
Kanwal J, Maqbool O. Bug prioritization to facilitate bug report triage. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 27(2): 397–412 Mar. 2012. DOI 10.1007/s11390-012-1230-3

Bug Prioritization to Facilitate Bug Report Triage

Jaweria Kanwal and Onaiza Maqbool

Department of Computer Science, Quaid-i-Azam University, Islamabad, Pakistan

E-mail: kjaweria09@yahoo.com; onaiza@qau.edu.pk

Received April 27, 2011; revised January 12, 2012.

Abstract The large number of new bug reports received in bug repositories of software systems makes their management
a challenging task. Handling these reports manually is time consuming, and often results in delaying the resolution of
important bugs. To address this issue, a recommender may be developed which automatically prioritizes the new bug
reports. In this paper, we propose and evaluate a classification based approach to build such a recommender. We use the
Näıve Bayes and Support Vector Machine (SVM) classifiers, and present a comparison to evaluate which classifier performs
better in terms of accuracy. Since a bug report contains both categorical and text features, another evaluation we perform
is to determine the combination of features that better determines the priority of a bug. To evaluate the bug priority
recommender, we use precision and recall measures and also propose two new measures, Nearest False Negatives (NFN) and
Nearest False Positives (NFP), which provide insight into the results produced by precision and recall. Our findings are
that the results of SVM are better than the Näıve Bayes algorithm for text features, whereas for categorical features, Näıve
Bayes performance is better than SVM. The highest accuracy is achieved with SVM when categorical and text features are
combined for training.

Keywords bug triaging, bug priority, classification, mining bug repositories, evaluation measures

1 Introduction

During software development and maintenance, er-
rors (bugs) in a software system are introduced due
to many reasons, which include misunderstanding the
requirements, poor design or implementation strategy,
lack of error handling methodology in coding, and con-
tinuous changes to the code after development. In soft-
ware projects, usually a database is maintained to col-
lect and manage the large number of bug reports from
users and developers. This database is known as a bug
repository or a bug tracking system. Bug repositories
are used for open as well as for closed software systems,
but they are mostly used for open source systems where
the developers, users and other team members are dis-
tributed all over the world.

In a bug repository, bugs are reported from diffe-
rent sources, e.g., from users, developers or any other
member of the technical support team[1]. These bugs
need to be analyzed carefully to determine, for exam-
ple, whether the bugs are duplicate (reported earlier)
or unique, valid or invalid (caused by the operating sys-
tem, not by the product), important or unimportant,
and who will resolve them. This process is called bug
triaging. The person who analyzes the bug reports is
called a triager. A triager’s task is to manage the bug

repository so that it contains only real bugs and impor-
tant bugs are addressed quickly[2].

Managing the new bug reports received in a day
in large software projects is a challenging task for the
triager because usually there are a large number of such
reports, and it is difficult to triage them within the
available time and resources[3]. In software projects, the
number of bug reports received is on an average 20∼30
per day[2]. If each report takes 5 minutes for triaging,
then more than 2 person hours are spent on manag-
ing the reports. In large projects such as Mozilla[4],
on an average 300 bug reports are received in a day[2].
Triagers can be overwhelmed by the number of reports
that need to be triaged. Moreover, bug triaging is a
time consuming task because to triage a bug report,
the triager needs a lot of information about that bug,
e.g., to which component it belongs, what type of a
problem it is, how severe it is and how important it is
for the software project to be solved earlier[5-6]. If the
triager starts reading all the reports one by one with-
out prioritization of the bug reports, it is possible that
some important bugs are left untreated for a long time,
negatively affecting the project.

To solve this problem, bug reports contain a field
where the person who reports the bug may assign its
priority (how important the bug is), but sometimes this

Regular Paper
©2012 Springer Science +Business Media, LLC & Science Press, China

398 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

field is left blank. Moreover, the reporter may not cor-
rectly assign the priority level[7] as his opinion about
the importance of a bug may be different from that of
the triager, who has more information about the soft-
ware as a whole. To assign a proper level of priority to
the bug reports, the triager analyzes their contents and
also uses his own project knowledge which he gained
in triaging the bug reports of that project. This pro-
cess consumes time. Moreover it is possible that at this
early stage, the triager cannot assign proper priority
to the bugs especially in open source software projects
where the triager may be a volunteer or not much ex-
perienced.

In recent years, there has been an increasing inter-
est in mining of software repositories such as source
code repositories, bug repositories and email archives.
Mining techniques find hidden patterns from the data
stored in these repositories, thus revealing useful in-
formation. Different recommenders have been built
by researchers to assist in bug triaging, e.g., for as-
signing a bug report to an appropriate developer for
resolution[1,8], for predicting the component for which
a bug is reported[2], for predicting the time that a bug
will take to resolve[9-10]. However, there has been little
work on recommending priority and severity for a new
bug report[11-13].

Given the large number of new bug reports that a
triager needs to handle, it would be useful to explore
mining techniques to facilitate in triaging, i.e., assign-
ing priorities to the newly arrived bug reports auto-
matically. The recommended priority can further be
analyzed by the triager to confirm or refine the auto-
matically assigned priority.

Machine learning classification techniques may be
used to develop such a recommender by mining the
bug data present in a bug repository. Classification
techniques build models (using training data) by find-
ing patterns in the data to categorize it into different
classes. These models are then used to predict the class
of new unseen data (test data) according to predefined
classes. Some well-known classification techniques are
Näıve Bayes, Support Vector Machine (SVM), Decision
Trees and Neural Networks.

In this paper, we propose a classification based ap-
proach for building a bug priority recommender, and
conduct experiments using SVM and Näıve Bayes clas-
sifiers. Moreover, we propose measures for the evalua-
tion of classification results. The main contributions of
this paper are:

1) Proposing and evaluating a classification based
approach for automatic bug priority prediction. Sup-
port Vector Machine (SVM) and Näıve Bayes clas-
sification algorithms are used for this purpose, and

their results are analyzed to determine which algorithm
performs better for bug priority assignment.

2) Exploring different features within bug reports to
determine which features contribute more towards bug
priority classification.

3) Defining new measures, Nearest False Negatives
(NFN) and Nearest False Positives (NFP), for the eval-
uation of bug priority recommender. These measures
support existing precision and recall measures, and may
be used to enhance understanding of the results pro-
duced by precision and recall.

The rest of the paper is organized as follows. Sec-
tion 2 presents the research work related to bug prio-
ritization and automatic bug triage. Section 3 gives
an overview of the bug triage process and bug report
features. Section 4 presents our proposed classification
based approach and the classification techniques that
we used for building the classifier. Section 5 describes
the experimental setup. Section 6 details the results of
our experiments. In Section 7, we conclude the paper
with a discussion of results.

2 Related Work

Bug finding tools are used to find bugs from the
source code and prioritize them, but this prioritization
usually has a high false positive rate. Thus researchers
have proposed ways to improve bug prioritization. Kim
and Ernst[14] analyzed the bug life time and priority lev-
els assigned by bug finding tools and reprioritized the
bug categories according to bug life time. Life time of
a bug was computed using the software change history
data and bugs with a shorter life time were assigned
a higher priority level. In subsequent work, Kim and
Ernst[15] reprioritized the bug categories on the basis of
weight of a bug category. The weight of a bug category
was increased if bugs in that category were resolved
(called a fix-change). On the other hand, if bugs in
a category were not resolved (a non-fix change), the
weight was decreased. Kremenek and Engler[16] also
reprioritized the bugs found by bug finding tools on
the basis of the frequency count of successful and failed
checks. Checks are classified into successful and failed
on the basis of a tool’s analysis decisions.

To automatically assign a developer to new bug re-
ports, Anvik et al.[17] applied machine learning algo-
rithms on the bug report data. Support Vector Ma-
chines, Näıve Bayes algorithm and Decision Trees were
used on the bug data of Eclipse, Firefox and GCC
projects. SVM achieved high precision. In subsequent
work, Anvik and Murphy[5] evaluated their approach
by extracting the developer expertise from bug reposi-
tories and source code repositories. In [18], Anvik and

Jaweria Kanwal et al.: Bug Prioritization to Facilitate Bug Report Triage 399

Murphy proposed a machine learning (ML) based ap-
proach for creating recommenders for a variety of de-
velopment oriented decisions, e.g., for assigning a de-
veloper to a new bug report, predicting the component
of a new bug and finding people interested in a bug.
Recommenders were evaluated using the bug data of
five software projects and achieved more than 70% pre-
cision. An automatic approach was also proposed for
configuring the recommenders and was found to be use-
ful in reducing the effort of configuration.

Canfora and Cerulo[1] proposed an approach to as-
sign a developer to a new bug report, using historic
information stored in the bug and source code reposi-
tories. To classify bugs according to developer, Aljarah
et al.[19] evaluated different term selection techniques
to find discriminating terms from the summary field of
a bug. Three different techniques based on Log-Odds-
Ratio were compared with the Gain Ratio and Latent
Semantic Analysis (LSA) techniques. Results showed
that the selection of discriminating terms improved the
assignment of an appropriate developer to a bug. For
automatic bug report triage, Ahsan et al.[20] evaluated
different feature reduction and classification techniques.
Bug report data from the Bugzilla bug tracking system
was changed into five different datasets using various in-
dexing and dimension reduction methods. Experimen-
tal results showed that accuracy of the classifier based
on Latent Semantic Indexing (LSI) technique and SVM
was better than that of other techniques. Jeong et al.[21]

introduced a graph model based on the bug tossing his-
tory available in bug repositories (tossing refers to a bug
being reassigned to different developers in its lifetime).
This model is helpful in extracting team structure and
also in assigning an appropriate developer to a bug. To
reduce the tossing steps, a reduction method is used on
graphs to find a path with fewer steps. The path reduc-
tion algorithm is based on the weighted breadth-first
search algorithm, which is similar to the breadth-first
search algorithm. Experiments conducted on the bug
data of Eclipse and Mozilla show that the approach re-
duces tossing steps by up to 72% and results in better
developer assignment. A fuzzy set-based approach for
automatic assignment of developers was proposed by
Tamrawi et al.[22]. For each technical term in a new
bug report, fuzzy sets were computed to identify the
developers who were more suitable for fixing the bugs
relevant to that term. The fuzzy set technique achieved
higher prediction accuracy than ML approaches for au-
tomatic bug triage.

Lamkanfi et al.[11] built a classifier model to classify
bugs into severe and non-severe bugs. The summary
information of a bug report is used to train the Näıve
Bayes classifier. Results of the classifier using precision

and recall measures reveal that severity assignment is
improved as compared to random assignment. They
enhanced their work by applying different classification
techniques, i.e., SVM, Näıve Bayes, Multinomial Näıve
Bayes and Nearest Neighbour to evaluate which tech-
nique performs better in classifying the bugs according
to severity[23]. Eclipse and Gnome bug data was used
for experiments. Results were evaluated using ROC (re-
ceiver operating characteristic) curve[24]. Performance
of Multinomial Näıve Bayes was found to be better than
that of other classification algorithms.

Gegick et al.[25] proposed a text mining approach
to identify security bug reports (SBR) from the set of
mislabeled non-security bug reports (NSBR). A bug re-
port’s summary and long description fields were used
for training the model. The bug data of Cisco software
project was used for experiments. The model was eval-
uated using the precision, recall and success rate mea-
sures. Results revealed that the approach was able to
detect a large percentage (78%) of SBRs that had been
manually labeled as NSBRs. Zaman et al.[26] analyzed
the characteristics of different types of bugs such as se-
curity and performance bugs to find how they behave
differently from each other and from the other bugs in
terms of the bug fix time, the number of developers
assigned and the number of files impacted. Results re-
vealed that security bugs were more complex, required
more developers with experience, and affected a larger
number of files but took less triage and fix time than
performance and other bugs. Similarly, performance
bugs were more complex and needed more experienced
developers than the other bugs.

Yu et al.[12] predicted the priority of defects found
during the software testing process. The Artificial Neu-
ral Network (ANN) and Näıve Bayes classifiers were
used to train the prediction model. Features used were
not extracted from bug reports in the bug repository,
rather from the testing process. Precision, recall and
F-measure were used to evaluate the classifier perfor-
mance. Experimental results indicate that the ANN’s
performance is better than the Näıve Bayes for defect
priority prediction. Kanwal and Maqbool[13] built a
classifier model using SVMs to prioritize the newly ar-
rived bug reports. Bug report features were categorized
into different feature categories to evaluate which fea-
ture category better determines the priority of a bug.
Accuracy of the classifier improved when training fea-
tures were combined.

Runeson et al.[27] detected duplicate bug reports by
measuring the similarity of bug reports (submitted in
a timeframe of 60 days) using the vector space model
along with cosine similarity. Results show that 2/3
of the duplicates can be found using this technique.

400 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

Expanding the timeframe up to 100 days decreases the
recall rate. Wang et al.[28] also proposed an approach
to detect duplicate bug reports using natural language
information present in the text field of a bug report and
execution traces of that bug. Recall increased by 30%
by using execution information. Clustering technique
was used in [29] for duplicate detection. In more than
80% clusters created by automatic clustering, majority
of failures were due to same causes. For duplicate bug
detection, Prifti et al.[30] proposed an approach that im-
proved the performance of Information Retrieval tech-
niques by limiting the search space to recently reported
bug reports on the assumption that the time interval
between duplicate bug reports is short. The approach
also reduced the number of bug reports because instead
of reporting a duplicate bug, a user can add the infor-
mation of his/her bug in the existing bug report.

Wu et al.[31] developed a BugMiner tool which uti-
lizes the historic data of bug repositories for predicting
the missing categorical fields of new bug reports on the
basis of the available fields. Moreover this tool finds the
duplicate bugs and displays all the similar bug reports
of a new bug report. Trend analysis of the bugs oc-
curring in a project since its first launch is also carried
out. Marks et al.[32] analyzed different features of a bug
report to find the characteristics of bug fix-time using
the bug data of Mozilla and Eclipse bug repositories.
The most influential factors of a bug report according
to fix-time were bug location and time of reporting the
bug. Using a random forest classification technique,
65% bugs were correctly classified.

Different machine learning approaches have also
been applied on bug repository data for automating
bug triage[2-3,8], effort estimation for resolving a bug[9],
impact analysis[29] and predicting the number of bugs
for next versions[33-34].

3 Bug Repositories

Bug repositories are used to manage bug reports so
that they are assigned to an appropriate developer or
maintenance team[8]. A bug repository is helpful for
software systems in many ways, as it provides a commu-
nication forum where developers can discuss bug reso-
lution, design implementations and enhancement fea-
tures, experts can help in design deliberations of a com-
plex problem and users can be made aware of the status
of a bug[2].

3.1 Bug Triage Process

In a bug repository, bug triage is a process in
which a triager makes decisions about the bugs en-
tered in the bug repository by examining them in dif-
ferent ways. These decisions can be divided into two

categories, repository oriented and development orie-
nted. In repository oriented decisions, the triager makes
sure that the bug has not already been reported before
and the bug has enough information for the developers
and makes sense. The purpose of repository oriented
decisions is to remove those bug reports from the repos-
itory that do not need to be resolved.

As a result of repository oriented decisions, the
triager selects a set of unique (not duplicate) and valid
bug reports which are further analyzed for development
oriented decisions. Development oriented decisions in-
volve checking that a bug is filed for the correct com-
ponent, product and version. Moreover, an important
purpose of development oriented decisions is to allocate
time and resources to resolve bugs[6], for which triagers
examine severity and priority levels of the bugs. These
levels may be changed if they are found to be inappro-
priate. Assigning the correct priority level is important
to resolve more important bugs first. After this, the
triager writes comments for the bug and assigns this
bug report to an appropriate developer to resolve the
bug.

3.2 Bug Report Features

Bug repositories collect bug reports from users and
developers. The structure of a bug report is more or
less the same across bug repositories. We describe in
detail the Bugzilla[35] bug reports. Bugzilla is the most
widely used bug repository for open source projects[2].

A bug report in Bugzilla contains a number of fields
which represent attributes or features of the report.
Some fields are categorical such as bug-id, date of sub-
mission, component, product, resolution, status, severi-
ty (how serious a bug is), priority (how important a bug
is, represented normally as levels P1∼P5 with P1 being
most important), platform, operating system, reporter,
assignee and cc-list. Some of the categorical fields are
fixed at the time of report submission, e.g., bug id, re-
port submission time and reporter name. Some fields
such as product, component, severity, priority, version,
platform and operating system are entered by the re-
porter but may be changed by the triager or developer
if needed[3]. Other fields such as developer who resolves
the bug, list of people who are interested in bug reso-
lution, bug-status, and resolution, change throughout
bug life time.

Text fields consist of summary and long description.
Summary is the title of a bug report or short descrip-
tion of a bug in one line written by the reporter. In long
description, the problem is described in detail by the re-
porter. The user writes the problem he/she faced while
using the product. The triager or developer also writes
about the problem in this field in detail after analyzing

Jaweria Kanwal et al.: Bug Prioritization to Facilitate Bug Report Triage 401

it. Text field contains all the discussion about the bug
and all the phases through which a bug has passed, such
as cause of the problem and possible solutions to fix it.
Implementation detail of the problem and possible so-
lutions for complex problems are also discussed in this
field[3], which serves as the forum for discussion.

Bugs move through different stages from submission
time to closing time. The bug-status and resolution
fields track the life cycle of a bug. When a bug report
is submitted by a user its status is set to “new”. When
a bug is assigned to a developer to resolve, then the bug
status is set to “assigned”. If a developer resolves the
bug, then status of the bug is set to “resolved”. After
resolution, the bug status is set to “closed” or checked
by the quality assurance team to verify that an appro-
priate resolution of the bug has been performed. If a
bug is verified then its status is changed to “verified”,
otherwise it is reconsidered for resolution and the status
is changed to “reopen”.

4 Proposed Priority Recommender

In this section, we describe our approach for develo-
ping a priority recommender.

4.1 Classification Based Approach

Data mining techniques are used to find patterns
from large amount of data to transform it into useful
information. There are different data mining techniques
for recognizing patterns from the data, e.g., classifica-
tion, association rule mining and clustering. Data min-
ing classification techniques classify the data according
to some predefined categorical labels.

Classification is the process of building a model by
learning from a dataset. Classification is a two-step pro-
cess, learning and classification. In the first step a clas-
sifier model is built by determining the characteristics of
each class from the given training dataset which consists
of training instances with associated class labels[36]. For
example, suppose X(x1, x2, x3, . . . , xn) is a training in-
stance where x1, x2, . . . , xn represent the features (at-
tributes) and n is the number of features. Each training
feature provides a piece of information to the classi-
fier that helps in determining the characteristics of the
class. For each Xi there is a special attribute (class
label) which represents its class yi. For example, in
Table 1, component, platform and product are the fea-
tures used for building the classifier model to determine
the class label, i.e., priority. This step can be viewed
as learning of a function, y = f(X), where y is the
predicted class label and f(X) may be some rules or
mathematical formulae.

In the second step, the function is used to predict the
class label y for new instances. In case of a rules-based

classifier, rules are used to characterize the new instance
in an appropriate class. In case of mathematical for-
mula, feature values are plugged into the equation to
find its class label.

Table 1. Sample Bug Report: Features and Class Label

Features Class
Bug-ID Component Platform Product · · · Priority

1 SWT Macintosh JDT · · · P4
2 Team PC Platform · · · P3
3 SWT Macintosh PDE · · · P1

Accuracy of the classifier is the percentage of test tu-
ples correctly classified by the learned classifier model.
The dataset that is used for testing (validating) the
classifier is unseen data (not used for training). In the
validation process, we know the actual class labels of
the test data but the classifier is not aware of them.

Although a number of classification algorithms are
available e.g., Näıve Bayes, Support Vector Machines,
Decision Trees, Neural Networks and K-Nearest Neigh-
bors, in the following subsections we describe Näıve
Bayes and Support Vector Machine (SVM). These two
classifiers have been used by various researchers for text
classification and have shown promising results[2,37].

4.2 Näıve Bayes Classifier

The Näıve Bayes algorithm classifies a new instance
by calculating its probability for a particular class us-
ing the Bayes rule of conditional probability[38]. The
probability of a new instance is calculated for each class
and the class with the greatest probability is assigned
to the new instance.

In Bayesian classification, the posterior probability
of a hypothesis i.e., P (H|X), is calculated from prior
probabilities P (H), P (X) and posterior probability of
tuple X conditioned on H, P (X|H). H represents the
hypothesis that a data tuple X belongs to a specified
class C, given the attribute description of X. The Bayes
theorem can be stated as:

P (H|X) = (P (H)× P (X|H))/P (X).

Replacing H by C (hypothesis that a tuple X belongs
to a class C):

P (Ci|X) = (P (X|Ci)× P (Ci))/P (X),

for i = 1 to m, where m represents the number of
classes. As P (X) is same for all classes so we only
need to maximize P (X|Ci)× P (Ci).

To calculate P (X|Ci), the Näıve Bayes classifier
makes the simplifying assumption that the value of an
attribute is independent of the value of other attributes

402 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

given the class. Thus P (X|Ci) is calculated as:

P (X|Ci) = P (x1|Ci)×P (x2|Ci)×· · ·×P (xn|Ci). (1)

The classifier assigns the class Ci to a new instance X
such that

P (Ci|X) > P (Cj |X) for 1 6 m 6 j 6= i.

From (1), it is clear that if the probability of some
attribute value given a class (e.g., P (x1|C1)) is zero,
it makes the probability of that class (i.e., P (C1|X))
zero. This problem is corrected by using the Laplacian
Correction[39].

4.3 Support Vector Machines

Support Vector Machines build non-linear classifi-
cation models from the training data for each class.
These models are then used for predicting the class of
new instances. SVMs transform the original data into
higher dimensionality and find a separating hyperplane
in the new mapped data[40]. This type of classifica-
tion is independent of the dimensionality of the vector
space. Training data can be separated by various lines
but SVM finds a line with the maximum margin. For
some classes of well behaved data, the choice of maxi-
mum margin will lead to maximal generalization when
predicting the class of unseen new data[41].

A separating hyperplane for a two-class classifier can
be written as

w · x + b = 0, (2)

where x represents the training instances that lie on the
hyperplane, w is a weight vector, b is a scalar, often re-
ferred to as a bias and “·” represents the dot product.
These are determined by the SVM from the training
dataset.

In classification of text documents, the input fea-
ture space is very large as each word is considered as
a feature. When dealing with a large number of fea-
tures, most of the algorithms apply dimensionality re-
duction methods to remove terms that are irrelevant
but in text classification there are very few terms that
are irrelevant[37]. Thus text classification is challenging
due to its high dimensional feature space. Since SVMs
are independent of data dimensionality and robust to
overfitting[42], they are well suited for text classifica-
tion.

5 Experimental Setup

In this section, we describe the test system used for
our experiments, the selection of features and the cri-
teria used for evaluation.

5.1 Dataset and Pre-Processing

The Eclipse project[43] bug reports were used for
our experiments. Eclipse projects are focused on
building an open development platform with extensi-
ble frameworks, tools and runtimes for building and
managing software throughout its life time. Eclipse
data has been used by different researchers for their
experiments[3,8,27-28]. We used bug data of Eclipse from
2001 to 2006, which has many products and compo-
nents. It is stored in two main versions: version 2 and
version 3 and subversions (e.g., 2.1, 2.1.1, 2.2, 3.1, 3.2).

From the 49 Eclipse products, we selected the plat-
form product for experiments as it contains larger num-
ber of bug reports according to priority levels as com-
pared to other products. The number of bug reports of
platform product is given in Table 2.

Table 2. Statistics of Each Bug Priority Class in Version 2
of Platform Product

Bug Priority Class No. Instances

P1 705
P2 1 073
P3 9 441
P4 536
P5 327

Eclipse bug reports were originally in the form of
XML files. An application was developed in C# to ex-
tract the desired features. The extracted bug report
features were product, component, platform, operating
system, version, bug resolution, bug status, bug prio-
rity, bug severity, summary and long description.

5.2 Training and Testing Dataset

Eclipse bug report data is presented in two main ver-
sions, version 2 and version 3. Version 2 data is used for
training the classifiers for bug priority. In our dataset,
the number of bug reports for priority level P3 is very
high as compared to the other priority levels. So we
selected an equal number of instances (bug reports) for
each bug priority class to train the classifier. The least
number of instances available for a priority class is 327
(number of instances of P5). Therefore, we selected 327
instances from each of the classes P1∼P5, making our
training dataset size equal to 327× 5 = 1 635. Version
3 bug data of the platform product is used to evalu-
ate the classifier model①. The number of bug reports
in version 3 of the platform product is given in Table
3. For version 3 bug reports, we have the actual class
labels (priority levels assigned at bug resolution time),
but to evaluate our recommender we hid the class la-
bels from the classifier and compared the actual priority
levels with the predicted ones.

①The Eclipse data used in our experiments is available at http://cs.qau.edu.pk/profiles/onaiza.htm

Jaweria Kanwal et al.: Bug Prioritization to Facilitate Bug Report Triage 403

Table 3. Statistics of Each Bug Priority Class in Version 3
of Platform Product

Bug Priority Class No. Instances

P1 147
P2 423
P3 8 650
P4 246
P5 42

Only resolved bug reports (having status value “re-
solved”, “closed” or “confirmed”) were selected for
training and testing because priority of a bug report
is changed throughout the bug life time. It is finally
set by the triager or developer who fixes the bug and
records the bug priority in the bug report.

5.3 Text Processing

Text attributes extracted from the bug reports were
bug summary and long description. Text attributes
contain a number of words that are not meaningful.
So we applied a standard text categorization approach
to transform the text data into a meaningful repre-
sentation. First, the whole text was converted into
words by removing punctuation, brackets and special
symbols (e.g., @, $, %). From the list of words, stop
words (e.g., is, am, I, he), common words (e.g., ac-
tually, because, everywhere) and non-alphabetic words
(e.g., 12345, −343, 2010) were removed because these
are unimportant and provide little information about
the problem described in the bug report. Stemming is
applied on the text to convert a word into its ground
meaning. For example, “experimental” and “experi-
ments” were converted to “experiment”. Verbs were
also converted into their original form, e.g., “was” and
“being” were converted to “be”.

After finding the ground form of each word, the num-
ber of occurrences of each word in the bug report was
calculated. Due to stemming the text, a word with dif-
ferent grammatical structure is considered as one word.
So a word is represented in a vector form having two di-
mensions: a word and its frequency. All the categorical
and text features were converted into numeric represen-
tation because SVM takes only numeric features within
training and testing files.

5.4 Feature Selection

Experiments were performed by taking different
combinations of the bug report attributes. We divided
the bug report attributes into 5 categories as training
features for classifiers. These categories are: Categor-
ical (CF), Summary (SF), Categorical and Summary
(CSF), Summary and Long description (TF), and Cate-
gorical, Summary and Long description (CSTF). Clas-
sifiers are trained with different feature combinations

for bug priority classification, to check which features
contribute more towards bug priority classification.

5.4.1 Categorical Features

Categorical attributes of a bug report that we used
as training features for bug priority classification are
component, severity, platform, operating system, bug
lifetime and developer. We used the bug creation date
and last modification date to calculate the life time of a
bug because it is not recorded in an Eclipse bug report.
As we selected only the bug reports that are resolved,
the latest modification date means it is the date when
a bug is resolved.

These attributes were selected because they have an
impact on the priority of a new bug report. Bug priority
may depend on functionality of the component, mak-
ing the “component” feature important for determining
priority. For example, if the component’s functionality
is critical to the system’s working, bug reports sub-
mitted for the component may have higher priority as
compared to bugs reported for a less important compo-
nent. Similarly, high severity level of a bug report may
represent that this bug should be resolved as early as
possible. This is also sometimes true for high priority
bugs. Platform and operating system may also provide
useful information to categorize the bug reports, e.g.,
bugs occurring on Linux operating system may be given
higher priority than a bug of Windows. Bug life time
is the time required to resolve a bug. It is an impor-
tant factor to determine the bug priority. If a bug is
resolved quickly by the project developer, its priority
may be high. If a bug is not resolved for a long time, it
may be of low importance.

We performed bug priority classification experi-
ments with two different combinations of categorical
attributes. These combinations are described below:

Basic Features (BF): Categorical attributes avail-
able at report submission time: severity, component,
operating system and platform. From the above six se-
lected attributes, only four are available at report sub-
mission time (when a reporter reports the bug). To
build a recommender to facilitate priority assignment at
submission time, we take only these features for train-
ing.

Basic and Predicted Features (BPF): Categorical at-
tributes of BF (severity, component, operating system
and platform), bug lifetime and developer.

“Bug lifetime” and “developer” attributes are not
available when the reporter reports the bug but these
values can be predicted using the information available
at report submission time. The effort (bug lifetime)
to fix a new bug is predicted in [9, 44]. Anvik[8] and
Canfora et al.[1] built a developer recommender which

404 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

automatically assigns a developer to a new bug report.
We combine these attributes with the attributes in BF
to check whether this set of training features improves
the classifier performance.

5.4.2 Text Features (Summary and Long Description)

Summary or title of a bug report contains a short
description of the bug mentioned by the bug reporter
in one line. This short description tells about the type
of the problem (or problem category). In bug finding
tools, bugs are prioritized on the basis of the bug cate-
gory (e.g., bug with “overflow” category has precedence
over “empty static initializer” category). The problem
category determines how important a bug is.

In the long description field, the problem faced by
the user is described in detail. One line summary and
full text description fields of a bug report uniquely cha-
racterize the report because a bug is uniquely described
in these fields.

The text features of a bug report are formed by com-
bining summary and long description of a bug, and have
been used by different researchers[1,3,17,27] to perform
their experiments. The reason for combining the two is
that the summary attribute conveys important details
about a bug which adds meaningful information to the
long description. Since it is short, including it with the
long description in the text features adds valuable in-
formation without significantly increasing the number
of features (and hence the computational cost). Thus
including summary adds value and does not increase
cost whereas removing it does not reduce cost much,
but may result in important details being omitted.

For these reasons, and similar to the approach used
by other researchers, when using text features we have
combined summary and long description (TF) and have
not used description alone. On the other hand, we have
used summary alone (as in [11]), and also in combina-
tion with categorical features.

5.5 Evaluation Criteria

We evaluated the classifiers’ performance by using
the precision and recall measures[45]. We also propose
two new evaluation measures, NFN and NFP, for eva-
luating the recommendations made by the priority rec-
ommender. These measures are described in this sub-
section in detail.

5.5.1 Precision and Recall

Precision and recall measure the accuracy of a

classifier. Precision of a class C is the number of in-
stances correctly classified as class C divided by the
total number of instances classified as class C. Pre-
cision measures the percentage of correct predictions
related to the predictions made by the classifier. Recall
of a class C is the number of instances correctly classi-
fied as class C divided by the total number of instances
in the dataset having class label C. Recall measures
the percentage of correct predictions related to actual
classes.

For a bug priority classifier we need high precision
and recall especially for higher priorities. As an exam-
ple, consider the P1 priority class. Low recall of P1
means a high false negative rate, i.e., most of the bugs
with priority P1 are given a low priority so their resolu-
tion will be delayed. If precision of P1 is low it means
a high false positive rate, i.e., most of the bugs that
are not actually P1 are given P1 priority so they will
be handled first by the triagers and developers, which
results in delay in the resolution of important bugs. In
any case we need to avoid delay in the resolution of im-
portant bugs and want them to be resolved as early as
possible.

5.5.2 Proposed Evaluation Measures

Our proposed measures, Nearest False Negatives
(NFN) and Nearest False Positives (NFP), evaluate the
misclassified (false negatives and false positives) bug re-
ports, whether they are assigned a priority level close
to the correct priority level or not. Our intuition for
defining these evaluation measures is that if a bug with
a certain priority level is misclassified to one level lower
or higher priority (nearest priority level) it is less dan-
gerous as compared to when there is a difference of more
than one priority level. For example, if a bug with P1
priority is given P4 or P5 priority by the classifier it is
more dangerous than if it is assigned P2 priority level
because a bug with priority P2 will be resolved just
after the bugs with priority P1.

Furthermore, if a bug with higher priority (e.g., P1)
is misclassified to its nearest lower priority level (P2),
it is more dangerous as compared to if a bug with lower
priority (e.g., P2) is misclassified to its nearest higher
priority level (P1). This is because if a bug with prio-
rity P1 is misclassified as P2, it means that the resolu-
tion of bug with high priority will be delayed. If a bug
with priority P2 is misclassified as P1, it may not be as
risky②.

NFN and NFP measure how good a classifier is in

②It is relevant to note that although if a bug with priority P2 is misclassified as P1 priority, it may be less dangerous than a bug
with priority P1 being assigned P2, but it may lead to lower priority bugs being handled earlier than important bugs. Also, if many
bugs are given higher priorities than actual, there will be a large number of bugs in higher priority classes making it difficult for the
triager to handle all of them. Both of these problems result in delay in resolution of the actual high priority bugs.

Jaweria Kanwal et al.: Bug Prioritization to Facilitate Bug Report Triage 405

assigning the nearest priority levels. Greater value
of NFN indicates that most of the misclassified bug
reports are assigned the nearest priority levels with
respect to their actual priority levels, and greater value
of NFP indicates that most of the mis-predictions of the
classifier for a priority class are for its nearest priority
levels. To compute NFN and NFP, we assign weights to
each false negative or false positive class (priority level)
with respect to a bug priority class as shown in Table 4.

To differentiate between misclassification to higher
or lower priority levels, when a bug of low priority is
misclassified to its nearest higher priority class (e.g., P2
classified as P1), we have given a higher weight (W(h))
and when a bug of high priority is misclassified to its
nearest lower priority class (e.g., P1 classified as P2), it
is given a lower weight (W(l))③.

Table 4. Weights for Each False Negative or False Positive
Class w.r.t. Bug Priority Class

Priority Class False Negatives or False Positives
P1 P2 P3 P4 P5

P1 W1(l) W2(l) W3(l) W4(l)

P2 W1(h) W1(l) W2(l) W3(l)

P3 W2(h) W1(h) W1(l) W2(l)

P4 W3(h) W2(h) W1(h) W1(l)

P5 W4(h) W3(h) W2(h) W1(h)

Note: Values of Weights: W1(h) = 1, W1(l) = 0.84,

W2(h) = 0.70, W2(l) = 0.56, W3(h) = 0.42, W3(l) = 0.28,

W4(h) = 0.14, W4(l) = 0.

To calculate NFN/NFP, the percentage of false nega-
tives (or false positives) of each class are multiplied with
the corresponding weights and then added. For exam-
ple, for priority class P1, NFN/NFP may be calculated
as:

NFN/NFP of priority class P1 = p2×W1(l) +

p3×W2(l) + p4×W3(l) + p5×W4(l),

where p2, p3, p4 and p5 represent the percentage of false
negatives (or false positives in case of NFP) of priority
class P1 classified as P2, P3, P4 and P5 classes respec-
tively. Wi(l) represent the weights of priority classes
which have lower priority than the actual class, and i
denotes how many levels away a priority class is from
the actual class. For priority class P1, we have Wi(l)

only, since a bug with priority P1 will always be mis-
classified to a class with lower priority.

Similarly, the NFN/NFP of various classes may be
calculated as follows:

NFN/NFP of priority class P2

= p1×W1(h) + p3×W1(l) +

p4×W2(l) + p5×W3(l),

NFN/NFP of priority class P3

= p1×W2(h) + p2×W1(h) +

p4×W1(l) + p5×W2(l),

NFN/NFP of priority class P4

= p1×W3(h) + p2×W2(h) +

p3×W1(h) + p5×W1(l),

NFN/NFP of priority class P5

= p1×W4(h) + p2×W3(h) +

p3×W2(h) + p4×W1(h).

Wi(h) represent the weights of priority classes which
have higher priority than the actual class. For priority
class P5, we have Wi(h) only, since a bug with priority
P5 will always be misclassified to a class with higher
priority. For priority classes P2∼P4, the formulas for
NFN/NFP include both W(h) and W(l).

As an example, consider a test set in which the num-
ber of bug reports with priority P1 is 100. If all the bug
reports are assigned P1 priority, then recall is 100% and
NFN is zero. If recall of priority class P1 is low, e.g.,
10%, then NFN of priority class P1 tells whether most
of the bug reports are assigned nearest classes or not.
If 90 false negatives distributed in P2, P3, P4 and P5
classes are 80, 8, 2 and 0 respectively, then NFN is
calculated as follows:

NFN of priority class P1

= (80/90)× 100× 0.84 + (8/90)× 100× 0.56+

(2/90)× 100× 0.28 + (0/90)× 100× 0 = 78.5%.

Recall of P1 is 10% but 78.5% NFN tells us that most
of the false negatives are predicted for nearest classes,
which may not be very dangerous.

Similarly, to calculate the NFP of priority class P1,
we calculate the total false positives of P1 and then the
number of false positives classified as P2, P3, P4 and
P5 classes. If a dataset contains 5 bug reports with
priority P1 but the classifier assigns P1 priority to 100
bug reports, precision is 5% and false positives of P1
are 95%. If the false positives distributed in P2, P3, P4
and P5 classes are 90, 5, 0 and 0 respectively, NFP is
calculated as follows:

NFP of priority class P1

= (90/95)× 100× 0.84 + (5/95)× 100× 0.56+

(0/95)× 100× 0.28 + (0/95)× 100× 0 = 82%.

③In case nearest higher and nearest lower levels are not to be differentiated, both one level lower and one level higher priority for
a certain priority level may be considered as nearest priority levels, and the weights may be kept symmetric, e.g., the weight of P1
being misclassified to P2 is set to be equal to that of P2 being misclassified to P1, i.e., W1(h) = W1(l).

406 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

Precision is 5% but NFP Valne = 82% tells that most
of the false positives are predicted for nearest classes.

According to the formula, NFN (or NFP) of a class
is 100% when all the false negatives (or false positives)
lie in the nearest higher class (in case of priority class
P2, these should lie in P1 class) and NFN (or NFP) is
84% if all the false negatives (or false positives) lie in
the nearest lower priority class. Since there is no near-
est higher priority class for P1, so the highest value of
NFN (NFP) for P1 will be 84%. W2(h) and W2(l) rep-
resent the weights for the 2nd nearest priority classes.
If all the false negatives (false positives) lie in the 2nd
nearest priority classes then NFN (NFP) will be 70%
(for the 2nd nearest higher class) or 56% (for the 2nd
nearest lower class). Thus when false negatives (or false
positives) are distributed in different classes, more than
56% NFN (NFP) may be considered better as it indi-
cates that most misclassifications are up to two priority
levels away.

6 Experimental Results

In this section, we report results of our experi-
ments using the SVM and Näıve Bayes classifiers. We
also evaluate different feature categories and training
dataset sizes. For evaluation, we use precision and re-
call measures, and to gain further insight into the re-
sults we use our proposed NFN and NFP measures.

6.1 Bug Priority Classification Results for
SVM

Fig.1 presents the results of SVM based bug prio-

rity classification using recall, precision, NFN and NFP
measures.

It is relevant to note that we are more interested in
high accuracy for higher priority classes, e.g., P1, since
they indicate the more important bugs. It can be seen
from Fig.1 that recall and NFN of the P1 class is better
for TF and CSTF categories. Precision of the P1 class
is less than 40% for all categories but NFP of the class
is more than 70% for CF, CSF and CSTF, which indi-
cates that most incorrect predictions are to the nearest
lower class, i.e., P2. For SF and TF, NFP of the P1
class is 60% or more, which indicates that most incor-
rect predictions are to two nearest lower classes, i.e.,
P2 or P3. It can also be seen from Fig.1 that precision,
recall, NFN and NFP of the P3 class are higher than
those of other classes for all feature categories. (For
CF, CSF and CSTF categories, NFP of the P3 class
is not shown in the figure because precision of P3 for
these categories is 100%.)

Fig.2 presents the recall, NFN, precision and NFP
for all categories, averaged over all priority classes. It
can be seen from Fig.2(a) that for the CSTF category,
average recall and NFN are higher than all other cate-
gories which means that most of the bugs are assigned
correct priority levels and most of the misclassified bugs
are classified to the nearest priority levels. For CF, CSF
and TF categories, recall is more than 45% and NFN
is almost 70% which indicates that although bugs of a
priority class are not classified into the correct priority
levels but most are predicted for the nearest priority
level. For SF, both average recall and NFN are low as
compared to other categories.

Fig.1. Recall, precision, NFN and NFP of each priority class for SVM.

Jaweria Kanwal et al.: Bug Prioritization to Facilitate Bug Report Triage 407

Fig.2. Average recall and NFN, precision and NFP for SVM.

From Fig.2(b) it can be seen that for CF, CSF, TF
and CSTF categories, precision is more than 45% which
means that 45% of the predictions made by the classi-
fier for a priority class are correct.

Moreover, NFP of these categories is around 65% or
more which indicates that most of the incorrectly pre-
dicted bug reports are placed into classes which are up
to 2 priority levels away④. Average precision of CF,
CSF and TF is almost the same but NFP of TF is bet-
ter than that of the other categories.

From Fig.2, it can be noted that in the CF and TF
categories, recall and precision are 45∼47% but when
categorical and text features are combined (CSTF),
then recall and precision increase by almost 10%. This
indicates that a combination of features improves the

classifier performance. The best results achieved by bug
priority classifier are with the CSTF category.

6.2 Results of Bug Priority Classification for
Näıve Bayes

Fig.3 presents the recall, precision, NFN and NFP
of each bug priority class for different feature combina-
tions for the Näıve Bayes classifier. It can be seen that
recall and NFN of the P1 class are better for the TF
and CSTF categories whereas precision and NFP of the
P1 class are better for CSF. Moreover, precision, recall,
NFN and NFP of the P3 class are better than other
classes for almost all the feature categories.

Fig.4 presents the recall and NFN, precision and
NFP, for different feature categories averaged over

Fig.3. Recall, precision, NFN and NFP of each priority class for Näıve Bayes.

④An NFN value > 70% indicates that more than 50% misclassified bug reports are placed into nearest priority classes, whereas
an NFN value > 42% indicates that more than 50% misclassified bug reports are placed into classes up to 2 levels away. 65% is closer
to 70% than to 42%, thus although we cannot say that most misclassifications are to the nearest priority classes, we expect about half
of them to be so.

408 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

Fig.4. Average recall and NFN, precision and NFP for Näıve Bayes.

different priority classes for Näıve Bayes. It can be seen
from Fig.4(a) that average recall of CF (49%) and CSF
(48%) are better than other categories. However, NFN
of CF is lower than that of the other categories. Ave-
rage recall of CSTF (38%) is lower than that of the
other categories but NFN is more than 75% which is
better than the other categories. Although the average
recall of CSF is slightly lower than that of CF, and av-
erage NFN of CSF is lower than that of CSTF, results
of CSF are overall better than the other categories in
terms of recall and NFN.

From Fig.4(b) it can be seen that average precision
of the CF and CSF categories is more than 45%, which
is better than average precision of the other categories.
Moreover, NFP of these two categories is greater than
70%. This means that 45% of the predictions are for
the correct priority levels, and most of the incorrect
predictions are to the nearest priority levels.

Thus overall, the performance of Näıve Bayes is bet-
ter for the CSF category compared to other categories.

6.3 Comparison of Näıve Bayes and SVM

Fig.5 presents the average recall and NFN of diffe-
rent feature categories for SVM and Näıve Bayes. It can
be seen that for the CF, SF and CSF categories, recall
of Näıve Bayes is slightly better than that of SVM. For
TF and CSTF, recall of SVM is much better than that
of Näıve Bayes. NFN of Näıve Bayes remains better
than that of SVM for all categories.

Fig.6 presents the average precision and NFP of dif-
ferent feature categories for SVM and Näıve Bayes. It
can be seen that for the CF, SF and CSF categories,
precision of SVM and Näıve Bayes is almost the same
but NFP of Näıve Bayes is better than that of SVM.
For the TF category, both precision and NFP of SVM
are better than that of Näıve Bayes. For the CSTF
category, precision of SVM (54%) is much better than
Näıve Bayes (40%) but NFP of Näıve Bayes is better.

Overall it can be seen that the performance of Näıve
Bayes is better for categorical and summary features

Fig.5. Average recall and NFN for SVM and Näıve Bayes.

Fig.6. Average precision and NFP for SVM and Näıve Bayes.

Jaweria Kanwal et al.: Bug Prioritization to Facilitate Bug Report Triage 409

but not as good as SVM for text features (when long
description is included), which shows that as compared
to SVM, Näıve Bayes is not good in handling the high
dimensionality of text features.

6.4 Combinations of Categorical Fields

As described in Subsection 5.4, we performed experi-
ments with two combinations of categorical fields. We
analyze the results to determine which categorical fea-
ture combination is better in determining the priority
of a bug.

From Fig.7, it can be seen that the average preci-
sion, recall and NFP of BPF are better than those of
BF combination whereas the average NFN of both com-
binations is almost the same. Thus overall performance
of BPF is better than that of BF which shows that when
the predicted features (“developer” and “bug lifetime”)
are combined with the basic features, not only does the
accuracy of results (in terms of precision and recall)
improve, but also most of the false positives and false
negatives are predicted for the two nearest classes (as
NFN and NFP are more than 60%). These results in-
dicate that developer and bug lifetime features contain
useful information for determining the bug priority.

6.5 Training Data Size

Before using a classifier for predictions, it should be
sufficiently trained so that it learns the underlying pro-
perties of the bug reports[11]. We used an equal num-
ber of instances, i.e., 327 in each class, to train the
classifier. It is possible that the classifier achieves good
performance with a smaller dataset size, and there is
no significant improvement in its performance beyond
a certain number of training examples. In this case we
can use less number of examples, and thus reduce time
and resources required to train the classifier. Moreover,
it is possible that training data requirements vary for
different feature categories.

To check whether fewer training examples can be
used, and how training data requirements vary for
different features, we conducted experiments using

different dataset sizes. We started training by taking
50 samples for each priority class (total training dataset
size is 250) and increased the dataset size by adding 50
samples in the preceding dataset. For each dataset size,
we took different sub-samples from the training data,
e.g., for size 250, we divided the data of size 1 500 into
6 sub-samples of size 250 and trained the classifier on
sub-samples. The average of results of the sub-samples
was taken for each dataset size. Fig.8 presents these
results.

It can be seen from Fig.8 that average recall and
precision increase with an increase in the number of
training samples for all feature categories when sample
size increases from 50 to 100. Beyond 100 samples, the
changes in recall and precision for the categories are
different.

For categorical and summary features (CF, SF and
CSF), there is no significant increase in recall and pre-
cision beyond 100 samples. For example, CSF’s recall
for 100 samples is 46%, and for 327 samples it increases
to 47%. Similarly, CSF’s precision for 100 samples is
44%, and for 327 samples it increases to 46%. On the
other hand, for TF and CSTF categories, accuracy of
the classifier improves with the increase in training data
size and for sample size 327, it is clearly better than for
other sample sizes. For example, TF’s recall for 100
samples is 39% which increases to 47% for 327 samples,
and precision is 37% for 100 samples, which increases
to 45% for 327 samples. Thus for categorical and sum-
mary features, due to the relatively less number of pos-
sible feature values, there is no significant increase in
classifier performance when the training dataset size
increases beyond 100 samples. This is an indication
that a relatively smaller dataset size may be enough for
training if only these features are used. Since the TF
and CSTF categories contain text features and training
the classifier for text features is difficult due to the high
dimensionality of data, so a larger training data size is
needed for better training.

It can also be seen from Fig.8 that there is no ap-
parent trend in change in average NFN or NFP with
the increase in sample size.

Fig.7. Average recall and NFN, precision and NFP for categorical feature combination.

410 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

Fig.8. Average recall, precision, NFN and NFP for varying dataset size.

6.6 Threats to Validity

In this subsection we discuss the factors that may af-
fect the validity of our approach and the steps we took
to reduce their impact.

Construct Validity. The results of our classification
approach depend on the selection of appropriate fea-
tures and the correct values of these features. If the
contents of a new bug report are inaccurate, this ob-
viously affects the correct prediction of priority. For
Eclipse, the user base consists mostly of developers, so
it is expected that in most cases a bug report is filled
carefully leading to fewer chances of error.

Internal Validity. Our approach to building a pri-
ority recommender is based on the assumption that
there is a relationship between bug report features and
the bug priority. Previous research suggests that such
causal relationships do exist, e.g., between bug report
features and severity[23]. Instead of restricting ourselves
to a small set of features (e.g., categorical only, sum-
mary only), we have tried to select a more meaningful
set by experimenting with categorical as well as text
features. Using a larger feature set reduces the threat
that priority may not depend upon the selected fea-
tures.

External Validity. External threat to validity for
our study is related to the dataset used in our ex-
periments. To evaluate our proposed classification ap-
proach for bug priority assignment, we focused on the
bug data of the Eclipse project. Eclipse is an open
source community with more than 200 projects. Eclipse
data has been used by different researchers for their

experiments[3,8,27-28]. It was for this reason that we
selected Eclipse for evaluation. To generalize our re-
sults and support our conclusions, experiments may be
performed on the bug reports of other software sys-
tems. Since Eclipse uses Bugzilla as its bug tracking
system, which is the most widely used bug tracking sys-
tem for open source projects, our approach can be ap-
plied to other software systems without difficulty. For
other bug repositories such as GNATS[46] and JIRA[47]

which have a different bug report structure, the ap-
proach may be adapted by utilizing the available bug
report attributes as features.

7 Conclusions

In this paper, we developed a bug priority classifier
to automate the process of assigning bug priority to new
bug reports in a bug repository using SVM and Näıve
Bayes classification algorithms and compared their re-
sults. Accuracy of the classifiers indicates that our pro-
posed priority recommender can help triagers in assign-
ing an appropriate priority level to bug reports so that
they are resolved at appropriate time. We also proposed
new measures NFN and NFP for evaluation, which in-
dicate whether the incorrectly predicted bug priorities
are predicted for nearest priority classes or not.

Experiments for bug priority classification were per-
formed using different feature categories of bug reports.
Experimental results using precision, recall, NFN and
NFP reveal that overall performance of SVM is bet-
ter than that of Näıve Bayes. For SVM, the results of
bug priority classifier are better when the categorical

Jaweria Kanwal et al.: Bug Prioritization to Facilitate Bug Report Triage 411

and text features are combined for training the classi-
fier (CSTF). Results of the Näıve Bayes classifier are
better when the long description of a bug is not in-
cluded as a feature. This shows that as compared to
SVM, Näıve Bayes is not good at handling the high di-
mensionality of text features. We also trained the bug
priority classifier using different training data size rang-
ing from 50 to 327 bug reports per class. Results show
that for categorical features, there is no significant im-
provement in classifier accuracy when the training data
size is increased from 100 to 327 bug reports, although
accuracy improves for text features.

Our experiments reveal that NFN and NFP are use-
ful measures for evaluating the recommendations made
by the classifier. They can be used to gain understand-
ing into the results produced by precision and recall.
For example, low precision and recall indicate that the
assigned priority is incorrect. If in this case NFN and
NFP are high, it indicates that the misclassified bugs
are assigned the nearest priority levels, which is less
cause for concern as compared to when NFN and NFP
are low. Thus these two measures provide meaningful
insight into the results produced by precision and recall.

References

[1] Canfora G, Cerulo L. Supporting change request assignment
in open source development. In Proc. ACM Symposium on
Applied Computing, Dijon, France, April 2006, pp.1767-1772.

[2] Anvik J. Assisting bug report triage through recommendation
[PhD Thesis]. University of British Columbia, 2007.

[3] Cubranic D, Murphy C. Automatic bug triage using text cate-
gorization. In Proc. Software Engineering and Knowledge
Engineering, Banff, Canada, June, 2004, pp.92-97.

[4] Mozilla. http://www.mozilla.org, 2010.

[5] Anvik J, Murphy G C. Determining implementation expertise
from bug reports. In Proc. the 4th MSR, Minneapolis, USA,
May 2007, Article No.2.

[6] Tucek J, Lu S, Huang C, Xanthos S, Zhou Y. Triage: Diagnos-
ing production run failures at the user’s site. ACM SIGOPS
Operating Systems Review, 2007, 41(6): 131-144.

[7] Herraiz I, German D M, Gonzalez-Barahona J M, Robles G.
Towards a simplification of the bug report form in eclipse. In
Proc. International Working Conference on Mining Software
Repositories, Leipzig, Germany, May 2008, pp.145-148.

[8] Anvik J. Automating bug report assignment. In Proc.
the 28th International Conference on Software Engineering,
Shanghai, China, May 2006, pp.937-940.

[9] Weib C, Premraj R, Zimmermann T, Zeller A. Predicting ef-
fort to fix software bugs. In Proc. Workshop on Software
Reengineering, Bad Honnef, Germany, May 2007.

[10] Kim S, Whitehead J. How long did it take to fix bugs? In
Proc. International Workshop on Mining Software Reposito-
ries, Shanghai, China, May 2006, pp.173-174.

[11] Lamkanfi A, Demeyer S, Gigery E, Goethals B. Predicting the
severity of a reported bug. In Proc. the 7th Working Con-
ference on Mining Software Repositories, Cape Town, South
Africa, May 2010, pp.1-10.

[12] Yu L, Tsai W, Zhao W, Wu F. Predicting defect priority based
on neural networks. In Proc. the 6th Int. Conf. Advanced
Data Mining and Applications, Wuhan, China, November

2010, pp.356-367.

[13] Kanwal J, Maqbool O. Managing open bug repositories
through bug report prioritization using SVMs. In Proc. In-
ternational Conference on Open-Source Systems and Tech-
nologies, Lahore, Pakistan, December 2010.

[14] Kim S, Ernst M D. Prioritizing warning categories by analyz-
ing software history. In Proc. the 4th International Work-
shop on Mining Software Repositories, Minneapolis, USA,
May 2007, Article No. 27.

[15] Kim S, Ernst M D. Which warnings should I fix first? In
Proc. the 6th ESEC-FSE, Dubrovnik, Croatia, September
2007, pp.45-54.

[16] Kremenek T, Engler D. Z-Ranking: Using statistical analysis
to counter the impact of static analysis approximations. In
Proc. the 10th International Conference on Static Analysis,
June 2003, pp.295-315.

[17] Anvik J, Hiew L, Murphy G C. Who should fix this bug? In
Proc. the 28th International Conference on Software Engi-
neering, Shanghai, China, May 2006, pp.361-370.

[18] Anvik J, Murphy G C. Reducing the effort of bug report
triage: Recommenders for development-oriented decisions.
ACM Transactions on Software Engineering and Methodo-
logy, 2011, 20(3): Article No.10.

[19] Aljarah I, Banitaan S, Abufardeh S, Jin W, Salem S. Selecting
discriminating terms for bug assignment: A formal analysis.
In Proc. the 7th International Conference on Predictive Mod-
els in Software Engineering, Banff, Canada, September 2011,
Article No.12.

[20] Ahsan S N, Ferzund J, Wotawa F. Automatic software bug
triage system (BTS) based on Latent Semantic Indexing and
Support Vector Machine. In Proc. the 4th International
Conference on Software Engineering Advances, Washington,
USA, September 2009, pp.216-221.

[21] Jeong G, Kim S, Zimmermann T. Improving bug triage with
bug tossing graphs. In Proc. the 7th ESEC-FSE, Amsterdam,
Netherlands, August 2009, pp.111-120.

[22] Tamrawi A, Nguyen T, Al-Kofahi J, Nguyen T N. Fuzzy set-
based automatic bug triaging. In Proc. the 33rd Interna-
tional Conference on Software Engineering (NIER Track),
Miami, USA, May 2011, pp.884-887.

[23] Lamkanfi A, Demeyer S, Soetens Q D, Verdonck T. Com-
paring mining algorithms for predicting the severity of a re-
ported bug. In Proc. the 15th European Conference on Soft-
ware Maintenance and Reengineering, Oldenburg, Germany,
March 2011, pp.249-258.

[24] Ling C, Huang J, Zhang H. Auc: A better measure than ac-
curacy in comparing learning algorithms. In Lecture Notes
in Computer Science 2671, Xiang Y, Chaib-Draa B (eds.),
Springer-Verlag, 2003, pp.329-341.

[25] Gegick M, Rotella P, Xie T. Identifying security bug reports
via text mining: An industrial case study. In Proc. the 7th
Working Conference on Mining Software Repositories, Cape
Town, South Africa, May 2010, pp.11-20.

[26] Zaman S, Adams B, Hassan A E. Security versus performance
bugs: A case study on Firefox. In Proc. the 8th Working
Conference on Mining Software Repositories, Hawaii, USA,
May 2011, pp.93-102.

[27] Runeson P, Elexandersson M, Nyholm O. Detection of du-
plicate defect reports using natural language processing. In
Proc. the 29th International Conference on Software Engi-
neering, Minneapolis, USA, May 2007, pp.499-510.

[28] Wang X, Zhang L, Xie T, Anvik J, Sun J. An approach to de-
tecting duplicate bug reports using natural language and exe-
cution information. In Proc. the 30th International Confe-
rence on Software Engineering, Leipzig, Germany, May 2008,
pp.461-470.

412 J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

[29] Canfora G, Cerulo L. Impact analysis by mining software and
change request repositories. In Proc. the 11th International
Software Metrics Symposium, Como, Italy, September 2005,
Article No.29.

[30] Prifti T, Banerjee S, Cukic B. Detecting bug duplicate reports
through local references. In Proc. the 7th International Con-
ference on Predictive Models in Software Engineering, Banff,
Canada, September 2011, Article No.8.

[31] Wu L, Xie B, Kaiser G, Passonneau R. BugMiner: Software
reliability analysis via data mining of bug reports. In Proc.
the 25th International Conference on Software Engineering
and Knowledge Engineering, Miami, USA, July 2011, pp.95-
100.

[32] Marks L, Zou Y, Hassan A E. Studying the fix-time for bugs
in large open source projects. In Proc. the 7th International
Conference on Predictive Models in Software Engineering,
Banff, Canada, September 2011, Article No.11.

[33] Gyimothy T, Ferenc R, Siket I. Empirical validation of object-
oriented metrics on open source software for fault prediction.
IEEE Transactions on Software Engineering, 2005, 31(10):
897-910.

[34] Zimmermann T, Premraj R, Zeller A. Predicting defects for
Eclipse. In Proc. International Workshop on Predictor Mod-
els in Software Engineering, Minneapolis, USA, May 2007,
Article No.9.

[35] Bugzilla. http://www.bugzilla.org, 2010.

[36] Han J, Kamber M. Data Mining: Concepts and Techniques.
2nd edition, Morgan Kaufmann, 2006.

[37] Joachims, T. Text categorization with support vector ma-
chines: Learning with many relevant features. In Proc. Euro-
pean Conference on Machine Learning, Chemnitz, Germany,
April 1998, pp.137-142.

[38] Kantardzic M. Data Mining: Concepts, Models, Methods,
and Algorithms. New York, USA: Wiley-Interscience, 2003.

[39] Witten H I, Frank E. Data Mining: Practical Machine Learn-
ing Tools and Techniques with Java Implementations. New
York, USA: Morgan Kaufmann, 2000.

[40] Noble W S. What is a support vector machine? Nature
Biotechnology, 2006, 24: 1565-1567.

[41] Vapnik V N. Statistical Learning Theory. New York, USA:
Wiley-Interscience, 1998.

[42] Sebastiani F. Machine learning in automated text categoriza-
tion. ACM Computing Surveys, 2002, 34(1): 1-47.

[43] Eclipse. http://www.eclipse.org, 2010.
[44] Panjer L D. Predicting Eclipse bug lifetimes. In Proc. the

4th International Workshop on Mining Software Reposito-
ries, Minneapolis, USA, May 2007, pp.1-8.

[45] Baeza-Yates R, Ribeiro-Neto B. Modern Information Re-
trieval. Boston, USA: Addison-Wesley Longman, 1999.

[46] GNATS. http://www.gnu.org/software/gnats, 2010.
[47] JIRA. http://www.atlassian.com/software/jira, 2010.

Jaweria Kanwal received her Master’s degree in com-
puter science from Gomal University, Pakistan in 2004, and
M.phil. degree from Quaid-i-Azam University, Islamabad,
Pakistan in 2011. Her M.phil thesis involved the automatic
assignment of priority to newly arrived bugs by mining the
historical bug repositories data, as presented in this paper.
Her research interests lie in data mining, software reposito-
ries and text categorization.

Onaiza Maqbool received her
Ph.D. degree in computer science
from the Lahore University of Mana-
gement Sciences in 2006. She is
an assistant professor at the Depart-
ment of Computer Science, Quaid-
i-Azam University, Islamabad, Pak-
istan. Prior to joining Quaid-i-Azam
University, she worked in the soft-
ware industry for some years. Her re-

search interests lie in exploring machine learning techniques
to solve software engineering problems. She has published
more than twenty papers in well reputed journals and con-
ferences.

