sample Java
applications, the broad validity of our approach de-
mands further demonstration. Moreover, when con-
structing WFDN, we suppose that the bug in one fea-
ture will propagate to all possible target features point-
ing to it directly and indirectly definitely, i.e., our ana-
lysis in WFDN can be described as a worst-case analy-
sis. But to the best of our knowledge, there have been
no prior researches on this topic. So in this paper, we
have not addressed this problem.

Thus, the future work includes:
1) validating the approach using more other open

source software systems written in Java and other pro-
gramming languages (e.g., C++, C#);

2) presenting a more realistic approach which takes

into consideration the non-trivial probability (not sim-
ply zero or one) in WFDN;

3) using the proposed approach for test case priori-
tization for regression testing.

7 Conclusion

Acknowledging the importance of software structure
(topological structure) on the software quality, in this
paper we use the weighted class dependency network
(WCDN) to model the topological structure of OO soft-
ware system, examined the bug propagation process in
WCDN together with the bug proneness of classes, and
finally proposed a metric SQoS. The goal is to use SQoS
to measure the structural quality of OO software sys-
tems. The rationale behind this approach is that in
a high quality software system, bugs arising in classes
should be limited to a range as small as possible, i.e.,
SQoS should be kept as small as possible.

Case studies have shown the effectiveness of SQoS in
software structural quality measurement. The proposed
approach improves the accuracy of existing methodolo-
gies, for SQoS is produced considering both the soft-
ware structure information at feature (method and at-
tribute) and class levels as well as the complexity cha-
racteristics of the software source code.

The proposed approach has been automated by a
tool written in Java and can be applied to measure the
SQoS of any OO software system written in Java.

Acknowledgments We thank Jin-Hu Lv of Com-
plex Networks Research Center at Wuhan University
for invaluable advice, and thank anonymous reviewers
for their helpful comments. We also thank Jing Liu, Xi
Pu, Shan Li, and Ting-Ting Hou of State Key Labora-
tory of Software Engineering at Wuhan University for
discussions. The data for the case studies is available
for download from [30].

References

[1] Sourceforge. http://sourceforge.net, May 15, 2009.

[2] Freshmeat. http://freshmeat.net, May 15, 2009.

[3] Spinellis D, Gousios G, Karakoidas V, Louridas P, Adams P
J, Samoladas I, Stamelos I. Evaluating the quality of open
source software. Electronic Notes in Theoretical Computer
Science, 2009, 233: 5-28.

[4] Fenton N E, Pfleeger S L. Software Metrics: A Rigorous
and Practical Approach, 2nd Edition, London: International
Thomson Computer Press, 1996.

[5] Abdelmoez W, Shereshevsky M, Gunnalan R, Ammar H H,
Yu B, Bogazzi S, Korkmaz M, Mili A. Quantifying software
architectures: An analysis of change propagation probabili-
ties. In Proc. the 3rd ACS/IEEE International Conference
on Computer Systems and Applications, Cairo, Egypt, Jan. 3-
6, 2005, pp.687-694.

[6] Myers C R. Software systems as complex networks: Structure
function, and evolvability of software collaboration graphs.
Physical Review E, 2003, 68(4): 046116.



Wei-Feng Pan et al.: Measuring SQoS of OO Softwares 1211

[7] Li B, Ma Y, Liu J, Ding Q. Advances in the studies on com-
plex networks of software systems. Advances in Mechanics,
2008, 38(6): 805-814. (In Chinese)

[8] MacCormack A, Rusnak J, Bald Win C Y. Exploring the
structure of complex software designs: An empirical study
of open source and proprietary code. Management Science,
2006, 52(7): 1015-1030.

[9] Challet D, Lombardoni A. Bug propagation and debugging
in asymmetric software structures. Physical Review E, 2004,
70(4): 1015-1030.

[10] Liu J, Lu J, He K, Li B, TSE C K. Characterizing the struc-
tural quality of general complex software networks. Interna-
tional Journal of Bifurcation and Chaos, 2008, 18(4): 605-
613.

[11] Srikanth H, Williams L, Osborne J. System test case pri-
oritization of new and regression test cases. In Proc. In-
ternational Symposium on Empirical Software Engineer-
ing (ISESE 2005), Queensland, Australia, Nov. 17-18, 2005,
pp.64-73.

[12] Subramanyan R, Krishnan M S. Empirical analysis of CK
metrics for object-oriented design complexity: Implications
for software defects. IEEE Transactions on Software Engi-
neering, 2003, 29(10): 297-310.

[13] Pan W, Li B, Ma Y, Liu J, Qin Y. Class structure refactoring
of object-oriented softwares using community detection in de-
pendency networks. Frontiers of Computer Science in China,
2009, 3(3): 396-404.

[14] Martin R. Design principles and design patterns. http://
www.objectmentor.com, May 20, 2009.

[15] Dependency finder. http://sourceforge.net/projects/depfind
/files/, Jun. 3, 2009.

[16] Valverde S, Sole R V. Hierarchical small worlds in software ar-
chitecture. Working Paper, SFI/03-07-044, SanteFe Insitute,
2003.

[17] Chidamber S R, Kemerer C F. A metrics suite for object-
oriented design. IEEE Transactions on Software Engineer-
ing, 1994, 20(6): 476-493.

[18] Basili V R, Briand L C, Melo W L. A validation of object-
oriented design metrics as quality indicators. IEEE Transac-
tions on Software Engineering, 1996, 22(10): 751-761.

[19] Emam K EI, Benlarbi S, Goel N. The confounding effect of
class size on the validity of object-oriented metrics. IEEE
Transactions on Software Engineering, 2001, 27(6): 630-650.

[20] Gyimóthy T, Ferenc R, Siket I. Empirical validation of object-
oriented metrics on open source software for fault prediction.
IEEE Transactions on Software Engineering, 2003, 31(10):
897-910.

[21] Xu J, Ho D, Capretz L F. An empirical validation of object-
oriented design metrics for fault prediction. Journal of Com-
puter Science, 2008, 4(7): 571-577.

[22] Basili V R, Perricone B. Software errors and complexity: An
empirical investigation. Communications of the ACM, 1984,
27(1): 42-52.

[23] Prechelt L, Unger B, Philippsen M, Tichy W F. Two con-
trolled experiments assessing the usefulness of design pattern
documentation in program maintenance. IEEE Transactions
on Software Engineering, 2002, 28(6): 595-606.

[24] Tsantalis N, Chatzigeorgiou E, Stephanides G, Halkidis S
T. Design pattern detection using similarity scoring. IEEE
Transactions on Software Engineering, 2006, 32(11): 896-909.

[25] Gamma E, Helm R, Johnson R, Vlissides J M. Design
Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley Professional, Indiana, 1998.

[26] Open Source Java Applications. http://www.vincehuston.org
/dp/, Jun. 3, 2009.

[27] CKJM. http://www.spinellis.gr/sw/ckjm/, Jun. 3, 2009.

[28] Eclipse metrics plug-in. http://metrics.sourceforge.net/,
Jun. 3, 2009.

[29] Pajek. http://pajek.imfm.si/doku.php, Jun. 3, 2009.
[30] Data for the case studies. http://blog.sina.com.cn/breezepan,

Jun. 3, 2009.

Wei-Feng Pan is now a Ph.D.
candidate of State Key Laboratory
of Software Engineering (SKLSE) at
Wuhan University. He is a CCF
member. His current research inter-
ests include software metrics, soft-

ware evolution, and interdisciplinary
research between software engineer-
ing and complex networks.

Bing Li, CCF senior member,
is now a professor and Ph.D. super-
visor of SKLSE at Wuhan Univer-
sity. He worked as a postdoctoral
researcher in SKLSE at Wuhan Uni-
versity from 2003 to 2005. And he

received his Ph.D., M.S. and B.A.
degrees from Huazhong University of
Science and Technology (HUST) in
2003, 1997 and 1990 respectively, all

in computer science. His main research interests include
requirements engineering, complex network, and semantic

Web service.

Yu-Tao Ma is now a lecturer

of SKLSE at Wuhan University as
well as a post-doctor researcher of
Institute of Electronic System Engi-
neering. He is both CCF and ACM
member. He received the Ph.D. de-
gree from Wuhan University in 2007.
His current research interests include

software metrics, software evolution
and the interdisciplinary research be-

tween software engineering and complex networks.

Ye-Yi Qin is an M.S. candi-
date of SKLSE at Wuhan University.
Her research interests include soft-
ware engineering and complex net-

works.

Xiao-Yan Zhou is an M.S. can-
didate of SKLSE at Wuhan Uni-
versity. Her research interests in-
clude software engineering and com-
plex networks.



1212 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

Appendix

Fig.A1. The WFDN and WCDN of case study 1 before and after using the bridge design pattern. In (a) and (c) the nodes (features)

with the same color belong to the same class. The notes beside the nodes are their names, and that beside the edges are the bug

propagation probabilities. (a) WFDN before. (b) WCDN before. (c) WFDN after. (d) WCDN after.



Wei-Feng Pan et al.: Measuring SQoS of OO Softwares 1213

Fig.A2. The WFDN and WCDN of case study 2 before and after using the decorator design pattern. The notes and colors denote the

similar meanings to that in Fig.A1. (a) WFDN before. (b) WCDN before. (c) WFDN after. (d) WCDN after.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


