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Abstract The target coverage is an important yet challenging problem in wireless sensor networks, especially when both
coverage and energy constraints should be taken into account. Due to its nonlinear nature, previous studies of this problem
have mainly focused on heuristic algorithms; the theoretical bound remains unknown. Moreover, the most popular method
used in the previous literature, i.e., discretization of continuous time, has yet to be justified. This paper fills in these gaps
with two theoretical results. The first one is a formal justification for the method. We use a simple example to illustrate
the procedure of transforming a solution in time domain into a corresponding solution in the pattern domain with the same
network lifetime and obtain two key observations. After that, we formally prove these two observations and use them as
the basis to justify the method. The second result is an algorithm that can guarantee the network lifetime to be at least
(1 − ε) of the optimal network lifetime, where ε can be made arbitrarily small depending on the required precision. The
algorithm is based on the column generation (CG) theory, which decomposes the original problem into two sub-problems
and iteratively solves them in a way that approaches the optimal solution. Moreover, we developed several constructive
approaches to further optimize the algorithm. Numerical results verify the efficiency of our CG-based algorithm.

Keywords target coverage, wireless sensor networks, time-dependent solution, pattern-based solution, column generation

1 Introduction

In wireless sensor networks deployed for monitor-
ing discrete physical targets with QoS requirements[1],
considering that sensors are typically battery-driven
and have energy constraints[2], so the problem of opti-
mizing the network lifetime while fulfilling those QoS
requirements becomes an interesting challenge. Nu-
merous methods have been proposed to address target
coverage problems with different network settings[3-10].

Among them [5] is one of the most important stud-
ies. The basic idea is that continuous time can be
divided into discrete time slots with different lengths.
In each time slot, only one coverage pattern, defined as
a subset of sensors that can cover all targets, is acti-
vated while the remaining sensors are put into a sleep
state to save energy. The problem has been mathemati-
cally formulated on the basis of this idea. However, this
method has two weak points. The first is that the idea

of discretization of continuous time has not been justi-
fied; a formal proof is missing. The other weak point,
the more critical one, is that the formulation involves
mixed integer nonlinear programming (MINLP), which
makes it very difficult to tackle the formulation[11], es-
pecially for a resource limited sensor platform. In fact,
the authors of that paper failed to solve it directly, but
just proposed two heuristic algorithms instead. Their
solutions are suboptimal and are likely to be far away
from the optimum in certain cases, leaving the exact
performance bound unknown.

This paper aims to fill in these theoretical gaps by
providing both a justification of the method for dis-
cretization of continuous time and an efficient algorithm
with a performance guarantee for this problem.

First, we justify the method of discretization of con-
tinuous time utilized in [5]. We notice that the tar-
get coverage is inherently involved with time issues,
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e.g., sensors are active in different time spans and in
charge of different targets. Therefore, it is more natu-
ral to formulate the problem in a time-dependent man-
ner. However, the formulation belongs to the class of
non-polynomial programming problems and is NP-hard
in general. Therefore, before seeking an optimal solu-
tion to this formulation, we first gain critical insights
into an investigation of a particular time-dependent tar-
get coverage problem. We will show how this problem
is transformed into a pattern-based coverage with the
same optimal network lifetime. Then, we prove these
insights in general case and thus establish a formal jus-
tification for the method of discretization of continuous
time.

Second, we try to develop an efficient solution to
the MINLP formulation. Considering that the major
difficulty in solving the original MINLP formulation in
[5] is that P , containing all coverage patterns, might
be extremely large so explicit enumeration becomes in-
tractable as the size of the network grows. To deal
with this problem, we employ a column generation ap-
proach to decompose the original MINLP formulation
into master and sub-problems. We first solve the mas-
ter formulation, using P0, which is a subset of P . Note
that P0 can be easily obtained by a random selection
algorithm as shown in Section 4. Moreover, the master
problem belongs to the class of linear programming and
is relatively easier to solve optimally[12]. Clearly, since
we only use a subset of patterns, the solution to the
master problem serves as a lower bound for the over-
all optimal lifetime. Then, we develop a novel method
of obtaining an upper bound for the overall lifetime
based on the sub-problem. If the difference between
these two bounds satisfies a predefined precision, the
algorithm terminates. Otherwise, we add a new pat-
tern, which may have the most significant contribution
according to the sub-problem, to P0 and solve the mas-
ter problem again. Therefore, by iteratively shrinking
the distance between lower and upper bounds, the al-
gorithm can guarantee the network lifetime is at least
(1− ε) of the optimal network lifetime. A detailed ana-
lysis and formal proof are given.

We also develop several constructive methods in or-
der to accelerate the iterative process. The first one
is a novel random selection algorithm to generate P0;
it helps to speed up the convergence procedure of our
approach. Note that the sub-problem is an integer
programming (IP) problem and may be difficult to
solve in a resource limited environment, e.g., a sen-
sor platform. Therefore, instead of directly solving
the IP formulation, we re-formulate and solve it by us-
ing a linear relaxation technique coupled with a round-
ing algorithm, which significantly reduces computation

complexity while maintaining a certain level of perfor-
mance. We also offer an in-depth study and give a
formal proof to these methods.

The contributions of this paper are two-fold:
1) We formally justify the method of discretizing

continuous time. In other words, we prove that as far
as network lifetime is concerned, we can convert the
time-dependent formulation to the pattern-based for-
mulation.

2) We propose a CG-based approach with a per-
formance guarantee to solve the pattern-based formu-
lation. It provides a critical performance benchmark
when evaluating other heuristic algorithms for target
coverage problems in WSNs (wireless sensor networks),
e.g., the algorithms proposed in [4-6].

The rest of the paper is organized as follows. We
describe our system model and problem formulation in
Section 2. We formally justify the method of discretiz-
ing continuous time in Section 3. Section 4 describes
the column generation approach. Numerical simulation
results are reported in Section 5. We introduce some
related work in Section 6. Finally, Section 7 concludes
the paper.

2 System Model and Time-Dependent
Problem Formulation

In this section, we will introduce our system model
and formulate the target coverage problem in a time-
dependent manner.

2.1 System Model

We consider a set of n sensor nodes: S =
{s1, s2, . . . , sn} deployed to cover m targets: R =
{r1, r2, . . . , rm}. The coverage requirement is that at
any given moment, target rk is covered by at least one
sensor node. Sensor node si has an initial energy Ei

(i = 1, . . . , n). First, we define a notation named Tar-
get Coverage Graph.

Definition 1 (Target Coverage Graph). A target
coverage graph is a bipartite graph TCG = {S,L, R}
where there exists a link li,k ∈ L if sensor node si can
cover target rk, for any si ∈ S and rk ∈ R. Note that
for si, any target within its sensing range can be covered
by itself.

Considering that we do not take data delivery into
consideration, without loss of generality, we assume
that there are only two states for sensors: active and
sleep. The energy consumption rate for a certain sensor
si is ei when it is in active state. Otherwise, the energy
consumption is so small when it is asleep compared to
when it is active that we can simply neglect it[2]. The
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network lifetime is defined as the elapsed time since the
launch of the sensor network till the instant that there
exists some target rk ∈ R, to which no live sensor can
be assigned.

Accordingly, the problem can be formally stated as:
Problem Statement : Target Coverage (TC) Problem.

Given a target coverage graph TCG = {S,L, R}, maxi-
mize the network lifetime.

The target coverage problem, as proved in [5], be-
longs to the NP-complete.

Theorem 1[5]. The TC problem is NP-complete.
In the next subsection, we will formulate the prob-

lem in a time-dependent manner.

2.2 Time-Dependent (TD) Formulation

TC inherently involves time issues and thus should
naturally be formulated in a time-dependent manner.

xi(t) denotes the indicator that should be set to 1 if
sensor si is active at time instant t, and 0 otherwise.

The coverage constraint on each target rk ∈ R is
∑

si∈Uk

xi(t) > 1, (1)

where Uk = {si|si can cover rk}, i.e., for target rk, at
any time instant t, at least one sensor that can cover
rk should be active.

Similarly, the energy constraint on each sensor si ∈
S is ∫ T

0

xi(t) · ei 6 Ei, (2)

i.e., for sensor si, the total energy consumed due to
covering targets over the lifetime T cannot exceed the
initial energy Ei.

Therefore, the problem can be formulated as follows:

(TD) max(T ) (3)

subject to
∑

si∈Uk

xi(t) > 1 (∀rk ∈ R, 0 6 t 6 T ) (4)

∫ T

0

xi(t) · ei 6 Ei (∀si ∈ S) (5)

and
xi(t) = {0, 1}, T > 0 (∀si ∈ S). (6)

This formulation is in the form of a non-polynomial pro-
gramming problem. Note that even a non-linear pro-
gramming problem (a special case of a non-polynomial
programming problem) belongs to the NP-complete[11],
thus we conclude that the above non-polynomial pro-
gramming problem is NP-complete. We define the fol-
lowing notation:

Definition 2 (Time-Dependent Solution). A time-
dependent solution is a solution ψ = {T, x(t) =
{xi(t),∀si ∈ S}}, where T and x(t) satisfy (4), (5)
and (6).

In the next section, we will show that given a time-
dependent formulation, we can always transform it into
a pattern-based formulation.

3 Pattern-Based Problem Formulation

We will first gain two critical insights into a single
example. Then, we will prove these insights in general
cases and convert the time dependent (TD) formulation
into a pattern-based (PB) one.

3.1 Observations via an Example

For convenience, we use the example topology pre-
sented in [5] as shown in Fig.1. There are four sen-
sors S = {s1, s2, s3, s4} deployed to cover three targets
R = {r1, r2, r3}. Each sensor has an identical residual
energy 100 and energy consumption rate 1 when active.

Fig.1. Example target coverage graph[5].

First, we need to define the meaning of coverage pa-
ttern. Similar to [5], we identify a subset of sensor
nodes that meet target coverage constraint as a cover-
age pattern. Let xp

i indicate whether a sensor node si

is in coverage pattern p or not.
According to this definition, the coverage constraint

should be characterized as follows/
∑

si∈Uk

xp
i > 1 (∀rk ∈ R, p ∈ P ) (7)

i.e., for target rk, at least one sensor that can cover rk

should be in the pattern p.
We define another notation as follows.
Definition 3 (Pattern-Based Solution). A pattern-

based solution ω = {T, 〈p, t〉 = {〈p1, t1〉, . . . , 〈pu, tu〉}}
is defined as a sequence of coverage patterns, each of
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Fig.2. Example demonstrating that time-dependent solutions can be transformed into pattern-based solutions. (a) Time-dependent

solutions. (b) Coverage patterns. (c) Pattern-based solutions.

which will be assigned a time duration. In this assigned
time duration, only the corresponding coverage pattern
is active and covering all targets; all the other sensors
not in this pattern stay asleep.

Note that according to the above definition, any co-
verage pattern is capable of covering all targets. In this
way, the coverage constraints can be fulfilled by using
only one coverage pattern at a time.

As shown in Fig.2(a), assume that we have two
different time-dependent solutions TDS1 and TDS2,
which we show later can be transformed to correspond-
ing pattern-based solutions.

More specifically, let us take a look at TDS1, where
s1, s3, and s4 are active from time 0 to 4, 0 to 6, and 4
to 10, respectively. It is easy to verify that TDS1 sat-
isfies the coverage constraints. In other words, at any
time span, any target is covered by at least one active
sensor. Now, we take another look at TDS1. We no-
tice that from time 0 to 4, there are two active sensors
that cover three targets: s1 and s4, which constitute a
coverage pattern p1 = {s1, s3} according to the defini-
tion. Similarly, we have coverage pattern p2 = {s3, s4}
and p3 = {s4} active in time durations 4 to 6 and 6
to 10, respectively. These three patterns are shown in
Fig.2(b). Therefore, a time-dependent solution TDS1

can be transformed to a pattern-based solution PBS 1,
as shown in Fig.2(c). Moreover, the network lifetime,
10, remains the same. The same procedure can be ap-
plied to another time-dependent solution TDS1 (see
Fig.2(a)) and the corresponding pattern-based solution
is shown in Fig.2(c).

Now, we further study the pattern-based solutions

PBS 1 and PBS 2. At first glance, there are two to-
tally different solutions in the sense of ordering and fre-
quency of the patterns’ presence. However, we notice
that actually for p1, p2 and p3, they have been used
for exactly 4, 2 and 4 time units for PBS 1 and PBS 2,
respectively. It is quite straightforward that PBS 1 and
PBS 2 share the same network lifetime. In other words,
given a pattern-based solution, as long as the sojourn
time assigned to patterns remains the same, the net-
work lifetime remains the same regardless of the order-
ing and frequency of the patterns’ presence.

In summary, there are two important observations
to be derived, namely:

1) Given a time-dependent solution, we can consti-
tute a pattern-based solution with the same network
lifetime.

2) Given a pattern-based solution, as long as the so-
journ time assigned to the patterns remains the same,
the same network lifetimes remain the same regardless
of the ordering and frequency of the patterns’ presence.

In the next subsection, we will prove that these two
observations hold not only in the example here, but also
in general cases.

3.2 Theoretical Analysis: From
Time-Dependent to Pattern-Based

First, we theoretically prove that the first observa-
tion obtained in the previous subsection is true in a
more general case. After that, we give a brief analysis
of the second observation.

Lemma 1. Given a time-dependent solution, we
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can always constitute a pattern-based solution with the
same network lifetime.

Proof. The proof of this lemma follows the idea used
in the previous subsection when we try to transform
TDS1 into PBS 1.

Formally, we assume that we have a time-dependent
solution ψ = {T, x(t)} and do the following to trans-
form it into a pattern-based solution.

Transformation. For time instant j, 0 6 j 6 T , find
all the si that are active, e.g., xi(j) = 1; they constitute
a pattern pj .

Merge. For time instant j and j + ∆j with active
pattern pj and pj+∆j (0 6 j 6 T, ∆j → 0), if pj and
pj+∆j are identical, merge pj+∆j into pj and increase
the time duration tj for pj by ∆j.

After the above two actions, we now have a pattern-
based solution ω = {T, 〈p, t〉 = {· · · , 〈pj , tj〉, · · ·}}.

Note that at any time instant i, the time-dependent
solution ψ obeys,

∑

si∈Uk

xi(t) > 1 (∀rk ∈ R, 0 6 t 6 T ) (8)

Therefore, according to the definition, the sensors
that are active at t constitute a coverage pattern.

Regarding the energy constraints, since the above
transformation does not change the status of a sensor
at t, the pattern-based solution has the same network
lifetime as the time-dependent solution. Clearly, the
lifetimes for both ψ and ω are the same. ¤

We prove the second observation as follows.
Lemma 2. Given a pattern-based solution, as long

as the sojourn time assigned to the patterns remains the
same, the network lifetime remains the same regardless
of the ordering and frequency of patterns’ presence.

Proof. The proof is based on contradiction. As-
sume we have two different pattern-based solutions:
PBS 1 = {〈p11, t11〉, · · · , 〈p1k1 , t1k1〉} with lifetime T1

and PBS 2 = {〈p21, t21〉, · · · , 〈p2k2 , t2k2〉} with lifetime
T2 6= T1, where the patterns and corresponding sum of
assigned time duration are the same but the ordering
and frequency of the patterns’ presence are different.
In such a case, the following equation must hold:

T1 =
k1∑

i=1

t1i =
k2∑

j=1

t2j = T2. (9)

As a result, we have T1 = T2, which introduces a
contradiction and the proof is finished. ¤

Clearly, by combining the above two lemmas, we
reach the following conclusion.

Theorem 2. The time-dependent solution corre-
sponds to the pattern-based solution in the sense of hav-
ing the same optimal network lifetime.

Therefore, based on the above theorem, we define a
notation P , which contains all coverage patterns, and
the pattern-based PB formulation transformed from the
time-dependent formulation TD can be as follows:

(PB) Max
( ∑

p∈P

tp

)
(10)

subject to
∑

p∈P

ep
i · tp 6 Ei (∀si ∈ S, p ∈ P ) (11)

and
ep
i , tp > 0 (∀si ∈ S, p ∈ P ) (12)

where tp denotes the time duration assigned to a pat-
tern p, and P is the set containing all patterns. (10) is
referred to as PB optimization problem hereafter.

(11) guarantees that for every sensor node si ∈ S, its
total energy consumption would not exceed the initial
energy Ei.

Note that, in TD, the integral symbol
∫ T

0
· indicates

it is time-dependent while in PB, the summation sym-
bol

∑
p∈P · shows it is pattern-based. Till now, we show

that the fundamental formulation (i.e., TD) of target
coverage problem can be seamlessly transformed to a
pattern-based one (i.e., PB), which exactly verifies the
idea of discretization of continuous time in [5] and fills
in the first theoretical gap.

Clearly, the major difficulty in solving the PB formu-
lation is that P , containing all coverage patterns, might
be extremely large so explicit enumeration becomes in-
tractable as the size of the network grows. Moreover, its
cardinality might be exponential to the number of links
between the sensors and targets, e.g., a full connection
TCG, where each sensor can cover all targets.

To overcome this obstacle, based on the column
generation approach, we develop a novel optimization
framework with the idea of iteratively shrinking the dis-
tance between the upper and lower bounds, which could
guarantee that the network lifetime is at least (1 − ε)
of the optimal network lifetime, where ε can be made
arbitrarily small depending on the required precision.

We will cover details of this method in the next sec-
tion.

4 (1− ε) Algorithm for TC Problem

4.1 Algorithm Overview

The framework is illustrated as follows.
1) Generate an initial basic feasible set (BFS) P0,

which follows P0 ⊂ P , e.g., randomly generate some
coverage patterns that constitute P0.
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2) Solve the master formulation with BFS, whose
solution (Tlow) serves as a lower bound for the optimal
lifetime T .

3) Solve the sub-problem with optimal dual variables
B in 2) and generate a new coverage pattern p.

4) Obtain current lifetime upper bound (Tupp).
5) If Tlow

Tupp
< 1− ε, return Tlow, else, update the cur-

rent BFS by adding p into it. Go to 2).
Column generation (CG) is a general-purpose frame-

work that has often been used as a computationally ef-
ficient alternative to standard integer optimization me-
thods and as a modeling tool when a direct approach
is infeasible[13-14]. In our case, the columns correspond
to patterns, and the column generation approach helps
to reduce the complexity of constructing the whole set
of patterns by effectively selecting columns that make
improvements in the optimization.

In the next subsection, we illustrate details of this
algorithm.

4.2 Initial Basic Feasible Solutions

The CG approach works in a feasible domain and re-
quires initial feasible solutions to start with. Its effect
can be enhanced by increasing the quality of the initial
BFS. Therefore, for fast convergence, it is important
to develop methods of obtaining a good initial BFS.
Here, we use the random selection algorithm proposed
in our previous paper[15]. The complexity of the ran-
dom selection algorithm is O(n), where n is the number
of sensors. The more the patterns, the faster this CG
approach converges. Thus it is preferable to use RSA
to generate multiple initial coverage patterns.

4.3 Upper and Lower Bounds

Assume we have an initial BFS P0 derived from the
above algorithm. We can reformulate the PB optimiza-
tion problem as a Master problem:

(Master) Max
∑

p∈P0

tp (13)

subject to
∑

p∈P0

ep
i · tp 6 Ei (∀si ∈ S) (14)

and
tp > 0 (∀si ∈ S, p ∈ P ). (15)

Master is a restriction of the PB problem, whose op-
timal solution Tlow serves as a lower bound of the PB
problem. Note that Master is a classical LP problem
and can be efficiently solved with the standard simplex
algorithm.

B̃i denotes the optimal dual variables for the energy
constraint (14) in the Master problem, the reduced cost
cp for the variable tp corresponding to coverage pattern
p is then:

cp = 1−
∑

si∈S

B̃i · ep
i . (16)

Clearly, we want to select the column that results in
the maximum non-negative cost reduction c∗p and join
it into the current BFS, i.e., P0 = P0

⋃
p, where c∗p is

obtained by solving the Sub-problem:

(Sub) Max (cp) (17)

subject to (7) and (12), where we set λi as the optimal
dual variables for the energy constraint (14) in Master.

The following conclusion helps us achieve a lifetime
upper bound.

Lemma 3[16]. For the column generation approach,
if there exists Tcon and it follows,

Tcon >
∑

p∈P

tp (18)

the upper bound Tupp for this problem would hold,

Tupp = cp · Tcon + Tlow . (19)

Thus, it is reasonable to obtain another lifetime up-
per bound by relaxing the convergence constraint that
every target should be covered by at least one sensor at
any given moment to one that every target should be
covered by at least one sensor on average.

First, we define T as the network lifetime and yi as
the total time when sensor si is active. We formulate
the following linear programming formulation named
CON to achieve Tcon .

(CON) Max (T ) (20)

subject to
∑

si∈Uk

yi > ·T (∀rk ∈ R), (21)

yi · ei 6 Ei (∀si ∈ S), (22)

yi 6 T (∀si ∈ S), (23)

yi > 0, T > 0 (∀si ∈ S, rk ∈ R). (24)

(21) ensures that for every target rk ∈ R, there
would be at least one sensor covering it on average.

(22) guarantees that for every sensor node si ∈ S,
the total energy consumption does not exceed the initial
energy Ei.

(23) makes sure that for each si ∈ Uk, its time when
covers some target rk ∈ R does not exceed the network
lifetime, i.e., T .
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Theorem 3. The optimal solution Tcon to the above
CON formulation satisfies:

Tcon >
∑

p∈P

tp. (25)

Thus, given an initial basic feasible set P0, the opti-
mal lifetime T ∗ to PB lies between the above Tupp and
Tlow.

The following relationship holds:

Tlow

T ∗
6 Tlow

Tupp
. (26)

Our algorithm terminates and outputs Tlow if the
following relationship is satisfied:

Tlow

Tupp
< 1− ε (27)

where ε can be made arbitrarily small depending on the
required precision.

Otherwise, we conclude that P0 is not good enough
to characterize P , therefore, a new coverage pattern
should be added to the current BFS. In particular, we
find such a pattern by solving the Sub-problem.

The above considerations lead to the following con-
clusion.

Theorem 4. The CG algorithm guarantees the net-
work lifetime is at least (1 − ε) of the optimal network
lifetime, where ε can be made arbitrarily small depend-
ing on the required precision.

4.4 Further Optimization of the Sub-Problem

Notice that the Sub-problem is an integer program-
ming (IP) problem belonging to the NP-complete. It
is relatively easy to solve this IP formulation in a
simulation environment by using standard techniques
like the branch-and-bound algorithm[11]; however, such
resource-consuming techniques are usually unavailable
in a real-world sensor system. The algorithms deve-
loped for solving linear programming problems, like the
revised simplex method, can be better implemented in
a sensor node since they work efficiently on a resource-
limited platform.

Thus, we shall develop an O(m3n3) ρ-approximation
algorithm for the Sub-problem where ρ = 1+max |Uk|.
First, the original Sub-problem is relaxed to a Linear
Programming formulation named as LP-Sub. Then we
propose a novel LP-Sub-based rounding algorithm and
prove that it is a ρ-approximation algorithm for the
Sub-problem.

We can relax the Sub-problem as follows (we use xi

instead of xp
i hereafter for convenience):

(LP-Sub)Min
( ∑

si∈S

B̃i · ei

)
(28)

subject to

∑

si∈Uk

xi > 1 (∀si ∈ S, rk ∈ R) (29)

0 6 xi 6 1. (30)

Table 1. CG with P0 = {s4}

Iterations B̃1 B̃2 B̃3 B̃4 cp Tlow Tupp T

1 0 0 0 1 1 100 350 〈{s4}, 100〉
2 1 0 0 1 1 200 450 〈{s4}, 100〉, 〈{s1, s2, s3}, 100〉
3 0 1 0 1 1 200 450 〈{s4}, 100〉, 〈{s2, s3}, 100〉
4 0 0 1 1 1 200 450 〈{s4}, 100〉, 〈{s1, s3}, 100〉
5 0.5 0.5 0.5 1 0 250 250 〈{s4}, 100〉, 〈{s2, s3}, 50〉

〈{s1, s3}, 50〉, 〈{s1, s2}, 50〉

Table 2. CG with P ∗0 = {s1, s2}

Iterations B̃1 B̃2 B̃3 B̃4 cp Tlow Tupp T

1 1 0 0 0 1 100 350 〈{s1, s2}, 100〉
2 0 1 0 0 1 100 350 〈{s2, s3, s4}, 100〉
3 0.5 0.5 0.5 0 1 150 400 〈{s1, s2}, 50〉, 〈{s2, s3, s4}, 50〉, 〈{s1, s3, s4}, 50〉
4 1 0 0 1 1 200 450 〈{s4}, 100〉, 〈{s1, s2}, 100〉
5 0 1 0 1 1 200 450 〈{s4}, 100〉, 〈{s2, s3}, 100〉
6 0.5 0.5 0.5 1 0 250 250 〈{s4}, 100〉, 〈{s2, s3}, 50〉

〈{s1, s3}, 50〉, 〈{s1, s2}, 50〉
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Algorithm 1. LP-Sub-Based Rounding Algorithm

Input: Target Coverage Graph, priority vector

Output: coverage pattern p

Begin

p = ∅;

Solve LP-Sub formulation: x∗i ;

for ∀i do

if x∗i > 1
ρ

then

add si to pattern p;

set xi = 1;

else

set xi = 0

end

end

Return p;

End

An approximation algorithm, Algorithm 1, gives an
integer solution based on the optimal solution to the
above LP-Sub formulation. For this algorithm, we have
the theorem below.

Theorem 5. The LP-Sub-based rounding algorithm
is a ρ-approximation O(m3n3) algorithm for the Sub-
problem.

Proof. According to the way we set xi, clearly,
xi 6 ρ · x∗i . Thus,

∑

si∈S

B̃i · ei 6 ρ ·
∑

si∈S

B̃i · e∗i . (31)

Since the solution to the relaxed linear programming
problem is the lower bound of the original Sub-problem,
our algorithm is a ρ-approximation if we can prove that
x is also a feasible solution to the original IP formula-
tion.

First, we divide x into two subsets:

S1 =
{

i|x∗i 〈
1
ρ

}
(32)

S2 =
{

i|x∗i > 1
ρ

}
. (33)

Thus, ∑

i∈S1

x∗i <
1
ρ
·
∑

i∈S1

1 6 1. (34)

Furthermore, according to how we set xi, we can also
show that

n∑

i=1

xi >
∑

i∈S2

x∗i > 1−
∑

i∈S1

x∗i > 1. (35)

Since
∑n

i=1 xi is an integer, it follows that
∑n

i=1 xi >
1 which means that x is also a feasible solution to the

original IP formulation. Therefore, our LP-Sub-based
rounding algorithm is a ρ-approximation algorithm for
the Sub-problem. The time complexity of this algo-
rithm is determined by the steps needed to solve the
LP-Sub formulation, which is O(m3n3) according to
[12]. ¤

Hereafter, we call CG with the revised Sub-problem
the revised CG. In each iteration of the revised CG,
instead of using values output by LP-Sub, we verify
the optimality by using the pattern generated by the
rounding algorithm. These considerations lead us to
the following theorem.

Theorem 6. For the same instance of the TC prob-
lem, if CG outputs a lifetime T, the revised CG also
outputs the lifetime T .

Proof. The proof is based on the fact that only when
the strict termination criteria are fulfilled does the co-
lumn generation converge to the optimal solution. For
both CG and the revised CG, they terminate only when
the maximum reduced cost is non-positive; therefore
they both have the optimal T . ¤

4.5 Computational Complexity Analysis

Note that for the column-generation-based ap-
proach, since in an iteration we need to solve the
Sub-problem, which belongs to IP problem, the com-
plexity remains unknown[11]. However, for the re-
vised column-generation-based approach, in an itera-
tion, there are only two LP formulations needed to be
solved. Therefore, for the complexity of the revised
column-generation-based approach, we have following
conclusion.

Theorem 7. For the revised column-generation
based-approach, the computation complexity would be:
O

(
1
4 |P |2(|P |+ 1)2 + |P |m3n3

)
.

Proof. For one iteration, since the revised CG-based
approach needs to solve two LP formulations, the com-
putational complexity depends on variables in those two
formulations. Therefore, considering that in the worst
case we need to visit all the patterns to determine the
optimal schedule, for i-th iteration, the number of vari-
ables in the LP formulations would be

O =O(13 + 23 + . . . + |P |3 + |P |m3n3)

=O
( |P |∑

i=1

i3 + |P |m3n3
)

=O
(1

4
|P |2(|P |+ 1)2 + |P |m3n3

)
. ¤

4.6 From a Pattern-Based Solution to a
Feasible Schedule

In this part, we will discuss the relationship between



Yu Gu et al.: Theoretical Treatment of Target Coverage Problem in WSNs 125

pattern-based solutions and corresponding feasible
schedules. More specifically, we will show the procedure
of generating a feasible schedule for the sensors based
on the solution found by the CG-based approach. As
stated above, after the termination of the CG-based ap-
proach, we find such a pattern-based solution. However,
since that solution does not consider the ordering and
frequency of patterns’ presence, it does not automat-
ically constitute a feasible schedule, defined as a time
table specifying that from what time up to what time
which sensor watches which targets. Therefore, we need
to address the problem of transforming a pattern-based
solution to a feasible schedule. To achieve the objective,
we first study the interesting property of pattern-based
solutions.

As shown in Fig.3, we use the solution of the example
topology presented in Fig.2(b) as a pattern-based solu-
tion PBS 1. We also give another pattern-based solution
PBS 2. Though PBS 1 and PBS 2 look different in the
sense of ordering and frequency of patterns’ presence,
we know that for p1, p2 and p3, they have been used
in exactly 4, 2 and 4 time units for PBS 1 and PBS 2,
respectively. Thus PBS 1 and PBS 2 have the same net-
work lifetime. In other words, given a pattern-based
solution, as long as sojourn time assigned to patterns
remains the same, network lifetime remains the same
regardless of the ordering and frequency of patterns’
presence (proved in Lemma 2).

Fig.3. Pattern-based solutions.

Algorithm 2. Sensors Scheduling Algorithm

Input: Pattern-based solution, ω = {T, 〈p, t〉 = {〈p1,

t1〉, · · · , 〈pu, tu〉}}
Output: Feasible schedule

Begin

t = 0;

for i = 1; i 6 u; i + + do

Activate sensors in pattern pi in time duration

[t, t + ti) while setting the other sensors to sleep;

t = t + ti;

end

End

Therefore, we know that for a given pattern-based
solution, we can find numerous different schedules by
adjusting the ordering and frequency of patterns’ pres-
ence while the network lifetimes remain the same. So we
use a simple algorithm with time complexity O(un), as
presented in Algorithm 2, to generate a feasible sched-
ule. In the next section, we use a simple example to
illustrate our CG approach.

5 Numerical Results

5.1 Special Case Study

We built a simulator using Visual Studio 2005 and
LINGO 9.0.

To demonstrate the algorithm, we solve the exam-
ple topology proposed in [5], where S = {s1, s2, s3, s4},
R = {r1, r2, r3} and L = {l1,1, l1,2, l2,2, l2,3, l3,1, l3,3,
l4,1, l4,2, l4,3}. The target coverage graph is shown in
Fig.1. We use two different BFSs: P0 = {s4} and
P ∗0 = {s1, s2} and set ε to 0.05. The details are listed
in Table 1 and Table 2.

As expected, both P0 and P ∗0 , resulted in the same
optimal assignment and the optimal network lifetime,
where equal to 250. Moreover, it takes less than 1
second for the algorithm to solve both cases. Fig.4
shows the upper and lower bounds on lifetime calcu-
lated by our CG algorithm. For both BFSs, the upper
and lower bounds quickly converge to the stable value
of 250, which indicates that the optimal lifetime for this
special case is 250. The result echoes to the conclusion
of [5] and is further verifies our algorithm.

More specifically, let us take the instance with
P0 as an example. In the first iteration, the Master

Fig.4. Convergence of CG for the case illustrated in Fig.1 with

two different BFSs.
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formulation gives a lifetime of 100 with optimal dual
variables {B̃1, B̃2, B̃3, B̃4} = {0, 0, 0, 1}. By solving the
Sub-problem, we know that Tupp equals 200. Therefore
the algorithm selects the coverage pattern {s1, s2, s3},
which responds to the maximum reduced cost accord-
ing to Sub-problem. In the second iteration, the life-
time achieved by the Master formulation using updated
BFS is 200 and {B̃1, B̃2, B̃3, B̃4} = {1, 0, 0, 1}. Still it
is not optimal and a new coverage pattern {s2, s3} is
selected. In the third and fourth iterations, coverage
pattern {s1, s3} and {s1, s2} are selected. In the last
iteration, we have Tlow = Tupp = 250, which indicates
that the optimal assignment has been obtained: cover-
age patterns {s1, s3}, {s1, s2}, {s2, s3} are active for 50
seconds and {s4} is active for 100 seconds and the op-
timal lifetime equals 250. This assignment echoes with
the results in [5].

5.2 Performance Comparison

In this part, in order to verify the efficacy of the pro-
posed approach, we compare the running performance
of the following three different approaches.

1) Directly solving the MINLP formulation by the
LINGO software[18] (for short MINLP).

2) The Column-Generation-based approach (for
short CG).

3) The Column-Generation-based approach with the
revised Sub-problem (for short CGR).

We used eight test networks of various sizes. The
number of the nodes and targets range from 10 to 50,
and from 5 to 10, respectively. For each of the test
network, the following computations have been con-
ducted. First, we solve the MINLP formulation directly
by using the LINGO software. Considering that for
large networks, MINLP will take excessive computa-
tional time. We therefore set a time limit of 5 hours.
Then, we apply the proposed CG-based approach as
well as the revised-CG-based approach to solve these
test networks. For these two approaches, ε is set to
0.05.

Simulation results are concluded in Table 3, from

which we can obtain several observations as follows.
1) For small-scale networks, MINLP may achieve the

optimal solutions. But when the scale of problems be-
comes larger, this approach becomes unbearably slow.

2) Both CG-approaches can efficiently solve the TC
instances for small-scale networks. But they are clearly
not computationally efficient for large networks.

3) For CGR, it outperforms the CG in terms of
computational complexity and the number of iterations
needed.

For the first observation, the reason is quite straight-
forward. Actually, directly solving the MINLP formu-
lation implies a brutal search, which becomes very in-
efficient or even helpless on an NP-complete problem
due to the explosive search space. For example, though
MINLP can solve the instance with 25 sensors and 5
targets in 487 seconds, when the scale of the network
grows, it fails to solve any instance with more than
30 nodes within the pre-set time limit, i.e., 5 hours.
Clearly, due to its unacceptable computational com-
plexity, MINLP is a very bad candidate algorithm for
the TC problem, even for a network in very small scale.

For the second observation, we notice that both CG
approaches can be efficient algorithms for a small or
moderate scale network. For a same-scale network, e.g.,
n = 20 and m = 5, the optimal solution can be achieved
within 46 seconds. Because in each iteration CG ap-
proaches greedily choose the pattern with the largest
payoff. However, when n increases from 20 to 50, both
CG approaches need nearly 1 hour to solve the instance.
This is because the TC problem is inherently difficulty
due to its NP-complete property. The phenomenon
indicates that heuristic approaches like LP-MSC and
Greedy-MSC in [6] are of some value. Because in a
real-world system, heuristic approaches can efficiently
adapt themselves to large networks.

For the third observation, as shown in Fig.5, we no-
tice that CGR needs less iterations to reach the termi-
nation criterion compared to the CG approach for the
same instance. For example, when we set n = 40 and
m = 10, CGR converges after 86 iterations while CG
needs 109 iterations. Moreover, for the same instance,

Table 3. Performance Comparison

n m MINLP (LINGO) CG Revised-CG

Lifetime Time Lifetime Iterations Time Lifetime Iterations Time

10 5 26.78 15 s 33.33 3 3 s 33.33 3 2 s

20 5 38.73 219 s 50.00 11 46 s 50.00 14 31 s

25 5 87.12 487 s 100.00 35 4 m25 s 100.00 31 98 s

30 5 – 5 h 143.67 47 15 m43 s 143.67 54 10m17 s

40 5 – 5 h 200.00 97 33m18 s 200.00 89 21m56 s

40 10 – 5 h 150.00 109 42m11 s 150.00 86 28m 32 s

50 5 – 5 h 250.00 176 56m24 s 250.00 152 37m 19 s

50 10 – 5 h 250.00 183 1 h 15 m23 s 250.00 162 45m45 s
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it takes longer time to solve an IP formulation (CG)
than an LP formulation (CGR)[12]. Actually, an LP
formulation can be always solved in polynomial time
using certain approaches, e.g., the algorithm proposed
in [13]. Considering that the CG approach iteratively
solves master and slave problems, CGR always deals
with two LP formulations while the original CG ap-
proach always needs to solve an IP formulation, i.e., the
Sub-problem. Therefore, as shown in Fig.6, the revised
CG approach outperforms the original CG approach.

Fig.5. Iteration comparison between CG and CGR.

Fig.6. Computational time comparison between CG and CGR.

6 Related Work

Previous literatures about this topic mostly focus
on a full target coverage problem, where each target is
covered by at least one sensor at any time[3-10].

In [4], assuming a fixed sensing range for all the sen-
sors and an identical coverage requirement for all the
targets, a heuristic method is proposed to extend the
network lifetime by organizing sensors into a maximal
number of disjoint set covers that are activated succes-
sively. The authors further relaxed the stringent con-
straint of disjoint set by allowing sensors to participate
in multiple sets, and designed two heuristics (one based

on linear programming and one greedy) to compute the
Maximum Set Cover (MSC) problem[5]. It is still an
open problem to decide cardinality of set covers, which
is simply set to a fixed value in [5]. The authors also in-
vestigated the case where the sensing range for sensors
is adjustable and a similar iterative method is devel-
oped in [6]. Note that in above literatures only heuristic
methods have been proposed and no theoretical result,
e.g., an lifetime upperbound, has been introduced.

A similar coverage scenario is proposed in [7]. The
objective is to maximize the network lifetime for k to
1 sensor-target surveillance networks. This work has
been further extended in [8] to accommodate the same
k to 1 sensor-target problem with an extra routing re-
quirement. They made an assumption: a sensor can
watch only one target at a time. Note that this assump-
tion significantly reduces the complexity in solving such
a kind of target coverage problems. This assumption
however may not be suitable for some applications like
the multiple targets tracking system[17] or SensorWeb
project[18], where heavy load should be distributed to
limited number of sensor nodes and a sensor node needs
to be in charge of different targets simultaneously.

There are also several articles addressing the cover-
age breach (coverage breach occurs when a subset of
sensors fails to cover all targets) problem, which is de-
fined as how to minimum coverage breach while making
efficient use of both energy and bandwidth. The prob-
lem is somehow similar to PTC problem since both of
them consider the case when some targets lose cove-
rage. But in PTC problem, every target has a coverage
requirement, which is absent in the coverage breach
problem. Also note that this coverage breach prob-
lem belongs to NP-complete and only a set of heuristic
algorithms have been proposed[19-21].

Clearly, previous literatures either focus on heuristic
algorithms, which remain difficult to characterize and
have no performance guarantee[4-6,9-10], or employ a
strict constraint to reduce complexity[7-8], which cannot
be extended to accommodate the general case. There-
fore no theoretical result has been reported yet.

In our recent work[15], we proposed a column-
generation-based approach to optimally solve the target
coverage problem. However, this approach suffers from
shortcomings like high computational complexity.

7 Conclusion

In this paper, we addressed the problem of achieving
an optimal network lifetime in surveillance sensor net-
works, which is an NP-complete problem. First, we
formulated the optimization problem in a non-linear
programming form. Directly solving this optimization
problem would be extremely complicated because of
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its combinatorial complexity. Thus, we developed a
novel column-generation-based approach that decom-
poses the original formulation into sub-formulations
and solves them iteratively. The proposed algorithm
can guarantee the network lifetime is at least (1 − ε)
of the optimal network lifetime, where ε can be made
arbitrarily small depending on the required precision.

The proposed CG-based approach can achieve nearly
optimal or even optimal solutions and can serve as
benchmark for other algorithms on this problem when
the scale of networks is small. However, as shown in the
simulations, the computational time grows much fast as
the scale of problems increases. Thus polynomial-time
heuristic or greedy algorithms are much more desired,
especially those with performance guarantees.
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