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Abstract Modern computer graphics applications usually require high resolution object models for realistic rendering.
However, it is expensive and difficult to deform such models in real time. In order to reduce the computational cost during
deformations, a dense model is often manipulated through a simplified structure, called cage, which envelops the model.

However, cages are usually built interactively by users, which is tedious and time-consuming. In this paper, we introduce a
novel method that can build cages automatically for both 2D polygons and 3D triangular meshes. The method consists of
two steps: 1) simplifying the input model with quadric error metrics and quadratic programming to build a coarse cage; 2)
removing the self-intersections of the coarse cage with Delaunay partitions. With this new method, a user can build a cage
to envelop an input model either entirely or partially with the approximate vertex number the user specifies. Experimental
results show that, compared to other cage building methods with the same number of vertex, cages built by our method are
more similar to the input models. Thus, the dense models can be manipulated with higher accuracy through our cages.

Keywords cage, quadric error metrics, mesh simplification, self-intersection, deformation

1 Introduction

In order to maintain a convincing level of realism,
modern computer graphics models are often created or
acquired at a very high resolution. The huge num-
ber of vertices makes direct manipulation of the mo-
dels tedious and computationally expensive. A common
way to reduce computational cost is to build a similar
but simple structure with much fewer vertices first[1-5],
and then manipulate the dense model through the sim-
pler structure. Much deformation work[6-11] performed
deformations with such simpler structures (2D poly-
gons for 2D models; 3D triangular meshes for 3D mo-
dels). These simple structures, which envelop the ori-
ginal dense models, are called cages.

The main advantages of using cages in deforma-
tions are controlling simplicity and fast computational
speed. For example, deforming a triangular dense
mesh with a cage requires much less computational
cost than deforming a dense mesh directly, because
transforming its vertices requires merely a linear com-
bination of the cage geometry using precalculated

coordinates[12]. Due to these advantages, many de-
formation methods[10-11,13-14] choose to use cages even
complicated ones. Deformation transfer work[15-16] also
was done by using cages.

Cages are useful, but building cages interactively is
very tedious and time-consuming, especially when the
topological structure of the model is complex, such as
the Dilo illustrated in Fig.1. Despite the growing needs
and interests in cages, there is not much work on au-
tomatic cage building in literature. To the best of our
knowledge, there are only two known methods in pub-
lished literature — Xian’s[17] and Ben-Chen’s[15].

According to [6, 8-9], a cage should have the follow-
ing two properties:

1) enveloping the original model;
2) no self-intersections.
A cage is considered better if it has fewer vertices

and it is more similar to the original model.
In this paper, we introduce a method to build cages

that satisfy the properties for both 2D polygons (2D
simply connected models’ outlines) and 3D triangular
meshes.
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Fig.1. Dilo’s cages built by Xian’s, Ben-Chen’s and our methods, respectively. The bottom row is using the cages to erect the Dilo’s

horn. (a) Xian’s (173). (b) Ben-Chen’s (288). (c) Ours (183). (Numbers in the parentheses are cages’ vertex amounts.)

Our method consists of a simplification step and a cage
self-intersection removal (CSIR) step. The simplifica-
tion step iteratively simplifies the input model with
quadric error metrics[2] (QEM) and quadratic program-
ming, which eventually builds a coarse cage that en-
velops the input model. Moreover, two scalar functions
on the vertex curvatures and the face normals are de-
signed to adjust the simplification in order to maintain
the similarity between the input model and the coarse
cage. The CSIR step is performed only when the coarse
cage has self-intersections. Self-intersections can be de-
tected by methods like [18]. The CSIR step handles the
intersections based on Delaunay partitions. The main
contributions of this paper include:

1) An iterative method is proposed to automatically
simplify an input model, where users can specify the
exact number of vertices of the output coarse cage.

2) Two scalar functions about vertex curvatures and
face normals are designed to maintain the shape simi-
larity.

3) Based on Delaunay partitions a novel method has
been developed to remove self-intersections in a coarse
cage.

The rest of this paper is organized as follows. Sec-
tion 2 introduces some previous work relative to our
method. Our method is described in Section 3. Sec-
tion 4 presents the experimental results. Comparisons
with two typical cage building methods are also shown
in this section. The conclusions are given in Section 5.

2 Previous Work

Cages are widely used in space deformations, such
as [6, 8-9, 11]. In these techniques, points inside a
cage are represented by their coordinates, such that
manipulating the cage results in a smooth deformation
of the enveloped model. Many deformations[10-11,13-14]

used cages to help control a model. But they did
not control the cages directly, instead they used a few
control points to manipulate the cages. Deformation

transfer work[15-16] is also based on cages, which de-
mand high similarity between the cage and the original
model.

Cages can be considered as a simplified version of
the original model. Mesh simplification techniques have
been studied for many decades, but to the best of our
knowledge, there are only two automatic cage building
methods[15,17] in published literature.

Ben-Chen et al.[15] used the approach of simplifica-
tion envelopes [19], which guarantees that all vertices of
the output mesh are within a user-specified distance
of ε from the input mesh. Because the simplification
envelopes do not consider whether the input mesh is
enveloped or not, Ben-Chen et al.[15] built cages with
an “offset” operation to enlarge the simplified mesh so
that the original mesh fits inside. The cage built by [15]
should be contained in a shell region with thickness 2ε,
so the vertex amount of the cage can hardly be reduced.
In addition, the Poisson reconstruction[20] used by [15]
could not guarantee that the reconstructed mesh en-
velop the input mesh. Using this method, users have to
build a cage recursively: reconstructing and simplifying
for many times, especially for a complex model.

Xian et al.[17] applied vertex clustering [5,17], which is
another commonly used simplification method. Vertex
clustering divides the input mesh’s bounding box into
many grids, and then constructs a simplified mesh from
the grid vertices selected according to the intersections
of grids and the mesh. Xian et al.[17] improved the ver-
tex clustering method to guarantee that the simplified
mesh is a cage. But Xian et al. treated all vertices
uniformly without considering the geometric features.
Therefore, a small grid size causes the vertex amount of
the cage to increase dramatically, while a big grid size
causes some parts of the cage to fuse together.

Iterative simplification methods[1-4,21] are also
widely used, which simplify the input mesh by a
series of primitive simplification operations. Each
primitive operation is determined by the least devi-
ation error. Garland et al.[2] presented an iterative
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simplification method, called quadric error metric
(QEM) simplification. One advantage of the iterative
simplification methods is that they are able to control
the vertex amount of the simplified mesh exactly. But
a common disadvantage of these iterative simplifica-
tion methods is that the simplified mesh is not guaran-
teed to envelop the input mesh. The mesh simplification
method proposed in this paper, though also based on
QEM, successfully overcomes this problem of envelop-
ing.

3 Cage Building

Let a model be an oriented simplicial surface (i.e.,
2D polygons, 3D triangular meshes), that is P = (V, F ),
where V = {vi}i∈IV ⊂ R

d (d = 2, 3) are the vertices and
F = {fi}i∈IF are the simplicial face elements, namely
edges in case of polygons in 2D, triangles in case of tri-
angular meshes in 3D. IV and IF are the index sets of V
and F . The outward normal to the oriented simplicial
face f is denoted as n(f) = [nx, ny, nz], ‖n(f)‖ = 1.

Fig.2. EU and VU. (a) One holder (green) and its neighbors

(red) constitute an EU. (b) VU (vn), generated with QEM, not

enveloping the EU. (c) One VU (ve) enveloping the EU for build-

ing cages.

Each vertex vi and its first ring neighbors form a
vertex-umbrella (VU) around vi, denoted by VU (vi).
Each edge (vi, vj) and its first ring neighbors form
an edge-umbrella (EU) around the edge, denoted by
EU (vi, vj). The edge (vi, vj) is named as the holder of
EU (vi, vj). See Fig.2 for a 2D case.

The flowchart of our cage building method is

illustrated in Fig.3. The simplification step inputs the
original dense model, and outputs a coarse cage, which
is the input to the CSIR step. The CSIR step removes
the self-intersections of the coarse cage, and outputs the
result cage. We will present the two steps in detail in
the following two subsections.

3.1 Simplification

The simplification step is an iterative edge contrac-
tion method using QEM[2] to evaluate the deviation
error of every contraction. Every contraction of an
edge (vi, vj) is considered as replacing EU (vi, vj) by
VU (vn), where the borders of EU (vi, vj) and VU (vn)
are the same, and the replacing vertex vn is obtained
by a quadratic programming based on EU (vi, vj), de-
scribed in Subsection 3.1.1. To evaluate the devia-
tion error, a symmetric matrix Qi like QEM[2] is as-
sociated with each vertex vi, and the deviation error
at vertex v, denoted by v = [vx, vy, vz] (its homoge-
neous type is v̄ = [vx, vy, vz, 1]), is the quadratic form
Ei(v) = v̄Qiv̄

T. For an edge (vi, vj), a new matrix
Qn = Qi + Qj is used to calculate the error at vertex
v like

Eij(v) = v̄Qnv̄T. (1)

Though [2] does not mention the information, QEM
could be easily extended to the 2D polygon case. With
v = [vx, vy], n(f) = [nx, ny], the symmetric matrix Qi

can also be defined to evaluate the error for 2D polygon
cases.

Note that the QEM simplification[2] uses the matrix
Qn not only to evaluate the deviation error, but also
to calculate the new replacing vertex vn (refer to [2] for
details). The result of the QEM simplification is similar
to the input model, but does not guarantee to envelop
the input model (see Fig.2(b)).

3.1.1 Obtaining the Replacing Vertex

To build an enveloping cage, a new method of ob-
taining the replacing vertex should be designed, while it
should guarantee each VU will cover the corresponding
EU during replacing (see Fig.2(c)).

In order to achieve the enveloping, we firstly define
a signed distance between a vertex v and a face f as:

D(v, f) = n(f)vT − n(f)vT
i , vi ∈ f.

Fig.3. Flowchart of our cage building method.
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With this definition, it is easy to check that

v is

⎧⎪⎨
⎪⎩

outside f, if D(v, f) > 0;

on f, if D(v, f) = 0;

inside f, if D(v, f) < 0.

(2)

Then the new vertex replacing the edge (vi, vj) can
be a solution, say ve, of the following quadratic pro-
gramming:

min
v

∑
f∈EU (vi,vj)

D(v, f),

s.t.
∀f ∈ EU (vi, vj), D(v, f) � 0. (3)

With (2) and (3), a vertex ve, whose VU (ve) covers
EU (vi, vj), can be obtained. In order to maintain the fi-
delity of the input model, D(v, f) = 0 is allowed during
simplifying, but a push-out post-treatment is applied
afterwards.

Sometimes, ve does not exist for some singular EUs.
For example, in 2D case, the normals of the two neigh-
bor edges of an edge are opposite vectors. For all sin-
gular cases, we choose ve such that it is far away from
the model (e.g., 1000 times of the radius of the model’s
bounding box).

Let {ve} be the set of the solutions of the quadratic
programming (3) (running over all the edges). Then, a
series of EU replacing can be done in an order of the er-
rors {Eij(ve)}, similar to QEM. Because the new VU al-
ways covers the EU in each replacing step, a coarse cage
is built after these simplifying iterations. Note that the
coarse cage might have self-intersections, or have inter-
sections with or stick to the input model. These vio-
lations need post-treatments and are discussed in Sub-
section 3.1.4 and Subsection 3.2, respectively.

By using {Eij(ve)} to arrange the simplification, our
method works well for many types of models. But it is
not good enough, for example, in Fig.4(a) the cage does
not reflect the model’s shape, and in Fig.5(b) the cage
contains two almost-opposite faces. This is because the
QEM error evaluation scheme less cares the curvatures
and the normals. The improvement will be described
in Subsections 3.1.2 and 3.1.3.

3.1.2 Adjusting Errors by Vertex Curvatures

By using {Eij(ve)}, the cage may not reflect the
shape of the input model, e.g., Fig.4(a). In [22], the
shape of the model was well maintained by keeping the
mean curvatures during deformations. This idea is ap-
plied here to designing a scalar function for vertex cur-
vatures, called Sc, given by

Sc(ve, vi, vj) = ‖C(vi)‖∗‖ve−vi‖+‖C(vj)‖∗‖ve−vj‖,
(4)

where ve is the replacing vertex of the edge (vi, vj),
and C(v) is the Laplacian coordinates[22] of the vertex
v. Then, the simplifying order can be arranged by us-
ing Sc(ve, vi, vj)Eij(ve) as the deviation error. With
Sc, the farther the ve is from vi, the bigger the ‖C(vi)‖
is, then the bigger the error is. Thus, the edge (vi, vj) is
contracted later. This new alterative simplifying order
can maintain the fidelity better, see Fig.4(b).

Fig.4. Cages built with the same vertex amount without/with

Sc. The same part of each cage is shown embedding the input

model. (a) Without Sc. (b) With Sc, maintaining the fidelity

better.

3.1.3 Adjusting Errors by Face Normals

By using {Eij(ve)}, for 3D triangular meshes, the
result VU could contain some face pairs with al-
most opposite normals. An example is shown in
Figs. 5(b)∼5(c), where the arrows point out the

Fig.5. Sn effect observing through one contraction during build-

ing a cage. (a) Without/with Sn (1098). (b) Without Sn (1097).

(c) Without Sn (1097), rendered by wireframes. (d) With Sn

(500). (Numbers in parentheses are the cage’s vertex amounts.)

Without Sn, the blue edge in (a) is contracted to obtain (b),

while the step is avoided with Sn.
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almost-opposite face pairs. The dihedrals of such
almost-opposite face pairs are near 0 or 2π. Such face
pairs will result in a bad cage, since the two folder areas
of such a pair impact the model with the almost same
strength, but in the opposite direction. Therefore, an-
other scalar function Sn is designed to avoid such face
pairs

Sn(ve) =
∑

f∈VU (ve)

1
(‖n(f) + n(next(f))‖2)

, (5)

where next(f) is the face next to f in VU (ve) in
counter-clockwise order around ve. Then, the simpli-
fying order can be arranged by using Sn(ve)Eij(ve) as
the deviation error. When f and next(f) are almost-
opposite, Sn(ve) will be large enough to enlarge the
deviation error, so this ve will be selected later. As
illustrated in Fig.5, with Sn, it avoids the step from
Fig.5(a) to Fig.5(b), and does not generate such face
pairs even after contracting more edges in Fig.5(d). For
2D polygons, Sn can be defined similarly. Fig.6 shows
an example of the effect of Sc and Sn on a 2D monkey.�

3.1.4 Simplification Procedure

The pseudocode of the simplification step is given in

Fig.6. Sc and Sn. Cages built with the same vertex amount for a

2D monkey. (a) Without Sc and Sn. (b) Only Sc. (c) Only Sn.

(d) With Sc and Sn. (The cage built with Sc and Sn presents

the trunk better. Red circles mark the unsatisfactory parts of

the other cages.)

Algorithm 1.

Algorithm 1. Procedure of the Simplification

Input: a dense model M

Output: a coarse cage C enveloping M

Generate C by duplicating M ;

foreach vertex vi do

Compute Qi like QEM;

end

Build an empty heap H ;

foreach edge e do

FindVe(e,H);

end

while H can pop do

Pop the least E edge e;

Simplify e by replacing EU with VU in C (like

QEM);

foreach new edge e do

FindVe(e, H);

end

foreach edge e adjoining to the new VU do

FindVe(e,H);

end

if C meets user’s constraints then

Break;

end

end

Procedure FindVe(e, H)

Look for ve for replaced e (see (3));

Compute Sc (see (4)) and Sn (see (5));

Compute the replacing error E;

Insert e into H sorted by E.

During the simplification, it keeps checking whether
the current coarse cage meets user’s constraints (the
vertex amount, or the tolerable error, etc.). Note that,
the user’s requirements may not always be satisfied.
For example, the error of the edge on the heap top is
extremely large, caused by a vertex far away from the
model (as mentioned in Subsection 3.1.1). That means
no edge can be contracted normally anymore. The sim-
plification should be stopped.

A face of a cage is called stuck if it contains any
point of the input model. Such faces can be found by
checking if D(v, f) = 0 during the simplification. The
problem of stuck faces in cages should be solved, be-
cause some applications[9] would be singular on them.
When a stuck happens, a push-out post-treatment is
applied, i.e., the stuck face is pushed outward with a

�The monkey model is taken from [11].
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small distance along its normal. We use 1/1000 of the
radius length of the model’s bounding box. Such a small
distance will not change the shape of the coarse cage
too much.

3.2 Cage Self-Intersection Removal

The coarse cage built by the simplification step may
have self-intersections, and even intersect with the in-
put model. This violates the second property of a qua-
lified cage. In this subsection, we illustrate how to re-
move the intersections in 2D case. Fig.7 demonstrates
the removal procedure. It is straight forward to extend
the idea to 3D case.

Fig.7. Cage self-intersection removal. (a) Intersection. (b) Ω ,

pu, pd. (c) Triangulation for ∂Ω . (d) {�lipri}. (e) Construction

of broken lines. (f) Update of the cage.

The intersections can be detected by many meth-
ods, such as marching squares and the method pre-
sented in [18]. Let two areas of the coarse cage, Cl

on the left and Cr on the right, be intersected, so
Cl ∩ Cr 	= ∅. Cl and Cr cover two areas of the model,
denoted by Ml and Mr, respectively (e.g., Fig.7(a)).

These areas’ borders are denoted with ∂∗, which are
polygons in 2D case. Let Cl and Cr be small enough
to make Cl ∩ Cr be a simply connected polygon, then
∂Cl ∩ ∂Cr has only two points, denoted by pu and
pd. The un-intersecting cage’s faces, separating Ml

and Mr, should be in the simply connected polygon
Ω = ((Cl ∩Cr)−Ml−Mr) (e.g., Fig.7(b)). ∂Ω is made
by some vertices of ∂Cl, ∂Cr, ∂Ml, ∂Mr, and their in-
tersecting points. In order to find the un-intersecting
cage’s faces and then remove the self-intersections of
the coarse cage, we give the following theorem and its
proof first.

Theorem 1. Given Cl, Cr, Ml, Mr, Ω, pu and pd,
then there is one broken line R from pu to pd, and R
satisfies R ⊂ Ω, R ∩ Ml = ∅ and R ∩ Mr = ∅.

Proof. According to the simplification step, pu, pd /∈
Ml ∪ Mr, and pu, pd ∈ Cl ∩ Cr, so pu and pd are two
vertices of ∂Ω . (See Fig.7(b).) Trace ∂Ω , in counter-
clockwise order from pu to pd, collects the meeting ver-
tices into a set Vl (red vertices in Fig.7(b)), and then
from pd to pu constructs the other set Vr (green vertices
in Fig.7(b)). We perform a Delaunay triangulation on
the vertices of ∂Ω to obtain a triangle set DT, whose
edges form an edge set DE.

If Vl = ∅ or Vr = ∅, then the edge (pu, pd) ⊂ ∂Ω ,
(pu, pd) ∩ Ml = ∅ and (pu, pd) ∩ Mr = ∅, so R can be
the edge (pu, pd).

If Vl 	= ∅ and Vr 	= ∅, and the edge (pu, pd) ∈ DE ,
then R can be the edge (pu, pd). It should be satisfied
that R∩Ml = ∅ and R∩Mr = ∅, or the edge (pu, pd)
is segmented by some intersecting points.

If Vl 	= ∅ and Vr 	= ∅, but the edge (pu, pd) /∈ DE ,
then ∃ps ∈ Vl, (pu, ps) ∈ DE , and ∃pe ∈ Vr, (pu, pe) ∈
DE . Let Eu = {(pu, p)|(pu, p) ∈ DE}, after sorting Eu

around pu from ps to pe in counter-clockwise order, we
can find the last edge (pu, l1), where l1 ∈ Vl, and the
first edge (pu, r1), where r1 ∈ Vr. Because Ω is simply
connected, �l1pur1 ∈ DT . Given a constant t ∈ (0, 1),
one point u1 = l1(1 − t) + r1t can be obtained on the
edge (l1, r1). Treat the segment (pu, u1) as the first part
of R. For convenience, let po = pu.

Then we can find �lipri ∈ DT (i = 1, 2, . . .), where
p 	= po. According to vertex p,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p ∈ Vl : po = li, li+1 = p, ri+1 = ri,

ui+1 = li+1(1 − t) + ri+1t;

p ∈ Vr : po = ri, li+1 = li, ri+1 = p,

ui+1 = li+1(1 − t) + ri+1t;

p = pd : ui+1 = pd.

The segment (ui, ui+1) is set as the next part of R.
If p 	= pd, then continue to search the next triangle and
the next segment (i = i + 1), else stop and obtain an
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R from pu to pd. This must happen, because pd is one
separator of Vl and Vr on ∂Ω .

As li ∈ Vl and ri ∈ Vr , triangles {�lipri} (green
triangles in Fig.7(d)) are in Ω . And the segments of R
are abstracted in these triangles, so R ∩ Ml = ∅ and
R ∩ Mr = ∅. �

With different t, different R can be obtained like the
two broken lines (red and yellow) in Fig.7(e), which use
1/3 and 2/3, respectively. They are only sticking at pu

and pd. Specially, if R is just the edge (pu, pd), the
same R is used.

Then, a new cage can be constructed with the two
Rs through splitting pu and pd, see Fig.7(f). In Fig.8,
a 2D model’s cage is built and the self-intersection is
removed.

For 3D triangular meshes, one example of the CSIR
step on 3D mesh is shown in Fig.1(c). In the simpli-
fication step, the approximate vertex amount is set as
173, equal to that of the cage built by Xian’s method in
Fig.1(a). After the simplification, the head of Dilo in-
tersects with its back. After applying the CSIR step, a
new no-intersection cage with 183 vertices is obtained.
The result cage is used to deform the Dilo model, see
Fig.1(c).

4 Results and Discussions

Through the simplification step and the CSIR step

Fig.8. Removing self-intersections of a coarse cage of a 2D model

(green). (a) The coarse cage (blue). (c) The cage after CSIR

step. (b)/(d) The intersecting areas before/after the CSIR step.

(e) Deforming the model with the green cage.

described in Section 3, we present a method of build-
ing 2D and 3D cages. Some examples are shown
in Fig.1, Fig.6, and Figs. 8∼12, where we use Green
Coordinates[9] for all deformations. As illustrated in
Fig.9, a 2D monkey can be deformed with the cage
built by our method.

The comparisons among Xian’s[17], Ben-Chen’s[15]

and our method are shown in Fig.1 and Fig.10. The
models used in the two figures have various character-
istics. The Dilo is an articulation model, the duck is

Fig.9. Using the cage built with Sc and Sn to do deformations.

(a) Original monkey and cage. (b) Deformed monkey and cage.

Fig.10. Comparisons of Xian’s, Ben-Chen’s and our results. (a)

Xian’s. (b) Ben-Chen’s. (c) Ours. (The number in parentheses

is the vertex amount for the corresponding cage.)

Fig.11. Building the duck cages with 306, 100, 60 vertices, re-

spectively.
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Fig.12. Building a partial cage. (a) Select one tentacle of an

octopus. (b) The partial cage built by our method.

smooth, and the elk has a hole. As illustrated in Fig.1,
it is nearly impossible to erect the Dilo’s horn with the
cage built by Xian’s method. With the cage built by
Ben-Chen’s method, it deforms the Dilo’s back dramat-
ically at the same time. However, with the cage built by
our method, it becomes easy. As illustrated in Fig.10,
our method can use fewer vertices to build the cages.

The more similar the cages are to the original mod-
els, the more easily the users can manipulate the mod-
els. To compare the similarity of the cages built by the
three methods, the well-known public domain Metro
Tool[23-24] is employed, see Table 1. The symmet-
ric Hausdorff distance and RMS error are widely used
among graphics community.

Table 1. Using Metro Tool[24] to Compare the Cages Built by

Xian’s, Ben-Chen’s (shortened by BC) and Ours Respectively

Model Method Metro Metro Metro

(vmnt) (cage vmnt) Max/Mean Distance RMS Hausdorff

Dilo BC (288) 0.041280/0.020043 0.020822 0.052654

(5524) Xian (173) 0.126841/0.062284 0.066985 0.145208

Ours (288) 0.019067/0.004937 0.005633 0.019067

Ours (183) 0.034892/0.009145 0.010084 0.034892

Duck BC (241) 3.524210/1.566573 1.647625 5.038621

(1000) Xian (306) 13.592529/6.596735 6.805474 16.905624

Ours (306) 1.843838/0.352616 0.415289 1.843838

Ours (241) 2.018532/0.481728 0.556542 2.018532

Elk BC (894) 5.229759/2.182084 2.253242 10.983293

(1250) Xian (331) 27.702206/13.317059 13.992528 36.251770

Ours (331) 5.984372/1.025486 1.268907 5.984372

Ours (200) 9.717106/1.944199 2.352656 9.717106

Note: vmnt — vertex amount.

The comparison results show that, with the same
vertex amount, the Hausdorff distances by our method

are always smaller than those by the other two, and
both the max and the mean distances are smaller too.

The cage’s vertex amount is a trade-off between the
manipulation’s simplicity and delicateness: with fewer
vertexes, the cages make the operation simple, but
could not manipulate details; with more vertices, the
cages make the operation complicated, but could adjust
details. With our method, users can control the cage’s
vertex amount just by specifying a number, based on
their applications, see Fig.11.

Because our method is local, i.e., each replacing is
based on the area of EU, it can be flexibly used to build
partial and/or entire cages (see Fig.12).

As illustrated in the previous figures, our method
can build cages for both 2D polygons and 3D triangular
meshes. The performance is illustrated in Table 2. The
data are obtained by executing our program with sin-
gle thread on the platform of Windows XP SP3, Intel
Core 2 Duo CPU E7400@2.80GHz, 3.46GB memory,
Intel G41 Express Chipset. We would like to mention
that our program is based on the Graphite platform�,
and the CGAL library� is applied to the quadratic
programming.

Table 2. Elapsing Time of the Simplification

Model Cage Build Simpli- Per

(vmnt/emnt) (vmnt) Heap (s) fying (s) Edge (ms)

Dilo 288 28.419 105.854 20.216

(5524/16566) 256 28.524 107.181 20.346

Duck 306 5.088 14.357 20.687

(1000/2994) 241 5.085 15.583 20.531

Elk 331 6.622 18.904 20.570

(1250/3750) 200 6.598 21.174 20.166

Note: vmnt — vertex amount, emnt — edge amount.

Because every replacing involves multiple quadratic
programmings, the simplification step is time consum-
ing. The time elapsed in the CSIR step is much shorter
than that in the simplification step. To resolve an inter-
secting area, with 32 vertices and 32 faces, costs about
0.03 seconds. And the CSIR step often needs not be
applied. Since cage building is only one-time work, it is
still acceptable even though our automatic method is a
little time consuming.

5 Conclusions

We have presented a method of building cages for
both 2D polygons and 3D triangular meshes. Our
method consists of two steps: simplification step and
CSIR step. The simplification step iteratively replaces

�http://alice.loria.fr/index.php/software/3-platform/22-graphite.html
�http://www.cgal.org/
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EU by VU with QEM, while it solves quadratic pro-
grammings to obtain the replacing vertex. The simpli-
fication step eventually builds a coarse cage that en-
velops the input model. Self-intersections of the coarse
cage are removed in the CSIR step through Delaunay
triangulation/tessellation. With our method, users can
build a cage easily to envelop a dense model either en-
tirely or partially only by specifying an approximate
vertex number according to the application needs. Our
experimental results demonstrate the effectiveness of
our method on a variety of models.

Up to now our result cages cannot reflect all joints of
the input models exactly, so do the other two previous
methods. This is considered as a limitation of the cur-
rent auto cage-building methods. With such cases, it
is a challenge to create realistic deformations. Another
limitation is that the edges of a cage are not always
related to the expected deformations that a user wants.
In the future work, we would like to apply the joints of
the input model or curves sketched by users, to over-
come these limitations.
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