
Xie ZC, Tong D, Huang MK et al. SWIP prediction: Complexity-effective indirect-branch prediction using pointers. JOUR-

NAL OF COMPUTER SCIENCE AND TECHNOLOGY 27(4): 754–768 July 2012. DOI 10.1007/s11390-012-1262-8

SWIP Prediction: Complexity-Effective Indirect-Branch Prediction

Using Pointers

Zi-Chao Xie (���), Dong Tong∗ (� �), Member, CCF, ACM, Ming-Kai Huang (���),
Qin-Qing Shi (���), and Xu Cheng (� �), Senior Member, CCF

Microprocessor Research and Development Center, Peking University, Beijing 100871, China

Engineering Research Center of Microprocessor and System, Ministry of Education, Beijing 100871, China

School of Electronic Engineering and Computer Science, Peking University, Beijing 100871, China

E-mail: {xiezichao, tongdong, huangmingkai, shiqinqing, chengxu}@mprc.pku.edu.cn

Received January 6, 2011; revised January 18, 2012.

Abstract Predicting indirect-branch targets has become a performance bottleneck for many applications. Previous high-

performance indirect-branch predictors usually require significant hardware storage or additional compiler support, which
increases the complexity of the processor front-end or the compilers. This paper proposes a complexity-effective indirect-
branch prediction mechanism, called the Set-Way Index Pointing (SWIP) prediction. It stores multiple indirect-branch
targets in different branch target buffer (BTB) entries, whose set indices and way locations are treated as set-way index
pointers. These pointers are stored in the existing branch-direction predictor. SWIP prediction reuses the branch direction
predictor to provide such pointers, and then accesses the pointed BTB entries for the predicted indirect-branch target. Our
evaluation shows that SWIP prediction could achieve attractive performance improvement without requiring large dedicated

storage or additional compiler support. It improves the indirect-branch prediction accuracy by 36.5% compared to that of
a commonly-used BTB, resulting in average performance improvement of 18.56%. Its energy consumption is also reduced
by 14.34% over that of the baseline.

Keywords microprocessor, indirect-branch prediction, energy-efficient, branch target buffer

1 Introduction

Modern high-performance processors employ branch
prediction components as an essential part to exploit
instruction-level parallelism. Previous branch predic-
tion researches have focused on predicting conditional
branches accurately[1-5]. Recently, however, indirect-
branch prediction is becoming a performance bottle-
neck for two reasons. First, indirect branches are more
commonly used in object-oriented programs[6]. Second,
indirect branches are hard to predict, since they re-
quire the prediction of the target address instead of
the branch direction. A commonly-used branch tar-
get buffer (BTB) could only predict the last taken tar-
gets for indirect branches. Fig.1 shows the percentage
of indirect-branch mispredictions per 1K instructions
(MPKI) for the simulated benchmarks with a 4-way
4 096-entry BTB, illustrating the poor indirect-branch
prediction accuracy of the BTB structure.

Previous indirect-branch prediction techniques have
been proved to predict targets accurately[7-13].

However, energy consumption will increase significantly
if target addresses of different branch occurrences are
stored in a large dedicated structure[7]. Multi-stage
predictors[8,12] implement two kinds of predictors, in-
creasing the complexity of the processor front-end. Vir-
tual Program Counter (VPC) prediction, a complexity-
effective method, accesses the existing branch com-
ponents iteratively until a stored target is predicted
as taken. It is ineffective in cases where an indirect
branch has many targets[14]. To be more effective,
the compiler-assistant techniques[14-15] need to modify
the instruction set architecture (ISA) or transform pro-
grams.

Since energy-efficiency has become an impor-
tant metric in processor and System-on-Chip (SoC)
designs[16-18], a designer must consider the cost-benefit
tradeoffs, choosing those structures that achieve high
performance per unit energy. For that reason, improv-
ing performance based on the existing components is a
good choice of energy-performance tradeoffs. Our goal
is to merge a highly effective indirect-branch prediction

Regular Paper
This work is supported by the “HGJ” National Science and Technology Major Project of China under Grant No. 2009ZX01029-

001-002.
∗Corresponding Author
�2012 Springer Science +Business Media, LLC & Science Press, China

Zi-Chao Xie et al.: SWIP Prediction for Indirect Branches 755

Fig.1. (a) MPKI for conditional and indirect branches. (b) Percentage of mispredictions due to indirect branches.

into the existing components, providing a fast, energy-
efficient mechanism.

This paper proposes a new complexity-effective
indirect-branch prediction mechanism, called the Set-
Way Index Pointing (SWIP) prediction. Its key idea
stems from the pointer concept. Pointers have been
widely used to construct various data structures such
as list, tree, and queue, providing a highly effective way
to access data. SWIP prediction reuses the branch di-
rection predictor to provide the hardware pointers to
the BTB. These pointers, called set-way index point-
ers, point to the BTB entries storing the predicted
indirect-branch targets. Multiple indirect-branch tar-
gets of an indirect branch are stored in different BTB
entries, and the corresponding BTB set indices and
way locations are treated as the set-way index point-
ers. These pointers are stored in the table entries of the
existing branch-direction predictor, replacing original
conditional-branch direction information. By redefi-
ning the functions of existing structures, SWIP pre-
diction does not require large dedicated target storage
or any additional compiler support.

Our evaluation shows that SWIP prediction im-
proves the indirect-branch prediction accuracy over the
commonly-used BTB-based prediction by 36.45% for a
more-aggressive 4-wide 15-stage pipeline processor, and
by 36.78% for a less-aggressive 2-wide 8-stage pipeline
processor. The average instructions per cycle (IPC) is
improved by 18.56% for the more-aggressive processor,
and by 6.26% for the less-aggressive processor. Com-
pared with the previously proposed hardware-based
indirect-branch predictors, the SWIP predictor achieves
performance improvement equivalent to that provided
by 48KB tagged target cache (TTC)[7] design, and it
also outperforms the VPC predictor[9] by 7.65%.

The contributions of SWIP prediction are as follows:
1) To our knowledge, SWIP prediction is the

first mechanism that uses pointers to predict indirect
branches. Different pointers corresponding to various
indirect-branch occurrences point to the predicted tar-
gets. By using pointers, SWIP prediction requires no
extra large storage.

2) SWIP prediction utilizes the existing branch-
direction predictor, which previously had been ineffec-
tive in indirect-branch prediction, to distinguish diffe-
rent indirect-branch occurrences and record set-way in-
dex pointers, without requiring any compiler support.

3) SWIP prediction is also applicable to processors
with a short pipeline. Since SWIP prediction takes
only two or three cycles, the processor with the short
pipeline could also have attractive performance im-
provement.

2 Previous Work

A modern processor employs the BTB to predict
indirect branches[19]. The BTB records only the last
taken target, which cannot distinguish various indirect-
branch occurrences, resulting in poor prediction accu-
racy. In this case, the branch direction predictor is also
ineffective because it always predicts taken for indirect
branches.

Some specialized indirect-branch predictors[7-8,12]

were proposed to predict the indirect-branch targets.
Chang et al.[7] first proposed tagged target cache (TTC)
to use branch history information to distinguish dif-
ferences among indirect-branch occurrences. Its con-
cept is similar to that of a two-level branch-direction
predictor[20]. Each TTC entry contains a target address
and a tag field. When fetching an indirect branch, the
TTC predictor is indexed using the XOR of the pro-
gram counter (PC) and the global branch history regi-
ster (GHR) to provide the predicted target. When the
indirect branch retires, the corresponding TTC entry is
updated with the actual target address. This technique

756 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

requires a large dedicated structure to store targets of
different occurrences.

Driesen et al.[8,12] proposed a cascaded predictor
by combining two target predictors: a simple first-
stage predictor for easy-to-predict indirect branches,
and a more complex second-stage predictor for hard-to-
predict indirect branches. Other techniques that work
well are dependence-based pre-computation[21], data-
compression technique[11], and IT-TAGE predictor[13].
These techniques, however, require additional hardware
resources or significantly increase the complexity of the
processor front-end.

Recently, VPC prediction[9], an energy-efficient tech-
nique, was proposed to use the existing conditional-
branch prediction components to predict indirect-
branch targets. VPC prediction treats an indirect
branch with T targets as T virtual direct branches,
each with its own unique target address. When fetch-
ing an indirect branch, VPC prediction accesses the
conditional-branch predictor iteratively. One of T vir-
tual direct branches is predicted as well as a condi-
tional branch in each iteration. This iterative process
stops when a virtual direct branch is predicted to be
taken, or a predefined maximum iteration number is
reached. The research[14] demonstrates that the per-
formance of VPC prediction degrades significantly for
workloads with larger numbers of dynamic targets.

With the help of the compiler and ISA modifi-
cation, several proposed techniques significantly im-
prove processor performance[14-15]. Joao et al.[14] pro-
posed dynamic predication for hard-to-predict indirect
branches (DIP). The compiler identifies the indirect
branches that are suitable for predication along with
their control-flow merge (CFM) points. When fetch-
ing a hard-to-predict indirect branch, the processor
predicates the instructions between T targets of the
indirect branch and the CFM point, thereby increas-
ing the probability of fetching from the correct target
path at the expense of executing more instructions. Fa-
rooq et al.[15] proposed a value-based BTB indexing
(VBBI) technique, the most recent research done with
compiler assistant. For each static hard-to-predict in-
direct branch, the compiler identifies a hint instruc-
tion whose output value strongly correlates with the
indirect-branch target. At run time, multiple indirect-
branch targets are stored and subsequently accessed
from the BTB according to different indices, which are
computed using the branch address and the hint in-
struction output values.

3 SWIP Prediction

This section proposes SWIP prediction technique,

and describes its detailed structure. In order to
achieve high prediction accuracy, SWIP prediction uses
the global branch history information (GHR) to de-
tect various indirect-branch occurrences. Using GHR
for indirect-branch prediction is widely used in pre-
vious hardware-based indirect-branch predictors, such
as TTC and VPC. The essential idea of SWIP pre-
diction is to predict the set-way index pointer, which
points to the stored indirect-branch target in the BTB,
instead of predicting indirect-branch target directly.

3.1 Principle

The key idea of SWIP prediction is using the hard-
ware pointers to make similar time cost of the direct
target access (i.e., TTC[7]) without extra large storage.
Using pointers is an efficient method to access data.
In addition, those pointed data could be stored in dis-
tributed memory locations. Based on these two advan-
tages, SWIP prediction uses the hardware pointer to
separate the direct mapping between indirect-branch
occurrences and multiple targets into two steps, shown
in Fig.2: first map each indirect-branch occurrence dis-
tinguished by the GHR to a pointer, then use this
pointer to fetch the predict target. Hence, a pointer
is actually treated as an intermediate representation
of the predicted target address, corresponding to an
indirect-branch occurrence.

Fig.2. Key idea of SWIP prediction.

3.2 Structure Details

Fig.3 shows the detailed structure of the SWIP pre-
dictor.

Unlike the conventional BTB structure, an indirect
branch in SWIP prediction occupies multiple BTB en-
tries. Those entries are classified as target-entry or
allocation-entry. The tags of these entries are the same
as the BTB tag of this indirect branch. As a program
executes, SWIP prediction dynamically allocates some
BTB entries, called target-entries, to store the encoun-
tered targets of this indirect branch. According to the

Zi-Chao Xie et al.: SWIP Prediction for Indirect Branches 757

Fig.3. Details of the SWIP prediction structure.

previous analysis[9] and the statistics of our experi-
ments (Fig.4), indirect branches have no more than 16
targets in most programs. Based on this observation,
SWIP prediction allocates at most 16 target-entries for
an indirect branch. If an indirect branch has more than
16 targets, SWIP prediction will replace the content of
a used target-entry by the new encountered target. An
allocation-entry, a specific BTB entry, is employed by
each indirect branch to record the target-entry alloca-
tion information. This information is stored in the low
16 bits of the target address field of this BTB entry.
To identify whether the BTB has the target-entries of
this indirect branch, SWIP places the allocation-entry
in the set indexed by the PC, where is accessed firstly
when fetching an indirect branch.

SWIP prediction creates the hardware pointers to
the target entries of an indirect branch, shown in

Fig.4. Distribution of the number of indirect-branch targets.

Fig.2(b). In order to reach the minimum length of those
pointers (4 bits for 16 target-entries), it treats the BTB
as a 2-D array, where the BTB set index and way loca-
tion, called set-way index pointer, points to a BTB en-
try. Then SWIP prediction places those target-entries
of an indirect branch in several consecutive BTB sets
to construct a sub-block. In such cases, the internal set
index and way location of the sub-block can be used to
index an entry in the sub-block. For example, a 4-way
set-associative BTB constructs a sub-block with four
sets. In order to avoid the confliction with allocation-
entry, the sub-block is indexed by the low-order bits of
the indirect-branch PC plus 4. The high two bits of the
set-way index pointer represent the internal set index,
while the low two bits represent the way location. The
pointed entry will be accessed directly via the set-way
index pointer without any accesses of other entries in
the same set of BTB.

As well as the conditional branch prediction, SWIP
prediction uses the history-based branch-direction pre-
dictor to distinguish various branch occurrences. State-
of-the-art microprocessors[22-23] usually employ an im-
proved hybrid branch-direction predictor which in-
cludes one or more pattern history tables (PHTs). Each
PHT entry is indexed by XOR (PC, GHR), providing
a 2-bit saturated counter used to predict the direction
of conditional branches. As for indirect branches, the
PHT always predicts taken, wasting those correspond-
ing table entries. SWIP redefines those entries to store
the set-way index pointers, implementing the mapping
from various indirect-branch occurrences to the point-
ers, shown in Fig.2(a). Its concept is similar to that
of a 2-level direction predictor[2], which combines the
branch history information to achieve high prediction
accuracy. In other words, the PHT in SWIP can be
viewed as a special TTC structure which stores the
pointers instead of the targets. Because a set-way in-
dex pointer has four bits, it will occupy two PHT entries
instead of the original direction information of condi-
tional branches. These two PHT entries are indexed us-
ing XOR (PC, GHR) and XOR (PC, GHR � 1). They
should be distributed as widely as possible to avoid in-
terfering with entries recording the saturated counters
for conditional branches.

This SWIP structure, however, should take two un-
usual cases into account. First, it is possible for differ-
ent branches to have multiple tag matches in the same
set. To a 4-way BTB, this happens only when a branch
in the next four instructions of an indirect branch ac-
cesses the BTB. The BTB will select one of the matched
entries as the predicted target, possibly leading to the
mispredictions. Fortunately, according to our experi-
mental statistics shown in Subsection 5.1, this case

758 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

occurs at a very low rate, no more than 0.3% of to-
tal branch prediction for each benchmark. Moreover,
accurate indirect-branch prediction has been known to
recover the lost performance. Second, if the difference
between the indices of two sub-blocks is less than 4 (for
indirect-branch PC, is 0x10), these two sub-blocks are
spatially overlapped. Some BTB entries may be used
by two indirect branches. Also, such cases rarely hap-
pen, and their additional penalties can be ignored (its
evaluation is shown in Subsection 5.1).

3.3 Prediction Flow

This subsection describes the SWIP prediction flow,
based on the BTB and the commonly-used direction
predictor which contains the PHT structure. Table 1
demonstrates three possible cases in SWIP prediction.
To identify an indirect branch when fetching instruc-
tions, SWIP prediction can simply reuse the prede-
coding bits (e.g., define some reserved combinations of
the predecoding bits) to indicate this instruction type.
Since the predecoding technique is widely used in state-
of-the-art processors, it would not increase the design
complexity. Also, such mechanism is required by VPC
prediction which needs identifying indirect branches as
soon as possible to determine whether to continue the
prediction iterations.

In the first cycle, SWIP prediction accesses the BTB
and the direction predictor simultaneously. The BTB
result is used to identify whether the BTB records the
targets of this indirect branch. If there is a BTB hit,
the output is the content of the allocation-entry. Other-
wise, it indicates that no target of this indirect branch
is recorded in the BTB, so SWIP prediction stalls the
pipeline until this indirect branch is resolved (i.e., Case
1 in Table 1). The PHT output constructs the low two
bits of the set-way index pointer. SWIP prediction im-
plements an auxiliary mechanism to accelerate the case
where the indirect branch has no more than four tar-
gets. In this case, the high two bits of the set-way index
pointer are always zero. Accordingly, SWIP prediction
assumes these two bits are zero in this cycle, thereby
forming a temporary set-way index pointer. It then
uses this pointer to access the BTB in the next cycle.

In the second cycle, SWIP prediction uses the

temporary set-way index pointer to access the BTB,
and then switches the index to access the PHT. If there
is a BTB hit (the entry is valid and the tag matches
the indirect-branch address), SWIP uses the output as
the predicted target, and then issues it to the pipeline
and the instruction cache. Otherwise, SWIP ignores
the BTB output, and continues the prediction. Spe-
cially, SWIP adopts a simple method to generate the
PHT index for the second PHT access, which shifts the
original PHT index one bit to the left. The PHT output
in this cycle constructs the high two bits of the set-way
index pointer. At the end of this cycle, the full set-way
index pointer has been obtained. If the high two bits
equal zero, we conclude that the BTB entry pointed to
by that full set-way index pointer has already been ac-
cessed in this cycle. Such being the case, SWIP finishes
its indirect-branch prediction (Fast-Pred case).

In the third cycle, SWIP prediction uses the full set-
way index pointer to access the BTB. If there is a BTB
hit, the BTB output is the predicted target (Full-Pred
case). The previous issued target should be canceled.
Otherwise, SWIP prediction continues using the last
predicted target which has been issued to the pipeline
and instruction cache. Altogether, a full-pred SWIP
prediction takes three cycles.

3.4 Prediction Example

In this subsection, we use a code example to il-
lustrate how SWIP prediction effectively uses the
pointer to distinguish different indirect-branch occur-
rences based on the previous branch-history informa-
tion. Fig.5 shows a code example of indirect branch
from the Perlbench benchmark in SPEC CPU 2006
suites[24]. The indirect branch, “jsr�26, (�27), 0”, im-
plements calling the function pointer, “sortsvp”. As
the program executes, different execution results for the
conditional branch in line 13 lead to different values for
“�27”, resulting in different function pointers. If the
condition in line 13 is true (CondT), the indirect-branch
target is “S qsortsv” (TargetT). Otherwise (CondF),
the target is “S mergesortsv” (TargetF). We assume the
current status of the PHT and the BTB in Fig.6.

The CondT case uses two PHT entries indexed by
XOR (PC, GHRCondT)and XOR (PC, GHRCondT � 1)

Table 1. Possible Cases in SWIP Prediction

Cases
Set-Way Index Pointer (PHT Output)

BTB Accesses Location/Status Target PredictionWay Pointer Set Pointer

Case 1 Cycle 1 01 − PC /Miss −
Case 2 Cycle 1 01 − PC /Hit −

(Fast-Pred) Cycle 2 − 00 (PC +4, Way 1) /Hit or Miss Target A or −
Case 3 Cycle 1 01 − PC /Hit −

(Full-Pred) Cycle 2 − 11 (PC +4, Way 1) /Hit Target A
Cycle 3 − − (PC + 4 × 4, Way 1) /Hit Target B (Cancel Target A)

Zi-Chao Xie et al.: SWIP Prediction for Indirect Branches 759

Fig.5. Code example of indirect branch.

Fig.6. Current status of PHT and BTB in SWIP prediction.

respectively. This PHT usage is the same as the way of
conditional branches that uses the branch history to dis-
tinguish various branch occurrences. The stored values
in those entries form the set-way index pointer, “1101”.
This pointer is used as the set index and way location of
the sub-block indexed by the PC plus 4, pointing to the
TargetT entry in the BTB. Likewise, the CondF case
also uses two PHT entries. The corresponding set-way
index pointer is “0001”, pointing to TargetF.

In the prediction flow, when the temporary or the
full set-way index pointer is fetched, the pointed target-
entry will be accessed in the next cycle. Because the
high two bits of the set-way index pointer are zero, the
CondF case benefits from the accelerating mechanism,
taking only two cycles. For the CondT case, it should

take three cycles. Fig.7 illustrates the prediction flow
of the CondT case in pipeline view.

3.5 Updating Flow

Since SWIP updating in correct prediction is the
same as that of the traditional BTB, which updates the
least recently used information of the accessed set, this
subsection shows only the misprediction flow. There
are two misprediction cases:

1) Wrong Pointer. One entry in the sub-block stores
the correct indirect-branch target, but the set-way in-
dex pointer points to a wrong location.

2) Meaningless Pointer. There is no BTB entry stor-
ing the correct indirect-branch address, so the set-way
index pointer is meaningless.

760 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

Fig.7. CondT case in SWIP prediction.

The cases of meaningless pointer are caused by ei-
ther compulsory misses of indirect-branch targets or
capacity misses in the case where an indirect branch
has more than 16 targets. The cases of wrong pointer
are caused by either the limitation of the used branch
history length or the interferences with conditional
branches. Since SWIP prediction reuses the PHTs, a
conditional branch and an indirect branch may share
the same PHT entry, resulting in the spatial interfe-
rence. Such cases is inevitable to methods that reuse
the existing branch prediction hardware, such as VPC
prediction. The adverse impacts are evaluated in more
details in Subsections 5.1 and 5.2.

In order to distinguish these two cases, the updat-
ing needs to traverse all the target-entries in the sub-
block. During traversing each target-entry, SWIP iden-
tifies whether this entry belongs to this indirect branch
by checking the tag, and then updates the correspond-
ing bit in the allocation-entry. Meanwhile, if a stored
target is the same as the correct target (wrong pointer
case), SWIP makes the set-way index pointer point to
this BTB entry, and then finishes the updating. If none
of the entries matches the correct target (meaningless
case), SWIP selects a BTB entry in the sub-block to
store the correct target. If there are unallocated entries
in the sub-block, it will allocate an new entry to store
the new target, and then update the allocation-entry.
If all 16 entries have been allocated, it will randomly
replace a target-entry for the new target. After the

BTB is updated, SWIP also updates the set-way index
pointer.

In a traditional BTB, only one BTB entry can be
accessed in each cycle, so an updating takes at most 16
cycles, slightly increasing the updating time cost. Al-
though the updating logic needs to traverse the BTB
on a misprediction, it occurs relatively infrequently and
only traverses those allocated target-entries.

3.6 Hardware Cost and Complexity

As shown in Fig.8, SWIP prediction requires the fol-
lowing modifications to the existing branch prediction
hardware:

1) a direct BTB access mode using set-way in-
dex pointers, and a register storing the set-way index
pointer during prediction and updating,

2) a simple one-bit left-shifter to generate the sec-
ond PHT access, and a new multiplexer to select the
indices,

3) a traversing counter to generate set-way index
pointers during updating,

4) registers carrying the content of the allocation-
entry throughout the pipeline.

Compared with other previously proposed history-
based indirect-branch predictors, SWIP requires no
large or complex tables to store the target addresses.
Instead, target addresses are naturally stored in the
existing BTB, and set-way index pointers are stored in
the redefined PHT.

Zi-Chao Xie et al.: SWIP Prediction for Indirect Branches 761

Fig.8. Modifications of SWIP Prediction structure.

The combinational logic required for prediction and
updating is also simple. The index of the sub-block is
the low-order bit of the branch address plus 4. The
index of the second PHT access is generated sim-
ply through logical left-shifting the original PHT in-
dex. During updating, SWIP uses a simple traversing
counter to generate set-way index pointers.

Branch PC and GHR values are used to access the
branch prediction structure in the first prediction cycle.
While accessing the BTB and the direction predictor,
SWIP calculates the indices of these two components
for the accesses in the next cycle. Therefore, the logic
that generates the set-way index pointer and the index
of the second PHT access does not affect the critical
path of the branch predictor access.

To evaluate the timing impact of SWIP prediction
exactly, we also modeled SWIP scheme by extending
the front-end of a 64-bit 2-issue superscalar processor
(which has 4-way 512-entry BTB, 2 048-entry PHT).
This fully synthesizable processor is designed under
TSMC 65nm technology, and runs at least 800MHz
(worst case). It fetches four instructions per cycle.
The estimated timing parameters are listed in Table
2, which prove that the SWIP modifications would not

Table 2. Timing Parameters of Branch Components under
TSMC Dophin Library 65 nm (0.9 V, 125◦C, Worst

Case): Extended to 4-way 4096-Entry BTB, 32K-Entry PHT

SRAM
Timing (ns) Max Latency

Units
Cell TSetup TClkToQ

w/o w/
SWIP SWIP

BTB Data 128x148 0.208 0.878 1.204 1.204
Tag 128x120 0.212 0.862

PHT 128x32 0.233 0.772 0.852 0.852

affect the timing of the front-end logics.

4 Experimental Methodology

We extended SimpleScalar[25] to evaluate SWIP pre-
diction. The Wattch extension[26] is used for the
energy estimation. Table 3 shows the parameters
of our baseline processor. Because state-of-the-art
commercial processors employ predecoding technique,
we reuse these bits to identify indirect branches like
VPC prediction[9]. Our workload includes fire SPEC
CPU 2000 INT benchmarks, four SPEC CPU 2006
benchmarks[24], and a C++ benchmark, Richards[27].
We selected those indirect-branch-sensitive benchmarks
from SPEC CPU 2000 and 2006 suites. Richards simu-
lates the task dispatcher in the kernel of an operating
system.

We used SimPoint[28] to select a representative simu-
lation region for each benchmark using the reference in-
put set. Each benchmark was run for 100 million Alpha
instructions. All binaries were compiled with Compaq
C++ V6.5-042 for Compaq Tru64 UNIX V5.1B (Rev.
2650). Table 4 shows the characteristics of the exami-
ned benchmarks on the baseline processor.

5 Results

5.1 Performance of SWIP Prediction

Fig.9(a) shows the indirect-branch prediction accu-
racy for the baseline processor and SWIP prediction.
In addition to the typical SWIP structure, we have also
evaluated an ideal SWIP structure which ignores the in-
terferences with the other branches in the BTB and the
direction predictor. This ideal SWIP structure provides

Table 3. Baseline Processor Configuration

Pipeline Depth 16 Stages
Instruction Fetch 4-instruction per cycle; fetch and at first pred taken branch; using Predecoding technique

Execution Engine 4-wide decode/issue/execution/commit; 512-entry RUU; 128-entry LSQ

Branch Predictor 32K-entry gshare predictor; 4K-entry, 4-way BTB with LRU replacement; 32-entry return address stack;
15-cycle min. branch misprediction penalty

Caches 32KB, 8-way, 1-cycle L1 DCache; 32 KB, 8-way, 1-cycle L1 ICache; 1MB, 16-way, 10-cycle unified L2 Cache.
All cache have 64B block size with LRU replacement policy

Memory 150-cycle memory latency (first chunk), 15-cycle(rest)

762 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

Table 4. Characteristics of Evaluated Benchmarks

gcc crafty eon perlbmk gap sjeng perlbench gcc06 povray richards Avg.
Static IB 79.00 11.00 26.00 46.00 35.00 15.00 24.00 128.00 8.00 5.00 38.00
Dyn. IB (K) 195.00 210.00 557.00 1176.00 1237.00 317.00 1125.00 393.00 696.00 269.00 495.00
IB MPKI 1.05 1.10 1.54 8.43 5.51 1.96 8.95 1.77 1.70 4.85 2.71
IBP Acc. (%) 46.20 48.00 72.40 28.40 55.50 38.20 20.50 55.00 75.60 46.00 45.50
Base IPC 1.26 1.67 1.74 1.38 1.50 1.44 1.09 1.46 1.99 1.58 1.49
PIBP IPC Δ (%) 6.01 10.34 19.30 44.42 46.56 10.68 51.18 10.33 16.49 38.74 23.26

Notice: Static IB: static number of indirect ranches, Dyn. IB: dynamic number of indirect branches, IB MPKI: indirect-branch
mispredictions per kilo instructions, IBP Acc.: indirect-branch prediction accuracy, Base IPC: Baseline IPC, PIBP IPC Δ: IPC Δ
with Perfect Indirect branch prediction.

Fig.9. Performance of SWIP prediction. (a) Indirect-branch prediction accuracy, (b) IPC improvement over baseline.

Table 5. MPKI Comparisons

gcc crafty eon perlbmk gap sjeng perlbench gcc06 povray richards Avg.
Baseline CB MPKI 9.45 8.23 6.57 3.69 1.56 13.53 3.28 8.25 2.55 4.82 6.19

IB MPKI 1.05 1.10 1.54 8.43 5.51 1.96 8.95 1.77 1.70 4.85 3.69

SWIP CB MPKI 9.64 8.39 6.57 5.53 2.35 13.95 4.27 8.65 2.55 5.24 6.71
IB MPKI 0.54 0.64 0.33 1.74 0.03 0.60 4.86 0.77 0.51 0.36 1.04

VPC CB MPKI 10.86 10.36 7.55 8.10 3.67 15.37 6.62 10.59 3.82 2.98 7.99
IB MPKI 0.52 0.66 0.14 2.63 0.14 0.57 5.61 0.70 0.25 0.27 1.15

Note: CB MPKI: conditional-branch MPKI, IB MPKI: indirect-branch MPKI.

the upper bound that SWIP prediction could achieve.
SWIP prediction improves the average prediction accu-
racy by 36.45% over that of the baseline predictor.

Table 5 shows the effect of SWIP prediction on
conditional-branch MPKI and indirect-branch MPKI.
The average indirect-branch MPKI is reduced signifi-
cantly, from 3.69 to 1.04. We notice that there are
slight adverse impacts on the conditional-branch pre-
diction, which is mainly due to the interferences with
conditional branches. Those interferences also affect
the indirect-branch prediction. However, because the
SWIP scheme already has obvious improvement on pre-
diction accuracy compared to the commonly-used BTB,
the reduction has been covered.

Fig.9(b) shows the performance improvement of
SWIP prediction over that of the baseline processor.
We have also experimented with a perfect indirect-

branch predictor, which predicts all the indirect-branch
targets with 100% accuracy. It shows an upper bound
of performance improvement of 23.26% over that of the
baseline processor. On average, SWIP improves per-
formance by 18.56% over the baseline processor perfor-
mance.

We also evaluated the performance impacts of the
two unusual cases in SWIP prediction, as shown in
Tables 6 and 7. Table 6 shows that the multiple-
tag-matched cases occur at a very low rate, no more
than 0.3% of total branch prediction for each bench-
mark, and subblock-overlapped cases also rarely hap-
pen. From the performance evaluation in Table 7, we
conclude that most of programs do not suffer perfor-
mance lost. Moreover, accurate indirect-branch predic-
tion can recover some minor performance reduction.

Besides, we also evaluated the indirect-branch-

Zi-Chao Xie et al.: SWIP Prediction for Indirect Branches 763

Table 6. Statistics of Two Unusual Cases in SWIP Prediction

Dynamic Number Rate
Multiple Tag Sub-Block Total Branch Multiple Tag Sub-Block

Matched Overlapped Prediction Matched Overlapped

gcc 128 400 380 16 264 824 0.30% 0.00%
crafty 251 374 15 493 273 0.00% 0.00%
eon 0 5 14 880 471 0.00% 0.00%
perlbmk 77 696 1 187 16 392 854 0.18% 0.01%
gap 0 2 14 090 099 0.00% 0.00%
sjeng 28 567 1 420 17 316 820 0.06% 0.01%
perlbench 31 913 262 13 633 032 0.09% 0.00%
gcc06 91 620 1 358 15 787 413 0.22% 0.01%
povray 0 0 15 786 504 0.00% 0.00%
richards 0 0 7 954 221 0.00% 0.00%

Table 7. Performance Impacts of Two Unusual Cases that Cause Penalties

Penalty Cycles Total Cycles in Penalties/Sim cycle
Multiple Tag Sub-Block Simulated Section Multiple Tag Sub-Block

Matched Overlapped (Sim cycle) Matched Overlapped

gcc 183 080 542 77 948 075 0.23% 0.00%
crafty 358 533 56 496 204 0.00% 0.00%
eon 0 0 49 736 484 0.00% 0.00%
perlbmk 110 783 1 692 55 706 758 0.20% 0.00%
gap 0 0 46 557 502 0.00% 0.00%
sjeng 40 732 2 025 65 144 134 0.06% 0.00%
perlbench 45 503 374 71 504 556 0.06% 0.00%
gcc06 130 637 1 936 65 196 146 0.20% 0.00%
povray 0 0 44 134 705 0.00% 0.00%
richards 0 0 14 143 853 0.00% 0.00%

Note: Not all unusual cases cause penalties. Some cases may have correct prediction fortunately.

insensitive benchmarks in SPEC CPU 2000 INT. From
the statistics in Table 8, there is hardly any bad impact
on those benchmarks. First, only if an indirect branch
is fetched, it will perform the SWIP prediction flow. To
conditional branches, its original branch prediction flow
is not changed. Second, since SWIP prediction dynami-
cally allocates indirect-branch entries according to the
encountered indirect branches, fewer indirect branches
lead to fewer contentions in the BTB and the PHT,
thereby having minor effects on the conditional-branch
prediction.

5.2 Comparison with Other Indirect-Branch
Predictors

We first compared SWIP prediction with the
previously proposed tagged target cache (TTC)

predictor[7], one of the best hardware-based indirect-
branch predictors for a similar set of benchmarks[14].
We simulated various sizes of the TTC predictor, from
256-entry to 64K-entry. Each entry of a TTC predictor
has a 4-byte target and a 2-byte tag, giving a total size
of 1.5KB to 384KB respectively. Figs. 10(a) and 10(b)
illustrate the comparison results of the MPKI and the
performance impact. On average, SWIP prediction for
the baseline processor (32K-entry PHT) achieves the
equivalent performance provided by a 48KB TTC pre-
dictor. As shown in Table 9, in six benchmarks, the
SWIP predictor performs at least as well as a 96KB
TTC predictor.

Table 5 shows the MPKI comparison between an
SWIP predictor and a VPC predictor[9] using the base-
line predictor. The maximum iteration number of VPC
prediction is set to 12. The total indirect-branch MPKI

Table 8. Evaluations of Indirect-Branch-Insensitive Benchmarks in SPEC CPU 2000 INT

Dynamic IB Total Branch IB Pred Acc IB Pred Acc CB Pred Acc CB Pred Acc IPC
Number Prediction w/o SWIP w/ SWIP w/o SWIP w/ SWIP Δ

gzip 10 18 466 151 90.00% 90.00% 93.56% 93.56% 0.00%
vpr 1 22 365 837 100.00% 100.00% 85.35% 85.35% 0.00%
mcf 2 50 129 512 50.00% 50.00% 94.67% 94.67% 0.00%
parser 0 14 861 471 − − 92.08% 92.08% 0.00%
vortex 10 259 19 191 571 73.56% 74.10% 97.56% 97.56% 0.00%

Note: IB: indirect branch, IB Pred Acc: indirect-branch prediction accuracy, CB Pred Acc: conditional-branch prediction
accuracy.

764 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

Fig.10. SWIP predictor vs other predictors: 1) TTC comparison: (a) MPKI. (b) IPC improvement with 32K-entry PHT. (c) IPC

improvement with 64K-entry PHT. 2) VPC comparison: (d) IPC improvement.

Table 9. Size of TTC Predictors that Provide the Equivalent Performance as SWIP Prediction in Terms of IPC

TTC Size (B) gcc crafty eon perlbmk gap sjeng perlbench gcc06 povray richards

SWIP 32K-entry PHT 192 K 192K 96K 3K 6K 12K 3K 96K 192 K 192K
SWIP 64K-entry PHT 384 K 384K 192K 6K 6K 6K 48K 384K 384 K 192K

of VPC prediction is similar to that of the SWIP
scheme. However, because VPC requires more cycles
to reach the same prediction accuracy of SWIP predic-
tion, its performance improvement is lower than that
of SWIP prediction. On the other hand, VPC’s ad-
verse impact on conditional branch predictions is also
greater than that of SWIP prediction. In VPC predic-
tion, the generated virtual branch in each cycle takes a
PHT entry. For one branch occurrence, VPC prediction
usually occupies more PHT entries during many predic-
tion iterations, while SWIP prediction takes only two
entries. In general, SWIP has better spatial and time
costs than the VPC scheme for the baseline processor.
Fig.10(d) shows the performance comparison between
the SWIP predictor and the VPC predictor. It shows

that the SWIP predictor outperforms the VPC predic-
tor by 7.65%.

5.3 Impact of Supporting Multiple PHT
Lookups per Cycle

If the processor provides the ability to access two
corresponding PHT entries per cycle[29], the PHT ac-
cess in one cycle can provide the full set-way index
pointer, shortening the prediction to two cycles. Fig.11
shows the performance impact of supporting the 2-entry
PHT access. From the statistics, SWIP prediction with
2-entry PHT access per cycle achieves performance im-
provement by 3% over that of the basic SWIP scheme
which accesses only one PHT entry per cycle. The

Zi-Chao Xie et al.: SWIP Prediction for Indirect Branches 765

Fig.11. IPC improvement of the single-access and multi-access

SWIP prediction.

Fig.12. Distribution of the access mode in SWIP prediction.

reasons for the minor accelerating impact are as fol-
lows. First, SWIP prediction originally has an accelera-
ting mechanism. The fast-pred mode takes only two
cycles to finish the indirect-branch prediction. Fig.12

shows the distribution of the number of cycles needed
to obtain the predicted target. On average, 69.67% of
indirect-branch predictions are finished correctly only
in two cycles (fast-pred case). Only 10% are in full-pred
mode. If the PHT supports 2-entry access, it only ac-
celerates those 10% cases, shortening 1-cycle latency for
each of those indirect-branch predictions. Second, ac-
cording to the previous analysis, the main performance
constraint of SWIP prediction is the PHT interferences
between conditional branches and the stored set-way
index pointers. Accelerating the fetch speed of set-way
index pointers cannot solve those interferences.

5.4 Sensitivity of SWIP Prediction to
Microarchitecture Parameters

5.4.1 Different Branch Predictors

Since SWIP prediction utilizes existing branch com-
ponents, different branch predictors may influence the
efficiency of SWIP prediction.

Fig.13 illustrates the effects of SWIP prediction un-
der various PHT sizes. The conclusion is that the
indirect-branch prediction accuracy becomes higher as
the PHT size increases. This is because 1) more branch
history is used to detect indirect-branch occurrences
(for example, 2K-entry PHT actually uses 11-bit GHR,
whereas 64K-entry PHT uses 16-bit GHR), 2)the en-
tries storing the set-way index pointers can be dis-
tributed more widely when the PHT size is greater,
resulting in less interference among original conditional
branches. Table 9 and Fig.10 show the comparisons be-
tween an SWIP predictor with 64K-entry PHT and the
larger TTC predictors. SWIP prediction achieves per-
formance improvement equivalent to that provided by a
192KB TTC predictor in six benchmarks. On average,
it performs as well as a 96KB TTC predictor.

Fig.13. Indirect branch prediction accuracy (a) and performance improvement (b) of SWIP prediction under different PHT sizes.

766 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

Table 10. Effect of Different Conditional-Branch Predictors

Cond.
Baseline SWIP Predictor

BP
MPKI MPKI IPC Δ

Cond. Indir. Cond. Indir. (%)

GS-32 K 6.19 3.69 6.71 1.04 18.56
GS-64 K 5.37 3.69 5.70 0.96 19.43
Hybrid 3.77 3.94 5.93 1.03 18.90

Notes: GS-32K: gshare with 32K-entry PHT, GS-64K: gshare
with 64K-entry PHT, Hybrid 40K: hybrid predictor.

We next evaluated the efficiency of SWIP prediction
using two tables in the hybrid branch predictor to store
set-way index pointers. The evaluated hybrid predictor
contains a 32K-entry gshare PHT, a 8 K-entry bimodal,
and a selector. Those pointers are stored in either the
bimodal or gshare tables in different cases. Table 10
shows, on average, SWIP prediction improves perfor-
mance by 18.90% over that of the baseline with the
hybrid predictor. The space size storing the set-way
index pointers determines the IPC improvement.

5.4.2 Different BTB Sizes

Since the SWIP predictor occupies only limited num-
ber of BTB entries needed to store indirect-branch
targets dynamically, SWIP prediction provides signifi-
cantly performance improvements even with small BTB
sizes (Table 11).

Table 11. Performance Improvement of SWIP
Prediction under Different BTB Sizes

BTB
Baseline SWIP Predictor

Entries
Indir. Pred. Indir. Pred. IPC Δ
Acc. (%) Acc. (%) (%)

8K 45.48 81.90 18.58
4K 45.47 81.74 18.56
2K 45.47 81.33 18.12
1K 44.78 80.82 17.45
512 42.79 79.85 17.20

5.4.3 SWIP Prediction on a Less-Aggressive Processor

According to the analysis[16], dual-issue processors
are optimal for the energy-performance tradeoff space.
Table 12 shows the effect of SWIP prediction on this
kind of less-aggressive processor, which has 8-stage
pipeline, 2-wide issue width, 128 RUU, 32K-entry
PHT, and 512-entry BTB. Because of a smaller branch
misprediction penalty and smaller instruction window

size, it improves the prediction accuracy by 36.78%, re-
sulting in 6.36% performance improvements over that
of the baseline processor.

5.5 Effect of SWIP Prediction on Energy
Consumption

The parameters of this energy evaluation are derived
from the Cacti tool[30], which is configured with 65nm
technology, 1GHz.

As Fig.14 shows, the energy of SWIP prediction is
reduced by 14.34% over that of the baseline processor,
and it also performs better than other indirect-branch
predictors. Unlike large TTC predictors, it reuses the
existing branch components instead of employing large
dedicated storage, so there is no energy consumed by
additional storage. SWIP prediction achieves energy
reduction by making fewer pipeline flushes and fewer
wrong-path instruction executions due to high indirect-
branch prediction accuracy. Moreover, its maximum
power consumption in one cycle would not increase be-
cause it accesses the same components as the condi-
tional branch prediction.

Fig.14. Effect of SWIP prediction on energy reduction.

6 Conclusions

This paper proposed and evaluated a complexity-
effective indirect-branch prediction mechanism, SWIP
prediction. It exploits the existing BTB to store multi-
ple indirect-branch targets, and redefines the direction
predictor to store set-way index pointers. SWIP pre-
diction uses the pointers to implement a fast and accu-
rate indirect-branch prediction, without requiring large
dedicated storage or additional compiler assistant.

Table 12. SWIP Prediction on a Less-Aggressive Processor

gcc crafty eon perlbmk gap sjeng perlbench gcc06 povray richards Average

Pred. Acc. Δ (%) 34.55 22.61 25.80 57.92 44.46 43.57 40.50 31.09 17.22 50.03 36.78
IPC Δ (%) 2.98 4.35 8.76 14.62 16.92 4.59 15.38 4.27 4.99 13.88 6.26

Zi-Chao Xie et al.: SWIP Prediction for Indirect Branches 767

According to the experiments, SWIP prediction
achieves attractive performance improvement and re-
duces the energy used. It can be concluded from ex-
perimental statistics that the main performance con-
straint of SWIP prediction is the interference between
the inserted set-way index pointers and the original
conditional-branch direction information. Our future
work will focus on how to design a better spacial distri-
bution algorithm for set-way index pointers. In addi-
tion, we will explore ways in which the concept of SWIP
prediction can be effective in other processor-design ar-
eas that share set-associative cache structures, such as
cache, TLB, and load/store queue.

References

[1] Jiménez D A, Lin C. Dynamic branch prediction with percep-
trons. In Proc. the 7th HPCA, Jan. 2001, pp.197-206.

[2] McFarling S. Combining branch predictors. Technical Report
TN-36, Western Research Laboratory, June 1993.

[3] Kim H, Mutlu O, Stark J, Patt Y. Wish branches: Combining
conditional branching and predication for adaptive predicated
execution. In Proc. the 38th MICRO, Nov. 2005, pp.43-54.

[4] Seznec A. Analysis of the O-GEometric history length branch
predictor. In Proc. the 32nd ISCA, Jun. 2005, pp.394-405.

[5] Yeh T Y, Patt Y. A comparison of dynamic branch predictors
that use two levels of branch history. In Proc. the 20th ISCA,
May 1993, pp.257-266.

[6] Calder B, Grunwald D, Zorn B. Quantifying behavioral dif-
ferences between C and C++ programs. Journal of Program-
ming Languages, 1994, 2(4): 323-351.

[7] Chang P Y, Hao E, Patt Y. Target prediction for indirect
jumps. In Proc. the 24th ISCA, June 1997, pp.274-283.

[8] Driesen K, Hölzle U. The cascaded predictor: Economical and
adaptive branch target prediction. In Proc. the 31st MICRO,
Nov. 30-Dec. 2 1998, pp.249-258.

[9] Kim H, Joao J A, Mutlu O, Lee C J, Patt Y, Cohn R.
VPC prediction: Reducing the cost of indirect branches via
hardware-based dynamic devirtualization. In Proc. the 34th
ISCA, June 2007, pp.424-435.

[10] Driesen K, Hözle U. Accurate indirect branch prediction.
Technical Report TRCS97-19, University of California, March
1998.

[11] Kalamatianos J, Kaeli D R. Predicting indirect branches via
data compression. In Proc. the 31st MICRO, Nov. 30-Dec. 2,
1998, pp.272-281.

[12] Driesen K, Hölzle U. Multi-stage cascaded prediction. In
Proc. the 5th Euro-Par Conference on Parallel Processing,
Aug. 31-Sept. 3, 1999, pp.1312-1321.

[13] Seznec A, Michaud P. A case for (partially) TAgged GEomet-
ric history length branch prediction. Journal of Instruction-
Level Parallelism (JILP), 2006, 8(1): 1-23.

[14] Joao J A, Mutlu O, Kim H, Agarwal R, Patt Y. Improving
the performance of object-oriented languages with dynamic
predication of indirect jumps. In Proc. the 13th ASPLOS,
March 2008, pp.80-90.

[15] Farooq M, Chen L, John L K. Value based BTB indexing
for indirect jump prediction. In Proc. the 16th HPCA, Jan.
2010.

[16] Azizi O, Mahesri A, Lee B C, Patel S J, Horowitz M. Energy-
performance tradeoffs in processor architecture and circuit de-
sign: A marginal cost analysis. In Proc. the 37th ISCA, Jun.
2010, pp.26-36.

[17] Hameed R, Qadeer W, Wachs M et al. Understanding sources
of inefficiency in general-purpose chips. In Proc. the 37th
ISCA, June 2010, pp.37-47.

[18] Lin Y L. Essential Issues in System-On-a-Chip Design,
Springer-Verlag, 2006.

[19] Lee J K F, Smith A J. Branch prediction strategies and branch
target buffer design. IEEE Computer, 1984, 17(1): 6-22.

[20] Yeh T Y, Patt Y. Two-level adaptive training branch predic-
tion. In Proc. the 24th MICRO, Nov. 1991, pp.51-61.

[21] Roth A, Moshovos A, Sohi G S. Improving virtual function
call target prediction via dependence-based pre-computation.
In Proc. the 13th ICS, June 1999, pp.356-364.

[22] Gochman S, Ronen R, Anati I et al. The Intel� Pentium�
M processor: Microarchitecture and performance. Intel Tech-
nology Journal, 2003, 7(2): 21-59.

[23] IBM. IBM PowerPC 970FX RISC Microprocessor user’s man-
ual. Version 2.3, March 2008.

[24] SPEC. Standard Performance Evaluation Corporation.
http://www.spec.org, July 2011.

[25] Burger D, Austin T M. The simpleScalar tool set, version 2.0.
SIGARCH Comput. Archit. News, 1997, 25(3): 13-25.

[26] Brooks D, Tiwari V, Martonosi M. Wattch: A framework for
architectural-level power analysis and optimizations. In Proc.
the 27th ISCA, June 2000, pp.83-94.

[27] Wolczko M. Benchmarking Java with the Richards bench-
mark. http://research.sun.com/people/mario/java benchmar-
king/richards/richards.html, July 2011.

[28] Perelman E, Hamerly G, Van Biesbrouck M et al. Using Sim-
Point for accurate and efficient simulation. In Proc. SIG-
METRICS, June 2003, pp.318-319.

[29] Yeh T Y, Marr D, Patt Y. Increasing the instruction fetch rate
via multiple branch prediction and branch address cache. In
Proc. the 7th ICS, July 1993, pp.67-76.

[30] Thoziyoor S, Muralimanohar N, Ahn J N, Jouppi N P.
CACTI 5.1. Technical Report HPL-2008-20, Hp Labs,
2008, http://www.hpl.hp.com/techreports/2008/HPL-2008-
20.html.

Zi-Chao Xie is currently a post-

doctoral researcher in Peking Uni-
versity. He received his B.E degree
in microelectronics from Peking Uni-
versity in 2006, and then received
his Ph.D. degree in computer science
from Peking University in 2012. His

research interests include processor
microarchitecture, multicore system,
and hardware/software co-design.

Dong Tong received his Ph.D.

degree in computer science from
Harbin Institute of Technology in
1999. He is now a professor in
the School of Electronics Engineer-
ing and Computer Science, Peking
University. His research interests in-
clude processor architecture, recon-

figurable computing, interconnection
network, and System-on-Chip. He is

also a member of CCF and ACM.

768 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

Ming-Kai Huang is a Ph.D.
candidate in Microprocessor Re-
search and Development Center,
Peking University. He received his
bachelor degree from Peking Univer-

sity in 2008. His research interests in-
clude compiler, runtime system and
computer architecture.

Qin-Qing Shi is a graduate stu-
dent in the Department of Geogra-
phy, University of Maryland, USA.
She received her B.S. degree in
the School of Information Science
and Technology of Peking University,

China. Currently, her research in-
terest is the application of computer
science technologies in the area of re-
mote sensing of geography.

Xu Cheng is a professor and
Ph.D. advisor in Peking University.
He is the director of Microproces-

sor Research and Development Cen-
ter, Peking University and a member
of Advisory Committee for State In-
formatization. His research interests
include high performance micropro-
cessor, System-on-Chip, embedded

system, instruction-level parallelism,
hardware/software co-design and compiler optimization. He
is a member of CCF.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

