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Abstract

The undirected de Bruijn graph is often used as the model of communication network for its useful properties,

such as short diameter, small maximum vertex degree. In this paper, we consider the alphabet overlap graph G(k,d, s): the
vertex set V = {v|v = (v1...vx); v; € {1,2,...,d}, i = 1,2,...,k}; they are distinct and two vertices u = (uy ...ux) and
v = (v1...vx) are adjacent if and only if usy; = v; or vsys = u; (1 =1,2,...,k — s). In particular, when s =1, G(k,d, s) is
just an undirected de Bruijn graph. First, we give a formula to calculate the vertex degree of G(k,d,s). Then, we use the

corollary of Menger’s theorem to prove that the connectivity of G(k,d, s) is 2d°

Keywords
1 Introduction

We first introduce some basic concepts about graph
theorem. Let G = (V,E) be a graph with vertex set
V and edge set E. For any u, v € V | v is called the
neighbor of u if wv € E. The set of all neighbors of u
is the neighborhood of u and denoted by N(u). The
cardinality of N(u) is its degree, denoted by dg(u). If
all the vertices of G have the same degree k, then G is
k-regular. Two or more paths are independent if none
of them contains an inner vertex of another. G is called
k-connected if | V' |> k and G — X is also connected
for any set X C V with |X| < k. The greatest integer
k such that G is k-connected is the connectivity of G,
denoted by x(G). Other definitions not given can be
found in [1].

For given integers k > 2 and d > 1, directed de
Bruijn graph dB(k,d) is a directed graph with d* ver-
tices labeled by a word of length k over a certain alpha-
bet with cardinality d: there is an arc from a vertex v la-
beled by (v1 ...v2) to a vertex w labeled by (wy ... wg)
if and only if v; = w;—1 for i« = 2,... k. Undirected
de Bruijn graph UB(k,d) is obtained from dB(k,d) by
replacing each arc by an undirected edge and elimi-
nating loops and multi-edges. Alphabet overlap di-
graph DG(k,d,s) is a directed graph with the same
vertex set as that of dB(k,d): V = {v|v = (v1...vx),
v; € {1,2,...,d} (1 <i<k)}; There is an arc from a
vertex u = (uy...ug) to v = (v1...vx) if and only if
Ust; =v; (1 =1,2,...,k—s). Alphabet overlap graph

—2d*7F for s > k/2.

undirected de Bruijn graph, alphabet overlap graph, vertex degree, connectivity

G(k,d, s) is obtained from DG(k, d, s) by replacing each
arc by an undirected edge and eliminating loops and
multi-edges. Fig.1 gives an illustration of G(3,2,1).
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Fig.1. G(3, 2, 1).

DG(k,d,s) can be viewed as a generalization of
dB(k,d), similarly, G(k, d, s) can be viewed as a genera-
lization of UB(k,d).

G(k,d, s) is defined by Knisley et al.l!l They showed
that G(k,d, s) is Hamiltonian, obtained the chromatic
number x(G(k,d,s)) = d*~2' + d* when s > k/2, and
x(G(k,d,s)) <1+ d** when s < k/2[2].

There are many applications for G(k,d,s). For
DG(k,d,s), when s = 1, it is dB(k,d). It has been
utilized to coding theory. When d = 4, dB(k,d) is
DNA graph, which has been utilized to align protein
sequences or align DNA fragments[3l. There are also
many applications in communication network design
theory. Designing a network that can simultaneously
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execute k steps is equivalent to designing a k-chromatic
graph. The chromatic number of the debruijn graph
network was investigated in [4-5].

Knisley et al.l®! showed that every a-overlap graph is
3-colorable for any d if k is sufficiently large, and they
determined the bound on the chromatic number of -
overlap graphs if d is much large than k.

In [7], the authors denoted DG(k,d, s) by a-overlap
graph. They introduced DNA graph which can be
viewed as a vertex induced subgraph of dB(k,4). Wang
et all® generalized the definition of DNA graph as a
vertex induced subgraph of alphabet overlap digraph
DG(k,4,s). Recently, Li et al.l'% considered whether
DG(k,d,i) can be embedded in DG(k,d,j) for given
integers 1 < i < j <k.

In this paper, we investigate some parameters of
G(k,d,s). In Section 2, we give a formula to calcu-
late the the vertex degree of G(k,d,s). In Section 3,
we deal with the connectivity of G(k,d, s). Using the
corollary of Menger’s theorem!), we show that the con-
nectivity of G(k,d, s) is 2d* — 2d?*~* when s > k/2.

For convenience, we call a sequence vy ...v; as a
string and each element v; as a letter. The length of
a string is the number of letters in it. We shall draw
the reader’s attention to the cases d =2,d = 4,d = 20,
and d = 26 as providing concrete applications to bi-
nary words, DNA sequences, protein sequences, and
words from the English language respectively. For any
1<i<j <k, v...v;is called a substring of vy ... vy,
denoted by v;.. ;. Moreover, v;.. ; is called prefir and
v;.. 1 is called suffiz. Therefore, there is an edge between
vertices u = (u1...u) and v = (v1...vx) (u # v) if
and only if the suffix of w with the length of k — s is
the same as the prefix of v with length £ — s or the
suffix with length & — s of v is the same as the prefix
with the length of £k — s of u. When d = 1, there is
only one vertex in G(k,d,s); when s = k, G(k,d, s) is
complete graph; when s = 0, it means that two ver-
tices are adjacent if and only if they are completely the
same. For any two vertices of G(k,d,s) are different,
so it is null. In general, we assume that d > 2, k > 2
and 1 <s<k-1.

2 Vertex Degree dg(v)

In this section, we study the vertex degree of
G(k,d, s). Before doing this, let us present some useful
definitions.

Let v = (v1...vg) be a vertex of G(k,d,s) and p is
a non-negative integer with p < k. We call p a period
of vifforany 1 <i<k—p, v; = vari[lO]. It is easy
to see that if p is a period of v, then any multiple of p
smaller than k is also a period of v. For example, 4 is
a period of vertex v = (abedabedabed . . . abedab), 8 and
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12 are also periods of v.

Let u = (uy...ur) and v = (vy...v) be two ver-
tices of G(k,d,s) (possibly u = v). w is called a right
neighbor of v if (ugq1...ug) = (v1...vk—s) and a left
neighbor of v if (veyr1...vx) = (u1...up_s)"). The
sets of all right neighbors and all left neighbors of v are
denoted by RN (v) and LN (v), respectively. Note that,
it is possible that v € RN (v) or v € LN (v). Clearly, the
neighborhood of v is Ng(v) = RN (v) | LN (v) — {v}.

For convenience, we use symbol ¢ to replace k—s and
divide a vertex u = (u1 ... uy) into several sections. For
example, when 1 < t < g, we denote u by abc, where
a and c are strings with the same length of ¢ and b is a
string with the length of k—2¢. It is possible that b is an
empty string if k = 2¢ (s =t = k/2). When % <t <k,
we denote u by (u1 ... Ustsy1 ... Ugthptq ... ug). We use
x* to denote an arbitrary string.

Theorem 1. For a vertex v of G(k,d,s), dg(v) is
given as follows:

1) If1<t< %, let v = abc. Then we have

2d° — d?7kF — 1,
245 — d23—k7

ifa=c,

da(v) = {

otherwise.

2) If £ <t <k, then

2d°® — 2, if s is a period of v,
2d® — 1, if 2s is a period of v,
dG(U) = .
S 18 not,
2d°, otherwise.
Proof. 1) If1 <t < %, let v = abe. Then

If
LN (v) = {(cy*)| y* has the length of s},

RN (v) = {(z*a)| «* has the length of s},
RN(w) N LN(v) = {(cz*a)| z* with the length of
k — 2t}.

Clearly, we have that |[RN(v)| = |LN(v)| = d° and
|[RN(v) N LN (v)| = d*=2* = d*~%. Then |RN(v) U
LN()| = [RN(@)] + [LN(@)| — [RN(v) 1 LN (0)| =
245 — dZS_k.

If a = ¢, then v € RN(v) U LN(v). So dg(v) =
|NG(v)| = |[RN (v)ULN (v)| — 1 = 2d* — d**~% — 1. Oth-
erwise, v ¢ RN(v) U LN (v), and dg(v) = |Ng(v)| =
|RN(v) U LN (v)| = 2d° — d**=F.

2)If§ <t < k, let v =
VtU¢41 - - .Uk). Then

RN (v) = {(z*v1 ...v)| =* has the length of s},

LN(v) = {(vs41...vxy*)| y* has the length of s}.
We have that |RN (v)| = |LN (v)| = d°.

In the following, we will consider the intersection of
RN (v) and LN (v). We can see, if u is an element of
RN (v)N LN (v), then the t-prefix of u is vsy; ... v and
the t-suffix of w is vy ...v;. Since 2¢ > k, RN(v) N

(U1 ... VsVgq1 -+ -
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LN (v) # @ if and only if (vasy1...vk) = (V1 ... Vk—2s),
i.e., 2s is a period of v. Hence, we classify the problem
into the following three cases.

Case 1. s is a period of v.

Since 2s < k, 2s is also a period of v. The following
two equations hold

(’UQS_H . Uk) = (1}1 . ’Uk_gs), (1)

(Vsg1 - - V2sV2541 - - - V) = (V1 ... VsVsy1 ... 0t). (2)
The two equations imply that:

RN (v) N LN (v)
={(Vs41 -+ V2502541 - - - VkVk—2541 - - - Vt) }
={(Vs41 .. V2501 - . . Vk—25Vk—25+1 - - - Vt) }
={(v1 ... UsVsq1 .. . Vk—sVk—st1---Uk)}
(

={(v1 ... VsVs41 ... V0141 ... 05)} = {v}.
Hence,

de(v) = |RN () U LN (v) - {v}]
= RN (v)| + |LN (v)| — 2 = 2d° — 2.

Case 2. 2s is a period of v, but s is not.
Then (1) still holds, but (2) does not. Neither RN (v)
nor LN (v) contains v. This implies that:

RN(v) N LN (v)

={(Vsg1 .- V25V2541 - - - UVkVk—25+1 - - - Vt) } # {v}.
Hence,
dg(v) = |RN(v)| + |LN(v)| — 1 =2d° — 1.

Case 3. 2s is not a period of v.

Then both (1) and (2) do not hold. This implies
that RN (v) N LN (v) = @. Hence, dg(v) = |RN(v)| +
|LN (v)| = 2d°. O

3 Connectivity of G(k,d, s)

We mainly use the corollary of Menger’s theorem!!!
to get the the connectivity of G(k,d,s) (s > k/2). The
following is the corollary.

Theorem 2. [fab ¢ E, then the minimum num-
ber of vertices # a,b separating a from b in G is equal
to the maximum number of independent a-b paths in G.

Let us define Go(V, E) as a subgraph of G(k,d,s)
(s > %) induced by the vertex set V = {a*v*b* €
V(G(k,d,s))|a* # b*}. About the graph Go(V, E), we
have the following lemmas:

Lemma 1. Go(V, E) is (2d® — 3d**~*)-regular.

Proof. Let v = abc be any vertex of Go(V, E). We
define two sets: A ={cv*c|v* has the length of k — 2t}
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and B ={aw*a|w* has the length of k — 2t}. Clearly
|A| = |B| = d?*7*. Furthermore, by the definition,
we have Ng(v) = Ng,(v) U AU B. Since a # ¢, then
Ng,(v)NA =@, Ng,(v)NB =g, and ANB = @.
Therefore

Na(v)] = [Ney ()] + Al + |BI.
According to Theorem 1, we have
2d° — d**~% = |Ng, (v)| + 2d*~F.
Hence
dg, (v) = |Ng, (v)| = 2d° — 3d*~*. O

Basing on this, we have k(Go(V, E)) < 0(Go)
2d° — 3d**%. §(@) is the minimum degree of Gy.

Lemma 2. The connectivity of Go(V, E) is 2d*
3d257k.

Proof. Since Go(V, E) is not a complete graph and
a separating set must separate two nonadjacent ver-
tices, so we just think about two nonadjacent vertices.
In addition, according to the corollary of Menger’s
theorem!!), the minimum number of vertices separat-
ing two nonadjacent vertices z,y is equal to the maxi-
mum number of independent z-y paths. Now, we will
show that we can find at least 2d° —3d?*~* independent
paths for any two nonadjacent vertices x,y. It means
that k(Go(V, E)) > 2d° — 3d?*~F,

Let x = avb, y = mwn be two nonadjacent vertices
of Go(V, E). Then from the definitions of Go(V, E), we
have a # b, m # n, a # n, b # m. We will distinguish
the following three cases.

Case 1. a =m,b=n.

Then x and y have the completely same neighbor set
{(bw*z*)} U {(e*w*a)}, z* # b, e* # a with the length
of k — s, and {(bw*z*)} N {(e*f*a)} = bw*a. We have
the order of the neighbor set is 2(d® — d?*=%) — =% =
2d° — 3d?>*~*. Therefore there are 2d° — 3d?*~* inde-
pendent paths between x and y. Every independent
z-y path is through only one inner vertex which is the
common neighbor of = and y.

Case 2. a £ m,b=n.

We can find three different types of independent x-y
paths as follows:

Type 1: avb-bw*z*-mwn, where z* # b, w*, z* are
the arbitrary strings with the length of k — 2t,¢ respec-
tively. Clearly avb, bw*z*, mwn are pairwise distinct.
The vertex bw*z* has d° — d*~2! choices, we have ob-
tained d° — d*~2! independent paths.

Type 2: avb-mw*a-aw*m-mwn, where avb, mw*a,
aw*m, mwn, and bw*z* are pairwise distinct. Since w*
has d*~2* choices, the number of this type independent
x-y paths is 2.
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Type 3: avb-I*w*a-aw*I*-I*w*m-mwn, where [* #
a, m, b, and w*, [* are the arbitrary strings with the
length of k — 2t,t respectively. It is sufficient to show
that all of the inner vertices in these paths are pairwise
distinct and different from the vertices used by the for-
mer paths.

w*a # avb, aw™l*, I*w*m, mwn, bw*z*, mw*a, aw*m,
aw*l* # avb, *w*m, mwn, bw*z*, mw*a, aw*m,

Fw*m # avb, mwn, bw*z*, mw*a, aw*m.

The string [*w* has at least d® — 3d*~2* choices, so
there are at least d* — 3d*~2! independent -y paths.

Therefore, we have found 2d* — 3d?*~* independent
-y paths.

For the case of a = m, b # n, there exists indepen-
dent paths analogous as above. So we just give three
types of independent z-y paths, but no longer compare
the inner vertices. the method is like Case 2.

Type 1: avb-z*w*a-mwn, z* # a.

Type 2: avb-bw*n-nw*b-muwn.

Type 3: avb-bw**-I*w*b-nw**-mwn, I* # a, n, b.

The number of them is d° — d*=2 + d*=2t 4 d° —
3dk72t =945 — 3dk72t =945 — 3d287k.

Case 3. a # m, b # n.

We can find four different types of independent x-y
path as follows.

Type 1: avb-bw*m-mwn, mwn-nw*a-avb, where w*
with the length of k — 2¢. Clearly we have

bw*m # avb, mwn, nw*a,

nw*a # avb, mwn.

They are independent x-y paths. The number of
them is 2dF—2t.

Type 2: avb-bw*z*-z*w*m-mwn, where z* # b, m,
and w*, z* are the strings with the length of k — 2¢, ¢
respectively. According to the choice of the vertex, we

have

bw*z* #£ avb, mwn, z*w*m, bw*m, nw*a,

Z*w*m # avb, mwn, bw*m, nw*a.

So there are at least d° — 2d*~2* choices of z*w*, we
can receive d® — 2d*~? independent 2-y paths.

Type 3: mwn-nw*b-aw*n-mw*a-avb, where w* is
the arbitrary string of the length of k — 2¢. All of the
inner vertices are pairwise distinct. The following is the
proof.

nw*b # avb, mwn, aw*n, mw*a, bw*m, nw*a,
bw*z*, z*w*m,

aw*n # avb, mwn, mw*a, bw*m, nw*a, bw*z*, z*w*m,
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mw*a # avb, mwn, bw*m, nw*a, bw*z*, z*w*m.

The number of them is d*~2t.

Type 4: mwn-nw**-I*w*a-avb, where I* # a,b, m,
n, and w*,l* are the strings with length k — 2t,¢ re-
spectively. It is easy to see that these x-y paths are
independent. The quantity of them is d® — 4d*~%t.

nw*l* # avb, mwn, *w*a, nw*b, aw*n, mw*a, bw*z*,
Z*w*m, bw*m, nw*a,
*w*a # avb, mwn, nw*b, aw*n, mw*a, bw* z*, z*w*m,

bw*m,nw*a.

The number of the four types z-y independent path we
obtained is

2dk72t+ds_2dk72t+dk72t+ds_4dk72t — 2ds_3d257k.

So for any nonadjacent two vertices x,y, we always
find 2d* — 3d?*~* independent z-y paths.

According to the corollary of Menger’s theorem!!,
we have k(Go(V, E)) > 2d* — 3d**~*. By Lemma 1, we
have k(Go(V, E)) = 2d° — 3d*~*. O

Theorem 3. If s > %, then the connectivity of
G(k,d,s) is 2d° — 2d**~F.

Proof. Firstly, we show that x(G(k,d,s)) < 2d® —
2d23_k.

For a given string a with length ¢, let us denote an
induced subgraph of G(k, d, s) by G, which has the ver-
tex set

Vo = {av*a|v* is a string with the length of k — 2¢}.

Then G, is a complete graph kgr—2:. For G(k,d, s), the
vertex-set has the following partition

V(G) = U Vo- [V (Go).

a*with length of ¢

For any given strings a # b, there is no edge between
G, and Gy, therefore the neighbor set of V, in G is just
the neighbor set of V, in Gy. By the definition of G,
all of vertices of G, have the completely same neighbor
set in Gy which constructs a separating set of G(k, d, s),
denoted by N¢,(V,). It is sufficient to show

Ng, (Vo) = {av™z"|z" # a} U {z"v"alz™ # a}.

Clearly |Ng, (Va)| = 2(d* — d*=2t) = 2d° — 2d>~F.

We have k(G(k,d, s)) < 2d° — 2d?*7F.

Secondly, we will show that we can find at least
2d° — 2d?s~* independent paths for any two nonad-
jacent vertices z, y. It means that x(G(k,d,s)) >
2d° — 2d*F.

Let z # y be two nonadjacent vertices of G(k, d, s).
Then there exists three cases for  and y.

Case 1. z, y € G — Gy.
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We denote x,y by ava, mwm respectively, a # m.
We can indicate the following z-y paths represented in
three independent types.

Type 1: ava-aw*m-mwm, ava-mw*a-mwm, where
w* with the length of k — 2¢t. Since a # m, all of the
inner vertices are different. We get 2d*~? independent
-y paths.

Type 2: ava-aw*z*-z*w*m-mwm, where z* # a, m,
and z*,w* is with the length of ¢, k — 2t respectively.
There are at least d® — 2d*~2! choices of z*w*, and we
can receive d® — 2d*~?' independent z-y paths. The
following is the proof:

aw*z* # ava, mwm, z*w*m, aw*m, mw*a,

Z*w*m # ava, mwm, aw*m, mw*a.

Type 3: ava-z*w*a-mw* z*-mwm, where z* # a, m,
and z*,w* is with the length of ¢, k — 2t respectively.
We know that the inner vertices are all distinct. The
following is the proof.

Z*w*a # ava, mwm, mw*z*, aw* z*,
Z*w*m, aw*m, mw*a,

mw*z* # ava, mwm, aw*z*, z*w*m, aw*m, mw*a.

There are d* — 2d*~2! independent x-y paths.

The number of all z-y independent paths we have
found in these three types is 2d¥ =2t 4 d* —2d" =2t +d° —
2dk72t =945 — 2dk72t =945 — 2d257k.

Case 2. © € G — Gy, y € Gp.

We denote z,y by ava, mwn respectively, a # m,
a # n. We can also find 2d° — 2d*~2* independent -y
paths. They are presented in four types.

Type 1: ava-aw*m-mwn, ava-nw* a-mwn, where w*
is with the length of k — 2¢. Clearly they are indepen-
dent z-y paths with the number of 2d%~2t.

Type 2: ava-aw*z*-z*w*m-mwn, where z* # a, m,
and z*, m* is with the length of ¢, k — 2t respectively.
Since

aw*z* # ava, mwn, z*w*m, aw*m, nw*a,
Z*w*m # ava, mwn, aw*m, nw*a.
They are independent x-y paths. The number is
ds —2dk2.

Type 3: ava-l*w*a-nw*I*-mwn, where I* # a, m, n,
and [*, w* is with the length of ¢, k — 2t respectively.
We have the inner vertices which are all distinct. The
following are proof.

Fw*a # ava, mwn, nw*l*, aw*z*, z*w*m, aw*m, nw*a;

nw*l* # ava, mwn, aw*z*, z*w*m, aw*m, nw*a.

We have obtained d*—3d*~2* independent z-y paths.

901

Type 4: ava-mw*a-mw*m-mwn, where w* is with
the length of k£ — 2¢. The inner vertices are all distinct.

mw*a # ava, mwn, mw*m, *w*a, nw*l*,

mw*m # aw*z*, z*w*m, aw*m, nw*a.

Since mw*m € G — Gy, the other inner vertices be-
long to Gy, mw*m are different from all other vertices.
The number of z-y independent paths presented in this
type is dF—2t.

The number of independent z-y paths presented in
the four types is

2dk—2t + ds — 2dk—2t + ds — Sdk—Qt + dk—Qt
=2d° — 2d"7? = 2d° — 24>,

Case 3. z,y € Gy.

Let © = avb,y = mwn, a # b, m # n, b # m,
a # n. From Lemma 1 we have that there are at least
2d* — 3d*—?* independent paths between x and y. The
following are the other independent paths.

If a # m and b # n, we have that

muwn-mw*m-mw*b-bw*b-avd

are independent z-y paths, where w* is with the length
of k — 2t. Furthermore, since mw*m,bw*b € G — Gy,
they are different from all of the vertices used by Case
3 of Lemma 1. For mw*b, it is not used by Case 3 of
Lemma 1 either. The number is d*~2t.

Otherwise, either a = m or b = n, then we have that
avb-aw*a-mwn, or avb-bw*b-mwn is independent x-y
path.

Because aw*a, bw*b € G — Gy, they are different
from all of the vertices used by Case 1 and Case 2 of
Lemma 1. The number of the paths is d*~2*.

Therefore we find out at least 2d° — 2d>*~* inde-
pendent paths linking x and y. According to the
corollary of Menger’s theorem, we have k(G (k,d, s)) >
2d° — 2d*57F.

We have x(G(k,d, s)) = 2d° — 2d**~F. O

4 Conclusions

In the paper, we prove that the connectivity of
G(k,d,s) is 2d° — 2d**=% for s > k/2. The connec-
tivity of G(k,d, s) when % < t < k is worth studying,
but it is difficult to solve with the same method in the
paper. We will try to resolve it in succeeding work.
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