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Abstract This paper proposes a prediction engine designed for non-dedicated clusters, which is able to estimate the
turnaround time for parallel applications, even in the presence of serial workload of the workstation owner. The prediction
engine can be configured to work with three different estimation kernels: a Historical kernel, a Simulation kernel based
on analytical models and an integration of both, named Hybrid kernel. These estimation proposals were integrated into
a scheduling system, named CISNE, which can be executed in an on-line or off-line mode. The accuracy of the proposed
estimation methods was evaluated in relation to different job scheduling policies in a real and a simulated cluster environment.
In both environments, we observed that the Hybrid system gives the best results because it combines the ability of a
simulation engine to capture the dynamism of a non-dedicated environment together with the accuracy of the historical
methods to estimate the application runtime considering the state of the resources.
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1 Introduction

Several studies[1-3] have revealed that a high per-
centage of the computing resources in a Network Of
Workstations (NOW/Cluster) is idle. NOWs are owned
by many universities, business and industry institu-
tions. They are made of not necessarily the fastest
computers and networks, but still form a huge compu-
tational power that can be used to solve many problems
that require parallel computing for high performance[4].
To do this, they can be used as dedicated clusters du-
ring weekends and at nights or as non-dedicated cluster
during working hours. In a non-dedicated cluster,
individual PCs are used by their local users to run se-
quential application (local jobs), while the cluster as a
whole or its subset could be employed by cluster users
to run parallel applications. The possibility of execu-
ting parallel jobs without perturbing the performance
of the local user applications on each workstation has
led to a proposal for new job schedulers[5-9].

In a NOW environment, when a parallel job is sub-
mitted to the job scheduler, it waits in a queue until it
is scheduled and executed. Thus, the scheduler must
deal with the job selection problem from the waiting

queue, together with the problem of selecting the best
set of nodes for executing a job. In order to solve both
problems in the best way, the scheduler should be able
to estimate the future cluster state (available resources,
number of idle nodes and intrusion level into the load
workload)[10-11]. Based on these predictions, the sche-
duler can select the best parallel job from the waiting
queue to be launched to the system, or choose the com-
bination of resources from the available resource pool
that is expected to maximize performance for a given
application. Thus, performance prediction turns into a
critical component of scheduling environments.

These considerations have stimulated some studies
into performance estimation in parallel environments.
These can be classified into three different approaches.
The most widely used is based on a Historical system
that records the past executions of an application[11-16].
The second alternative is to use a Simulation system
based on analytical models to characterize both the en-
vironment and the workloads[17] and predict some me-
trics for a parallel system[18]. Finally, the third ap-
proach is a combination of a Simulation system together
with a Historical scheme to estimate the execution time
of the parallel applications[19]. The majority of these
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studies are focused on estimating the performance of
parallel applications in dedicated environments. Unlike
these, we are interested in researching new estimation
methods oriented to non-dedicated clusters.

In general, non-dedicated clusters are inherently un-
predictable due to the non-deterministic behavior of lo-
cal users. However, there are some specific cases where
local load has a deterministic behavior, such as the
computer lab of any university, where the local load is
scheduled temporarily by means of a timetable. There-
fore, some kind of prediction about the behavior of the
local workload can be extracted. The prediction in this
kind of non-dedicated clusters is the main aim of our
work. In this kind of environments, the interaction be-
tween local and parallel jobs makes that the estimation
process becomes complex.

These reasons led us to research new methods to
estimate the performance of parallel workloads in non-
dedicated clusters and evaluate their performance in
relation to different scheduling policies. With this aim,
three different estimation mechanisms, based on the
techniques described above, are proposed in this pa-
per: a discrete time Simulation tool based on analytical
models, a Historical system and an integration of both
(Hybrid scheme). In order to evaluate them, they were
implemented in a scheduling system oriented to non-
dedicated environments named CISNE (Cooperative &
Integral Scheduler for Non-dedicated Environments)[8].
A specific aspect of the CISNE system is that it is able
to use any of the estimation methods, either in an on-
line way (real cluster), which means that a new esti-
mation of the turnaround time is made on every job
arrival in a real cluster, or in an off-line mode (simu-
lated cluster), which estimates the behavior of the pa-
rallel workload over simulated environments. Thus, we
can evaluate different workloads and scheduling poli-
cies over several simulated cluster environments, vary-
ing their heterogeneity, size, local workload, computa-
tional resources of nodes and so on.

In a preliminary work[19], we presented the initial
results for two prediction proposals (Simulation and
Historical) applied to an on-line mode (real cluster).
Our proposals were further extended, tuned and simpli-
fied and provided better performance results. Likewise,
they were extended to be applied to an off-line mode
(simulated cluster). Thus, they have been tested in a
wide set of workloads and requirements. In addition,
this paper extends that work by evaluating our propos-
als in two different non-dedicated environments, namely
a real and a simulated cluster. In these frameworks, we
evaluated the effects of different scheduling policies on
the estimation methods. In addition, we analyzed the
influence of the local load on the estimation methods in

both environments. Likewise, we discussed the cost of
the estimation carried out by each approach. Finally,
we compared our proposals to representative estimation
methods in the literature[20-21].

The outline of this paper is as follows. Section 2
shows some work related to the present study. The
underlying scheduling environment, named CISNE, is
described in Section 3. Our proposals for the on-line
estimation process are explained in Section 4. The in-
tegration of these estimation kernels in an off-line simu-
lator is described in Section 5. Next, the experimental
results are analyzed in Section 6. Finally, conclusions
and the future work are explained in Section 7.

2 Related Work

The easiest way to achieve an estimate of the exe-
cution time for a given parallel application is to ask its
user. However, several studies[22-24] have shown that
user estimations are totally inaccurate.

In order to provide better estimations, some kind
of prediction system integrated into the job scheduler
is needed. The most widely evaluated alternative re-
lies on historical systems[12-14,16]. This kind of system
normally looks for a past state that is similar to the
current one. This correlation is defined by a compa-
rison function that determines how similar one state is
to another. An extension of those systems was pro-
posed by Lafreniere et al. in [11]. They proposed a
technique of employing both historical application-run
data and a user’s knowledge of his application enlarged
with a regression model for prediction. Likewise, Fei-
telson et al.[23,25-26] proposed the inclusion of the tem-
poral structure of the parallel workload (p.e., number
of jobs and users, inter-arrivals time, parallelism,. . .)
to estimate the future execution of the parallel appli-
cations using adaptive backfilling. Finally, it is worth
mentioning the work of Yang et al.[16], which is the
most closely related to our work. They proposed a con-
servative scheduling policy that uses information about
expected future variance in resource capabilities to pro-
duce more efficient data mapping decisions. Evaluation
of several new one-step-ahead and low-overhead time
series prediction strategies based on historical data are
performed. However, in contrast to our aim of measur-
ing the turnaround time of parallel applications, their
predictions are exclusively aimed at calculating the ex-
pected resource capability and the expected variance in
that value.

Another approach is the use of a simulation engine
to represent scheduling environments. However, these
simulators also use a historical system for calculating
the execution time of the applications. For instance, in
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[21], a simulation of the scheduling system is used in
conjunction with historical data to estimate both the
waiting and execution time of the parallel applications.

Finally, an analytical model could be used for the
characterization of both the workload and the under-
lying system. In fact, in [17] an entire middleware,
named PACE, is presented. This is capable of cha-
racterizing the parallel workload, together with the un-
derlying hardware on which the applications are to be
run. PACE was used by Jarvis et al., in [18], to im-
prove the scheduling of tasks over homogeneous clusters
and provide a basis for the higher-level management of
grid system resources. In [27], an extended model to
be applied in heterogeneous and real time systems is
presented. In a similar line, there are the works by
Dinda[28-29] and Wolski[30]. Both authors presented a
system for predicting the running time of a compute-
bound task on a typical shared, unreserved commodity
host. The prediction is computed from linear time se-
ries prediction of host loads and takes the form of a
confidence interval.

Unlike these previous works, we are interested in re-
searching new estimation methods applicable to non-
dedicated environments, which are able to predict the
turnaround time for parallel applications, even in the
presence of a serial workload of the workstation local
user, which is not controlled by the scheduling system.
To achieve these aims, we propose and evaluate three
different estimation kernels, which fit each of the frame-
works described in this related work: a historical sys-
tem, a simulator system based on analytical models and
a system that merges a simulator engine for the schedu-
ling process with a central execution time estimation
system based on historical schemes.

3 CISNE: A Scheduling Framework Oriented
Towards Non-Dedicated Clusters

In order to implement and evaluate our estimation
proposals, we need a scheduling system orientated to-
wards non-dedicated environments. With this goal, in
previous work we developed the CISNE (Cooperative
& Integral Scheduler for Non-dedicated Environments)
system[8] as an integral scheduling environment that
merges both time and space sharing subsystems. Fig.1
depicts the general architecture of the CISNE system.

In a non-dedicated cluster, there is an interaction be-
tween two different kinds of user. On one hand, there is
the local user working on each workstation in the clus-
ter, and on the other, the parallel user who executes
the parallel workload on the cluster. Taking both into
account, the main objective of CISNE is to manage
parallel applications in a non-dedicated environment,
ensuring benefits for the parallel applications while

preserving the local task responsiveness. To achieve
this aim, each job launched in the CISNE system fol-
lows the steps shown in Fig.1. When a parallel job is
submitted to the CISNE system by a parallel user (Step
1), the job waits in a queue (Step 2) until the Queue
Manager decides to dispatch it. This decision is taken
according to the computational requirements of each
parallel job in the queue, together with the Node State
received from each node. The Node State includes the
local load and the amount of idle computational re-
sources on each node, which in turn defines the set of
available nodes for executing parallel jobs. Once a job is
selected from the black Job Queue (black Step 3), black
CISNE must select the best subset from the available
nodes to execute it.

Fig.1. General architecture of the CISNE system.

According to the above description, the CISNE sys-
tem needs to define the following Job and Node Selec-
tion Policies:
• Job Selection Policy (JSP) is the policy for selec-

ting the next job to run from the Job Queue. This could
depend on the job’s priorities (order of the queue), and
the estimated cluster state (intrusion level into the lo-
cal workload, the Multi Programming Level (MPL) of
parallel applications throughout the cluster, the Me-
mory and CPU usage on each node and the available
nodes). In this work, we have applied the two JSPs
most widely used in the literature: one is an FCFS
(First-Come-First-Served) alone, and the other is an
FCFS augmented with an Easy Backfilling technique.
An Easy Backfilling [31-32] policy consists of executing a
job, not at-the-head of the FCFS queue, whenever this
does not delay the start of the job at the head.
• Node Selection Policy (NSP) is the policy for dis-

tributing the parallel tasks among the nodes. This de-
pends on the cluster state and the parallel job charac-
teristics. In this work, we used two different NSP poli-
cies, defined in previous works[8], which are designed
for non-dedicated environments. The first one, termed
Normal, selects the nodes for executing a parallel
application considering only the resource usage level



102 J. Comput. Sci. & Technol., Jan. 2011, Vol.26, No.1

throughout the cluster, so it does not overload any node
in detriment of the local user interactiveness. In order
to preserve the performance of the local user’s applica-
tions on each workstation, it establishes an acceptable
system usage limit for some computational resources
(CPU and Memory) by means of a social contract [33]

between the local and parallel users, and this is assumed
to be equal across the cluster. Nevertheless, using the
Normal policy, we are still not considering the para-
llel and local load interaction inside a node. Therefore,
we need to add new characteristics to the scheduling
decision process carried out by the Normal policy by
defining a new policy, termed Uniform. This second
policy is characterized by the following restrictions: (a)
it executes tasks from different resource-bound appli-
cations (i.e., communication or computation bound) in
the same node and (b) the set of nodes assigned to
different kinds of application should be as equal as pos-
sible. Fig.2(a) shows how the Uniform policy executes a
CPU bound application (J3) in the same set of nodes as
a communication bound application (J2). In contrast,
in Fig.2(b) a Normal policy executes the J3 application
regardless of the load and its resource-bound property.
In this case, the computational resources assigned to J3

are not the same for all of its tasks. However, in both
cases, the computation resources used by the parallel
applications do not exceed the limit fixed by the social
contract.

Fig.2. Scheduling difference between the Uniform and Normal

policies. (a) Uniform. (b) Normal.

Likewise, and considering that different kinds of pa-
rallel applications could reach the system (e.g., PVM
or MPI), a specific module, named Job Dispatcher, is
defined to execute the parallel applications, according
to their nature, to the cluster. Once the job is exe-
cuted (Step 4 of Fig.1), the time sharing modules of
CISNE residing on each node, named CCS (Coope-
rating CoScheduling), take control of the progression
of each parallel job. CCS is based on the implicit
coscheduling technique, which identifies the processes
in need of coscheduling during execution by gathering
and analyzing implicit run-time information. In addi-
tion to traditional implicit techniques, CCS provides
a social contract based on reserving a percentage of

CPU and memory resources to ensure the progress of
parallel jobs without disturbing the local users, while
coscheduling of communicating tasks is ensured. A de-
tailed description of the CCS policy can be found in
[34].

4 On-Line Estimation in the CISNE System

In this section, we explain three different estimation
kernels (Historical, Simulation and Hybrid) to predict
on runtime the performance of a given parallel work-
load in a non-dedicated cluster system. In addition, we
describe how each of these methods is integrated into
the CISNE system.

4.1 Estimation Through Historical Data

Our first approach is based on a historical system
that records past executions and tries to infer the fu-
ture as a replication of the past. The integration of such
a system into CISNE is depicted in Fig.3. As we can
see in this figure, the historical system is made up of a
historical repository (named HistDB), which registers
some information about the system state (jobs, queue
and cluster), and an estimation system (named Estima-
tor), which deals with the prediction of the turnaround
time from the information stored in HistDB. Note that
a new prediction is triggered whenever a new job is
submitted to the CISNE system (Step 2 of Fig.3).

Fig.3. Integration of the historical method into the CISNE sys-

tem.

The information, collected by CISNE on runtime,
includes the following:
• Job State. The historical system records some in-

formation about each executed job, such as its arrival,
waiting and execution time; the name of the applica-
tion and its input parameters, the configured JSP and
NSP scheduling policies being used by CISNE and the
amount of CPU time used by this job.
• Queue State. For every submitted job, the sys-

tem records information about the jobs waiting in the
jobs queue at two different moments: when the job is
submitted and when the job is selected for execution
according to the JSP policy.
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• Cluster State. This is also recorded whenever a
new job starts its execution. It includes a list of nodes
where the job is executed, together with the amount
of CPU and memory resources used by the local and
parallel loads running in such nodes.

It is worth pointing out that the need to estimate
a system as complex as a non-dedicated cluster im-
plies that CISNE has to collect more detailed informa-
tion than the other historical systems described in the
literature[11,13,20-21], which are oriented towards dedi-
cated systems. Table 1 compares the information ga-
thered by these authors in relation to our proposal. For
example, we can see as Lafreniere[11] only stores in-
formation about previously executed jobs jointly with
their input parameters and the number of nodes used by
the executed applications. Likewise, Gibbons[13] uses a
set of templates to separate different stored cases of
executed jobs. These templates are defined using the
queue where the jobs were submitted. This is very sim-
ilar to the Queue state registered by CISNE on each
new job submission.

Table 1. Relation of Gathered Information for Different

Authors Compared with This Work

Author Information

Gibbons[8] [u, e, n, rtime] [u, e] [n, rtime] [e] [n, rtime]

Li[20] [g, u, q, e, n]

Smith[30] [u, e, n] [q, u, n]

Lafreniere[19] [u, n, ip]

This work [q, e, n, ip, rtime]

Note: g: group, u: user, q: queue, e: executable, n: number of

nodes, ip: input parameters, rtime: running time, [ ]: templates.

The second point to emphasize is how CISNE ma-
nages the stored information. In this sense, it is worth
pointing out that this process should spend a magni-
tude of time much lower than the metric being esti-
mated. Likewise, the estimation error should be lower
than an acceptable threshold. Taking into account the
studies of [14, 20], such an acceptable threshold was
fixed at 40%. Experimentally, we tested that both pa-
rameters (data processing time and estimation error)
are balanced below these desirable thresholds, when-
ever the HistDB is populated with 10 000 records and
each search uses around 50 records to retrieve the esti-
mation information. Note that these records were col-
lected over a 6-month period, using data from the exe-
cution of the set of applications described in Section 6
of this paper.

The next subsection describes the estimation process
of the turnaround time followed by CISNE’s Estimator.

Turnaround Time Prediction

In order to estimate the turnaround time for a given

parallel job, the Estimator needs to predict two diffe-
rent metrics separately. On one hand, there is the time
that the job will spend in the jobs queue (waiting time)
and, on the other hand, the time that the job will spend
during its future execution (execution time).

Prior to this, there are some concepts that deserve
explanation:
• Application (denoted as Appl) is the program being

executed by a job. It is defined by the executable, its
input parameters and the number of processors needed.
• Job (denoted as J) is a particular execution of a

given Appl. It depends on the scheduling policy, the
cluster state and the other jobs executed concurrently
with the job.
• getCPUtime(HistDB, Appl, Policy) is a function

that returns from the HistDB the average CPU time
used by an Appl for a given scheduling policy (Policy).
We assume that the CPU time remains constant for a
given application.
• Waiting−Jobsahead(J) is the whole set of jobs in

the job queue, when job J is submitted to the queue.
• Waiting−Jobsbackwards(J) is the whole set of jobs

in the jobs queue, when the job J is executed by the
system.
• CPUtimeahead(J) is the sum of the CPUtime

associated with each job belonging to the Waiting−
Jobsahead(J) set.
• getCPUtimeahead(HistDB ,State, J) is a function

that retrieves the CPUtimeahead of every job J stored in
HistDB, considering the current Waiting (i.e., the num-
ber and type of jobs currently waiting in the queue).
• CPUtimebackwards(J) is the sum of the

CPUtime associated with each job belonging to the
Waiting−Jobsbackwards(J) set.

Note that both CPUtimeahead/backwards(J) met-
rics are used as search patterns across the historical
database.

Algorithm 1. Historical Estimation Process for the

Waiting Time of CurrentJob

1: forall (J in Waiting Jobsahead(CurrentJob))

2: Appl = getAppl(J)

3: CPUtimeahead = CPUtimeahead +

getCPUtime(HistDB ,Appl ,Policy)

4: end forall

5: SimilarJob = J ∈ HistDB such that getAppl(J) ==
getAppl(CurrentJob) and minimizes |CPUtimeahead−
getCPUtimeahead(HistDB ,State, J)|

6: return WaitTime = getWaitTime(HistDB , Simi-
larJob)

Algorithm 1 describes the method used to esti-
mate the waiting time for a new job submitted to the
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system (CurrentJob) by means of the historical repo-
sitory (HistDB). First, Algorithm 1, lines 1∼4 calcu-
lates the CPUtimeahead associated with the CurrentJob.
Note that this calculation implies that the Estimator
looks into the HistDB for the CPUtime of the applica-
tion Appl associated with each job J belonging to the
jobs queue. Next, Algorithm 1, line 5 looks into the
HistDB for the job (SimilarJob) with the most simi-
lar CPUtimeahead to the calculated one. This search is
done among those jobs which are associated with the
same application (getAppl(J)) as CurrentJob. Thus,
the search time is considerably reduced. Note that it
also takes the scheduling policy and local load (state)
into account. Finally, the waiting time for a Similar-
Job is returned as the estimated waiting time for the
CurrentJob.

It should be noticed that the complexity of Algo-
rithm 1 depends linearly on the number of jobs in the
job queue (NJob−Queue), and the number of records in
the HistDB (NHistDB ). Given that NHistDB is several
orders of magnitude greater than NJob−Queue , the re-
sulting order is linear with NHistDB (O(NHistDB )).

The second step in the turnaround estimation is the
prediction of the execution time of CurrentJob. Algo-
rithm 2 depicts the steps for such an estimate. It is
worth pointing out that we have to estimate the execu-
tion time of CurrentJob without knowing the state of
the environment when it was finally executed. Hence,
the first step is to estimate such an environment (Al-
gorithm 2, lines 1∼5). Following the same reason-
ing used in Algorithm 1, this estimation is done from
the CPUtimeahead metric. From the jobs stored in
HistDB, we build a list of jobs (SimilarJobList), whose
CPUtimeahead is similar to the CurrentJob. Notice that
for our studies we will use a threshold = 5% given that
this value was found to be a good compromise between
the time needed to process enough data for doing the
estimation and the amount of data retrieved from the
HistDB. After that, we try to estimate the amount of
CPU time that the CurrentJob will need to compete
with when it is finally executed. With this aim, the
CPUtimebackwards associated with each job belonging
to SimilarJobList is averaged in Algorithm 2, line 6.
Next, we look among the SimilarJobList set for the
job (SimilarJob) whose CPUtimebackwards is the clos-
est (Algorithm 2, line 7) to the average calculated in
Algorithm 2, line 6. The execution time for Similar-
Job is then returned as the estimated execution time of
CurrentJob.

It is noticed that the relevance of calculating
CPUtimebackwards is given by the fact that we are
dealing with a non-dedicated environment. This im-
plies that the same node is shared among several
applications, and hence the execution time of each one

affect the others. Thus, an application that is going to
be started later could affect the execution time of an
application started sooner.

Algorithm 2. Historical Estimation Process for the

Execution Time of CurrentJob

1: forall (J in Waiting Jobsahead(CurrentJob))

2: Appl = getAppl(J)

3: CPUtimeahead = CPUtimeahead + getCPUtime

(HistDB ,Appl ,Policy)

4: end forall

5: SimilarJobList = {every J ∈ HistDB such that get-

Appl(J)== getAppl (CurrentJob) and |CPUtimeahead

−getCPUtimeahead(HistDB , State, J)| < threshold}
6: forall (J in SimilarJobList)

AverageCPUtime =

Average(getCPUtimebackwards(HistDB , State, J))

7: SimilarJob = J ∈ SimilarJobList such that
minimizes |AverageCPUtime − getCPUtimebackwards

(HistDB ,State, J)|
8: return ExecTime = getExecTime(HistDB , Simi-

larJob)

It is worth pointing out that the complexity of Al-
gorithm 2 depends on the number of elements in the
HistDB again (O(NHistDB )). In this sense, note that
the estimation process of the waiting (Algorithm 1) and
execution time (Algorithm 2) are related, because both
algorithms use the CPUtimeahead metric for the estima-
tion process. In fact, the results for the waiting time
are reused for the execution time calculation in the real
implementation. This causes a considerable reduction
in the calculation time of the estimation process. Like-
wise, the fact that our system collects more complete
historical information than other systems[11,13,21] based
on historical repository allows us to use a simpler esti-
mation process than previous works.

4.2 Estimation Through Simulation

The second alternative is a discrete time simula-
tion schema based on an analytical model as its core
turnaround time prediction engine. In order to deal
with the estimation in a non-dedicated environment,
the simulator needs two different kinds of information:
the characterization of the parallel applications and the
modeling of the current cluster state, including the lo-
cal load activity. As we can see in Fig.4, this informa-
tion is provided by the Application Characterization
and the Queue Manager modules of CISNE, respec-
tively. At the end of the simulation, the estimated job
turnaround time is returned to the Queue Manager.
This information is then used by the scheduler and re-
turned to the parallel user.
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Fig.4. Integration of the simulation process into the CISNE system.

The Application Characterization module of CISNE
can obtain the behavior of the parallel applications in
two different ways. The first option, which is the most
widely used, is to run the parallel application in isola-
tion, using a particular scheduling policy and a specific
set of nodes where the application can run alone with-
out the influence of other jobs. The resulting resource
consumption metrics are then stored by the Applica-
tion Characterization module to be used for future es-
timations. Whenever it is not possible to run a parallel
application in isolation, a second choice is to ask the pa-
rallel user about the resources used by their application.
However, giving that the information given by the pa-
rallel user is normally an inaccurate method[22], CISNE
applies a readjustment based on the historical informa-
tion collected on each new real execution. Basically,
this readjustment is based on the estimation process
explained in Subsection 4.1 but assuming a dedicated
environment for the parallel application.

For whatever option and for a fixed number of pro-
cessors per job (n), the Application Characterization
module collects:
• ExecTimetotal(J) is the execution time of job J ;
• CPUtimetotal(J) is the amount of CPU time used

by job J ;
• CPU (J) is the CPU percentage (CPUtimetotal(J)/

ExecTimetotal(J)) used by job J .
Whenever a new job is submitted to the CISNE sys-

tem, the Queue Manager collects the usage of the re-
sources in each node, together with the state of each
job J running in the cluster. The following set of data
models the cluster state:
• JSP and NSP policies are the Job and Node Se-

lection Policies used by CISNE, respectively;
• ExecTimecur(J) is the current running time for job

J ;
• CPUtimecur(J) is the amount of CPU time used

by the job J from its beginning;
• nodes(J) is the set of nodes where job J is running;
• CPU local/paral(n) is the sum of the CPU required

percentage of each local/parallel task running in the
node n; (If this value is higher than 1 it means that the
node n is overloaded.)
• MPLlocal/paral(n) is the number of local/parallel

tasks executing simultaneously in the node n. As we
demonstrated in several previous studies[8,34], the time
sharing component of CISNE allows the execution of
more than one parallel job in the same set of nodes,
whenever it does not disturb the local user. Note that
the maximum MPLparal(n) through the cluster will be
denoted as MPLparal.
• tasks(n) is the set of parallel tasks running in the

node n.
Once all the needed elements have been collected,

CISNE is ready to start the simulation process de-
scribed in the next subsection.

4.2.1 Simulation Algorithm

The discrete time simulation process is triggered
whenever a new job reaches the CISNE system. Every
time that the simulation is started, the turnaround time
for each job in the system, either running or waiting,
is estimated. This process provides extra information
about the future cluster state to the scheduler (Step 2
in Fig.4). Using the estimated cluster state, it is possi-
ble to enhance the NSP and JSP scheduling decisions.
On one hand, the NSP policies use this estimation to
avoid surpassing the resource utilization limit defined
by the social contract. On the other hand, the Backfill-
ing JSP policy could take benefit from the cluster state
estimation to find new scheduling opportunities by ad-
vancing the execution of some waiting jobs. Notice that
if the simulator is working when a new job arrives, the
whole process has to be restarted to consider the new
job to be executed. Algorithm 3 depicts our simulation
method.

The core of the simulation algorithm relies on a
while that loops as long as any parallel job is running
(Algorithm 3, lines 3∼16). For each loop, the algorithm



106 J. Comput. Sci. & Technol., Jan. 2011, Vol.26, No.1

estimates the Remaining Execution Time (RemTime)
of every job in the running queue (DRQ), selects the
next job that will finish (Ji) and removes it from DRQ
(Algorithm 3, lines 4∼6). After that, the CPUtimecur

used by each of the remaining jobs in DRQ is calculated
(Algorithm 3, line 7) to be used in the following sim-
ulation step (Algorithm 3, line 3 loop). Next, another
nested loop tries to execute some waiting jobs using the
system scheduling policy, the available resources in ti
and those resources released by Ji (Algorithm 3, lines
8∼13). Finally, the waiting time for every job in the
Waiting Queue (DWQ) is updated (Algorithm 3, line
14) and the simulation step advances to ti (Algorithm
3, line 15) in the discrete time process.

Algorithm 3. Simulation Process

1: Duplicate the system state in a dummy system state:
Dummy Waiting Queue (DWQ) as a copy of the jobs
waiting queue, Dummy Ready Queue (DRQ) as a copy
of the running jobs queue and Cl sim as a copy of the
cluster nodes with their state.

2: Store the current time (t0), as the simulation start-
time.

3: while (∃J in DRQ) do

4: forall (J in DRQ) Calculate the RemTime(J).

5: Assume that the job Ji is the next one to finish in

time ti.

6: Update the estimated ExecTimetotal(Ji) to ti and

remove Ji from DRQ.

7: forall (J in DRQ) Calculate the CPUtimecur(J)

in [t0, ti].

8: while (∃ usable resources in Cl sim and any job

waiting in DWQ) do

9: Look for an job Jx in DWQ that could be exe-

cuted in the Cl sim state.

10: Select the best subset of Cl sim for executing Jx,

using the system policy.

11: Execute the job Jx in the selected subset of

Cl sim and add it to DRQ.

12: Increment the estimated WaitTime(Jx) in

[t0, ti].

13: endwhile

14: forall (J in DWQ) Increment the estimated

WaitTime(J) in [t0, ti].

15: Set t0 to ti.

16: end while

Regarding the complexity of the simulation algo-
rithm, we can see that there is a loop nesting (Algo-
rithm 3, lines 4, 7, 8 and 14 inside main loop: line 3).
The order of the main loop is linear with the number of
running jobs (NDRQ), whereas the order of the longest

nested loop (Algorithm 3, line 8) depends on the wait-
ing jobs (NDWQ) and the cluster size (Scl). Taking into
account the characteristics of a non-dedicated system,
we can assume that the size of both sets, DRQ and
DWQ, are of the same magnitude[35] and as a conse-
quence, the resulting complexity is quadratic with the
number of jobs in the running queue and the size of the
cluster (O(N2

DRQ × Scl)).
In order to carry out this simulation, we need a pair

of extra functions which define the estimation process.
The first is the RemTime (Algorithm 3, line 4), which
estimates the Remaining Execution Time for a given
job considering the current cluster and job state. The
second tries to predict the CPU time (CPUtimecur)
that the job has used from the beginning until the mo-
ment when the simulation is launched (Algorithm 3,
line 7). Our approaches to solving both functions are
depicted in the following subsections.

4.2.2 Remaining Execution Time Approaches

Our first approach, named Proportional (Prop), is
based on the belief that the future will be similar to
the past. Therefore, the remaining execution time of a
job J , denoted as RemTime(J), is calculated according
to the following (1) and (2):

CPUtimerem(J) = CPUtimetotal(J)− CPUtimecur(J),

(1)

RemTime(J) =
ExecTimecur(J)× CPUtimerem(J)

CPUtimecur(J)
.
(2)

Note that (1) and (2) assume that the CPU time
(CPUtimetotal(J)) used by job J during its complete
execution (RemTime(J) + ExecTimecur(J)) is propor-
tional to the CPU time (CPUtimecur(J)) used during
the current execution time (ExecTimecur(J)).

The second proposal, denoted as MPL, considers
both the past and current states. It starts by calcu-
lating the remaining execution time that job J would
need if it was executed in isolation (RemTime isol(J)).
This value, following the same reasoning as (2), is cal-
culated as:

RemTime isol(J)=
ExecTimetotal(J)×CPUtimerem(J)

CPUtimetotal(J)
,

(3)
where CPUtimerem is calculated according to (1). Like-
wise, we calculated the maximum MPL (MPLmax(J))
as follows:

MPLmax(J) = max
∀n∈nodes(J)

(MPLparal(n)+MPLlocal(n)).

(4)
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It is worth pointing out that (4) returns the max-
imum number of tasks, both local (MPLlocal(n)) and
parallel (MPLparal(n)), executing concurrently with job
J among the nodes where it is running (nodes(J)). Tak-
ing MPLmax(J) and RemTime isol(J) into account, the
remaining execution time for J is calculated according
to the following equation:

RemTime(J) = RemTime isol(J)×MPLmax(J). (5)

In this way, the RemTime is proportional to the current
MPL throughout the cluster.

Our last approach, denoted as CPU, considers not
only the number of tasks executing concurrently (MPL)
but also the CPU requirements of those tasks (in per-
centage). So, the RemTime(J) is calculated as follows:

RemTime(J) = RemTime isol(J)× CPU (J)
CPU feas(J)

, (6)

where:

CPU feas(J) = min(CPU (J),
CPU (J)

CPU max(J)
), (7)

is the feasible CPU percentage that job J could use.
Notice that CPU feas(J) could be at most the amount
of CPU required by job J , but this percentage could be
decreased if some of the nodes shared by J has some
other load. This load is defined by CPU max(J) as:

CPU max(J) = max
∀n∈nodes(J)

(CPU paral(n)+CPU local(n)).

(8)
Thus, CPU max(J) is the maximum CPU usage require-
ments (in percentage) among the nodes (n) where J is
running (nodes(J)).

It is important to emphasize that no matter which
the chosen approach is, the value for CPUtimecur(J)
is only real at the beginning of the simulation process
(Algorithm 3, line 3), and for each simulation step it is

necessary to estimate this value (Algorithm 3, line 7)
again. Therefore, in the next subsection, we describe
some proposals for estimating this value.

4.2.3 Current-CPU Time Proposals

This subsection describes two different proposals for
estimating the CPUtimecur for a given job J at a spe-
cific moment (ti), denoted as CPUtimecur(J, ti), consid-
ering that this value has been measured or estimated
in the past (CPUtimecur(J, ti−1)).

In our first approach, denoted as MPL, we assume
that the job CPU usage is proportional to the maxi-
mum MPL calculated in (4). The following expressions
represent this proposal.

4 CPUtime =
(ti − ti−1)× CPUtimetotal(J)

MPLmax(J)× ExecTimetotal(J)
, (9)

CPUtimecur(J, ti) = CPUtimecur(J, ti−1) +4CPUtime.
(10)

Our second proposal, denoted as CPU, is based on
the same idea used for the Remaining Time in (6), but
applied to the CPUtime. The following equations rep-
resent that idea.

4 CPU feas = (ti − ti−1)× CPU feas(J), (11)

CPUtimecur(J, ti) = CPUtimecur(J, ti−1) +4CPU feas.

(12)

4.3 Estimation Through a Hybrid System

Our last proposal combines both alternatives pre-
sented above (Historic and Simulation systems). This
integration can be seen in Fig.5, where the simulation
engine uses historical information to make its estimates.
It is worth pointing out that the Application Characte-
rization module (Apps. Charact. in the figure) is inte-
grated into the Historical system. This integration

Fig.5. Integration of the hybrid schema into the CISNE system.
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endows the module with a kind of memory, which allows
the parallel jobs to be characterized much better.

The main advantage of merging the Simulator and
the Historical systems resides in the way the Remain-
ing Execution Time (RemTime) of each job is obtained.
In this case, it is calculated through a historical infor-
mation retrieval system instead of the analytical model
described in Subsection 4.4.2. The proposed RemTime
method, described in Algorithm 4, is based on obtain-
ing the number of tasks that share resources (Shared-
TasksCount) with the job being estimated (Current-
Job). This metric is used as a search pattern for his-
torical matching. Thus, we can find a historical sce-
nario, where CurrentJob was run with a similar load in
its assigned nodes as in the present time, from which
we can expect a similar running time. According to
this aim, the algorithm looks for the set of executions
(jobs) in the historical repository (HistDB) associated
with the same application as CurrentJob, which have
the same SharedTasksCount (Algorithm 4 line 8). From
this set of jobs, Algorithm 4 line 9 averages their ex-
ecution time. Next, this average is subtracted from
the actual execution time for CurrentJob (ExecTimecur,
Algorithm 4, line 13), and returned to the simulation
engine as the remaining time (RemTime) of the Cur-
rentJob. Note that if the subtraction is a negative value
(Algorithm 4, line 10) then 0 is returned to the simula-
tor indicating that the job should have finished.

Algorithm 4. Historical Estimation Process for the

Remaining Execution Time in the Hybrid

System

1: SharedTasksCount = the number of tasks that share
some node with CurrentJob.

2: CurrentAppl = getAppl(CurrentJob)

3: if SharedTasksCount == 0 then

4: forall (J ∈ HistDB such that CurrentAppl ==

getAppl(J) and it was run in isolation)

5: ExecTime = Average(getExecTime(HistDB,

State, J))

6: return ExecTime − ExecTimecur(CurrentJob)

7: else

8: SimilarJobList = {every J ∈ HistDB such that

CurrentAppl == getAppl(J) and SharedTasks-

Count == getSharedTasksCount(HistDB,

State, J)}
9: forall (J in SimilarJobList) ExecTime =

Average(getExecTime(HistDB, State, J))

10: if ExecTime − ExecTimecur(CurrentJob) < 0

then

11: return 0

12: else

13: return ExecTime−ExecTimecur(CurrentJob)

14: end if

In relation to the complexity of the Hybrid system,
we should take into account that we have to replace the
analytical method used by the Simulation system (see
Algorithm 3, line 4) for the searching method in the his-
torical repository explained in this subsection (see Al-
gorithm 4). It means that the quadratic complexity of
the Simulation system is increased by the linearity asso-
ciated with the Historical estimator. Hence, the result-
ing order of the algorithm is O(N2

DRQ×Scl×NHistDB ),
where NDRQ is the number of jobs running in the sys-
tem, Scl is the cluster size and NHistDB is the number
of records in the HistDB.

5 Off-Line Estimation in the CISNE System

The on-line estimation, described in Section 4, al-
lows the performance of a parallel workload for a given
cluster environment to be known. However, there are
some situations where the parallel user or the system
administrator are interested in evaluating the perfor-
mance of a given parallel workload in several cluster
environments. It means having available the usefulness
of simulating, not only the behavior of a certain pa-
rallel workload, but also several cluster environments,
vary their heterogeneity, size, local load, computational
resources of nodes and so on. With this in mind, an off-
line simulation system has been included in the CISNE
system.

With this aim, the Job Dispatcher together with the
nodes that integrate the CISNE system have been re-
placed by a set of modules that simulate the function-
ality of the original ones giving the possibility of emu-
lating resources that are not really available. Thus,
any scheduling policy is perfectly usable in both real or
simulated environments. In Fig.6, we can observe the
modules that are replaced by others, which are named
dummies. They are provided to the Queue Manager
with an environment where it can schedule jobs as if
these are executed on a real cluster. Note that all the
dummy modules are under the control of the off-line
simulator, by means of an Event Queue that stores the
events that should appear in the future, such as job
(both local and parallel) arrivals, execution and final-
ization.

In order to initially fill up the Event Queue, the Ex-
tern Event Generator takes, as an input, a set of local
and parallel applications, which are described in the
Parallel/Local Load Configuration file (see Fig.6). For
each parallel/local job, its corresponding arrival time
and expected execution time in a dedicated cluster are
provided. It is important to remark that the job de-
scription provided to the Extern Event Generator are
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Fig.6. Architecture of the off-line simulator.

the same used for the on-line estimation (see Subsec-
tion 4.2).

Once the Event Queue is loaded with the arrivals of
the local and parallel jobs, the off-line simulator starts
by taking the jobs arrival events in order. Following the
established scheduling policy, the jobs are distributed
among the dummy nodes for execution or pushed into
the waiting queue if there are not enough free resources
for their execution. Every time that a new job is started
in a set of nodes, specified by the Environment Config-
uration file, the Simulation Kernel estimates its execu-
tion time. Notice, that the Environment Configuration
defines node parameters such as: total memory or ini-
tial load when the scheduling starts, regarding CPU
and memory usage. Likewise, the Simulation Kernel
reestimates the execution time of any job that shares
at least one node with the just launched node. Using
these estimations, a new finishing event is added to the
Event Queue (for the launched job), while some others
may be modified (for the jobs sharing some nodes with
the launched job). Whenever a finishing job event is
processed by the off-line simulator, a set of resources
are freed and hence the scheduling process is restarted
using the new cluster state. Thus, a new set of waiting
jobs can be executed and the whole simulation cycle
is restarted again. This process is repeated until the
Events Queue is empty. Finally, the Simulation Engine
returns the waiting, execution and turnaround time of
each simulated parallel job to an output file together
with the makespan associated with the whole workload.

This way of operation makes the off-line simulator
a discrete event simulation environment, that includes
any of the turnaround time predictors (kernels) based
on simulation (Simulation based on Analytical Models

or Hybrid ones) defined in Subsections 4.2 and 4.3, re-
spectively. In this way, the same estimation kernels
are reused for the on-line prediction as they are for the
off-line simulation. Therefore, the results obtained by
means of the off-line simulation are directly compared
to the ones achieved by the estimation carried out in a
production environment.

6 Experimentation

The performance of our prediction proposals was
evaluated in two different environments, a real and a
simulated non-dedicated cluster. The real environment
allowed the accuracy of the on-line estimation methods
(Simulation, Historical and Hybrid) to be evaluated
in relation to different scheduling strategies, and vice-
versa. Likewise, we compared our proposals to other
estimation methods described in the literature. Finally,
we simulated the same real environment to measure the
good behavior of the off-line simulator.

6.1 Real Environment

This subsection discusses the performance of our es-
timation proposals in a real controlled cluster. With
this aim, the parallel and serial workloads and the
set of scheduling policies used in our experimenta-
tion are described. Next, the advantages and draw-
backs of the proposed methods are explained in rela-
tion to the results achieved. Finally, an analysis of the
time cost/complexity of these estimation methods is in-
cluded.

6.1.1 Workload and Policies

In order to carry out the experimentation process,
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we need two different kinds of workloads: local and pa-
rallel.

The serial local workload of the workstation owner
was carried out by running one synthetic benchmark,
called local. This benchmark alternates CPU activ-
ity with interactivity by running several system calls
and different data transfers to memory. This is con-
figured according to three different input parameters:
CPU load, memory requirements and network traffic.
Thus, we can simulate any kind of local user profile. In
order to assign these values in a realistic way, we moni-
tored the average resources used by students doing their
practices in a computer lab of our university during a
month. According to this monitoring, we defined three
local user profiles, characterized in Table 2: (Shell) a
user with high CPU requirements, (Xwin) high inter-
activity requirements and (Internet) high communica-
tion requirements. Taking this monitoring into account,
75% of the nodes in the cluster used throughout this ex-
perimentation were loaded with this local benchmark.
The laboratory was rarely completely full. The percen-
tage of nodes with each profile follows the distribution
shown in the Distribution column of Table 2. In or-
der to simulate the variability of local user behavior,
the local execution time was modeled by a two-stage
hyper-exponential distribution with means, by default,
of 60 and 120 minutes and a weight of 0.4 and 0.6 for
each stage[36]. These values are due to the fact that the
daily timetable of these labs is divided into slots of 60
or 120 minutes. Thus, the behavior of the local users
during these time slots is fairly predictable. Note that
each new generated local benchmark was launched in a
node without any local users.

The parallel workload was a list of 1000 PVM/MPI
NAS[37] parallel jobs (CG, IS, MG and BT) with a size
of 4, 8 or 16 tasks. Table 3 shows the CPU percentage,
memory size, communication rate and execution time
for 4, 8 and 16 nodes for each NAS benchmark. The jobs

making up the parallel workload together with their
size were chosen according to a uniform distribution.
According to the parallel workload model of Lublin et
al.[38], each chosen job reached the system following a
gamma distribution with α = 12 and β = 2.55. Note
that these parameters model the arrival process during
the daily cycle of a SuperComputing Center (Institute
of Technology in Stockholm). It is important to men-
tion that the maximum number of parallel tasks per
node (MultiProgramming Level, MPLparal) reached for
the workload through the cluster depends on the sys-
tem state at each moment, but in no case will surpass
an MPLparal = 4. This is established in order to respect
the social contract with the local user[34]. It is worth
pointing out that with these parameters we achieved a
mean length of the waiting queue of 4 parallel jobs.

This workload was executed with different combina-
tions of Job Selection (JSP) and Node Selection poli-
cies (NSP). Specifically, we combined both JSP poli-
cies, FCFS and Backfilling (BF), with both NSP poli-
cies, Normal and Uniform. All of them are explained
in detail in Section 3. Finally, for the purpose of
comparison, we included a Basic policy made up of
a Normal+FCFS policy with an MPLparal = 1 (the
MPLparal was restricted to 4 in the rest of the evalua-
ted policies).

The whole system was evaluated in an Linux cluster
using 64 P-IV (1.8GHz) nodes with 1GB of memory
and a fast Ethernet interconnection network. In or-
der to measure the accuracy of our prediction, we used
the normalized average of the absolute prediction errors
(Dv) of a given metric (turnaround, execution or wait-
ing time). So, Dv(metric) will be calculated as follows:

Dv(metric)% =
∑1000

i=1 |Yi −Xi|∑1000
i=1 Xi

× 100%, (13)

where Yi and Xi are the predicted and the observed

Table 2. Local User Requirements (The standard deviation is shown between brackets.)

Local Distribution CPU Load Memory Network (Bytes/s)

(%) (%) Rec.-Send

Shell 15 0.40 (0.2) 20 (15) 108-3 (30-1)

Xwin 62 0.15 (0.1) 35 (55) 608-30 (302-5)

Internet 23 0.20 (0.1) 60 (75) 3154-496 (1890-245)

Table 3. Characterization of the Parallel Workload

Benchmarks CPU (%) Memory (MB) Network Rate (%) Exec. Time (s)

4/8/16 4/8/16 4/8/16 4/8/16

IS 58/25/24 380/260/150 42/75/76 280/240/179

MG 90/78/70 220/113/60 10/22/30 209/119/75

CG 72/61/52 112/112/112 28/39/48 465/395/375

BT 96/92/87 22/14/8 4/8/13 775/512/246
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values, respectively, for each executed application and
for a given metric (turnaround, execution or waiting
time).

6.1.2 Experimental Results in a Real Cluster

First, the performance of the different analytical pro-
posals for calculating the RemTime (PROP, MPL and
CPU ) and the CPUtimecur (MPL and CPU ), explained
in Subsection 4.2, together with the Historical and the
Hybrid methods, described in Subsections 4.1 and 4.3
respectively, were evaluated under the simplest schedu-
ling policy defined in this experimentation, namely the
Basic policy. Fig.7 shows the error on estimating the
turnaround time of the parallel jobs from applying the
Basic restrictions (FCFS of Job Selection Policy and
Normal of Node Selection Policy with MPLparal = 1).
According to the explanation of Subsection 6.1.1, 75%
of the nodes in the cluster used throughout this experi-
mentation were loaded with local load. The percentage
of nodes with each local profile follows the distribution
shown in the Distribution column of Table 2.

Fig.7. Turnaround error (%) applying a Basic policy.

From Fig.7, and considering the RemTime methods,
we can see that the Proportional (denoted as PROP)
method performs badly. This is due to the assumption
that the future behaves like the past. This assumption
is not true when the environment state changes con-
tinuously due to the local and parallel loads presents
in a non-dedicated environment. In line with these
results, we discarded the Proportional method for the
following tests. Likewise, from the same Fig.7, we
can see that CPUtimecur estimation via CPU usage
(denoted as CPU) is more reliable than estimation
through the MPL (denoted as MPL) method. This
happens because the CPU method represents reality
better by considering the real percentage of CPU con-
sumed by each task, while the MPL method assumes
that every task consumes the same percentage of CPU.
Likewise, the poor performance achieved by the Histor-
ical method, which is the most widely used to estimate

the execution time in the literature, is surprising. This
is due to the correlation of two reasons. On the one
hand, the waiting queue length increases due to the
restriction of the MPLparal (MPLparal = 1) used by
the Basic policy and, on the other hand, the historical
repository, used by the Historical method, does not
contain enough information to follow the evolution of
a job in the waiting queue. As a consequence, the es-
timation error increases with the waiting queue length
and the turnaround time prediction worsens. Finally,
the good behavior of the Hybrid case is worth pointing
out. This is analyzed in the following tests.

Next, we increased the complexity of the environ-
ment under study by increasing the MPL of parallel
jobs to 4. In this context, we evaluated the sensitiv-
ity of the Simulated, Historical and Hybrid methods
regarding the NSP (Normal and Uniform) and JSP
(Backfilling and FCFS ) scheduling policies. In rela-
tion to the JSP policies, as was expected, Fig.8 reflects
that a backfilling policy is more unpredictable. This
is due to the difficulty of tracking the variation in
the order of the elements in the waiting queue. How-
ever, the results are almost always optimistic, due to
the possibility of backfilling some of the waiting jobs,
and hence reducing their waiting time. This means
that the turnaround time is, in the worst case, un-
derestimated. Regarding the NSP policies, we should
distinguish between the Historical case and the others.
For the Historical, we can see that the worst results
are obtained using a conservative policy (Uniform)
because it generates a longer queue length and as a
consequence, the waiting time becomes more difficult
to estimate. On the other hand, in the other cases we
can see that a Uniform policy favors the predictabil-
ity of the system over a Normal policy, because the
former tries to balance the resources given to the pa-
rallel jobs. In such a case, the tasks forming a parallel
job can evolve jointly, allowing the estimation methods

Fig.8. Turnaround error (%) vs. JSP and NSP scheduling poli-

cies.
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to be more accurate. Focusing on the results obtained
by the simulation methods (MPL-MPL and MPL-
CPU ), we can see that they follow the same trend
obtained with the Basic policy shown in Fig.7. Accord-
ing to these results, the simulation method used in the
rest of the tests explained in the following experimen-
tation models the RemTime and CPUtimecur based on
MPL and CPU usage, respectively. Finally, it is worth
pointing out that, for all the scheduling policies, a sim-
ulation system based on using a historical repository
to compute the RemainTime (Hybrid case) achieves
the best results, given that it combines the flexibility
of a simulation system with the ability to represent a
system as dynamic as our environment accurately.

The three estimation proposals (Simulated, Histori-
cal and Hybrid) described in this paper were compared
with the two historical methods proposed by Li et al.[20]

and Smith et al.[14] Smith et al. process the historical
database by means of a weighted learning technique,
where the relevance between data points and a query
is determined with a heterogeneous Euclidean over-
lap metric and the estimation of the execution time is
calculated by means of a kernel regression, where the
kernel function is a Gaussian. On the other hand, Li
et al. use a linear regression method (LR(5)) applied
to different combinations of selected job attributes.
Finally, the estimations produced by each set of at-
tributes is averaged. In both cases, the job attributes
used in our experimentation were the user name, exe-
cutable name and number of nodes allocated. Note that
these techniques were chosen due to the fact that they
achieve better prediction results than other methods
based on historical information[12-13]. Fig.9 shows the
error achieved in the estimation of the turnaround time
for all the methods compared. All these tests were
done with a Uniform NSP policy and a Backfilling
JSP policy. In general, we can see that our proposals
based on a simulation engine (MPL-CPU and Hybrid)
obtain much better results than Li and Smith’s pro-
posals, while our historical proposal is slightly better
than them. In order to represent a system as complex
as a non-dedicated cluster accurately, we have to collect

Fig.9. Comparison of our proposals in relation to Li and Smith’s

proposals.

more detailed information (cluster state, queue state
and job characteristics) than the other historical sys-
tems orientated towards dedicated environments, as in
the case of Li and Smith’s proposals, which only store
information about previously executed jobs together
with their input parameters. Thus, we are able to follow
the evolution of the cluster’s state on each simulation
step through the job’s execution more accurately.

The next step consists of measuring the waiting and
execution time deviations separately under the same
conditions described above. Note that Li and Smith’s
results do not appear in Fig.10 because these authors
do not discriminate between these two metrics, given
that they give only results about average turnaround.
In order to better show the relationship between the
estimated and observed values for each metric and es-
timation method, the Fig.10 shows the deviation be-
tween the predicted and observed values by means of
a linear regression model. Each scatter-plot represents
the observed values (X) on the x-axis and the predicted
ones (Y ) on the y-axis. Moreover, these figures show
the normalized average of the absolute prediction error
(Dv), defined in (13), as well as the adjusted coefficient
of determination (Ra). Ra measures how well the fitted
linear model explains the reality of the system behav-
ior. The Ra values range from 0 to 1, where Ra = 1
means that the model explains perfectly the estimated
values with respect to the observed ones, and Ra = 0
otherwise. In general, from Fig.10, we can see that both
methods based on simulation, MPL-CPU and Hybrid,
perform better for both metrics. Basically, this is due
to the fact that the estimation of the execution and
waiting time under the simulation engine is based on
the real state of the waiting queue and nodes at the
beginning of each new simulation step and not on an
estimated state, as in the Historical case. Likewise, we
can see as the waiting time is more difficult to predict
than the execution time, which is reflected in the lower
values for Ra and higher values for Dv. An interesting
case is the Historical one, where there is no correla-
tion at all between the results achieved by both met-
rics. The high deviation of the waiting time is due to
the high dynamism of the applied scheduling policies,
such as the backfilling one, which provokes a wide range
of different feasible states of the waiting queue for the
same application. On the other hand, the estimation
of the execution time is much better, due to the low
variability among the different possible execution envi-
ronments. We must take into account that, although
the behavior of a single local user is unpredictable, the
range of conduct of a group of local users, as for in-
stance in a laboratory associated with practices on a
specific subject, is much more limited.
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Fig.10. Linear regression analysis for execution ((a)∼(c)) and waiting ((d)∼(f)) time predictions. (a) MPL-CPU. (b) Historical.

(c) Hybrid. (d) MPL-CPU. (e) Historical. (f) Hybrid.

Table 4. Time Cost of Our Estimation Proposals

Simulation (MPL-CPU) Historical Hybrid

Time Cost (milliseconds) 7 19 98

Complexity O(N2
DRQ × Scl ) O(NHistDB ) O(N2

DRQ ×NHistDB × Scl )

6.1.3 Time Cost/Complexity Analysis

In this subsection, the time cost used by our propo-
sals to estimate the turnaround time of a single job is
measured. This cost has been compared with the com-
plexity associated with each algorithm. Both are shown
in Table 4.

Taking complexity into account, the low time cost
of the Simulation case in relation to the Historical one
could be surprising. This is due to the fact that the
complexity of the Simulation algorithm is quadratic
with the length of the running queue (NDRQ), which is
usually no longer than 5 jobs, whereas the order of the
Historical one is linear with the number of elements in
the Historical Repository (NHistDB ), which is at least
4 orders of magnitude greater than NDRQ . Likewise,
note that the time cost of the Hybrid one is strongly
correlated to its complexity. Finally, we emphasize that

the time cost is lower than hundred of milliseconds in
all the cases, meaning that this is at least two orders
of magnitude lower than the execution time of the pa-
rallel jobs (minutes). In this way, it is worth pointing
out that the Li[20] and Smith’s[21] estimation methods,
used in this work for comparison purposes, have the
same magnitude of time cost as we do. Although we
need to take into account a more complex information
for each job than these cited works, we can use a sim-
pler process to search for similar jobs to the current job
under estimation in the historical database.

6.2 Simulated Environment

In this subsection, we evaluate the performance of
the off-line simulator by means of simulating the same
cluster environment and workload used in the previ-
ous subsection. Thus, we compared this new set of
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simulated results in relation to those obtained in the
real cluster.

Regarding the parallel workload, as in the previous
experimentation, we simulated a list of 1000 PVM/MPI
NAS parallel jobs (CG, IS, MG, BT) with a size of 4, 8
or 16 tasks. Table 3 shows the characterization of these
benchmarks used in the simulation. The local workload
was modeled according to the values shown in Table 2.

In relation to the cluster, we simulated the same
cluster used in the real environment. It is a homoge-
neous cluster made up of 64 nodes, where each node
was modeled with a memory of 1 GB and a CPU of
5980 BogoMips.

6.2.1 Accuracy of the Off-Line Simulator

First, we analyzed the influence of the local load
over the simulated (Off-Line) and the real (On-Line)
cluster. In both environments, the same test was re-
peated, changing the estimation kernel from the Simu-
lation method to the Hybrid one. In order to isolate
the prediction from the difficulty of the scheduling pol-
icy, all the tests were tested using the easiest policy
(FCFS +Uniform) policy. In addition, we vary the
number of nodes with local load from 0% to 100%.
Fig.11 shows the turnaround error for both scenarios.
From Fig.11, we can see that the error performed by
the on-line simulation is lower than the off-line in all
the cases. Basically, this is due to the fact that the on-
line estimation takes the real state of the cluster at each
simulation step and so is able to correct dynamically the
little error produced at each simulation step. On the
other hand, in the off-line simulation case, the real state
is only known at the beginning of the simulation pro-
cess. Thus, the error produced at each simulation step
is accumulated across the complete simulation process.
However, this off-line error is always lower than 40% for
the Hybrid one and 50% for the Simulation one. The
second effect to note is the increment in the accuracy of
the estimation when the local load increases, excluding
the case of 0% local load in the nodes. This might seem
contradictory, but is in fact perfectly understandable
because when the local load increases, the available re-
sources decrease, as do the opportunities to choose free
nodes for scheduling jobs. As explained above, this situ-
ation favors the accuracy of the estimation. In the case
of a small local load, lower than 25%, we can see as the
accuracy is lower than 30% for all the cases, although
the trend is exactly the same than the rest of analyzed
loads. Finally, it is worth remarking that although the
Simulation kernel obtains worse results than the Hy-
brid one, it follows exactly the same trends obtained
with the latter.

Finally, for both kernels (Simulation and Hybrid), we

Fig.11. Turnaround error of the off/on-line simulator vs. diffe-

rent local loads.

Fig.12. Estimation time with the off-line simulator.

measured the estimation time spent by the off-line sim-
ulator when simulating the complete parallel workload
over a cluster environment, whose size was scaled down
from 8 to 512 nodes. As was expected, the kernel based
on the analytical methods (Simulation) obtains a much
lower temporal cost than the Hybrid one. In fact, the
temporal cost associated with the analytical methods
is practically independent of the size of the cluster and
waiting queue. On the other hand, the methods based
on a historical repository (Hybrid) are totally depen-
dent on both values. However, it is worth pointing out
that this estimation cost is always kept to the order of
seconds, which is two orders of magnitude lower than
the makespan obtained in the real cluster.

7 Conclusions and Future Work

This paper proposes a prediction engine applicable
to non-dedicated environments which is able to esti-
mate the turnaround time for parallel applications, even
in the presence of local loads uncontrolled by the pa-
rallel system. Our prediction system can be configured
to use three different estimation methods: a Historical
system that records past execution and tries to infer
the future as a replication of the past, a Simulation
system based on analytical models to estimate the Re-
maining Execution time and used CPU time for a given
running application and a defined cluster state, and a
system, named Hybrid, that merges a simulator engine
for the scheduling process with a central execution time
estimation system based on historical schemes. This
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prediction engine was implemented in a scheduling sys-
tem, named CISNE[8], which has the particular cha-
racteristic of being able to use any of the estimation
methods in an on-line way, which means that a new es-
timation is made on every job arrival to a real cluster,
or in an off-line mode, which estimates the behavior of
the parallel workload over the simulated environments.
It allowed our proposals to be evaluated in two diffe-
rent non-dedicated environments, a real and a simu-
lated cluster.

In both environments, we observed that our Hybrid
system gives the best results because it combines the
flexibility of a simulation system together with the abi-
lity, given by the historical information, to represent
accurately a system as dynamic as our environment. In
fact, the turnaround error achieved by the Hybrid is al-
ways lower than 30%. Likewise, our estimation propo-
sals were analyzed in relation to different job scheduling
policies. We concluded that those policies including a
backfilling scheme are inherently more difficult to esti-
mate accurately due to the possibility of altering the
job ordering in the queue. However, this estimation al-
ways tends to be optimistic. Another effect that was
observed was the influence of the job distribution on
the estimation process. For those policies that balance
the resources it is easier to generate a more accurate
estimation. Finally, we analyzed the influence of the
local load on the estimation methods. Our experimen-
tal results showed an improvement in the accuracy of
the estimation when the local load increased. This is
due to the fact that when the local load increases, the
available resources decrease, as do the opportunities to
backfill a job.

In the future, we wish to extend our system to in-
clude a couple of extra capacities. On one hand, we
want to apply the system to a multicluster environment.
It means taking the network and heterogeneity (me-
mory and CPUs) into account. On the other hand, we
want to support soft-real-time applications from both
the local and parallel user points of view.
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Autònoma of Barcelona (UAB),
Spain, in 2002, 2004 and 2006 respec-
tively. He is currently a researcher at
the Barcelona Supercomputing Cen-
ter. His research interests include

cluster scheduling and parallel computing.

Porfidio Hernández received
the B.S., M.S. and Ph.D. degrees in
computer science from UAB, Spain,
in 1984, 1986 and 1991, respectively.
He is currently an associate profes-
sor of operating systems at UAB. His
research interests include operating
systems, cluster computing and mul-
timedia systems.
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