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Abstract  Support vector clustering (SVC) is an important boundary-based clustering algorithm in multiple applications
for its capability of handling arbitrary cluster shapes. However, SVC’s popularity is degraded by its highly intensive
time complexity and poor label performance. To overcome such problems, we present a novel efficient and robust convex
decomposition based cluster labeling (CDCL) method based on the topological property of dataset. The CDCL decomposes
the implicit cluster into convex hulls and each one is comprised by a subset of support vectors (SVs). According to a robust
algorithm applied in the nearest neighboring convex hulls, the adjacency matrix of convex hulls is built up for finding the
connected components; and the remaining data points would be assigned the label of the nearest convex hull appropriately.
The approach’s validation is guaranteed by geometric proofs. Time complexity analysis and comparative experiments suggest

that CDCL improves both the efficiency and clustering quality significantly.

Keywords

1 Introduction

Clustering focuses on forming natural groupings of
data points that maximize intra-cluster similarity and
minimize inter-cluster similarity. It has been used for
decades in image processing, pattern recognition, and
now in instance-based learning, etc. Among the previ-
ous studies™, the support vector clustering (SVC)[2'4],
inspired by the support vector machines (SVMs)®!,
and its variants(%%! are recently emerged algorithms to
characterize the support of a high-dimensional distribu-
tion. Actually, the SVC is a boundary-based clustering
algorithm for its ability to generate cluster boundaries
of arbitrary shape.

Assuming that there are N points {1, @s,..., N}
in a dataset X, where ; € R? in data space with
i € [1,N]. The procedure of clustering these data
points by the SVC consists in general of two main
phases: SVM training to estimate a support function
and cluster labeling to assign each data point to its

support vector clustering, convex decomposition, convex hull, geometric

corresponding cluster. With a classic Gaussian kernel,
the appropriate support vectors (SVs) are collected by
solving a dual problem!['6! which is related to the kernel
width ¢ and the penalty term C'. Since the SVs locate
on the surface of the hypersphere (with radius R), we
can check the distances from m (m < N) segmers sam-
pled on the line segment connecting any two points to
the center « of the hypersphere to verify if they belong
to one cluster.

Apparently, besides solving the dual problem,
the labeling step with time complexity of O(N?m)
takes most of the computation time for the entire
SVC process! ™8 Thus, it is crucial to acceler-
ate the labeling speed, especially for large-scale prob-
To achieve this objective, some insightful
strategies have been done to replace the complete
graph (CQG) strategy!’, such as the support vector
graph (SVG)?, proximity graph of delaunay (DD)[®!,
minimum spanning tree (MST), k-nearest neighbor
(ENN)[20-211 " divide- and conquer-based methods[?2-23],

lems.
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cell growth based method¥, maximal margin clus-

tering (MMC)[25-26] ' cone cluster labeling (CCL)M1%:27)
and equilibrium based approaches!7-9:17-18:28-29]  Hoy-
ever, these approaches either reach lower cost with
higher error or improve clustering results with the price
of large increase of cost. Neither of them consider
improving the accuracy as well as reducing the time
complexity by decreasing both the number of points
N and the sample rate m in the labeling step. If we
get both N’ (« N) and m’ (< m), then a signifi-
cantly faster cluster labeling method with time com-
plexity O(N"?*m/) < O(N*m) could be achieved.

Consider the previous problems, aiming at achiev-
ing improvements on both efficiency and accuracy, a
convex decomposition based cluster labeling (CDCL)
algorithm is proposed in this paper. In the design and
implementation of the CDCL algorithm, our paper’s
main contributions lie in two aspects: 1) In order to re-
duce the account of sampled point pairs, we provide a
framework to partition the whole set of SVs into a num-
ber of non-overlapping subsets for constructing convex
hulls. The vertices of each convex hull correspond to a
subset of SVs. Since the SVs are the boundary points,
the absolute majority of inner points are enclosed by
these convex hulls separately. Therefore the judgement
for the connected components can be transferred to
check the connectivity of any two nearest neighboring
convex hulls (NNCHs) by a few points. 2) To avoid
checking the weak connected components or irregular
shaped components incorrectly, we also have studied
the crucial factors dominating the connectivity of two
NNCHs, and give a novel definition of quasi-support
vectors (QSVs). More importantly, regarding for the
function of QSVs, an effective sampling sequence is
found to reduce the sample rate significantly (approxi-
mately less than 2 in average) without sacrificing the
clustering quality. Time complexity analysis and com-
parative experiments with the state-of-the-art methods
suggest that the CDCL improves both the efficiency
and clustering quality significantly.

The remainder of this paper is arranged as follows.
We briefly review the most work on their principle,
merit and limitations that related with SVC in Sec-
tion 2. Section 3 formally introduces the framework of
the CDCL as well as its geometric model. Section 4
discusses the time complexity of the proposed labeling
algorithm in comparison of the state-of-the-art meth-
ods. Compared with the traditional ones, Section 5
details the evaluations with respect to accuracy and ef-
ficiency. Finally, the last section draws conclusions for
this study with the future work.

2 Related Work

As a time-consuming work, the cluster labeling has

attracted most of attentions, which first computes the
adjacency matrix, and then labels the whole data points
in terms of the adjacency matrix[®19. Originally, Ben-
Hur et al.l?! proposed the CG to make adjacency matrix
between all the point pairs, which has a highly inten-
sive complexity (O(N?m)). To reduce the complexity
of CG, proximity graph (PG) methods, i.e., DD, MST
and kNN, are proposed by [6]. They constructed an
appropriate PG to model a dataset, in which vertices
are data points and edges connect point pairs to model
their proximity and adjacency. Though the PG meth-
ods can significantly reduce the cluster labeling time
(usually O(N) or O(Nlog N)), they fail frequently in
labeling the clusters correctly and their time comple-
xity grows exponentially as the dimension increases!' 7.

To overcome the difficulties of the PG based ap-
proaches, Lee et al.™8] presented a robust labeling
method namely reduced complete graph (R-CG) on a
topological property of a trained kernel radius function.
Although this algorithm has very low time complexity
of O(INlog N) (I is the times of iteration), only sta-
ble equilibrium points (SEPs) employed to represent
dataset and to find the connected components usua-
lly lead to relatively high error on irregular shaped
datasets!'. In fact, since all the points are taken into
account, the R-CG also has pricey computation for [
is usually greater than 20. To further improve the ac-
curacy, [9] thus developed equilibrium based support
vector clustering (E-SVC) which introduces a transi-
tion point between two neighboring SEPs to check the
connectivity of the corresponding basin cells. Later, a
weighted graph and attractors?”]
make the algorithm more robust. Unfortunately, too
much time consumed by seeking the transition points
or constructing attractors even causes them run rather
slower than R-CG.

By adopting a multi-sphere structure, [24, 30] en-
riched the labeling algorithm by cell growth which is
able to find the cluster prototype and obtain the natu-
ral grade of membership in partition. Practically, sim-
ilar to [12], too much time is consumed by both the
iterative constructing centroids and surfaces and searc-
hing the nearest neighbors when the cells are growing
up. Meanwhile, maximal margin based framework!2!
has emerged for clustering. However, it is problematic
for time-consuming since the complexity is related to
the dimensionality of data. Different in approach, a re-
cent insightful paper of [17] developed a fast support
vector clustering (FSVC) algorithm which constructs
an amount of small balls using the whole dataset and
looks for stable equilibrium vectors (SEVs) as proto-
types from the centers of balls separately. Then
finding the connected components could be done by
sampling the line segment connecting the SEV pairs

were constructed to
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corresponding to small balls. However, based on the
assumption of circular distribution of clusters, both
constructing and intermediate merging balls, similar to
k-means, spectral clustering, etc.[31732) suffer from in-
stabilities, either because they are cast as non-convex
optimization problems, or because they rely on hard
threshold of distances.

Other achieved papers927:33] presented the CCL
method which constructs cone-shaped neighborhoods
for SVs, and then observes the intersecting situation
among neighborhoods to generate the adjacency ma-
trix of SVs: two SVs belong to the same cluster if their
cones are intersected. In geometric, all of the SVs have
identical distance from itself to the center of hyper-
sphere, such that verifying if the intersected cones ex-
ist will be imposed by ¢ seriously. Therefore, a ¢ list
is required by the CCL. Thus the disadvantage of the
CCL lies in expensive cost, which is used in construct-
ing cones, observing intersecting situations, searching
parameters. Furthermore, the heavily overlapping and
slowly shrinks support vector cones for producing small
number of clusters of the CCL may not fit for dataset of
multi-classes and high-dimensional. Actually, it is the
regardlessness of difference between outliers and noise
points that leads to the requirement of ¢ list. Thus
Ping et al.l* recommended a noise elimination algo-
rithm which could distinguish the noise points from the
outliers without affecting the clusters’ profiles.

3 Convex Decomposition Based Cluster
Labeling

3.1 Preliminary

This preliminary follows closely the derivation of [7-
9, 18]. Since an appropriate width ¢ of the kernel func-
tion is set to obtain the minimal hypersphere approxi-
mate covering, the solution can be considered as a gra-
dient dynamical system (2) associated with the trained
kernel function R?(x).

R*(z) = || 9(z) — ol (1)
% = —VR*(z). (2)

In (1), &(-) is the nonlinear mapping function®. There
exists a unique solution (or trajectory) z(-) : R —
R™ for each condition x(0) = g is guaranteed since
it is twice differentiable and the norm of VR?(x) is
bounded. Here the Z satisfying the equation VR?(z) =
0 is called equilibrum vector and is called an SEV if all
the eigenvalues of its corresponding Jacobian matrix,
Jr(Z) = V2R?(z), are positive.

At the point of convergence, the SEVs are helpful for
constructing the convex hulls in this paper. We further-
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more use the SVs to construct convex hulls and find the
connected convex hulls for facilitating the cluster label-
ing. Moreover, in Appendix we strictly prove Theorems
1~2, 4 and Lemmas 1~3 of the following subsections.

3.2 Convexity of Clusters in Feature Space

As the prior knowledge of the proposed CDCL algo-
rithm, the convexity of clusters is investigated in this
subsection. In order to facilitate the presentation of
the proposed strategy, we take no account of both noise
points (eliminated by the algorithm in [14]) and outliers
(eliminated by the penalty term C).

Definition 1 (Hyper Convex Polyhedron). In fea-
ture space, the hyper convex polyhedron is a convex poly-
hedron whose cross sections always satisfy the property
of convewity!34.

Theorem 1. Based on the solution of the minimum
enclosing ball (MEB) problem, a support hyper convex
polyhedron (SHCP, denoted by H) can be defined and
constructed by all the SVs which lie on the hypersphere
acting as vertices.

Lemma 1. Any support vector v; (v; € V), in fea-
ture space, could not be represented by the convex com-
bination of the others in V\v,.

Theorem 2. Employed as vertices, in feature space,
the SVs whose account is greater than 3 can construct
a hyper convex polyhedron.

Since each cluster is enclosed by a contour across a
number of SVs, in feature, the SVs surrounding a clus-
ter can certainly construct a hyper convex polyhedron.
Apparently, the aforementioned convexity will be pre-
served.

3.3 Convex Decomposition for Support Hyper
Convex Polyhedron

3.3.1 Analysis of Separability

Lemma 2 (Decomposition). An SHCP can be de-
composed into multiple hyper convex polyhedrons, and
for each one, the vertices are a subset of SVs. Further-
more, there will be no intersection eristing in any two
vertex sets.

Lemma 3. The SHCP could be decomposed into
a number of non-overlapping hyper convex polyhedrons
whose vertices are SVs. If the distance between any
two vertices ®~(v;), " (v;) (i # j) is lower than

D = 2\/—111(7 '1q_R2), they should be assigned with the

same label. ®~'(-) maps the data point from feature
space back to data space.

3.3.2 Decomposing SHCP into Convex Hulls
Definition 2 (Convex Hull). Vi € [1, Ny,], V; C RY,
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the convex hull of V; is defined as

CH(V;) = {a::c = Z Ak Tk,
1<kg|N|
Z Me=1,xp € Vi, A =0, N € R}.
1<ELING|

Theorem 3. In feature space, the inner points of
support hyper convex polyhedron (IPSHCP) denoted by
Z, is defined by the data points that locate in SHCP
and could be represented by the conver combination
of V. Let S denote the clustered data without out-
liers, T is the subset of S\V. While the SHCP is de-
composed into a number of sub-SHCPs, with the no-
tation of H; (i € [1,Nv]), T can also be partitioned
into I; which could be represented by V;. Moreover,
all the data points in T; locate in the convex hull con-
structed by vertices of V; while they are mapped back to
data space. These convex hulls, denoted by CH(V) =
{CH(V}) UCH(V2)U---U CH(Vn,,)}, are built up by
vertez sets and inner points mapped back from V and T
by means of ®~1(-) respectively.

Proof. This is omitted for that it is obvious and
can be easily inferred from the definition of SVs and
Lemmas 2~3. For more intuitive understanding of the
IPSHCP, we scatter these data by means of green points
in Fig.1. O

Quasi-Support Vectors

Qutliers

~———— Original Contour

Shrunken Contour

Fig.1. Figure for Theorem 3. A partial figure of ring[7) clustered
by CG[2l algorithm with ¢ = 2, C = 0.1. The regions encircled
with dash-dot line, denoted by CH(V;) and CH(Vj;), are two
convex hulls constructed by the current SVs circled by red circle.
Without SVs shared by each other, the two components which
enclose CH(V;) and CH(V}) respectively are overlapping (con-
nected) in the original contour (red curve) while non-overlapping
in the shrunken contour (black curve). On the shrunken contour,

the QSVs are marked by green circle.

Theorem 4. In feature space, there might be some
points locating in the hypersphere but outside the SHCP.
And, while being mapped back to the data space, these
points inevitably locate outside all the partitioned con-
vex hulls.

According to Lemmas 2~3, these decomposed con-
vex hulls are non-overlapping in data space. Appa-
rently, because of their distance to the center « is
lower than R, as well as their particular locations,
these data points locating between two nearest but non-
overlapping convex hulls might play an important role
in finding the connected convex hulls. Before detailing
how these points perform, we prefer to give a defini-
tion first. For the sake of readability, in the following
descriptions, we use v; (v; € V) and x; (x; € Z) to rep-
resent either the SVs and IPSHCP in feature space, or
vertices of convex hulls and inner points of these convex
hulls in data space, respectively.

Definition 3 (Quasi-Support Vector). For a dataset
X with outliers Xo specified by appropriate kernel width
q and penalty term C, the data point which satisfies
Theorem 4 is in the set of Xqsv (= X\(SU Xp)) and
is defined as quasi-support vector (QSV).

Although the distances from the QSVs to the cen-
ter « are lower than R, the QSVs could become SVs
while ¢ is tuned appropriately. The relationship be-
tween SV and QSV is depicted by Fig.1. We notice that
the current SVs are these points lying on the original
contour and are marked with red circles. However, if
the contour are tighten by means of an increased ¢, the
QSVs marked with green circles, which locate outside
of CH(V;) and CH(V;) in the red contour are being
new SVs on the shrunken contour. In that case, the
current SVs will be outliers. From Theorem 4, it is
the sparse and discrete distribution of data points that
causes the non-overlapping convex hulls seldom to en-
close all of the data points either in feature space or
in data space. An overlapping tolerance way of par-
titioning the vertices for convex hulls can inhibit the
QSVs, however, more redundant outliers might be in-
troduced to interfere the cluster labeling. Therefore,
in this study, we prefer to partition the SHCP into a
number of non-overlapping convex hulls and explore a
fresh way to employ the QSVs for facilitating the clus-
ter labeling.

3.3.3 Connectivity Analysis Among Convex Hulls

Consider whether the QSVs is locating between two
nearest neighboring convex hulls or not, four crucial
scenarios illustrated by Fig.2 might help to find the
connected components.

e A number of QSVs exist between two NNCHs
(see Fig.2(a)). The red contour shows that the two
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components enclosing CH (V;) and CH (V;) respectively
are connected. It is the QSVs that enhance the
connectivity; we therefore call this relationship of the
two components are “strong connection”.

e The QSVs exist between two nearest but discon-
nected neighboring convex hulls (see Fig.2(b)). Yet,
there is still a tendency of the two components to be
connected, i.e., relaxing the contour by a finely de-
creased q. Therefore, this relationship is called “con-
ditional disconnection”.

Fig.2. Four crucial scenarios with or without QSVs locating be-
tween two convex hulls, ie., CH(V;) and CH(V;). The inner

points are omitted in the grey region of the convex hulls. (a)

QSVs between connected components. (b) QSVs between discon-
nected components. (c) Connected components without QSVs.

(d) Disconnected components without QSVs.

e No QSVs exist between two NNCHs (see Fig.2(c)).
However, an appropriate g could make the two compo-
nents be connected. Actually, a little change for ¢ can
let them dispatch from each other. So, this could be
recognized as “weak connection”.

e No QSVs exist between two NNCHs and the cor-
responding two components are obvious disconnected
(see Fig.2(d)). In this case, the relationship is “discon-
nection”.

In Fig.2, CH(V;) and CH(V;) are two convex hulls
whose vertices are the SVs highlighted by red dots and
which are enclosed by red contour with different gq.
CH(V;) and CH(V}) are connected in Figs. 2(a)~2(b)
while disconnected in Figs. 2(c)~2(d). The QSVs locat-
ing between CH (V;) and CH (V;) are marked by hollow
circle.

According to the aforementioned analysis, we no-
tice that the QSVs expand the contour outside the

J. Comput. Sci. & Technol., Mar. 2012, Vol.27, No.2

convex hulls, thus the four sub-figures can be obtained
by different q. Practically, the QSVs can increase the
connection probability of two nearest neighboring con-
vex hulls. Consider these scenarios, an instinctive sug-
gest would be judging for the connected components
by means of finding the key QSVs and analyzing their
capabilities of expanding contour of the corresponding
convex hulls. The expanded contours which are overlap-
ping with or without QSVs should be connected, oth-
erwise disconnected. However, it is hard to check out
the QSVs between two NNCHs. Fortunately, it is note-
worthy that only the QSVs which locate between two
NNCHs can enhance the connection probability of two
corresponding components. Since the overlapping re-
gion is critical for both clustering and classificaiton!®!,
an alternative strategy is proposed by the authors for
finding the connected components, i.e., to sample the
line segments crossing the dense region of QSVs. This
difficult work thus can be transferred to checking the
connectivity of two NNCHs without obtaining the exact
QSVs.

To achieve this goal, suppose that the dimensiona-
lity of any data point @x; is d, some essential definitions
are promoted here.

Definition 4. The distance between any two data
points x;, xj(x;, x; € X;1,j € [1, N]) is defined by

d@i,z;) = /(@i — z) (@i — ;). (3)

Definition 5. (Quasi-Distance of Convex Hulls).
The quasi-distance between convex hulls CH(V;) and
CH(V;), denoted by dg, is defined by the distance be-
tween their nearest vertices. It is calculated as

d.(CH(V;), CH(V;)) = mind(vik, v1)
s.t. i,j € [17NV]7 ke [laNi]a le [17Nj]>
vir C Vi, v €V

where V;,V; are the vertex sets of CH(V;) and CH (V)
whose account are N; and N; respectively. Ny is the
number of non-overlapping convex hulls.

Theorem 5. With the dynamic system of
(2), the SHCP can be partitioned into a num-
ber of hyper convex polyhedrons, {Hy,Ho,...,Hn,},
which satisfy (7). While they are mapped back to
data space, the corresponding convex hulls, {CH(V7),
CH(Va),...,CH(VN,)}, which are non-overlapping
can be obtained.

Proof. Proved by [7-9, 29], each SV reaches a unique
local minimum position with respect to the dynamic
system (2). Along with Lemma 2 and Theorem 3, in
data space, these convex hulls are non-overlapping. [J
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3.4 Assigning Labels to Convex Hulls

3.4.1 Group the SVs by Index of Convex Hulls

Since the SVs of a convex hull will converge to one
SEV with respect to system (2), we use the index of
convex hulls to group the SVs according to function
ConstructConvexHullsbySVs(V) which is explained by
Algorithm 1. In lines 5~16, all the SVs (Ny in to-
tal) are employed to locate SEVs, and then they will
be grouped by the index of SEVs to construct different
convex hulls. Following Theorem 5, Algorithm 1 will
actually return a unique partition of the SHCP.

Algorithm 1. ConstructConvexHullsbySVs())

Input: the collection of support vectors V

Output: a set of convex hulls (denoted by Scy) with

their SEVs, vertices and indexes

1 Nsv—|V]|,j—1k<1
Scu.sev[] = @ //the array of SEVs for the decom-
posed convex hulls

3 Scu.vertex[] = @ //the set of vertices for decomposed
convex hulls

4 Scp.bl[] =0 //the Scu.Ibl[j] corresponds to the label
(index) of set Scr.vertex[j]

5 fori=1to Nsv

6 set xg «— v; €V

7 Numerically integrate (2) forward with an initial

point x¢ to locate an SEV x;
8 if 7 ¢ Scu.sev

9 then Scp.sev[j] — x;

10 Scu.vertex[j] «— Scu.vertex[j] U {v;}

11 SCHlbl[j] — 7

12 je—ji+1

13 else find ;] == Scu.sev[k]

14 Scn.vertex[k] « Scn.vertex[k] U {v;} //group
v; with the existed index

15 end

16 end

3.4.2 Merging and Labeling Convex Hulls

Since only the SEVs employed in finding the con-
nected components frequently failed in labeling clusters
correctly'17l we explore a new way which employs
a small number of SVs with much fewer samples to
achieve improvements on both efficiency and accuracy.

Consider a division of the SHCP, to avoid redundant
and meaningless sample checks, finding the connected
components should be taken in the NNCHs not in all
the pairwise combinations. Similar to [36], the intuition
of the proposed method can be considered as one kind
of hierarchical clustering from bottom to top. From
bottom to top, we recursively check the connectivity of
two NNCHs to get the final result. Furthermore, by
the transferred way, only the nearest vertices from the
convex hull pairs are chosen for sampling. Therefore,

the computational requirement is significantly reduced
as the size of sampled points are greatly decreased.

In order to analyze the connectivity of two neigh-
boring convex hulls, taking CH(V;) and CH(V;) for
example, the concept of the proposed method is de-
picted by Fig.3 while the corresponding pseudocode of
function MergeLabelConvexHulls(S ¢y ) is explained by
Algorithm 2. In lines 5~7, firstly, we find two nearest
neighboring vertices vir(vir € V;) and vji(vj € Vj).
Then, for v;;, we retrieve the second nearest neighbor-
ing vertex v;r from V; in CH(Vj). The same operation
is done synchronously to get two neighboring vertices
v, and vy for vj. As shown in Fig.3, sampling the
line segments connecting either v;; and v;; or v and
v;;» gets incorrect results; yet too many repetitive com-
putations consumed by sampling the other SV pairs.

Fig.3. Sampling way towards checking the connectivity of two
nearest neighboring convex hulls CH(V;), CH(V;). wvim locates
on the center of the line segment connecting v, and v/, while
vjm is the center point of line vjv;;/. The quasi-distance be-
tween CH(V;) and CH(V}) is dg(CH (V;), CH(V})) = d(vs, vj1).
Therefore, two dash line segments should be sampled for this

judgement.

Algorithm 2. MergeLabelConvexHulls(Scr)

Input: the set of convex hulls returned by
ConstructConvexHullsbySVs(V)

Output: the labels of the convex hulls

1 Ncu < |Scu.sev| //the number of convex hulls

2 set A;;j =0fori,j=1,2,...,Ncu

//adjacency matrix
3 fori=1to Ncy
4 for j «— j+1to Ncu

5 Vik, Vj; = arg min dq(Scn.vertez[i],
Scu.vertez[j)),

6 v = argmin d(Scy.vertez[i|\vik, v ;i)

7 v = argmin d(vik, Scm.vertex[j]\vi)
//Vik,Virr € Scu.vertex|i], v, vy € Sch.
vertex[j]

8 A;; =CheckConnforConvexHulls(vik, vip, vji, V1)

9 end

10 end

11 if Scg.vertex[i] and Scn.vertez[j] in the same con-
nected components of the graph

12 induced by A

13 then set Scu.lbl[i] = Scu.lbl[j]
//assign the same cluster index
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In line 8, to generate the adjacency matrix, we respec-

tively sample the points on line segments of v;,vU;,

and U;;0;,, where vj,, = %(vﬂ +vjp) and v, Vi =
%(vik +v;,). Then it guarantees that the line segments
can cross the overlapping region in which the QSVs may
locate.

Due to the special form of the contour, in Algorithm
3, we present a two-way alternate sampling method
CheckConnforConvexHulls(v;k, virs, vj1, vjir) to verify
if outliers exist. Once an outlier is found on the line seg-
ment, CH(V;) and CH(V}) are disconnected, otherwise
they are connected. The difference between the conven-
tional sampling strategy and the proposed strategy also
includes the sample sequence implemented by the sub-
function CheckLine(x1,x2). It inherits the advantages
of the binary search and the breadth-first traversal al-
gorithms. Suppose that Ly is 10, the sample sequence
generated by CheckLine(x1,x2) can be illustrated by
Fig.4. Theoretically, since the QSVs are able to expand
the corresponding contour, the closer from a sample
point to both sides of the convex hulls, the more im-
possible that the sample point is an outlier. Therefore,

Algorithm 3. CheckConnforConvexHulls(vik, vk, vj1,
V)
Input: two point pairs extracted from the convex hulls
CH(V;) and CH (V) respectively
Output: adjacency matrix A

1 aim <—0,ajm «— 0

2 Vi = %(Um + Vi), Vim = %('Ukl + vgrr)

3 aim = CheckLine(vim, v;i)

4 if (aim == 1) then A;; =1 //connected

5 else

6 if ((ajm = CheckLine(vim,vir)) == 1) then A;; =1
//connceted

7 else A;; =0 //disconnected

8 end

9

10 function CheckLine(x1, x2)

11 ¢~ 1,2« 0,Ng «— L; //LS is the number of segmers,
even number is recommended

12 Sp = {1, Ns} //the set of past sample points in order

13 SL = |S.p| //the number of past sample points

14 while (|SL| < Ns)

15 fori=1to |Sp|—1

16 j « floor(5(Spi] + Spli + 1]))
//round down to the closet integer
17 if j € Sp then continue
18 else \ «— NLS
19 if R(Az1 + (1 — X\)x2) > R then return 0,
break //disconnected
20 S.l— SL+1,Sp = sort(SpU{j}) //in sequence
21 end
22 end
23 end

24 return 1 //connected
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Fig.4.

CheckLine(@1, ®2) while Ls = 10. Between points 1 and @2,

Sample sequence generated by the proposed function

the exact sample sequence is {5, 3, 7, 2, 4, 6, 8, 1, 9}.

we recommend a nonlinear sample sequence like {5, 3,
7, 2, 4, 6, 8, 1, 9} to replace the conventional linear
sequence as {1,2,...,9}. Then in the case of Fig.2(d),
the best situation is that one sample point is sufficient
for giving the final decision correctly. The proposed al-
gorithm, certainly, might consistently outperform the
traditional algorithms which ignore the contributions
from QSVs in saving computational time to find the
connected components.

If there are M convex hulls with Ngy SVs, to merge
convex hulls, a collection of 2 x C}, = P point pairs
are required for sampling by the proposed method. Un-
fortunately, for algorithms in [10, 14, 17, 27], CJQVSV
point pairs should be taken into account. For example,
if Ngy is 20 for 4 convex hulls, the point pairs required
by the proposed algorithm is P? = 12, whereas the
traditional algorithms need exactly C%, = 190 pairs.
Instinctively, the CDCL will take much less time in
merging and labeling convex hulls than the traditional
ones, especially in dealing with large scale but low di-
mensional data. In contrast with the high-dimensional
data, the profile of the low-dimensional data can be
stroked by much fewer SVs.

3.5 Assign the Remaining Data Points

Algorithm 4 shows the CDCL method. In line 1, for
the given g value, it collects the SVs set V by solving the
dual problem. Then in line 2, the SHCP constructed
by V is decomposed into convex hulls S¢y according to

Algorithm 4. CDCL(X,q,C)
Input: the dataset X', Gaussian kernel width ¢ and the
penalty term C
Output: clustering labels for all the data points
1  collect V for g by solving dual problem
Scu « ConstructConvexHullsbySV (V)
{Scu, A} «— MergeLabelConvexHulls(Scw)
Labels «— FindConnComponents(A)
for each = € X\V
inz < find the nearest SV from x
Labels[z] < Labels[ving]
end
return Labels

© 00 O Ut i W N
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the function ConstructConvexHullsbySV (V). In
line 3, the adjacency matrix A is obtained by
MergeLabelConvexHulls(S¢g).  The connected con-
vex hulls, namely cluster, can be immediately found
by means of any standard algorithm, e.g., the
depth first search (DFS). Therefore, the output of
FindConnComponents(A) in line 4 is an array with size
Ny which contains the cluster labels. Finally, similar
to [10, 17, 27], the remaining data points are separately
assigned with the labels of their nearest SVs.

4 Time Complexity Analysis

To analyze the time complexity of the proposed
method, let N be the number of data points in a
dataset, Ngy be the number of SVs, [ be the ave-
rage number of iterations for each data point to lo-
cate its corresponding local minimum via the steepest
decent process” and m be the sample rate for find-
ing the connected components. Apparently, the time
cost of constructing convex hulls by SVs (Algorithm
1) and merging the extracted convex hulls (Algorithm
2) are dependent on the Ngy and the actual num-
ber of convex hulls (denoted by N¢g) which is usually
much lower than Ngy. Cluster assignment of the con-
vex hulls from adjacency matrix by DFS algorithm and
cluster matching for each takes O(N¢y) and O(N) of
elementary calculation respectively, which are ignorable
in practice. Thus the time complexity of the CDCL is
O(INgy + 2mNcy). Compared with the state-of-the-
art algorithms, the time complexity of these algorithms
are listed in Table 1.

Table 1. Time Complexity of Labeling Approaches

Index Method Time Complexity
1 CG O(mN?)
2 DD O(Nlog N +mf(N))
3 kNN O(Nlog N + mkN)
4 MST O(Nlog N + mN)
5 R-CG O(IN + mN2,)
6 E-SVC O(IN +mN2, +2[N¢p)
7 CCL O(N%,)
8 FSVC O(IN, +yN?)
9 CDCL O(lNSV + 2mNCH)

In Table 1, f(N) is a function of N for the DD al-
gorithm, & is the number of nearest neighbors (k = 4
is preferred) used by the KNN. Controlled by parame-
ter p in [17], Np is the number of small balls extracted
from the dataset and  ranges from % to 1. Since
the number of edges in DD is linear in size N for 2D
datasets, it is even more than quadratic in size for the
high-dimensional datasets, thus f(N) implies that the
DD would take much more time than most of the others.
When we move to high-dimensional datasets, kNN and
MST are attractive, since the number of edges of graphs

constructed remains linear in N. However, they fail in
accuracy frequently that will be summarized in the next
section. It is worth mentioning that we omit the size of
parameter list required by the CCL algorithm, there-
fore, the actual time consumed by the CCL usually ex-
ceeds the observed time complexity. Another attractive
algorithm is FSVC, the cost is almost linear in number
of small balls if v = 1. Unfortunately, similar to the
instability converge of k-means®?l, FSVC is intrinsi-
cally unstable for partitioning data points into small
balls by selecting instance randomly. Among these al-
gorithms, since the N¢py is usually much smaller than
Ngy, CDCL can be considered as linear in size of SVs,
especially for a small m. As discussed in Section 1, one
of our objectives is to decrease m for efficiency. There-
fore, as shown in Table 1, CDCL can be expected to
produce competitive results in most cases.

5 Experimental Evaluation
5.1 Datasets and Experimental Settings

To demonstrate the effectiveness and performance of
the proposed method, we compare it with the state-of-
the-art methods listed in Table 1 on various datasets:
ring, sunflowers, five-Gaussians, orange and twocircles
which are widely used in the literatures!'®17-37-38] and
iris, wisconsin, wine, zoo and movement_libras which
are from UCI repository®?. All the datasets are de-
scribed in Table 2. Two series of simulations are con-
ducted with Core dual 2.66 GHz and 3 GB memory size
machine.

Table 2. Description of the Benchmark Datasets

Dataset Description

Datasets

Dims Size No. Classes
Sunflowers 2 200 9
Orange 2 140 9
Twocircles 2 300 2
Five-Gaussians 2 1000 5
Iris 4 150 3
‘Wisconsin 9 683 2
Wine 13 178 3
Zoo 16 101 7
Movement_libras 90 360 15

The purpose of the first series of simulations is
to check whether the proposed method improves the
adaptability of finding the connected components, while
the shape of dataset is irregular, e.g., weak connectivity.
Since the shape is generally affected by the parameters,
including ¢ and C, an effective method should adapt
wide range of parameters to achieve an expected per-
formance. To evaluate both the efficiency and accuracy,
we conduct the second series of experiments on the ten
datasets and use adjusted rand index (ARI, denoted by
RIadj)[lAO] which is a widely used similarity measure
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between two data partitions where both true labels and
predicted cluster labels are given.

5.2 Adaptability for Connectivity of Convex
Hulls

Although R-CG is one of the fastest algorithms, it
performs ineffectively while processing the case of weak
connected components!'. To check the adaptability
of the proposed method, we use ring to construct a
number of weak components and compare its perfor-
mance with R-CG. The results are illustrated by Fig.5.
Obviously, since three line segments cross outside the
contour (the red bold line in Fig.5(a)), R-CG incor-
rectly find the connected components. On the contrary,
by employing the proposed method, the corresponding
lines in Fig.5(b) results in correct clusters.

Fig.5. Comparison test on sampling strategy between R-CG and
CDCL, where ¢ = 2, C = 0.1 while the inner points and out-
liers are removed. The SVs are denoted by red circles while the
SEVs and the generated points are marked by green rectangles
and blue circles respectively. (a) Sampling strategy of R-CG. (b)
Sampling strategy of CDCL.

The orange is used to verify the adaptability and
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parameter sensitivity of the proposed method. Com-
parison is conducted between CCL and CDCL, which
is presented in Fig.6. Since the radius of the hyper-
sphere is controlled by ¢, performance of CCL is almost
independent of C'. Furthermore, we notice that the pro-
posed method not only outperforms CCL in their best
performance, but also shows its stability and satisfac-
tion of reaching an expected accuracy with much wider
parameter combinations. In evidence, these compar-
isons suggest that CDCL outperforms the traditional
methods in capability of generalization.
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Fig.6. Comparison of ARI measures of CCL and CDCL. X-axis
represents the range of C from 0.1 to 1, and Y'-axis the range of
q from 2 to 20. The actual values of Rl,q; are stroked by dif-
ferent colors which can be found at the right color bar. (a) ARI
measures of CCL. (b) ARI measures of CDCL.

5.3 Comparisons of Benchmark Datasets

To achieve full comparisons, we include cluster la-
beling time (consisting of convex decomposition, merg-
ing convex hulls and labeling the remaining data), the
number of clusters and RI,q4; achieved by the evaluated
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algorithms separately and list the results in Table 3.
Rank of each item highlighted by boldface with super-
script is given depending on its performance followed
by corresponding rank (from 1 to 3).

For orange, twocircles and wisconsin, CDCL spends
the least time in cluster labeling. More than this, it
almost achieves the first three rank in each evalua-
tion whereas performance of the others are unstable.
In most cases, kNN, CCL and FSVC perform well.
But, the cluster labeling time of these algorithms in-
crease dramatically as the dimensionality and size of
a dataset increase. Another time-consuming algorithm
is E-SVC, which fails in handling the 90-dimensional
dataset movement_libras. It is worthy to note that DD
hardly clusters such high-dimensional data since it can-
not construct the graph; therefore, the DD is only suit-
able to deal with low-dimensional data. Intuitively, we
expect an effective algorithm could achieve a high ac-
curacy with a corresponding number of clusters close
to the exact number of classes. In Table 3, Ng denotes

the number of clusters got by these algorithms while
N¢ is the exact number of classes summarized in Table
2. A good clustering algorithm should avoid splitting
the same group of data into different clusters*!l, thus
we highlighted the number of clusters by boldface,
which is closest to the real number of classes. Obvi-
ously, Ny found by the proposed method is almost the
same with N¢, which outperforms the others signifi-
cantly. More importantly, in terms of the ARI mea-
sure, performance of CDCL is the best for most of the
datasets (namely sunflowers, orange, twocircles, five-
Gaussians, iris, wine and movement_libras), where as
CCL gives better result for wisconsin and both of R-CG
and E-SVC get the best result for zoo. Nevertheless for
these cases, the proposed CDCL obtains rank 2. Con-
sider the column 4 of Table 3, analysis of Subsection 5.2
and the description of datasets (see Table 2), we can
find that the proposed CDCL is superior to the oth-
ers in clustering data of weak connectivity. However,
FSVC frequently fails in processing datasets of high-

Table 3. Benchmark Results of Cluster Labeling Time, Number of Clusters (Ngr), Number of Classes (N¢) and Accuracy

Datasets Method Cluster Labeling Time (s) Ngr/(Nc) Rl,q
sunflowers CG 3.09168 9/(9) 1.00000°
DD 0.66696° 9/(9) 1.00000!
ENN 0.572132 9/(9) 1.00000!
MST 2.59106 10/(9) 0.994122
R-CG 1.48508 9/(9) 1.00000!
E-SVC 106.24486 10/(9) 0.986623
CCL 0.16530! 10/(9) 0.86759
FSVC 0.67017 9/(9) 0.98070
CDCL 0.75678 9/(9) 1.00000"
orange CG 1.28655 21/(9) 0.74781
DD 0.40709 15/(9) 0.83076
ENN 0.279033 11/(9) 0.914393
MST 0.77973 12/(9) 0.85503
R-CG 1.05923 9/(9) 0.928252
E-SVC 15.25184 9/(9) 0.90898
CCL 0.205062 5/(9) 0.49927
FSVC 0.77569 9/(9) 0.88476
CDCL 0.17326! 9/(9) 0.92830!
twocircles CG 9.96133 2/(2) 1.0000!
DD 11.53812 2/(2) 1.0000"
ENN 2.33760 4/(2) 0.69679
MST 17.47976 8/(2) 0.59935
R-CG 2.86713 4/(2) 0.67695
E-SVC 28.40459 4/(2) 0.735473
CCL 1.042683 2/(2) 0.761932
FSVC 0.732542 19/(2) 0.14022
CDCL 0.66909! 2/(2) 1.0000!
five-Gaussians CG 86.38930 17/(5) 0.47118
DD 22.56921 27/(5) 0.61487
ENN 71.11776 23/(5) 0.67808
MST 3279.69089 5/(5) 0.72182
R-CG 10.892633 17/(5) 0.869342
E-SVC 1079.60133 18/(5) 0.858543
CCL 413.66390 19/(5) 0.00032
FSVC 1.04425' 17/(5) 0.71373
CDCL 4.819532 11/(5) 0.88074!

(to be continued on next page)
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Table 3. Benchmark Results of Cluster Labeling Time, Number of Clusters (Ng),

Number of Classes (N¢) and Accuracy (continued)
Datasets Method Cluster Labeling Time (s) Ngr/(Nc) Rl,q
iris CG 1.11913 11/(3) 0.61780
DD 2.85248 35/(3) 0.58334
ENN 0.35029! 9/(3) 0.64143
MST 1.04676 6/(3) 0.794573
R-CG 3.05768 16/(3) 0.73737
E-SVC 4.73092 2/(3) 0.56812
CCL 0.724803 3/(3) 0.885792
FSVC 1.05975 5/(3) 0.56196
CDCL 0.657852 3/(3) 0.92218!
wisconsin CG 319.57929 8/(2) 0.77930
DD - - -
ENN 31.59080 9/(2) 0.76243
MST 111.14570 11/(2) 0.66311
R-CG 22.210453 13/(2) 0.803453
E-SVC 443.19526 46/(2) 0.13441
CCL 23.69021 2/(2) 0.90763!
FSVC 13.018072 153/(2) 0.66871
CDCL 1.28192! 2/(2) 0.868502
wine CG 2.97916 31/(3) 0.59121
DD - - -
ENN 0.46556! 14/(3) 0.56323
MST 0.79843 15/(3) 0.49680
R-CG 7.78199 20/(3) 0.79281
E-SVC 36.70322 12/(3) 0.41586
CCL 0.634752 3/(3) 0.819022
FSVC 7.60204 15/(3) 0.804193
CDCL 0.795073 3/(3) 0.89613!
z00 CG 0.60476 8/(7) 0.934213
DD - - -
ENN 0.24880! 8/(7) 0.934213
MST 0.363862 8/(7) 0.934213
R-CG 3.80894 8/(7) 0.95702!
E-SVC 19.83797 8/(7) 0.957021!
CCL 0.515223 12/(7) 0.83426
FSVC 2.65616 10/(7) 0.86791
CDCL 2.81722 6/(7) 0.946912
movement_libras CG 15.083103 139/(15) 0.24218
DD - - -
ENN 7.197473 90/(15) 0.266612
MST 41.00582 92/(15) 0.248723
R-CG 252.84331 138/(15) 0.23559
E-SVC - - -
CCL 1.02772! 230/(15) 0.08988
FSVC 226.06705 213/(15) 0.14206
CDCL 78.53238 37/(15) 0.33195!
Note: “~” means not available.

dimensionality or irregular shape, e.g., twocircles, iris
and movement_libras, and E-SVC performs ineffectively
for high-dimensional datasets while CCL fails in la-
beling the datasets with many samples, for instance,
five-Gaussians. Because, to guarantee R < 1, the
constraints in solving the dual problem required by
CCLM%27 is much more strict than the other algo-
rithms.

Since the objective of the sampling strategy is to
reduce the sample rate m required by finding the con-
nected components, another interest of our experiments
is to verify if the implemented Algorithm 3 works as

we expected. Compared with CG which employs the
same strategy with the others, we illustrate the average
sample rate required by CDCL and CG respectively in
Fig.7. By employing the proposed strategy, the average
sample rate retains lower than 2, whereas CG almost
requires twice. Particularly, for wisconsin, the ratio of
CG and CDCL reaches 11.12. So the proposed CDCL
gets an evident improvement of reducing the average
sample rate to the others.

As the aforementioned discussions, it is clear that
CDCL which is independent of shape and dimensiona-
lity and insensitive to the parameters is quite available
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for improving both efficiency and accuracy. It should
be pointed out that the results in Table 3 were ob-
tained from the programs available. Different imple-
mentation of the algorithms may result in somewhat
different speed. In particular, we did not attempt to
optimize CDCL program for faster speed at all. There-
fore, Table 3 can only be used as an indication of the
relative speed of the algorithms.

CDCL
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Fig.7. Comparison of the sample rate between CG and CDCL
algorithms.

6 Conclusions and Future Work

In this paper, a novel efficient and robust cluster la-
beling algorithm, namely CDCL, based on convex de-
composition is proposed to improve both efficiency and
accuracy of support-based clustering. Differing from
the traditional cluster labeling algorithms, we consider
to improve the accuracy as well as to reduce the time
complexity by decreasing both the number of points NV
and the sample rate m. Starting from a series of ana-
lysis of the support vector domain description, we find
that the SVs can be employed to construct an SHCP,
which can be further decomposed into a number of non-
overlapping convex hulls. The work of finding the con-
nected components, therefore, can be done between any
two NNCHs. So the number of convex hulls, denoted
by N, which would substitute N is a relatively much
smaller value. Furthermore, after analyzing the rela-
tionship of neighboring convex hulls, a newly defined
concept of QSV is suggested to dominate the connec-
tivity of two NNCHs. To guarantee an expected accu-
racy, therefore, we sample the line segments which not
only connect two point pairs of two nearest neighbor-
ing convex hulls respectively, but also cross the QSVs
with the maximal probability. Practically, this stra-
tegy is proven to overcome the weak connectivity effec-
tively. To make a further improvement, a new sampling
strategy is developed to avoid too much redundant and
meaningless operations which can significantly decrease

the sample rate and even requires only once. Then, the
time complexity of CDCL achieves O(INgy +2mNcgy ).
Since Npg is much smaller than Ngy and m is consis-
tently less than 2, the time complexity is practically lin-
ear in size of SVs. Experimental results show that the
proposed CDCL method significantly reduces the time
consumption while obtaining higher accuracy than the
traditional algorithms.

Since the size of SVs could be affected by the distri-
bution of data, e.g., even or uneven distribution, how
to control the size of SVs while obtains high quality
profiles of clusters might be an open issue for further
improvements on both efficiency and accuracy. At the
same time, the convex decomposition method reported
in this paper is envisaged to provide a systematic ap-
proach to exemplar selection, accurate behavior de-
scription, event presentation, etc. All of these potential
applications are worthy of further investigation.
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Appendix

Proof of Theorem 1. Consider the analysis in Sec-
tion 1, in feature space, the collection of SVs, V =
{v1,v2,...,Un,,}, has a radius R to the center «.
Therefore any point « sampled on the line segment con-
necting two SVs locates in the hypershpere with R(x) <
R. Following the principle of MEB[!| the hypersphere
is convex. If there is a finite set A = {1, A2, ..., Ang, }
with cardinality Ngy satisfying \; > 0 (¢ € [1, Nsv])
and YN = 1, then, the convex combination of V
meets

=1

Therefore, Theorem 1 is proved. Furthermore, this hy-
persphere is a special case of hyper convex polyhedron
if NSV — OQ. ([l

Proof of Lemma 1. If a support vector v; (i €
[1, Nsv]) is the convex combination of vertices in V' =
V\v,, ie., Z;»V:SY)#Z» Ajvj, then the value of R(v;) is
lower than R. Actually, it conflicts with R(v;) = R. O

Proof of Theorem 2. In evident, every point g
sampled on the line segment of any two SVs satisfies

R(zs) < R. That means the convexity is always exist-
ing in the convex combination of SVs. Since a sphere
should be comprised by at least 3 points, Theorem 2 is
proved. O

Proof. of Lemma 2. Suppose that the vertex set
of the SHCP is V, following Theorem 2, a subset
V:(V; C V) with Ny, (= 3) vertices constructs a hyper
convex polyhedron H;. Thus a kind of partition for V
corresponding to (A2) whose number is Ny can be ob-
tained. Although there may be vertices shared by two
neighboring hyper convex polyhedrons, e.g., H; and H;
(i # j), without considering the intersecting line seg-
ment, their inner data points cannot be expressed by
the other’s vertex set. That means (A3) can be inferred
by (A2).

V=ViUWU- --UVy,,

HD(HiUHyU---UHy,),
Vi,j € [1,Nv],i#j,H;NH; =@ (A3)
g

Proof of Lemma 3. This lemma can be expressed
following the principle of minimal hypersphere approx-
imate covering in [10, 27]. As depicted in Fig.Al, in
feature space, all the data points are mapped into the
hypersphere S with center ce. Simultaneously, for the
gaussian kernel, K(z,x) = (&(x), (x)) = ||d(2)||? =
1, it means all the data points locate on the surface of
a unit ball B with center O. Thus data actually spread
on the cap-like surface intersected by S and B3l
Fig.Al, vy, vy and w3 are samples taken from the set

In

Fig.Al. Figure for Lemma 3. If the distance between v; and
v3 is lower than D, in the hypersphere S, then they should be
assigned with the same label.
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V. & is projection of a onto the surface B. Apparently,
there is Z(v10a’) = Z(v20a’) = Z(v30a’). For any
two points in V, i.e., v; and v3, they generate two
cones CN 1, CN4 with vy, vy as the vertices, Ovi, Ovy
as axes, and Z(v10a’), Z(v20a’) as the basic angle re-
spectively. If CN;, and CN, are intersected, it means v
and vs belong to the same cluster in data space. From
the Lemmas 2.2~2.4 in [10], any data point «, in data
space, is in the cluster of v; (i € [1, Ngy]) while their

distance is lower than the radius r = o/ — 2OV1=F*) VI-F?)

Therefore, if two clusters are connected and cotfld be
assigned with the same label, the maximal distance
between two nearest vertices from each cluster is twice
of the radius r. So, for any two hyper convex polyhe-
drons, the distance 2 x r between two vertices of them,

Fig.A2. Figure for Theorem 4. It is a cross section from hyper-
sphere S. v; and v; are two SVs in V, z}, is a data point with
distance L(L < R) to the center. In sight of the SHCP, z}, is an

outlier locating outside the boundary v;v;.
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2 X _m(7v1q—R2), is the upper bound if they are con-
nected. |

Proof. of Theorem 4. As depicted in Fig.A2, the
cross section is a part of the SHCP. On the one hand,
due to the number of SVs is finite, S and SHCP are
not completely overlapping. Therefore, there might
be some data points, e.g., xi, locates in the non-
overlapping regions.

On the other hand, a data point xj and a hyper
convex hull which has a line segment v;v; which is the
nearest to xj, are taken into account for this proof (see
Fig.A2). Suppose that the distance from xj to any
inner point, e.g., the center o (every inner point is suit-
able), is greater than to the corresponding point xj;’

sampled on U;v;. Thus we get an inequality described
by

R* (97 (zy)) > R (1))
= |lzi — of|* > [Jz) — a”. (A4)

Then, using (A4) and the Gaussian kernel, the following
inequality can be deduced.

K(7H(er), 7 (zn)) < K (97 (e), 97" (1))

~alle T (@)= @I~ mall o (@) 2 w2

o~ ()|,
(A5)

—=e
= [ (@) = o7 (zp)||* > | (@) -

Obviously, these data points locate outside the corre-
sponding convex hulls while they are mapped back to
data space. O



