
Pöllä M, Honkela T. Negative selection of written language using character multiset statistics. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 25(6): 1256–1266 Nov. 2010. DOI 10.1007/s11390-010-1099-y

Negative Selection of Written Language Using Character Multiset

Statistics

Matti Pöllä and Timo Honkela

Department of Information and Computer Science, School of Science and Technology, Aalto University, P.O. Box 15400
FI-00076 Aalto, Finland

E-mail: {matti.polla, timo.honkela}@tkk.fi

Received July 15, 2008; revised August 6, 2010.

Abstract We study the combination of symbol frequence analysis and negative selection for anomaly detection of discrete
sequences where conventional negative selection algorithms are not practical due to data sparsity. Theoretical analysis on
ergodic Markov chains is used to outline the properties of the presented anomaly detection algorithm and to predict the
probability of successful detection. Simulations are used to evaluate the detection sensitivity and the resolution of the
analysis on both generated artificial data and real-world language data including the English Wikipedia. Simulation results
on large reference corpora are used to study the effects of the assumptions made in the theoretical model in comparison to
real-world data.

Keywords negative selection, anomaly detection, frequency analysis

1 Introduction

Rapidly increasing amounts of digitally stored infor-
mation are in the form of discrete sequences such as
written language, nucleotide sequences and protein se-
quences. The vast amount of data requires data mining
tools to facilitate the retrieval of relevant information
from the large collection of source material. A com-
mon data mining problem is how to locate and analyze
changes in the sequences in order to detect either inten-
tional modifications or unintentional corruption in the
data.

The usual approach in integrity analysis of discrete
sequences is to use cryptographic hash functions (such
as SHA[1] family of hash functions) to compute fixed-
length message digests for each sequence and to com-
pare them with the corresponding checksums of modi-
fied sequences. While checksum-based analysis provides
accurate and reliable results, it has some limitations.
First, no information on the location and the magnitude
of the changes is gained from the checksums. Secondly,
subsections of the sequence cannot be analyzed inde-
pendently in parallel as the whole sequence is needed
to compute the hash.

Recently, a modified version of the negative selec-
tion algorithm (NSA)[2] was used[3] to analyze changes
in a collection of Wikipedia articles. The results of this
experiment showed that a reasonably coarse-grained

analysis of the character frequency of the articles con-
tained sufficient information to detect and locate the
edited segments in the articles.

In the following, we present a theoretical analysis
on locating modifications in a symbol sequence using
a combination of negative selection and character fre-
quency analysis as a preprocessing stage. Also, we an-
alyze how a näıve first-order statistical language model
can be used to approximate the detection probability.

This paper is organized as follows. In Section 2,
we review the general negative selection principle for
anomaly detection and its limitations in processing ar-
bitrary discrete sequences. In Section 3, we present the
symbol frequency algorithm for anomaly detection in
discrete sequences. In Section 4, we present two Markov
chain models for analyzing the theoretical detection
probabilities. Section 5 includes results of matching
detectors with benchmark corpora. We conclude with
discussion and conclusions in Sections 6 and 7.

2 Negative Selection Principle

The negative selection algorithm (NSA) by Forrest
et al.[2] was introduced as a computational model of bi-
ological immune systems’ way of producing a protection
mechanism against unknown pathogens. The NSA per-
forms a binary classification task by discriminating all
patterns into either self or non-self using a collection

Regular Paper
This work was funded by the Academy of Finland under Grant No. 214144.
�2010 Springer Science +Business Media, LLC & Science Press, China

Matti Pöllä et al.: Negative Selection of Written Language 1257

of detectors which do not match the data in the self
class (see Fig.1). Correspondingly, any data that has
a match with a detector is classified as non-self. This
process is analogous to the way a biological immune
system produces a diverse repertoire� of T-cell recep-
tors and then eliminates the ones which react to the
host organism during the maturation phase in the thy-
mus to avoid auto-immune response[5]. The NSA has
since been applied to various anomaly detection ap-
plications ranging from computer security[6-7] to tool
breakage monitoring[8] and novelty detection in time
series[9].

Fig.1. Negative selection of anomaly detectors: a detector can-

didate is accepted in the detector collection only if it does not

match the collection of self samples.

The following properties of NSA have motivated its
use as a tool for anomaly detection[10].

Distributability. The overall detection task can be
divided into any number of nodes which can operate
independently of each other as virtually no communi-
cation between the nodes is needed.

Locality. Any subset of the analyzed data can be
checked independently for anomalies without the whole
data collection being present.

Security. It is very difficult to reverse the informa-
tion of the detectors to restore the original data (com-
pared to a brute force attack on message digests).

Robustness. The overall anomaly detection system
can be made tolerant to some nodes being offline by
allowing overlapping targets for the nodes.

Potential disadvantages of negative selection include:
• usually, there are no guarantees on the quality of

the system’s performance due to the probabilistic na-
ture of the detection process;

• the detection accuracy is highly dependent on
the chosen data representation scheme and matching
rule[10];

• the required size of the negative description (de-
tector population) can grow prohibitively large making
the algorithm impractical in terms of scalability[11].

A formal analysis on the relationship of negative and
positive selection has been presented by Esponda et al.
in [12].

The generic form of NSA is often paired with a

constant-length string matching metric to quantify the
similarity between two strings. The Levenshtein dista-
nce (edit distance) measures string similarities by co-
mputing the minimum amount of atomic editing opera-
tions (remove/add/substitute) that is needed to trans-
form one string into another[13]. The Hamming distance
is a special case of the Levenshtein distance where only
substitution operations are considered. A commonly
used string metric in AIS literature is the r-contiguous
bit rule[14] which computes the longest sequence of iden-
tical symbols in two strings. The r-chunk matching
rule[15] is a variant of the r-contiguous matching rule
which matches two strings of equal length according to
the length of matching substrings inside them.

Matching rules which are based on bit-wise similar-
ity metrics become less useful when the size of the sym-
bol vocabulary is larger[16-17]. In particular, it has been
shown[11] that the number of evaluations for generating
r-contiguous detector grows exponentially for r. Writ-
ten language is an example of such case where the size
of the symbol vocabulary ranges from tens to thousands
and the usual string metrics used in NSA applications
are not practical. In the following, the symbol fre-
quency negative selection algorithm (SF-NSA) is pre-
sented as an alternative to traditional string metrics in
analyzing natural language.

3 Strings as Symbol Multisets

3.1 First-Order Statistics of Character
Multisets

Although the generic NSA can be directly applied to
any binary data[2], the effectiveness of the algorithm is
very sensitive to the way in which the similarity metric
of data items is defined and the type of data which is
being processed as noted in a review of NSA algorithms
by Ji and Dasgupta[10]. Especially, the matching rule
should be selected such that an effective algorithm can
be used in generating the detectors in order to avoid
random search[18-19]. Stibor et al.[11] have also found
that the commonly used r-chunk matching rule is ap-
propriate only in a limited set of problems where the ex-
amined data strings are reasonably short (e.g., less than
32 characters). This limitation is problematic since we
are interested in analyzing variable-length strings from
a large symbol vocabulary.

Domain-specific customizations to the basic NSA in-
volve defining (i) a suitable data representation scheme
and (ii) a similarity metric for data items[10]. In
the following, the symbol frequence NSA (SF-NSA)
algorithm is presented as a modification of the basic
NSA by considering the properties of language data.

�Theoretical estimates about the number of unique T-cell receptors (TCRs) are based on the estimated 1012 T-cells in the human
body[4].

1258 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

The goal is to produce a collection of detectors which
is (a) as compact in size as possible, (b) as likely as pos-
sible to match any given sample of text, and (c) does not
match the original string S for which the detectors are
generated. Using a first-order statistical model for char-
acter occurrence, we could thus consider the sequence
“e” as the first candidate as it is the most common
single-character string in English. However, instead of
matching two strings directly, we remove the signifi-
cance of the character order locally and focus merely on
the frequence of each character individually in a subset
of the sequence. This effectively means transforming
strings into multisets (bags) of characters and perform-
ing NSA on the character frequencies.

This transformation is motivated by the variance of
the character frequency distribution found in natural
language. In Fig.2(a) the character frequency distribu-
tion of the Reuters corpus[20] is shown. In Fig.2(b), the
Kullback-Leibler distance from this overall distribution
is shown for different subsets of the corpus. There is
much variance in the distributions even for longer sub-
sets of the corpus which indicates that it is possible to
find features in the symbol frequence profile which are
common in general, but absent in S.

Fig.2. Variance in the character frequence distributions.

Kullback-Leibler divergence from the mean distribution is shown

for random samples of 1 to 4 000 characters from the Reuters

corpus.

3.2 Data Representation

The SF-NSA algorithm is based on a transformation

where an arbitrary-length string S from a symbol vo-
cabulary Σ is mapped into a binary matrix which de-
scribes the frequency of each character in Σ in a window
of w adjacent characters.

In the transformation, the frequency 0 � fc � w of
each character c ∈ Σ is computed in each position of
a sliding window of w characters. After this process,
the frequencies fc which were not observed in string S
contain a negative description about S.

The detection of an anomaly is based on the proba-
bility of the anomaly changing this negative description.
The detector is defined as follows.

Definition 1. An SF-NSA detector (c, w, k) is de-
fined by a character c, a window length w and a target
frequency k for c.

3.3 Matching Rule

A match between a detector (c, w, k) and a string S
occurs if the target frequency for the specified character
is observed in the string.

Definition 2. A string S has a match with a de-
tector (c, w, k) if there is a position in the string where
the frequency of character c in the set of w adjacent
characters is k.

3.4 Example

As a minimal example case, consider the sequence
“abacb” using a window length w = 3. There are three
positions for the sliding window in which the frequence
of ‘a’ is computed as follows.

a b a c b fa fb fc

a b a 2 1 0
b a c 1 1 1

a c b 1 1 1

The frequency fa has values 1 and 2, but not 0 or
3. By repeating the same procedure for ‘b’ and ‘c’, we
end up with the following detectors:

(‘a’, 3, 0) (‘a’, 3, 3) (‘b’, 3, 0) (‘b’, 3, 2)
(‘b’, 3, 3) (‘c’, 3, 2) (‘c’, 3, 3).

A random edit to the original string is likely to
change the character statistics such that the above re-
strictions for the character frequencies will not be sa-
tisfied and the change can be detected — even without
knowing the contents of the original string. For in-
stance, consider a case where the string is changed into
“ababcb”. When comparing the changed string with
the detector collection the following matches are found:

(a, 3, 0) ababcb
(b, 3, 2) ababcb
(b, 3, 2) ababcb.

Matti Pöllä et al.: Negative Selection of Written Language 1259

In the following, the properties of this detection pro-
cess is analyzed for the general case of any string and
window length.

4 Theoretical Analysis of SF-NSA

4.1 String/Multiset Transformation

To limit the required size of the negative description
in NSA algorithms, a single detector should be able
to match several items in the non-self space. Usually,
this is implemented as a threshold in a bitwise matching
rule or a spherical neighborhood in real-valued NSA[21].
In SF-NSA, the one-to-many matching is enabled by
the transformation from strings into character multi-
sets (bags) which all have the same character frequency
statistics.

The number of unique multisets is given by the mul-
tiset coefficient

Fig.3. Theoretical upper limits for the amount of unique charac-

ter combinations and character multisets and the observed quan-

tities in a sample from the Reuters corpus.

((|Σ |
w

))
=

(|Σ | + w − 1
w

)
(1)

where w is the number of characters in the multiset and
|Σ | is the size of the symbol vocabulary.

This phenomenon is illustrated in Fig.3(a) where the
exponentially growing number of unique combinations
of 26 characters (‘a’ to ‘z’) is shown for various string
lengths with the corresponding number of unique mul-
tisets. Also, the corresponding observed numbers in
the Reuters corpus are shown. The theoretical and ob-
served string/multiset ratios are shown in Fig.3(b). It
is worthwhile to note that while the theoretical strings-
per-multiset ratio increases with w, the maximum ratio
in the observed data in the Reuters corpus is at its max-
imum at w = 5. This is due to the sparsity of a random
w-length string being valid language. (See Table 1).

Table 1. Number of Observed Unique Character Multisets

and Strings in the Reuters Corpus for Window Lengths 1 to 12

w Unique Multisets Unique Strings Ratio

1 26 26 1.00

2 351 672 1.91

3 3 080 13 491 4.38

4 16 820 118 470 7.04

5 62 984 488 588 7.76

6 179 594 1 227 358 6.83

7 420 893 2 237 896 5.32

8 841 540 3 373 975 4.01

9 1 472 950 4 515 598 3.07

10 2 307 255 5 595 144 2.43

11 3 293 964 6 575 533 2.00

12 4 356 104 7 431 806 1.70

When considering a single detector (c, w, k), there
are

(
w
k

)
possible positions for the character c to appear

in a matching string. Also, considering that the remain-
ing (w − k) characters have no significance, there are a
total of (

w

k

)
(|Σ | − 1)w−k (2)

unique strings that match a single detector.
In the following, we analyze the probability of a

given detector matching a given sequence.

4.2 Detector Match Probability

The Bernoulli trial can be used to analyze the prob-
ability of a given detector matching a random text seg-
ment. We thus assume that text is a sequence of char-
acters which appear independently of each other accor-
ding to the prior probabilities of each character. The
probability of observing exactly k occurrences of cha-
racter c in a sequence of w adjacent characters is given

1260 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

by the Binomial distribution

P (K = k) =
(

w

k

)
pk(1 − p)w−k (3)

where p is the prior probability of observing character
c. This gives the match probability for a text segment
which is only as long as the window. For analyzing
the character statistics of each position of the sliding
window, we can apply a Markov model.

4.3 Markov Model 1

When matching a given detector (c, w, k) to a string
of lS characters there are lS −w + 1 positions i for the
window. The match probability at the initial step is
given by (3). The process of sliding the window across
the string can be viewed as an ergodic and regular
Markov process (a process in which every state can be
reached from every state in some number of steps[22]).
Each state of the process is defined by a w-length bit
string {b1, b2, . . . , bw} in which bn is 1 if the character
at position n is c and otherwise 0. The starting proba-
bility distribution u of the chain is

ui = pk(1 − p)w−k (4)

where k is the sum of the bits bn of state i (see Fig.4).

States Transition Matrix P

1: 000

2: 001

3: 010

4: 011

5: 100

6: 101

7: 110

8: 111

Fig.4. States and transition probability matrix for w = 3 and

p = 0.4. In the matrix light shades correspond to large values of

pij .

There are thus 2w states for which the transition
probabilities can be defined using a 2w × 2w transition
matrix

P =

⎡
⎢⎣

p1,1 · · · p2w,1

...
. . .

...
p1,2w · · · p2w,2w

⎤
⎥⎦ . (5)

At each step the bit positions are shifted left such
that the leftmost bit b1 is removed and a new bit enters
the rightmost position bw. Using the first-order model,
the probability of the next character being c is p. This
allows us to define the transition probabilities for each

transition in (5) as follows

pij =

⎧⎪⎨
⎪⎩

p, if bi−1
n = bj

n+1 ∀n ∈ [1, w − 1], bj
w = 1,

1 − p, if bi−1
n = bj

n+1 ∀n ∈ [1, w − 1], bj
w = 0,

0, otherwise,
(6)

where the first case corresponds to the next character
being c, the second case to any other character.

The match probability now has an interpretation us-
ing the Markov chain: the probability of a detector
(c, w, k) matching a random string of length lS is equal
to the probability of the Markov process visiting a state
where

∑w
i=1 bi = k at least once in lS−w+1 steps. This

probability can be expressed using the complementary
event — the event that the process does not visit any
such state.

PM

(
(c, w, k), lS

)
= 1−

(
u

lS−w+1∏
t=0

(
1−

∑
s

P t(i, sk)
))

(7)
where u is a vector representing the starting probabi-
lity distribution and P t(i, k) is the transition probabil-
ity from state i to state k in exactly t steps and sk is
any state for which

∑w
i=1 bi = k.

Analysis using this model becomes difficult for larger
window lengths as the size of the transition matrix
grows in O(w2). Using the equal probabilities of all
states for which

∑w
n=1 bn = k we can use a simplified

Markov model.

4.4 Markov Model 2

To reduce the state space of the first model, we can
consider the group of states for which

∑w
n=1 bn = k.

For example the states 001, 010 and 100 for w = 3 and
k = 3 in the example (see Fig.6). Each of these states
has the same prior probability defined by (4). At each
step the process can either move to

(i) a state where
∑w

n=1 bn = k + 1,
(ii) a state where

∑w
n=1 bn = k − 1,

(iii) some other state in which
∑w

n=1 bn = k.
The probability of these three mutually exclusive

events is defined by the new incoming character and
the leftmost bit in the current state. When all of these(

w
k

)
states are combined into a single state we have a

new ergodic Markov chain with w + 1 states describing
the random variable k in the set of w adjacent charac-
ters with a transition matrix defined by

P =

⎡
⎢⎣

p00 · · · 0
...

. . .
...

0 · · · pww

⎤
⎥⎦ (8)

where the transition probabilities pij are

Matti Pöllä et al.: Negative Selection of Written Language 1261

Fig.5. Frequence of character c in a window of w characters de-

scribed as an ergodic state Markov chain.

States Transition Matrix P

1: k = 0

2: k = 1

3: k = 2

4: k = 3

Fig.6. States and transition probability matrix for w = 3 and

p = 0.4. In the matrix light shades correspond to large values of

pij .

pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n − k

n
(1 − p), j = i + 1,

k

n
p, j = i − 1,

n − k

n
(1 − p) +

k

n
p, j = i,

0, otherwise.

(9)

Using (3) the stationary distribution u for the w +1
states is

ui =
(

w

ui

)
pui(1 − p)w−ui .

The reduced form of the state space and the transi-
tion matrix of Fig.4 is shown in Fig.6.

Again, we can analyze the match probability as the
probability of this process visiting state k at least once
in lS−w+1 steps corresponding to all possible positions
of the sliding window. For this we use the complement
event of the process going through lS − w + 1 steps
without visiting state k.

PM

(
(c, w, k), lS

)
= 1 −

(
u

lS−w+1∏
t=0

(1 − P t(i, k))
)

(10)

which is the match probability of a detector (c, w, k) for
a random string of length lS .

4.5 Computational Complexity

The original motivation for using SF-NSA is the limi-
tation of standard string similarity metrics in a uni-
verse of |Σ |w possible strings. Especially, using random

search in the process of generating detectors would not
be practical. Using SF-NSA, the size of the initial de-
tector repertoire is |Σ |(w + 1).

Even the total amount for required character his-
togram computations grows linearly with the size of the
analyzed document as the total amount of histogram
comparisons is |Σ |(w + 1)(D − w + 1).

5 Simulations

In the following experiment settings, we evaluate the
performance of SF-NSA in detecting a given change in a
string and the probability of a given detector of match-
ing a randomly selected segment of natural language.
These simulations are presented to supplement the ear-
lier work[3] on the performance of SF-NSA with real-life
data.

5.1 Detection Rate

The properties of the matching process guarantee
that if no change has occurred in the analyzed string
S, then the test result is also negative. Hence, the
probability of false positives (FP) is zero since the nega-
tive selection has already eliminated all detectors which
match S. For this reason, the ROC characteristics
(tradeoff between true positives and false positives) are
not descriptive and the interest is mainly in the sensi-
tivity of the detection.

In the following section, the detection rate (sensitiv-
ity) is used as a measure of the efficiency of the detec-
tion process. The detection rate d is defined as the ratio
of true positives (TP) to the total amount of modified
strings (true positives and false negatives (FN)).

detection rate =
TP

TP + FN
. (11)

The detection rate is compared with the selected
value of w since there is a tradeoff between sensitivity
and the compactness of the detector collection: high
accuracy will require a high value of w which leads to
a larger collection of non-self detectors.

5.2 Random Modification of Individual
Characters

An experiment of changing random characters in
random positions of a string was conducted to study
the sensitivity of the detection for short strings. An ave-
rage result computed from 1000 trials was recorded for
modifying a single character in a randomly generated
string of 20, 40 and 60 characters from a vocabulary of
26 characters with a uniform probability distribution.
The same experiment was then repeated for three and
ten changed characters. The window length of the de-
tectors was varied from 1 to 18 characters.

1262 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

The results are shown in Fig.7 and Table 2. As
seen in the figures, the window length parameter has
a significant effect on the performance. In the case of
detecting a change of a single character in a string of 60
characters, the accuracy grows from 10% to 55% when

Fig.7. Detection rate of randomly modifying 1 (a), 3 (b) and 10

(c) characters in a string of 20 (dash-dot line), 40 (dashed line)

and 60 (solid line) characters.

Table 2. Detection Rates for Identifying Randomly

Shifted Characters Inside a Symbol String (Results for

modifying 1/3/10 characters for strings of length 20/40/60)

w
Δ1 Char Δ3 Chars Δ10 Chars

20 40 60 20 40 60 20 40 60

1 0.45 0.19 0.10 0.81 0.47 0.22 0.98 0.82 0.54

2 0.49 0.27 0.15 0.87 0.61 0.39 0.99 0.92 0.76

4 0.62 0.36 0.24 0.92 0.70 0.56 0.99 0.97 0.90

6 0.70 0.45 0.31 0.95 0.79 0.65 1.00 0.98 0.94

8 0.78 0.48 0.36 0.97 0.86 0.70 1.00 0.99 0.97

10 0.81 0.58 0.41 0.99 0.89 0.76 1.00 0.99 0.98

12 0.86 0.59 0.45 0.99 0.93 0.81 1.00 1.00 0.98

14 0.92 0.67 0.50 0.99 0.94 0.82 1.00 0.99 0.99

16 0.95 0.73 0.50 1.00 0.96 0.88 1.00 1.00 0.99

18 0.98 0.75 0.55 0.99 0.97 0.90 1.00 1.00 0.99

the window size is increased from 1 to 18. A notable
result is the case of detecting 10 character modifica-
tions in a string of 60 characters: a small window of 4
characters is enough to detect the anomaly with 90%
accuracy.

5.3 Detecting Modification in Wikipedia
Articles

As an example of using the SF-NSA algorithm in a
practical setting we use a corpus of randomly selected
Wikipedia articles. For each of the 500 articles, there
exist two versions and the SF-NSA is used to detect
the location of the edit. These edits range from small
corrections to details to complete rewrites of the arti-
cles. As a preprocessing phase, we remove all meta-
information from the articles. Also, punctuation cha-
racters are removed and the analysis ignores text case
to limit the symbol vocabulary to 27 characters (a∼z
and a whitespace symbol).

We use the SF-NSA for window sizes 2∼170 to de-
tect the edit between two successive versions of an ar-
ticle. The initial detector pool of (w + 1)|Σ | detectors
is pruned such that all matches with the first version
of the article are removed. Any match between the
remaining set of detectors with the other article ver-
sion is classified as a modification.

For comparison, we computed a baseline result us-
ing the symbol frequency statics of w all adjacent
characters instead of analyzing the frequencies indi-
vidually for each character. Specifically, we compared
the resulting character histogram sets of both article
versions to see whether some character multisets are
unique to one of the two versions. This result also
gives an useful upper limit in character frequency-based
anomaly detection as the result for per-character ana-
lysis can at best only be as good as the baseline result.

The results of the Wikipedia experiment are pre-
sented in Table 3 and Fig.8. The detection rate of

Table 3. Detection Rates for the Wikipedia Edit

Detection Experiment

Baseline Detection SF-NSA Detection

w Rate Rate

2 0.43 0.12

5 0.90 0.21

8 0.94 0.27

15 0.97 0.35

30 0.98 0.45

50 0.98 0.55

70 0.98 0.63

90 0.98 0.69

110 0.98 0.72

130 0.98 0.75

150 0.98 0.78

170 0.98 0.80

Matti Pöllä et al.: Negative Selection of Written Language 1263

Fig.8. Detection rate for analyzing changes in Wikipedia articles

(N = 500) using various window lengths. For comparison, the

dashed line gives a baseline result of the best possible detection

using symbol-frequencies.

SF-NSA exceeds 0.5 for window lengths w > 40 and
reaches 0.8 for w = 170. As expected, the baseline
result of analyzing all characters of the multiset is sig-
nificantly better and the symbol frequency statistics of
only five adjacent characters is enough to detect 90%
of the modifications.

5.4 Detector Sensitivities Using Large
Corpora

To compare the theoretical results of Section 4, we
used a group of well-known benchmark corpora to mea-
sure the matches rates of SF-NSA detectors (i.e., the
proportion of random samples from the corpus that
match the detector). For various detectors (c, w, k) we
repeated a test where a random position in the cor-
pus was selected and the matching was done for m
steps (simulating the string length) to study the match
probability. A preprocessing stage of converting the
strings into lower case and removal of whitespace and
punctuation was applied to normalization. The used

corpora are as follows.
Reuters. A large collection of Reuters news

articles[20] (black dots).
Europarl. A corpus extracted from the proceedings

of the European Parliament[23] (blue dots).
Ulysses. Novel by James Joyce, downloaded from

Project Gutenberg� (green dots).
Grimm. The Household Stories by the Brothers

Grimm by Jacob Grimm and Wilhelm Grimm, down-
loaded from Project Gutenberg (magenta dots).

Kalevala. The national epic of Finland downloaded
from Project Gutenberg (cyan dots).

Random. A corpus generated randomly using the
first-order character statistics of the Reuters corpus
(black circles).

In Fig.9 the match rates (proportion of found
matches in the total number of trials) for detectors
(c = ‘e’, w = 2, fc = 0..2) are presented. As the
most common character in English (with p = 0.1147
in the Reuters corpus) these are one of the most in-
teresting ones. The interpretation for the sensitivity
of (‘e’, 2, 0) is straightforward: it is easy to find two
adjacent characters where ‘e’ does not appear. This
property is present in all of the corpora as well as the
theoretical result (dashed line). For (‘e’, 2, 0) we see
that about 90% of strings of length 20 contain one ‘e’.
The first deviation from the theoretical model is seen in
the match rate of (‘e’, 2, 2) (Fig.9(c)). The theoretical
model predicts a higher match rate for this detector.

In Fig.10 the match rates for a detector with longer
window length is shown. Looking at the varying target
frequencies from 0 to 7 we see that the steepest increase
in the match rate is found in (‘a’, 30, 4) and (‘a’, 30, 5).
For the Kalevala corpus the result is different due to the
different prior frequency of ‘a’ in the corpora (0.0846 in
Reuters, 0.1174 in Kalevala).

The inaccuracy caused by the first-order language
model which does not consider the joint probabilities of

Fig.9. Match rates (proportion of matching random samples) for (‘e’, 2, 0..2).

�http://www.gutenberg.org/.

1264 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

Fig.10. Match rates (proportion of matching random samples) for detectors (‘a’, 30, 0..7).

Fig.11. Inaccuracies of the first-order model: ‘rr’ is less common and ‘ll’ more common than the first-order model would predict.

Matti Pöllä et al.: Negative Selection of Written Language 1265

Fig.12. Match rates (proportion of matching random samples) for (‘k’, 2, 2) and (‘i’, 2, 2) illustrating the sparsity of the pattern ‘kk’

(properly represented by the first-order model) and the sparsity of ‘ii’ (not captured by the first-order model). The Kalevala corpus

stands out in this result due to the occurrence of gemination in Finnish.

two characters can be seen in Fig.11(a). The theoreti-
cal result (dashed line) predicts the segment ‘rr’ being
much more common than what is observed in the cor-
pora. Another result is shown in Fig.11(b), where the
match rate of (‘l’, 2, 2) shows that the segment ‘ll’ is by
far more common in used language than the first-order
model would predict. The difference between the En-
glish corpora and the Kalevala corpus is seen in Fig.12
where the match rates for (‘k’,2, 2) and (‘i’, 2, 2) are
shown.

6 Discussion and Future Work

We have presented a theoretical framework based on
ergodic Markov chains to analyze the detection prob-
ability of SF-NSA: a negative selection algorithm for
change detection of large-vocabulary strings of arbi-
trary length. As a follow-up to previous experiment on
real-life data, we find the presented theoretical work a
valuable addition to the recent trend towards a theo-
retical approach in the research of AIS[24].

As demonstrated in the simulations of Section 5 the
detection result for small changes is highly dependent
on the size of the original document, the used window
length and the magnitude of the changes. Specifically,
a window length of merely 4 characters was enough
to gain a 90% sensitivity for detecting a change of 10
characters in a string of lS = 60.

Throughout the analysis, SF-NSA has been pre-
sented in a way which is independent of the used
language or writing system. Although the theoreti-
cal results of Section 4 and the simulations of Section 5
use only the 26 letters of the English alphabet (‘a’ to
‘z’) the algorithm can be directly applied to any set of
characters in the Unicode standard which covers virtu-
ally all known writing systems with potentially over a
million code points[25]. It is expected that the presented
experimental results would be different in the case of a

language with a larger symbol vocabulary. A compari-
son of the quality of detection for different languages is
an interesting future research topic due to the varying
(first-order) statistical properties of different languages
and the variety in the size of the symbol vocabulary.

Although the SF-NSA trades accuracy for a small
detector base, the baseline result of the Wikipedia edit
detection experiment is promising in terms of using
character frequency information for anomaly detection
in strings. Ongoing research on using generative mix-
ture models for anomaly detection in strings has used
this approach with promising results[26]. In a recent
evaluation paper[27], the SF-NSA is compared to other
windowing-based anomaly detection methods includ-
ing the one-class support vector machine. Outside the
domain of natural language, Stibor[28] has applied an
n-gram representation in detecting computer viruses in
executable binary files.

7 Conclusions

Applying the NSA to sparse data such as written
language requires special attention in terms of matching
rules and representation of artificial antibodies due to
the sparsity of data. This study has introduced a gene-
ral method based on first-order statistics of character
strings to implement a compact negative representation
of text documents and for detecting changes in them.
The distinctive feature of this method is to apply a spe-
cial matching rule which compares the statistics of two
strings instead of traditional bit-wise matching rules.
As a side product this matching rule has the ability to
detect deletions, which is a well known pitfall of many
NSA algorithms.

We have shown that a reasonably simple Markov
model and a prior character probability distribution
can be effective in predicting the detection sensitivity of

1266 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

SF-NSA. Further, this model can be used in optimized
versions of the detector generating algorithm.

References

[1] National Institute of Standards and Technology (NIST). FIPS
180-2: Secure Hash Standard, August 2002. Available online
at http://itl.nist.gov/fipspubs./

[2] Forrest S, Perelson A S, Allen L, Cherukuri R. Self-nonself
discrimination in a computer. In Proc. the 1994 IEEE Sym-
posium on Research in Security and Privacy, Oakland, USA,
May 16-18, 1994, pp.202-212.

[3] Pöllä M, Honkela T. Change detection of text documents
using negative first-order statistics. In Proc. the Sec-
ond International and Interdisciplinary Conference on Adap-
tive Knowledge Representation and Reasoning (AKRR2008),
Porvoo, Finland, Sept. 17-19, 2008, pp.48-55.

[4] Arstila T P, Casrouge A, Baron V, Even J, Kanellopoulos
J, Kourilsky P. A direct estimate of the human α β T cell
receptor diversity. Science, Oct. 1999, 286(29): 958-961.

[5] Leandro N. de Castro, Jonathan Timmis (eds.). Artificial Im-
mune Systems: A New Computational Intelligence Approach.
Springer-Verlag, 2002.

[6] Forrest S, Hofmeyr S A, Somayaji A, Longstaff T A. A sense
of self for UNIX processes. In Proc. the 1996 IEEE Symp.
Security and Privacy, Oakland, USA, May 6-8, 1996, pp.120-
128.

[7] Hofmeyr S A, Forrest S, Somayaji A. Intrusion detection us-
ing sequences of system calls. Journal of Computer Security,
1998, 6(3): 151-180.

[8] Dasgupta D, Forrest S. Tool breakage detection in milling op-
erations using a negative-selection algorithm. Technical Re-
port CS95-5, Dept. Computer Science, Univ. New Mexico,
1995.

[9] Dasgupta D, Forrest S. Novelty detection in time series data
using ideas from immunology. In Proc. The International
Conference on Intelligent Systems, 1995.

[10] Ji Z, D Dasgupta. Revisiting negative selection algorithms.
Evolutionary Computation, 2007, 15(2): 223-251.

[11] Stibor T, Timmis J, Eckert C. The link between r-contiguous
detectors and k-CNF satisfiability. In Proc. Congress
on Evolutionary Computation (CEC), Vancouver, Canada,
Jul. 2006, pp.491-498.

[12] Esponda F, Forrest S, Helman P. A formal framework for pos-
itive and negative detection. IEEE Transactions on Systems,
Man, and Cybernetics, 2004, 34(1): 357-373.

[13] Fischer I. Pattern recognition algorithms for symbol strings
[Ph.D. Dissertation]. University of Tübingen, 2003.

[14] Percus J K, Percus O, Perelson A S. Predicting the size of
the antibody combining region from consideration of efficient
self/non-self discrimination. Proc. the National Academy of
Science of the USA, 1993, 90(5): 1691-1695.

[15] Balthrop J, Esponda F, Forrest S, Glickman M. Coverage
and generalization in an artificial immune system. In Proc.
GECCO-2002, New York, USA, July 9-13, 2002, pp.3-10.

[16] Stibor T, Bayarou K M, Eckert C. An investigation of R-
chunk detector generation on higher alphabets. In Proc.
GECCO, Seattle, USA, Jun. 26-30, 2004, pp.299-307.

[17] Stibor T. On the appropriateness of negative selection for
anomaly detection and network intrusion detection [Ph.D.
Dissertation]. Technische Universität Darmstadt, 2006.

[18] D’haeseleer P, Forrest S, Helman P. An immunological ap-
proach to change detection: Algorithms, analysis, and impli-
cations. In Proc. the Symposium on Research in Security
and Privacy, Oaklands, USA, May 6-8, 1996, pp.110-119.

[19] D’haeseleer P. An immunological approach to change detec-
tion: Theoretical results. In Proc. the 9th Computer Se-
curity Foundations Workshop, Dromquinna Manor, Ireland,
Mar. 10-12, 1996, pp.18-26.

[20] Lewis D D, Yang Y, Rose T, Li F. RCV1: A new bench-
mark collection for text categorization research. Journal of
Machine Learning Research, 2004, 5: 361-397.

[21] González F A, Dasgupta D. Anomaly detection using real-
valued negative selection. Genetic Programming and Evolv-
able Machines, 2003, 4(4): 383-403.

[22] Grinstead C M, Snell L J. Introduction to Probability. Amer-
ican Mathematical Society, 4 July, 2006 edition, 2006.

[23] Koehn P. Europarl: A Parallel Corpus for Statistical Machine
Translation. MT Summit, 2005.

[24] Timmis J, Hone A, Stibor T, Clark E. Theoretical advances
in artificial immune systems. Theoretical Computer Science,
2008, 403(1): 11-32.

[25] The Unicode Consortium. The Unicode Standard, Version
5.0. Addison-Wesley Professional, 5th Edition, Nov. 2006.

[26] Pöllä M. A generative model for self/non-self discrimination in
strings. In Proc. Int. Conf. Adaptive and Natural Comput-
ing Algorithms, Kuopio, Finland, Apr. 23-25, 2009, pp.293-
302.

[27] Pöllä M. An evaluation of windowing-based anomaly de-
tection schemes for discrete sequences. 2010, unpublished
manuscript.

[28] Stibor T. A study of detecting computer viruses in real-
infected files in the n-gram representation with machine learn-
ing methods. In Proc. the 23rd International Conference on
Industrial, Engineering & Other Applications of Applied In-
telligent Systems (IEA-AIE), 2010. (Accepted)

Matti Pöllä is a researcher at
Aalto School of Science and Technol-
ogy, Department of Informationand
Computer Science. He received his
M.Sc. (Tech.) degree from Helsinki
University of Technology (TKK) in
2005 and is currently pursuing the
Ph.D. degree in computer science.
His research area is biologically in-
spired computation applied to text
mining.

Timo Honkela holds a Ph.D. de-
gree from the Helsinki University of
Technology (TKK). He has worked
as a professor at TKK and the Uni-
versity of Art and Design Helsinki.
He is appointed as chief scientist at
the cognitive systems research group
of the Adaptive Informatics Research
Center at Aalto University School of
Science and Technology. His research

area is computational cognitive systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

