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Abstract  Evolutionary computation (EC), a collective name for a range of metaheuristic black-box optimization algo-
rithms, is one of the fastest-growing areas in computer science. Many manuals and “how-to”s on the use of different EC
methods as well as a variety of free or commercial software libraries are widely available nowadays. However, when one
of these methods is applied to a real-world task, there can be many pitfalls and booby traps lurking — certain aspects of
the optimization problem that may lead to unsatisfactory results even if the algorithm appears to be correctly implemented
and executed. These include the convergence issues, ruggedness, deceptiveness, and neutrality in the fitness landscape,
epistasis, non-separability, noise leading to the need for robustness, as well as dimensionality and scalability issues, among
others. In this article, we systematically discuss these related hindrances and present some possible remedies. The goal is
to equip practitioners and researchers alike with a clear picture and understanding of what kind of problems can render EC

applications unsuccessful and how to avoid them from the start.

Keywords

1 Introduction

Every task with the goal of finding certain configu-
raticons considered as best in the context of pre-defined
criteria can be viewed as an optimization problem.
If these problems are formally specified, they can be
solved algorithmically either with a dedicated, problem-
specific algorithm (such as Dijkstra’s algorithm for find-
ing shortest path trees on graphs) or with a more gene-
ral optimization method. The set of optimization algo-
rithms ranges from mathematical (e.g., using Lagrange
Multipliers), numerical (e.g., the Regula Falsi) and sim-
ple heuristic (e.g., A*-search) approaches to randomi-
zed metaheuristics such as the evolutionary computa-
tion (EC) methods. The latter is the focus of this spe-
cial issue.

When skimming through the articles in this issue,
the reader will find many successful examples and varia-
nts of different EC techniques (a detailed overview on
EC can be found in [1-3]). However, questions such as
these may arise: “Why are there so many different op-
timization methods?”, “Is optimization a complicated

evolutionary computing, problem difficulty, optimization, meta-heuristics

process? If so, why?”, “What makes an optimization
problem difficult to solve?”, “Which are the things I
should consider when tackling a particular optimiza-
tion task?”, and so on. In this article, our aim is to
provide some answers to these questions by discussing
a list of fundamental issues that are often seen as “ob-
stacles” in the evolutionary optimization domain.

To start with, there are many design decisions in im-
plementing EC methods. For effective optimization, it
is important to understand not only the problem being
studied, but also how that problem interacts with the
applied technique(s). Design choices that do not ad-
dress issues related to convergence, ruggedness, decep-
tiveness and neutrality in the fitness landscape, epista-
sis, non-separability, noise, dimensionality, scalability
and so on can hamper the effectiveness of the optimiza-
tion effort. By using clear definitions and illustrations
to describe these fundamental issues, we hope to in-
crease awareness among computer scientists and prac-
titioners about how to avoid pitfalls and how EC can
be applied more efficiently in real-world environments
(see [4]).
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It is necessary to note that this article is not in-
tended to be a tutorial of how to apply a particular
EC method, e.g., an evolutionary algorithm (EA), to
specific problems®® or how to address subject mat-
ters such as multi-objectivity[”, constraint handling!®,
or the inclusion of problem-specific knowledgel®!. For
the practical application of EC methods in general and
EAs in particular, several books exist!*10712] Instead,
our aim is to take a closer look at what features of
the problem or search space may decrease the solution
quality even if the algorithm implementation appears
to be correct and “make sense”. Considering these fea-
tures (and corresponding countermeasures) before de-
veloping an EA application (or, at least, when trying
to improve its performance) may lead to significantly
better results.

The article is also not a survey on problem complex-
ity. Research studies on this topic are typically carried
out from an analytical, mathematical, or theoretical
perspective, with the goal to derive approximations
for the expected runtime of the problem solvers!3-15,
These approaches usually focus on benchmark prob-
lems or specific classes of optimization tasks, but
there is also progress towards developing more gene-
ral theorems!*®"16l. Here, we do not intend to provide
a rigorous theoretical treatment of pitfalls and possi-
ble traps in evolutionary optimization, but simply to
present a top-down view of some “complications” that
may be encountered during the optimization process.

Our focus is therefore on the design decisions of EC
methods. The effectiveness of these design decisions
is often influenced by their actual implementation and
the associated parameter values used in the optimiza-
tion process. While parameter values are important for
gaining the most benefit from an EC implementation,
design decisions such as problem representation, opera-
tor design, and population structure are often consi-
dered to be even more criticall!718,

In the remainder of this section, we will introduce
the basic terminologies used throughout this article, de-
scribe some possible scenarios of the fitness landscape,
and briefly discuss complexity theory. After which, we
start off with the topic of convergence in Section 2, fol-
lowed by other issues possibly leading to unsatisfying
convergence, such as ruggedness (Section 3), deceptive-
ness (Section 4), or neutrality (Section 5) in the fit-
ness landscape. One way ruggedness, neutrality, and
deceptiveness can be manifested is from the genotype-
phenotype mapping through a phenomenon known as
epistasis (Section 6). Optimization can also become
more complicated if solutions that are sought have to
be robust against noise (Section 7). A high number of
objective functions (Section 8) or a large problem scale
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(Section 9) increases the runtime requirement while also
decreasing the expected quality of the solutions. As
shown in the overview provided in Table 1 and Ta-
ble 2, we discuss not only these interrelated issues in
optimization, but also list their corresponding counter-
measures (which is actually an m-to-n relation). If an
optimization algorithm performs well in the presence of
some of the problematic facets, this good performance
has to be paid for with a loss of solution quality in a dif-
ferent situation — this fact has been formalized in the
No Free Lunch Theorem, which we will discuss in Sec-
tion 10. Finally, we conclude our review on the various
issues with a summary in Section 11.

1.1 Basic Terminologies

Throughout this article, we will utilize terminologies
commonly used in the EC community. Most of these
terminologies are inspired from actual biological phe-
nomena. Fig.1 shows the spaces involved in a typical
evolutionary optimization scenario. The candidate so-
lutions (or phenotypes) = of an optimization problem
are elements of the problem space X (also called the
solution space). Their utility is evaluated by m > 1
objective functions f, which embody the optimization
criteria (usually subject to minimization). Together,
these functions can be considered as one vector func-
tion f: X +— R™.

The objective functions are the only direct source of
information available to an EA. It uses this information
to decide which candidate solutions are interesting and
subsequently combines and/or modifies them in order
to sample new points in the problem space. If these two
processes can be conducted in a meaningful way, with
a certain chance of finding better candidate solutions,
the EA can progress towards an optimum — an issue
which we discuss in Subsection 3.1 in more detail.

The search operations (such as the unary mutation
or the binary recombination/crossover operation) uti-
lized by the EA often do not work directly on the phe-
notypes. Instead, they are applied to the elements (the
genotypes) of a search space G (the genome). The geno-
types are encoded representations of the candidate so-
lutions, which are mapped to the problem space by a
genotype-phenotype mapping gpm : G — X. A tradi-
tional genetic algorithm (GA), for instance, may uti-
lize a bit-string based encoding as the search space,
which can be mapped to a real-valued problem space
for function optimization(!?-2!). In the common case
that G = X, i.e., when the variables are processed in
their “natural form” (22, the genotype-phenotype map-
ping is the identity mapping.

EAs manage a population, i.e., a set of individuals
(genotype and the corresponding phenotype), which
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Table 1. Overview on Topics and Measures (Part A)
Sections Countermeasures Problems
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2.1.3,2.24 Lower Selection Pressure v X v v v v
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2.2.4,8.2.1 Larger Population Size 4 X v v (%4 4 v 4
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2.2.6 Clustering of Population v v 4 v v
2.2.7 Self-Adaptation 4 (4 v (4
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3.2.2 Landscape Approximation v
3.2.1 Hybrid Algorithms (4 (%4 (%4 v
3.2.3 Combined Algorithms v
4.2.2 Use of Memory v 4
4.2.3 Preventing Convergence v (4 4 (%4 (4 v
4.2.4 Novelty Search v v
6.2.3 Linkage Learning v v v
7.2 Randomizing Objectives v
8.2.2 Use Multiple Archives v
8.2.4 Use Indicator Functions v
8.2.5 Scalarizing 4
8.2.6 Limiting Search Area 4
9.2.1 Parallelization v 4
9.2.2 Developmental Represent. (4
9.2.4 Adaptive Encodings v
9.2.5 Exploiting Separability v

Note: ¥ means that the given measure maybe useful if the problem in the same row is observed, X means that the measure

would likely be counter-productive.

Table 2. Overview on Topics and Measures (Part B)

Problems Sections
Premature Convergence 2.1.1
Slow Convergence 2.1.1, 1.3
Bad Spread 2.1.1
Multi-Modality 3,221
Ruggedness 3
Deceptiveness 4
Neutrality 5
Needle-in-a-Haystack 5.1.3
Epistasis 6

Noise 7
Dimensionality (f) 8

Scale (G) 9

undergo evaluation, selection, and reproduction in each
iteration (generation). Before selection, a single scalar
fitness value is assigned to each individual. The fit-
ness denotes the priority of an individual for being se-
lected as the parent for offspring in the next generation,
i.e., its chance of being chosen as the input to a search
operation. This fitness, in general, is determined by a
fitness assignment process that usually relies on the ob-
jective value(s) of the candidate solution stored in the
individual record. It often relates these objective val-
ues to those of other candidate solutions in the popula-
tion, e.g., by computing the individual’s (Pareto) rank
among them. The fitness may, however, also include ad-
ditional information'” such as diversity metrics (see,
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e.g., Subsection 2.2.5).

If only a single objective function is to be optimized
(i.e., m =1 and f = f), it is sometimes referred to as
the fitness function as well, so there exists some ambi-
guity in the terminology!!!. From the latter, the term
“fitness landscape” is derived, which refers to the visua-
lization of an objective function (and not of the results
of a fitness assignment process).
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An illustration of the spaces and sets involved in
(evolutionary) optimization is given in Figs.1 and 2,
where the candidate solutions are coordinate pairs de-
coded from bit strings (the genotypes) via the genotype-
phenotype mapping. Each element of a genotype that
can be modified by a search operation is called a gene.
The term building block denotes groups of gene settings
that together form an essential element of an individual.
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Fig.1. Involved spaces and sets in (evolutionary) optimization. (a) Involved spaces. (b) Involved sets/elements.
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Thomas Weise et al.: Evolutionary Optimization: Pitfalls and Booby Traps

1.2 Fitness Landscapes

As aforementioned, the most important information
sources for an optimization algorithm are the m > 1
objective functions that rate the quality of possible so-
lutions to an optimization problem. A function is “diffi-
cult” from a mathematical perspective in this context if
it is not continuous, not differentiable, or if it has mul-
tiple maxima and minima. This understanding of dif-
ficulty comes very close to the intuitive curves in Fig.3
where we sketch a number of possible scenarios of the
fitness landscape (objective function plots) that we are
going to discuss in this article. The objective values
in the figure are subject to minimization and the small
bubbles represent candidate solutions under investiga-
tion. An arrow from one bubble to another means that
the second individual is found by applying a search ope-
ration to the first one. As can be seen, there are diffe-
rent objective function shapes that can pose to be diffi-
cult for an optimization algorithm to proceed its search
in this manner. EAs typically work on multiple solu-
tions simultaneously and, as a result, the search space
navigation can be difficult to visualize. These graphs
thus provide a simplified visualization of the theories
discussed rather than an accurate depiction of the EA
search process. The structure of EAs enables them to
often overcome some local optima, deception, rugged-
ness, and neutrality.

From these plots, it may also seem that the shape of
the fitness landscape is defined by the objective func-
tion only. However, this is not true from the perspec-
tive of an EA. Here, the representation, i.e., the choice
of search space, search operations, and the genotype-
phenotype mapping, has a tremendous impact on the

Objective Values f(x)
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effective shape of the fitness landscape3. As out-
lined in the previous subsection, an EA conducts its
search by applying the search operators to genotypes
in a search space that are mapped to phenotypes in a
problem space which, in turn, are evaluated by the ob-
jective functions, as illustrated in Fig.2. The concept of
adjacency amongst candidate solutions from the view-
point of an EA hence depends on the representation
used and not on their proximity in the problem space
(unless both spaces are the same, that is). In any case,
many of the problematic issues which we will discuss in
this article are closely related to the choice of represen-
tation, as can be seen directly in Tables 1 and 2 and,
for instance in Subsections 3.2.4, 4.2.1, 5.1.2, and 6.2.1.
An important feature of the fitness landscape is that
it may have different global and local structures. Fig.4
illustrates one objective function graph (in the top-left
sub graph) from which regions are successively selected
and “zoomed in”. As can be seen, different sections
of this function may exhibit different problematic fea-
tures or issues. It is thus necessary to remember that
the characteristic of an objective function may seem to
be dynamicl?¥ and change during the course of opti-
mization when the global optimum is approached.
Before going into the details of difficult fitness land-
scape features, we would like to briefly review the term
difficult itself from the perspectives of both traditional,
deterministic, exact algorithms as well as EAs.

1.3 Problem Hardness

One of the basic goals of computer science is to find
the best algorithm for solving a given class of problems.
The performance measures used to rate an algorithm’s
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Fig.4. Artificial example of how landscape features may change depending on the selected region of the graph.

efficiency are 1) the time it takes to produce the desired
outcome and 2) the storage space it needs for internal
data, i.e., its time and space complexity. Both of these
can be described as functions of the input size of the
algorithm for best, average, and worst-case input sit-
uations, which are usually simplified using the big-O
family notations.

The computational complexity of a problem is
bounded by the best algorithm known for that prob-
lem. It states how much resources are necessary for
solving the given problem, or, from the opposite point
of view, tells whether the given resources are sufficient
for this purpose.

The set of all problem classes that can be solved
on a computer@ within polynomial time is called P.
These are problems which are said to be exactly solv-
able in a feasible way. The set of problem classes that
allows solution verification in polynomial time is called
NP, which also comprises all the problems from P
(P C NP). A problem A is hard for a complexity
class if every other problem in this class can be reduced
to it, i.e., if the other problems can be re-formulated so
that they can also be solved with an algorithm for A.
Exactly solving any ANP-hard problem is difficult as it
may require super-polynomial, exponential time.

Solving such a problem to optimality is thus not al-
ways possible. When dealing with N"P-hard problems
that have more than a certain number of variables, we
may need to give up some solution quality in order to
make the problem computationally tractable. EAs use
some random process in their execution. These stochas-
tic algorithms (usually) trade in solution correctness,
i.e., the guarantee to find the global optimum, for a

lower runtime. In other words, if we apply an EA,
we would normally not expect to find the global op-
tima but some reasonably good approximations within
feasible time. The limits of this speed-up are discussed
in Subsection 9.1.

While NP-hard problems can be considered to be
difficult for any exact method, the question about which
problems are GA- or FA-hard arises. This question has
been considered from several perspectives25-28 and
the most notable discussions can be found in [15, 29]:
Problem instance classes for which the expected worst
case first hitting time, i.e., the number of steps required
to find a global optimum, of a particular EA has an ex-
ponential lower bound are “EA-hard” (for that EA). In
[15], two such classes have been proposed for (1 4 1)
EAs: 1) wide-gap problems, where there is a very low
probability that the EA can escape a local optimum
towards a region with higher utility, and 2) long-path
problems, where advancement towards better objective
values has a reasonably high probability, but the nece-
ssary number of such steps is very high. It should be
noted that some instance classes of N’P-hard problems
can be EA-easy!39.

Finding out how hard certain problems are for EAs
is an active research area and much work has been de-
voted to finding the asymptotical complexity of these
stochastic algorithms in different scenarios!!316.

2 Convergence

An optimization algorithm has converged 1) if it
cannot reach new candidate solutions anymore or 2)
if it keeps on producing candidate solutions from a
“small”® subset of the problem spacel?. Optimization

®0r Deterministic Turing Machine.

®According to a suitable metric like the number of modifications or mutations that need to be applied to a given solution in order

to leave this subset.



Thomas Weise et al.: Evolutionary Optimization: Pitfalls and Booby Traps 913

processes will usually converge at some point in time.
In the ideal case, convergence happens towards the
global optimum. One of the problems in evolutionary
optimization is that it is often not possible to deter-
mine whether the best solution currently known is sit-
uated on a local or global optimum and thus, if the
convergence is acceptable. In other words, it is not
clear whether the optimization process can be stopped,
whether it should concentrate on refining the current
optimum, or whether it should examine other parts of
the search space instead. This, of course, can only
become cumbersome if there are multiple (local) op-
tima, i.e., the problem is multi-modal®!, as depicted
in Fig.3(c). It is worthwhile to note that convergence
often occurs much more quickly in the objective space
than in the search and solution spaces.

2.1 The Issues

There are at least three basic problems related to the
convergence of an optimization algorithm: premature,
non-uniform, and domino convergence. The first one is
considerably the most important in optimization, but
the latter ones may cause a lot of inconveniences too.

2.1.1 Premature and Non-Uniform Convergence

The main goal in EC is to find solutions that are
as close to the true global optimum as possible. An
optimization process is considered to have prematurely

converged to a local optimum if it is no longer able (or
extremely unlikely) to explore other parts of the search
space than the area currently being examined and there
exists another region that contains a superior solution.
In case that there is more than one global optimum,
then the second goal is to discover as many of them as
possible.

In single-objective optimization, all the global op-
tima have the same objective values but reside on dif-
ferent peaks (or hyperplanes) of the objective function.
The presence of multiple such optima is the focus of
research on multi-modal optimization!32!.

In multi-objective optimization, there are usually
many global optima due to the trade-off of the objec-
tives. Take the task of finding a good car, for example,
where the criteria speed and fuel consumption would
be traded-off. The optimization process should discover
both, slower, environmentally friendly cars and fast cars
that need more gasoline.

In some optimization problems, the number of
(globally) optimal solutions is too large to provide all
of them to the human operator. On these cases, the
subset of delivered solutions should well represent the
range of possible results, i.e., it should be a uniform
sample of all possible optimal features. If only some of
the optimal features are presented to the human opera-
tor, e.g., only the fast cars in the above example, the
convergence is said to be non-uniform[33.

Fig.5 illustrates these issues on the examples of a
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- ) \ Small Subset of
True Front of Optimal Solutions Optimal Solution
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(a) (b) (©)
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Fig.5. Optimal solution approximation sets. (a) Bad convergence and good spread (single-objective). (b) Good convergence and bad

spread (single-objective). (¢) Good convergence and spread (single-objective). (d) Bad convergence and good spread (bi-objective).

(e) Good convergence and bad spread (bi-objective). (f) Good convergence and spread (bi-objective).
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single-objective (Figs. 5(a)~5(c)) and a bi-objective op-
timization task (Figs. 5(d)~5(f)); objectives are subject
to minimization. Fig.5(a) shows the result of having a
very good spread (or diversity) of solutions, but the
points are far away from the optima. Fig.5(d) is a
sketch of the same issue for a bi-objective problem: the
discovered solutions are diverse, but distant from the
true Pareto front of best trade-offs. Such results are
not attractive because they do not provide optimal so-
lutions and we would consider the convergence to be
premature in this case. The second examples (Fig.5(b)
and Fig.5(e)) contain solution sets that are very close
to the true optima but cover them only partially, so
the decision maker could lose important options. Fi-
nally, the optimization results depicted in Fig.5(c) and
Fig.5(f) have the two desirable properties of good con-
vergence (i.e., the solutions are very close to optimal)
and spread (i.e., the whole trade-off curve between the
two objectives is covered).

2.1.2 Domino Convergence

The phenomenon of domino convergencel®*3% oc-

curs when the candidate solutions have features con-
tributing to significantly different degrees to the total
fitness. If these features are encoded separately, they
are likely to be treated with different priorities. If, for
example, optimization takes place over RY and the first
element of a solution vector is much more important
(from the perspective of the objective function) than
the second one, its priority during the optimization pro-
cess will be much higher too.

Although this seems to be legit, it can prevent us
from finding the global optimum: gene values with
strong positive influence on the objective values, for in-
stance, will quickly be adopted by the optimization pro-
cess (i.e., “converge”). During this time, the values of
the genes with smaller contribution are ignored. Their
state may remain rather random and hitchhike through
the generations in genotypes with good configurations
of the more salient genes®®!. They do not receive
evolutionary pressure until the optimal configurations
of these genes have been accumulated. This sequen-
tial convergence phenomenon is called domino conver-
gence due to its resemblance to a row of falling domino
stones!39],

In the worst case, the contributions of the less in-
fluential genes may look almost like noise and they are
not optimized at all. This leads to premature conver-
gence, since the global optimum which would involve
optimal configurations of all genes will not be disco-
vered. Here, restarting the optimization process will
not help because it will turn out the same way with
very high probability.

J. Comput. Sci. & Technol., Sept. 2012, Vol.27, No.5

2.1.3 Diversity, Exploration, and Exploitation

In biology, diversity is referred to as the variety and
abundance of organisms at a given place and timel37.
Genetic diversity is the fuel of evolution and essential
for a species’ robustness against and adaptivity to en-
vironmental changes. In EAs, maintaining a diverse
population is very important as well. Losing diversity
means approaching a state where all the candidate solu-
tions under investigation become similar to each other.
Consequently, no new areas in the search space will be
explored and the optimization process will not make
any further progress.

The process of finding points in new areas of the
search space that are rather distant from the cur-
rently investigated candidate solutions is called explo-
ration!®8].  Exploration increases diversity but often
leads to the creation of solutions inferior to those that
have already been investigated. However, like in bio-
logy, there is a small chance that new genetic material
can lead to the discovery of superior traits.

On the other hand, exploitation is the process of im-
proving and combining the traits of the (best) currently
known solutions. Exploitation-based search operations
often perform small changes in individuals, producing
new, very similar candidate solutions. This would give
rise to some steady improvement in fitness for a pe-
riod of time, but it also reduces diversity in the popula-
tion since offspring and parents become more and more
similar to each other. Another problem with exploita-
tion is that possibly existing better solutions which may
be located in distant areas of the problem space will not
be discovered.

Exploration versus exploitation[39-4% is therefore the
dilemma of deciding which of the two principles to apply
and to which degree at a certain stage of optimization.
It is sketched in Fig.6 and can be observed in many
areas of optimization. More or less synonymous to ex-
ploitation and exploration are the terms intensification
and diversification!*'. Optimization algorithms that
favor exploitation over exploration have higher conver-
gence speed but run the risk of not finding the optimal

Initial Situation: Good
Candiate Solution Found

Exploitation: Search Close Proximity
of the Good Candidate

Exploration: Search also
the Distant Areas

Fig.6. Exploration vs exploitation.
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solution and may get stuck at a local optimum.
Then again, algorithms that perform excessive explo-
ration may never improve their candidate solutions well
enough to find the global optimum or it may take them
very long to discover it.

Almost all components of optimization strategies
can either be used for increasing exploitation or in fa-
vor of exploration. Exploitation can be achieved by
building unary search operations (e.g., mutation oper-
ators) that improve an existing solution in small steps.
However, mutation in an EA can also be implemented
in a way that introduces much randomness into the
individuals, effectively turning it into an exploration
operator. Selection operations choose a set of the most
promising candidate solutions that will be investigated
in the next iteration of the algorithm. They can either
return a small group of best individuals (exploitation)
or a wide range of existing candidate solutions (explo-
ration).

A good example for the exploration vs exploitation
dilemma is the simulated annealing algorithm!2!. It is
often modified to a faster form called simulated quench-
ing, which focuses on exploitation but loses the gua-
ranteed convergence to the optimum!3l. Another good
example is given in [44-45], where it is shown that for
some problems, the selection pressure and mutation
rate of an EA must be balanced extremely well in order
to achieve a polynomial expected runtime. Too much
exploitation or exploration may both lead to an expo-
nential expected first hitting time.

2.2 Countermeasures

There is no general approach to prevent unsatisfy-
ing convergence as this phenomenon may have a variety
of different causes. The probability of an optimization
process getting caught in a local optimum depends on
the characteristics of the problem at hand and the pa-
rameter settings as well as on features of the optimiza-
tion algorithms applied!33].

2.2.1 Balanced Exploration and Exploitation

Generally, optimization algorithms should employ
at least one search operation of explorative charac-
ter and at least one that is able to exploit good so-
lutions further. There exists a vast body of research
on the trade-off between exploration and exploitation
that optimization algorithms have to facel®], ranging
from targeted initialization of the population!*®!, min-
ing data from the optimization processl*”, to devis-
ing specialized population structures*® and specialized
search operators9l,

2.2.2 Search Operator Design

A very basic measure to decrease the probability of
premature convergence is to make sure that the search
operations are complete, i.e., to make sure that they can
(theoretically at least) reach every point in the search
space from every other point. Then, it is possible to es-
cape arbitrary local optima with non-zero probability.

A good example for this is the modification to evo-
lutionary programming (EP) introduced in [50]: By re-
placing the usually applied normally distributed mu-
tations with Lévy distributed ones, the probability to
reach distant points in a real-coded search space within
a single mutation step is increased and better results
could be obtained. In [51], the large impact of search
operator design on the solution quality for a combina-
torial problem is confirmed.

2.2.3 Restarting

A very crude yet sometimes effective measure is to
restart the optimization process at randomly or strate-
gically chosen points in time. One example for this
is the Greedy Randomized Adaptive Search Procedure
(GRASP)[52], which continuously restarts the process
of creating an initial solution and refines it with local
search. Still, this approach is likely to fail in domino
convergence situations.

2.2.4 Low Selection Pressure and/or Larger
Population Size

Generally, the higher the chance that candidate solu-
tions with bad fitness are investigated instead of being
discarded in favor of seemingly better ones, the lower
the chance of getting stuck at a local optimum. This is
the exact idea which distinguishes simulated annealing
from hill climbing. It is known that simulated anneal-
ing can find the global optimum, whereas simple hill
climbers are likely to prematurely converge since they
always proceed with the best candidate solution disco-
vered so far.

In an EA, too, using low selection pressure decreases
the chance of premature convergence and can lead to a
better approximation of the true global optima. How-
ever, such an approach also decreases the speed with
which good solutions are exploited and thus, increases
the runtime. Also, too low of a selection pressure may
cause genetic drift, which we will put into the context
of neutrality and evolvability in Subsection 5.1.1.

Increasing the population size may be useful as well,
since larger populations can maintain more individuals
and hence, cover many different solutions. This cove-
rage can lead to a lower selection pressure. However,
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the idea that larger populations will lead to better opti-
mization results does not always hold[®>-54. For these
reasons, both population-sizing[®*%% and selection!!*
are highly-active research areas in the EC community.

2.2.5 Sharing, Niching, and Clearing

As opposed to increasing the population size, it is
also possible to “gain more” from the smaller popula-
tions. In order to extend the duration of the evolution
in EAs, many methods have been devised for steering
the search away from areas which have already been
frequently sampled. In steady-state EAs it is common
to remove duplicate genotypes from the population!®®.

More generally, the exploration capabilities of an op-
timizer can be improved by integrating density metrics
into the fitness assignment process. The most popu-
lar of such approaches are sharing and niching/39-57-59],
The strength pareto-type algorithms, which are widely
accepted to be highly efficient, use another idea: they
adapt the number of individuals a candidate solution
dominates as the density measurel®®61 In the simple
convergence prevention method!2:62-63] candidate solu-
tions with the same objective values are deleted based
on a given probability. In the clearing approach!®4; all
individuals are grouped according to their distance in
the phenotypic or genotypic space and all but a cer-
tain number of individuals from each group receive the
worst possible fitness. The efficiency of all these di-
versity preservation methods strongly depends on the
situation — a method suitable for one scenario may
cause problems in another(6%].

2.2.6 Clustering of Candidate Solutions

A more explicit method to prevent premature con-
vergence is to cluster the search space or population of
an EA. This allows the optimization method to track
multiple different basins of attraction at the same time
and increases the chance of finding the global optimum
in one of them. Particularly in the context of estima-
tion of distribution algorithms (EDAs), various such
methods have been proposed!66-691.

2.2.7 Self-Adaptation

Another approach against premature convergence is
to introduce the capability of self-adaptation, allowing
the optimization algorithm to change its strategies or to
modify its parameters depending on its current state.
Such behaviors, however, are often implemented not in
order to prevent premature convergence but to speed up
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the optimization process (which may lead to premature
convergence to local optima)!70-71,

2.2.8 Multi-Objectivization

Recently, the idea of using helper objectives!™ has
emerged. Here, a single-objective problem is trans-
formed into a multi-objective one by adding new objec-
tive functions(™®77). In some cases, such changes can
speed up the optimization process™. The new ob-
jectives are often derived from the main objective by
decomposition!™! or from certain characteristics of the
problem![™!. They are then optimized together with the
original objective function with some multi-objective
techniques.

3 Ruggedness

Optimization algorithms generally depend on some
form of trends® in the fitness landscape. Ideally, the
objective functions would be continuous and exhibit low
total variation® (as sketched in Fig.3(b)), so that the
optimizer can track the trend easily. If an objective
function is unsteady or goes up and down frequently,
it becomes more complicated to find the right direc-
tions to proceed during the optimization process (see
Fig.7 and Fig.3(d)). The more rugged the function gets,
the harder it is to optimize it. In short, one could say
ruggedness is multi-modality (see Fig.3(c)) plus steep
ascends and descends in the fitness landscape.

Landscape Difficulty Increases

Unimodal Multimodal ~ Somewhat Rugged  Very Rugged

Fig.7. Landscape difficulty increases with increasing ruggedness.

3.1 Issue: Weak Causality

During an optimization process, new points in the
search space are created by the search operations.
Generally, we can assume that the inputs of the search
operations correspond to points that have previously
been selected. Usually, the better or the more promis-
ing an individual is, the higher are its chances of be-
ing selected for further investigation. Reversing this
statement suggests that individuals being passed to the
search operations are likely to have good fitness. Since
the fitness of a candidate solution depends on its fea-
tures, it can be assumed that the features of these in-
dividuals are promising, too. It should thus be pos-
sible for the optimizer to introduce small changes to

®Using the word “gradient” here would be too restrictive and mathematical.

@http://cn.wikipcdia.org/wiki/Total,variation, Nov.25, 2011.
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these features (by modifying the genes encoding them
slightly) in order to find out whether they can be im-
proved any further. Normally, such ezploitive modifi-
cations should also lead to small changes in the objec-
tive values and hence, in the fitness of the candidate
solution.

Strong causality (locality) means that small changes
in the features of an object also lead to small changes
in its behavior!™8%. In fitness landscapes with weak
(low) causality, small changes in the candidate solu-
tions often lead to large changes in the objective val-
ues. It then becomes harder to decide which region of
the problem space to explore and the optimizer cannot
find reliable trend information to follow. The lower the
causality of an optimization problem, the more rugged
its fitness landscape is, which leads to degeneration of
the performance of the optimizer®. This does not
necessarily mean that it is impossible to find good so-
lutions, but it may take longer time to do so.

3.2 Countermeasures

Ruggedness in the fitness landscape is hard to miti-
gate. In population-based approaches, using large
population sizes and applying methods to increase di-
versity can reduce the influence of ruggedness, but only
up to a certain degree.

3.2.1 Hpybridization with Local Search

Often, EAs are combined with a local search tech-
nique applied to each individual in the population be-
fore presenting it to the evolutionary process. Two
such common approaches are Lamarckian evolution(®?
(performing a local search on the genotype level) and
the Baldwin effect[®2-33 (local search on the pheno-
type level). Memetic algorithms!®*86l and other hybrid
approaches[?287788] also fall into this category. Since
the EA only receives individuals residing in local op-
tima resulting from the local search procedure(s), the
fitness landscape may seem to be less rugged from its
perspectivel®9-99 However, local search can also lead
to much higher selection pressure and thus swing the
pendulum to the problem of premature convergencel?l.

3.2.2 Landscape Approximation

In order to smoothen out a rugged landscape, it can
be approximated by parameterizing a function based on
the knowledge gathered from previously sampled can-
didate solutions. The optimization process can then
be performed on this smooth approximation, which, in
turn, is updated in each step. The goal here is not
to find a function that perfectly represents the fitness
landscape, but to work on a much smoother function

without changing the location of the global optimum.
In [90], for example, a k-dimensional quadratic polyno-
mial is used to approximate the fitness function. The
second advantage of this idea is that a new candi-
date solution can be created by directly solving the
approximation function analytically.

3.2.3 Two-Staged Optimization

Another approach is to apply a two-staged optimiza-
tion process®! where two different algorithms are ap-
plied sequentially. Here, the first optimization method
should be an algorithm with strong global optimiza-
tion abilities, which discovers the most promising area
in the search space and is not easily distracted from
rugged objectives (e.g., an EDA). Then, an algorithm
that is quick to exploit and follow the trend in a land-
scape, such as differential evolution (DE), is applied to
the subspace discovered by the first algorithm.

3.2.4 Better Operator and Search Space Design

Weak causality is often caused, to some extent, by
bad design of the solution representation and search
operations. We pointed out that exploration opera-
tions are important for minimizing the risk of prema-
ture convergence. Exploitation operators are equally
important for refining the solution quality. In order
to apply optimization algorithms in an efficient man-
ner, it is necessary to find representations that allow
for iterative modifications with bounded influence on
the objective values[62-63:92-93] j o " exploitation. This
can eventually lead to better candidate solutions. For-
tunately, many problems where their formulation is in-
spired by a real-world problem share the feature that
improved solutions can often be built from other good
solutions, i.e., often exhibit strong causality. A compre-
hensive collection of examples for representations that
exhibit this property in real-world application domains
can be found in [4].

4 Deceptiveness

Especially annoying fitness landscapes show decep-
tiveness (or deceptivity). The gradient of deceptive ob-
jective functions leads the optimization process away
from the optima, as illustrated in Fig.3(e) as well as
Fig.8. The term deceptiveness is mainly used for the GA
in the context of the Schema Theorem!294-95] Schemas
describe certain areas (hyperplanes) in the search
space. If an optimization algorithm has discovered an
area with better average fitness compared to other re-
gions, it will focus on exploring this region based on the
assumption that highly fit areas are likely to contain the
true optimum. Objective functions where this is not
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Landscape Difficulty Increases
Unimodal Unimodal with Multimodal Very Deceptive
Neutrality (Center and Needle/
Limits) Deceptive Haystack

Fig.8. Increasingly difficult landscapes caused by deceptivity.

the case are considered to be deceptivel22:96], Tt is in-
teresting that some problems with the highest level of
deceptiveness appear to be easy for GAs[??,| whereas an
increasing amount of deceptiveness generally leads to a
steep increase in problem hardness7.

4.1 The Issue

An objective function is deceptive if a greedy local
search algorithm would be steered in a direction leading
away from all global optima in large parts of the search
space. The basic problem caused by deceptiveness is
that the information accumulated by an optimizer ac-
tually guides it away from the optimum. Search algo-
rithms that strictly follow a path towards improving
fitness will not be able to discover the global optimum
in this case. In other words, they may perform worse
than non-repeating random sampling, a random walk,
or an exhaustive enumeration method in terms of the
first hitting time of the global optimum. These most
primitive search methods sample new candidate solu-
tions without taking into account the utility of the al-
ready investigated solutions and hence are not vulner-
able to deceptiveness.

4.2 Countermeasures

Solving tasks with deceptive objective functions per-
fectly involves sampling many individuals with very
bad features and fitness. This contradicts the basic
ideas of metaheuristics and thus, there are no really
efficient countermeasures against high degrees of objec-
tive function deceptivity. Using large population sizes,
maintaining high diversity (see, e.g., Subsections 2.2.5
and 2.2.6), and utilizing linkage learning (see Subsec-
tion 6.2.3) provide at least a small chance of finding
good solutions.

4.2.1 Representation Design

Like weak causality, deceptiveness can also be caused
by the design of the representation. Utilizing a more
suitable search space, search operations, and genotype-
phenotype mapping may make an optimization problem
much less deceptive. Notice that the representation is a
part of the optimization algorithm which produces the
inputs of the objective function (see Fig.1). Changing it
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can change the behavior of the objective function from
the perspective of the optimization process significantly.
Combining different representations in an EA may lead
to better results as shown in [98]. This can be a feasible
approach if the nature of the problem is too complex
to manually design a non-deceptive representation.

4.2.2 Niching and Memory

Applying the diversity increasing methods men-
tioned in Subsection 2.2.5 (such as niching and the sim-
ple convergence prevention method) can delay the con-
vergence of the optimization process and thus, increase
the chance to escape from deceptive local optima. Re-
cent studies of particle swarm optimization (PSO)!!
show that the local memory property of the simulated
particles can lead to some niching behavior, which is es-
pecially suitable for this purpose as well. Here, the lbest
PSO with ring topology discussed in [99] is noteworthy.

4.2.3 Preventing Convergence

Another approach to counteract deceptiveness is to
stop the optimization algorithm from converging alto-
gether. If the population of an EA is prevented from
collapsing to a certain area of the search space and is
always kept “moving”, deceptive basins of attraction
will be left eventually.

The Fitness Uniform Selection Scheme takes
the idea a step further. Instead of selecting the most
promising candidate solutions, a diverse population
with individuals from all fitness levels is maintained in
order to avoid getting stuck at a local optimum. To
achieve this, in each generation the best and worst indi-
viduals (with the smallest and largest fitness, say fs and
f1) in the population are first determined. For each slot
in the new population, a random value 7 uniformly dis-
tributed between f,; and f; is drawn and the individual
with the fitness closest to r will be selected. The se-
lected candidate solutions will be diverse in terms of
fitness and the population basically maintains a path
of individuals out of the current local optimum.

[100-101]

If the optimization problem lacks causality and the
fitness landscape is very rugged, however, this method
may fail. If structurally similar points within a small
subset of the search space may possess very different
fitness, the search may get trapped within that subset.

4.2.4 Novelty Search

In Novelty Search!'02104 the objective function f
is completely abandoned. The reason is that, on one
hand, in the case of deceptivity f may be misleading
and guide the search away from the global optima. On
the other hand, it is also not clear whether f would
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reward stepping stones, i.e., the intermediate solutions
between the initially chosen starting points and the
global optimum. In many genetic programming (GP)
applications!?219%]  for example, the intermediate steps
obtained by modifying a bad program iteratively to-
wards a perfect solution rarely form a sequence of im-
proving fitness and even needle-in-a-haystack situations
(see Subsection 5.1.3) are common.

Novelty Search thus does not employ a traditional
fitness measure since it may not help the optimizer
to discover and combine building blocks anyway. In-
stead, an archive of past candidate solutions is kept
and updated and selection will choose the individuals
that differ the most from the archived ones. As more
and more candidate solutions with different behaviors
are discovered, chances are that one amongst them is
an acceptable solution. This method led to good re-
sults in the evolution of virtual creatures!'®¥ walking
behaviors'9%! and navigation controll102-103],

5 Neutrality

The outcome of the application of a search opera-
tion to an element of the search space is neutral if it
yields no change in the objective values['97-108] Tt is
challenging for optimization algorithms if the best can-
didate solution currently known is situated on a plane
of the fitness landscape, i.e., all adjacent candidate so-
lutions have the same objective values. As illustrated
in Fig.3(f) and Fig.9, an optimizer cannot find any gra-
dient information in this case and thus there is no direc-
tion as to which way to proceed in a systematic man-
ner. From its point of view, each search operation will
yield identical individuals. Furthermore, optimization
algorithms usually maintain a list of the best individ-
uals found, which will eventually overflow and require
pruning.

Landscape Difficulty Increases é
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Unimodal Not Much Gradient With Some Very Neutral
Distant from Optimum  Neutrality Needle-in-a-Haystack

Fig.9. Landscape difficulty caused by neutrality.

5.1 The Issues
5.1.1 Evolvability

Another metaphor in EC that has been borrowed
from biological systems is evolvability!'%%. In biology,
the meaning of this word is twofold!"'%): 1) a biolog-
ical system is evolvable if it is able to generate her-
itable, selectable phenotypic variations!''); and 2) a
system is evolvable if it can acquire new characteristics

via genetic changes that help the organism(s) to sur-
vive and to reproduce. In the optimization domain,
the evolvability of an optimization process defines how
likely the search operations will lead to candidate solu-
tions with new (and eventually, better) objective values.
(The direct probability of success!™112] i.e., the chance
of search operators producing offspring fitter than their
parents, is also sometimes referred to as evolvability in
the context of EAs''3-114 ) In Subsections 4.2.3, 4.2.4,
and (part of) 2.2.5, we already argued that preventing
an optimization process from converging, i.e., keeping
it in an evolvable state, may enable it to discover better
results.

The link between evolvability and neutrality has
been discussed by many researchers''%1151  The
evolvability of neutral parts of a fitness landscape de-
pends on the optimization algorithm used. For exa-
mple, the evolvability of hill climbing-like approaches
can be especially low, since the search operations can-
not directly provide improvements or even changes in
fitness. This could then degenerate the optimization
process to a random walk, as illustrated in Fig.3(f).
Using the ND fitness landscapes, i.e., landscapes with
a well-defined degree of neutrality, it has been shown
that neutrality may “destroy” useful information such
as correlation[!16,

Researchers in molecular evolution, on the other
hand, found indications that the majority of muta-
tions in biology have no selective influencel''”), and that
the transformation from genotypes to phenotypes is a
many-to-one mapping. Neutrality in natural genomes
is often considered as beneficial if it concerns only a
subset of the properties peculiar to the offspring while
allowing meaningful modifications of the others!*10:118],

The theory of punctuated equilibria™®! states that
species experience long periods of evolutionary in-
activity, which are interrupted by sudden, localized,
and rapid phenotypic evolutions. It is assumed that
the populations explore networks of neutral genetic
changes during the time of stasis until, suddenly, a rele-
vant change in a genotype leads to a better adapted
phenotypel'2?l and reproduces quickly. Similar phe-
nomena can be observed and have been utilized in
EAsl121-122]

Another example for neutrality in biology is degene-
racy: the ability of elements that are structurally dif-
ferent to perform the same function or yield the same
output!*?3 while also having additional, unique fea-
tures. Similarly, degeneracy of the properties of can-
didate solutions introduced by the chosen solution rep-
resentation in an optimization process can improve its
robustness and ability to adapt!?24.

The key to differentiating between “good” and “bad”
neutrality is its degree in relation to the number of
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possible solutions maintained by an optimization algo-
rithm. The illustrative example in Fig.10 shows that a
certain amount of neutral reproduction can foster the
progress of optimization. In Fig.10(a), a scenario of pre-
mature convergence is depicted. Fig.10(b) shows that a
little shot of neutrality could form a bridge to the global
optimum. The optimizer now has a chance to escape the
smaller peak if it is able to find and follow that bridge,
i.e., the evolvability of the system has increased. If this
bridge gets wider, as sketched in Fig.10(c), the chance
of finding the global optimum increases as well. Then
again, if the bridge gets too wide (see Fig.10(d)), the op-
timization process may end up in a scenario like Fig.3(f)
where it cannot find any direction.

Drift, a term stemming from the area of population
genetics, describes the loss of population diversity re-
sulting from the stochastic nature of selection in a finite
population (in both nature and EAs)!M7:126 In neu-
tral parts of the fitness landscape or under low selection
pressure, this effect is very likely. A reduction of diver-
sity in the population generally is a negative effect (see
Subsection 2.1.3).

Unlike ruggedness, which is always bad for the per-
formance of optimization algorithms, neutrality has as-
pects that may further as well as hinder the process
of finding good solutions. Generally, we can state that
very high degrees of neutrality degenerate optimization
processes to random walk. On the other hand, some
forms of neutral pathways can improve evolvability and
hence increase the chance of finding good solutions.

5.1.2 Redundancy

Redundancy in the context of EAs is a feature of the
genotype-phenotype mapping and it means that multi-
ple genotypes are mapped to the same phenotype, i.e.,
the genotype-phenotype mapping is not injective. The
role of redundancy in the genome is as controversial

Global Optimum
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as that of neutrality['?”). There exist many accounts

of its positive influence on the optimization process. In
[128-129], redundant genotype-phenotype mappings are
developed using voting (via uniform redundancy as well
as a non-trivial approach), Turing machine-like binary
instructions, cellular automata, and random Boolean
networks (RBNs)['3%).  Except for the trivial voting
mechanism based on uniform redundancy, the map-
pings could induce neutral pathways that were bene-
ficial for exploring the problem space. The RBN ap-
proach in particular provided very good results!!25-129,

Redundancy can have a strong impact on the ex-
plorability of the problem space. When utilizing a one-
to-one mapping, the translation of a slightly modified
genotype will always result in a different phenotype.
If there exists a many-to-one mapping between geno-
types and phenotypes, the search operations can create
offspring genotypes that are different from their pare-
nts but still translate to the same phenotype. The
optimizer may now walk along a path through this
“neutral network”. If many genotypes along this path
can be modified to different offspring, many new can-
didate solutions can be reached!28!.

In the Cartesian GP method, neutrality is explicitly
introduced to increase evolvability*31-132] Yet, simple
uniform redundancy is not necessarily beneficial for the
optimization process and may even slow it down (23129,
If the population of individuals under investigation con-
tains many isomorphic genotypes, i.e., genotypes that
encode the same phenotype, a slow-down may also
occurl®8!. If this isomorphism can be identified and re-
moved, a significant speed-up may be gained!®!.

5.1.3 Needle-in-a-Haystack Problems

Besides fully deceptive problems, one of the worst
cases found in fitness landscapes is the needle-in-a-
haystack problem?” (see Fig.9 and Fig.3(g)), where the

Fig.10. Possible positive and negative influence of neutrality (inspired by [125]). (a) Premature convergence. (b) Small neutral bridge.

(c) Wide neutral bridge. (d) Neutral bridge too wide.



Thomas Weise et al.: Evolutionary Optimization: Pitfalls and Booby Traps 921

optimum occurs as an isolated spike in a planel?3:133],

In other words, this is the combination of small
instances of extreme ruggedness with a general lack of
information in the fitness landscape. Such problems
are extremely hard to solve and the optimization pro-
cess often will converge prematurely or take very long
to find the global optimum. An example of this kind of
fitness landscapes is the all-or-nothing property often
inherent to GP[92-93,134-135]

5.2 Countermeasures

Extreme cases of neutrality, especially the needle-
in-a-haystack-type fitness landscapes, are hard to com-
bat. Hybridization of an EA with local search is
sometimes recommended in such situations(®3. Multi-
objectivization (see Subsection 8.2.2) and increasing
the population size can possibly reduce the impact of
neutrality too.

5.2.1 Selection Pressure

Higher selection pressure may be useful if the neutral
regions in the fitness landscape still exhibit marginally
different objective values that could be exploited to find
a way out. It should be noted that fitness propor-
tionate selection methods (e.g., “Roulette-Wheel Selec-
tion”) may perform very badly in such a case, since they
will assign the essentially same reproduction probability
to all individuals. Other methods such as Tournament
Selection, which only consider the less-then relation in-
stead of absolute fitness values and proportions, will be
not affected.

In the case where all objective values in the neutral
regions are identical, a strong emphasis on diversity,
possibly achieved by sharing and niching in the prob-
lem or search space (see Subsection 2.2.5), may drive
the search out of the neutral region faster.

5.2.2 Representation

Uniform redundancy in the genome should be
avoided as it causes adverse forms of neutrality. In [22,
136], it is stated that the representation of phenotypic
traits in the search space should be as short as pos-
sible. The length of different genes and the numbers
of their alleles should be as small as possible. How-
ever, as we discussed earlier, non-trivial representations
with a well-adjusted degree of redundancy may exhibit
a higher evolvability and thus lead to a more robust
and steadily improving optimization process!'32!.

5.2.3 Memory

In Tabu Search, recently performed search steps are
memorized and not performed again. This allows the

algorithm to escape small neutral areas. Similar tech-
niques could be applied in EAs as well.

6 Epistasis, Pleiotropy, and Separability

In biology, epistasis is defined as a form of interac-
tion between different genes!'37). According to [138],
the interaction between genes is epistatic if the effect
of altering one gene on the fitness depends on the al-
lelic state of other genes. In (evolutionary) optimiza-
tion, epistasis is the non-linear interaction of two or
more genes of the genotypes as expressed in objective
function values after the genotype-phenotype mapping.
Two genes interact epistatically if the contribution of
one of these genes to the objective value depends on
the value of the other genel>139-141] Epistasis can also
be considered as the higher-order or non-main effects in
a model predicting fitness values based on the intera-
ctions of the genes from the viewpoint of Design of
Experiments!™7.

On one hand, we speak of minimal epistasis when
every gene is independent of every other gene. Then,
the optimization process equals finding the best value
for each gene and can most efficiently be carried out by
a simple greedy search iteratively applied to each gene
while keeping the others constant!'3%. On the other
hand, a problem is maximally epistatic when no proper
subset of genes is independent of any other genel'41l,
The effects of epistasis are closely related to another
biological phenomenon: Pleiotropy, which denotes that
a single gene is responsible for multiple phenotypical
traits!109,

Like epistasis, pleiotropy can sometimes lead to un-
expected improvements but often is harmful for an evo-
lutionary system!''4. Both phenomena may easily in-
tertwine. If one gene epistatically influences, for in-
stance, two others that are responsible for distinct phe-
notypical traits, it has both epistatic and pleiotropic
effects. We will therefore consider pleiotropy and epis-
tasis together, and when discussing the effects of the
latter, we also implicitly refer to the former.

In Fig.11, we illustrate a fictional dinosaur along
with a snippet of its fictional genome consisting of four
genes. Gene 1 influences the color of the creature and
is neither pleiotropic nor has any epistatic relations.
Gene 2, however, exhibits pleiotropy since it determines
the length of the hind legs and forelegs. At the same
time, it is epistatically connected with gene 3, which
also influences the length of the forelegs — maybe pre-
venting them from looking exactly like the hind legs.
The fourth gene is again pleiotropic by determining the
shape of the bone armors on the top of the dinosaur’s
skull and on its snout.

In the area of optimization over continuous problem
spaces, epistasis and pleiotropy are closely related to



922

Fig.11. Pleiotropy and epistasis in a dinosaur’s genome.

the term separability. Separability is a feature of the ob-
jective function(s) of an optimization problem('42l. A
function of ¢x variables is separable if it can be rewrit-
ten as a sum of £x functions of just one variable!49:143],
Hence, the genes involved in the problem can be opti-
mized independently of each other, i.e., are minimally
epistatic, and the problem is said to be separable. A
function f: R% — R is separable!'*4 if and only if the
condition given in (1) holds.

arg min f(zq,..
L1y Tey

= (argmin f(zq,..
1

. 735&()

.),...,argrgrclglxnf(...,xgx)). (1)

Otherwise, f(x) is called a non-separable func-
tion. If a function f(x) is separable, the parameters
Z1,...,%p, forming the candidate solution « are called
independent. A separable problem is decomposable. A
function f: R — R is k-non-separable if at most k of
its parameters x; are not independent. A non-separable
function f(x) is called fully non-separable if any two
of its parameters x; are not independent. The higher
the degree of non-separability, the harder a function
will usually become for optimization!'44145] Often, the
term non-separable is used in the sense of fully non-
separable. In between separable and fully non-separable
problems, a variety of partially separable problems
exist,.

6.1 The Issue

As sketched in Fig.12, epistasis has a strong influence
on many of the previously discussed issues. If one varia-
ble (gene) of a point (genotype) in the search space can
“turn off” or affect the expression of other genes, modi-
fying this gene will lead to a large change in the features
of the phenotype. Hence, the causality will be weak-
ened and ruggedness ensues in the fitness landscape. It
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also becomes harder to define search operations with an
exploitive character. Moreover, subsequent changes to
the “deactivated” genes may have no influence on the
phenotype at all, which would then increase the degree
of neutrality in the search space. Representations and
genotypes with low pleiotropy often lead to better and

more robust solutions!*46!.

Needle-in-
a-Haystack

Multi-
Modality

) {Weak Causalityf“
R >
See . High Epistasis }-----~ I
--» May Lead to

Fig.12. Influence of epistasis on the fitness landscape.

Ruggedness Je

6.2 Countermeasures

Epistasis is a root cause for multiple related issues
in optimization tasks. The symptoms of epistasis can
be mitigated with the same methods that increase the
chance of finding good solutions in the presence of
ruggedness or neutrality. Other methods are discussed
in the following.

6.2.1 Choice of the Representation

Epistasis itself is again an issue resulting from the
choice of the search space structure, the search ope-
rations, the genotype-phenotype mapping, and the
structure of the problem space. Avoiding epistatic
effects should be a major concern during the design
phase. Choosing the solution space and the genotype-
phenotype mapping correctly can lead to great improve-
ments in the quality of the solutions produced by the
optimization process!?2-93:135147 Introducing speciali-
zed search operations can achieve similar effects48l.

6.2.2 Adjusting Selection Pressure

Using larger populations and favoring explorative
search operations could be helpful in epistatic prob-
lems, since these are ways to increase diversity. On
the other hand, applying 1) higher selection pressure,
i.e., increasing the chance of picking the best candi-
date solutions for further investigation instead of the
weaker ones, and 2) extinctive selection, i.e., only work-
ing with the newest produced set of candidate solu-
tions while discarding their parents, can also increase
the reliability of an optimizer to find good solutions48].
These two concepts are slightly contradicting, so careful
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adjustment of the algorithm settings appears to be vi-
tal in epistatic environments. Higher selection pressure
also leads to earlier convergencel'*®], a fact we already
discussed in Section 2.

6.2.3 Linkage and Interaction Learning

According to [149], linkage is “the tendency for al-
leles of different genes to be passed together from one
generation to the next” in genetics. This usually indi-
cates that these genes are closely located in the same
chromosome. In the context of EAs, this notation is not
useful since identifying spatially close elements inside
the genotypes is trivial. Instead, we are interested in
different genes that have a joint effect on the fitness*5%.

Identifying these linked genes, i.e., learning their

epistatic interaction, is very helpful for the optimiza-
tion process. Such knowledge can be used to protect
building blocks from being destroyed by the search ope-
rations (such as crossover in GAs), for instance. Find-
ing approaches for linkage learning for binary[150-151]
and real-valued'®?! genomes has become a popular re-
search area. Two important methods derived from this
research are the messy GA (mGA)['%3] and the Bayesian
Optimization Algorithm (BOA)[154],
Module acquisition!*5®) may be considered as such an
effort too. Here, an additional reproduction operation
can group connected components of a genotype together
into an atomic group, which becomes immune to modi-
fication by other reproduction operators. In GP, this is
similar to adding a new automatically defined function
that represents a subtree of the program individual.

Especially promising in numerical optimization is
the Variable Interaction Learning (VIL) technique'*6]
that can detect which genes have non-separable rela-
tions. These are then grouped together and the result-
ing division of the genotypes can be optimized sepa-
rately in a cooperative-coevolution approach!'®6-157],
see Subsection 9.2.5.

7 Noise and Robustness

Noise is an undesired and unpredictable random dis-
turbance to a signal. In the context of optimization,
three types of noise can be distinguished[!58!. The first
form is noise in the objective functions or in the train-
ing data used™®. In many applications of machine
learning or optimization where a model for a given sys-
tem is to be learned, data samples including the in-
put of the system and its measured response are used
for training. Besides inexactnesses and fluctuations in
the input data of the optimization process, perturba-
tions are also likely to occur during the application of
its results, which takes place after the optimization has

finished. This category subsumes the other two types of
noise: perturbations that may arise from inaccuracies in
the process of realizing the solutions and environmen-
tally induced perturbations during the applications of
the products. The effects of noise in optimization have
been the subject of many studies'60-161 Many opti-
mization algorithms and theoretical results have been
proposed to deal with noise. Some of them are, for
instance, specialized GAs!'92-163] Evolution Strategics
(ESs)164165] " and PSO algorithms!%6).

7.1 Issue: Need for Robustness

The goal of optimization is to find the global optima
of the objective functions. While this is fully true from
a theoretical point of view, it may not suffice in practice.
Optimization problems are normally used to find good
parameters or designs for components or plans to be put
into action by human beings or machines. As we have
discussed, there will always be noise and perturbations
in practical realizations of the results of optimization.
Designs, plans, and procedures must address the fact
that no process is perfect. As a result, practitioners
may desire a relatively good and yet predictable solu-
tion that can tolerate a certain degree of imprecision
during its application in lieu of a less predictable but
globally optimal solution.

A system in engineering or biology is robust if it is
able to function properly in the face of genetic or en-
vironmental perturbations'%%. A local optimum (or
even a non-optimal element) for which slight distur-
bances only lead to gentle performance degenerations
is usually favored over a global optimum located in a
highly rugged area of the fitness landscapel'67). In other
words, local optima in regions of the fitness landscape
with strong causality are sometimes better than global
optima with weak causality. Of course, the level of
this acceptability is application-dependent. Fig.13 il-
lustrates the issue of local optima which are robust vs
global optima which are not.

‘.- Robust Local Optimum
L Global Optimum with
no Error Tolerance

Fig.13. A robust local optimum vs an “unstable” global opti-

mum.
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7.2 Countermeasures

For the special case where the solution space is a
real vector space, several approaches for dealing with
the need for robustness have been developed. Inspired
by Taguchi methods!'%8!, possible disturbances are rep-
resented by a vector 4 in the method suggested in [169].
The objective function can be rewritten as f(:c, 8)[170l
if § follows a stochastic distribution with known (mea-
sured, approximated) parameters. The probability dis-
tribution of d then can be sampled a number of ¢ times
and the mean values of f (x,d) are used during the op-
timization process!!70).

This method turns the optimization algorithm into
something like a maximum likelihood estimator and
also corresponds to using multiple, different training
scenarios during the objective function evaluation. By
adding random noise and artificial perturbations to the
training cases, the chance of obtaining robust solutions
that are stable when applied or realized under noisy
conditions can be higher.

8 Dimensionality

Many engineering or scheduling problems involve
multiple, often conflicting, optimization criteria. In lo-
gistic planning tasks%2-63] for instance, the goals are
1) to fulfill as many transportation orders within their
respective time windows as possible, 2) at the lowest
possible cost, and 3) with as little CO2 emissions as
possible. We refer to the number m of objective func-
tions of an optimization problem as its dimension (or
dimensionality). Later in this article, we will discuss
issues arising from a large number of decision variables,
which we put under the heading scalability in Section 9.

The most common way to define optima in multi-
objective problems (MOPs) is to use the Pareto domi-
nation relation. A candidate solution z is said to domi-
nate another candidate solution xs (1 < x2) in an m-
objective optimization problem if and only if its corre-
sponding vector of objective values f(z1) is (partially)
less than the one of x5, i.e., i € 1.m = fi(z1) < fi(x2)
and 3i € 1.m : fi(z1) < fi(x2), in minimization prob-
lems. More precisely, this is called weak dominance;
strong dominance requires x; to be strictly better than
x9 in all objectives. However, the latter notion is usua-
lly not applied in the optimization domain. The solu-
tions in the Pareto optimal set (also called Pareto set
or Pareto efficient frontier) are not (weakly) dominated
by any other solution in the problem space, i.e., globally
optimal with respect to the dominance relation!* 7173,
These are the elements we would like to find, or at least
approximate as closely as possible, with optimization
(see Fig.5 in Subsection 2.1.1).
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Many studies in the literature consider mainly bi-
objective problems'™. Consequently, many algori-
thms have been designed to deal with that kind of prob-
lems. However, MOPs having a higher number of ob-
jective functions are common in practice — sometimes
the number of objectives reaches double figures!!”
— leading to the so-called many-objective optimiza-
tion!33:174176-178] © Thig term has been coined by the
Operations Research community to denote problems
with more than two or three objective functions!!79).

8.1 Issue: Many-Objective Optimization

When the dimension of MOPs increases, the majo-
rity of the candidate solutions become non-dominated.
Traditional multi-objective EAs (MOEAs), however,
assign fitness mainly based on information about the
Pareto domination relation in the population, usually
combined with some diversity metric. Examples in-
clude the NSGA-TI'® (Pareto rank combined with
the crowding distance in the objective space), SPEA-
2[61] (Pareto-domination based strength together with
distance to the k nearest neighbor in the objective
space), and PESA['8! (Pareto domination and num-
ber of other individuals in the same hyper-box in a
grid defined over the search space). It thus can be
assumed that Pareto-based optimization approaches
(maybe extended with diversity preservation meth-
ods) will not perform well in problems with four or
more objectives!'®2l. Results from the application of
such algorithms to two or three objectives cannot sim-
ply be extrapolated to larger numbers of optimization
criterial ™). In [183], Pareto optimality is considered as
unfair and imperfect in many-objective problems and
[182] indicated that:

1) an optimizer that produces an entire Pareto set
in one run is better than generating the Pareto set
through many single-objective optimizations using an
aggregation approach if the number of objective func-
tion evaluations is fixed, and that

2) optimizers that use Pareto ranking based met-
hods to sort the population will be very effective for
small numbers of objectives, but not perform as effec-
tively for many-objective optimization in comparison
with methods based on other approaches.

The results in [174, 176, 184] further demonstrated
the degeneration of the performance of traditional
multi-objective metaheuristics in many-objective prob-
lems in comparison with single-objective approaches.
Various elements distant from the true Pareto fron-
tier may survive as hardly-dominated solutions and
lead to a decrease in the probability of producing new
candidate solutions dominating the existing ones['8°],
This phenomenon is called dominance resistance. The
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problem of redundant solutions is recognized and
demonstrated with an example function (provided
as part of a test function suite for continuous multi-
objective optimization) in [186].

In addition to these algorithm-sided limitations,
[187] suggested that a human mind™®8) will not be
able to make efficient decisions if more than a dozen
of objectives are involved. Visualizing the solutions in
a human-understandable way becomes more complex
with the rising number of dimensions tool'89].

The number of non-dominated elements in random
samples increases quickly with the dimension2%. The
hyper-surface of the Pareto frontier may increase expo-
nentially with the number of objective functions!*89.
Like in [189], we would like to illustrate this issue with
an experiment.

Assume that a population-based optimization ap-
proach is used to solve a many-objective problem. The
algorithm will fill the initial population with n ran-
domly created individuals. The distribution of the
probability P(#dom = o|m,n) that a randomly se-
lected individual from this initial population is non-
dominated (in this population) depends on the pop-
ulation size n and the number of objective functions
m. We have approximated this probability distribution
using experiments with n m-dimensional vectors where
each element is drawn from the same uniform distribu-
tion for several values of m spanning from m = 2 to
m = 20 and with n = 3 to n = 3600.

The fraction of non-dominated elements in the ran-
dom populations is illustrated in Fig.14, based on the
arithmetic means of 100000 runs for each configura-
tion. It rises (roughly) exponentially with m, whereas
the population size n seems to have only an approx-
imately logarithmically positive influence. If we list
the population sizes required to keep the fraction of
non-dominated candidate solutions at the same level
as in the case of n = 5 and m = 2 (at around 0.457), we

@
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Fig.14. Proportion P(#dom = o|m,n) of non-dominated candi-
date solutions for several population sizes n and dimensionalities

m.

find that for m = 3 = n =~ 12, for m = 4 = n ~ 35,
form =5 = n = 90, for m = 6 = n ~ 250, for
m =T = n ~ 650, and for m =8 = n =~ 1800. An ex-
tremely coarse rule of thumb here would hence be that
around 0.6e™ individuals are required in the population
to hold the proportion of non-dominated candidate so-
lutions at around 46% in this experiment.

The increasing dimensionality of the objective space
leads to three main problems['89:

1) The performance of traditional approaches based
solely on Pareto comparisons deteriorates.

2) The utility of the solutions cannot be understood
by the human operator anymore.

3) The number of possible Pareto-optimal solutions
may increase exponentially.

8.2 Countermeasures

Various countermeasures have been proposed
against the problem of dimensionality. Surveys on
current approaches to many-objective optimization
with EC methods, to the difficulties arising in many-
objective and on benchmark problems, have been pro-
vided in [189, 191]. In the following we list a number
of approaches for many-objective optimization, some of
which are based on the information provided in [189].

8.2.1 Increasing the Population Size

The most trivial measure is to increase the popula-
tion size. This, however, works only for a few objective
functions and we have to “throw” in exponentially more
individuals in order to neutralize the influence of many
objectives (as can be seen in Fig.14). Hence, increasing
the population size will not get us far.

8.2.2 Multi-Archive Approaches

On large numbers of objectives, traditional MOEAs
usually exhibit either convergence close to the Pareto
front ora good spread alongside it[!74176] One possible
solution is to use two archives['927193] in the algorithms:
one for diversity and one for convergence, with the goal
to combine the two positive features.

8.2.3 Increasing the Selection Pressure

The way multi-objective approaches scale with in-
creasing dimensionality can be improved by increasing
the selection pressure into the direction of the Pareto
frontier. Ishibuchi et al.'®! distinguished approaches
that modify the definition of domination in order to re-
duce the number of non-dominated candidate solutions
in the population!'®! and methods that assign different
ranks to non-dominated solutions'9>-198] Relying on
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fuzzy Pareto methods instead of pure Pareto compari-
sons is proposed in [179].

8.2.4 Indicator Function-Based Approaches

Fitness assignment methods not based on Pareto
dominance can also be applied!%9). One approach is
to use indicator functions such as those involving hy-
pervolume metrics!99-209 Hypervolume metrics have
been shown to be able to approximate the Pareto

frontier201].

8.2.5 Scalarizing Approaches

Another possible countermeasure is to use scalari-
zing functions'8? for fitness assignment in order to
treat many-objective problems with single-objective
style methods. Several studies!'82:199 showed that this
method can produce better results than applying tra-
ditional MOEAs such as NSGA-II'80 or SPEA 2061
but also refuted the idea that Pareto-based algorithms
cannot cope with their performance in general. Other
scalarizing methods can be found in [202-203].

8.2.6 Limiting the Search Area in the Objective Space

Furthermore, we can limit the search area in the ob-
jective space. This leads to a decrease in the number
of non-dominated points!*® and can be achieved by ei-
ther incorporating preference information294-205] or by
reducing the dimensionality!206-208],

8.2.7 Visualization Methods

Approaches for visualizing solutions of many-
objective problems in order to make them more com-
prehensible have been provided in [209-210].

9 Scalability

An increasing number of objective functions can
threaten the performance of optimization algorithms.
We referred to this as the dimensionality problem, i.e.,
the dimension of the objective space. There is an-
other space-related issue — the “curse of dimensiona-
lity” of the search space, i.e., the exponential increase
of its volume with the number of genes (or decision
variables)[?117212] To better distinguish between the
dimensionality of the objective space and the search
space, we will refer to the latter as scale.

As an example, we illustrate small-scale versus large-
scale problems using discrete or continuous vector-
based search spaces. If we search, for instance, on
one gene having values in the natural interval 1..10,
there are ten points that could be the optimal solution.
When the search space is composed of two such genes,
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i.e., (1..10)%, there exist one hundred possible results
and for (1..10)3, it is already one thousand. In other
words, the number of elements that could be a solution
to an optimization problem grows exponentially with
the number of genes.

9.1 The Issue

The issue of scale has already been introduced in
Subsection 1.3, where we discussed the computational
complexity as a measure of how many algorithm steps
are needed to solve a problem consisting of fx deci-
sion variables. As can be seen in Fig.15, if the number
t(¢x) of algorithm steps, i.e., the runtime, needed to
solve a problem grows exponentially with the problem
size fx, it quickly exceeds any feasible bound. How-
ever, in Subsection 1.3, the issue was considered from
the perspective of deterministic algorithms, which are
supposed to solve a problem to optimality. As a reme-
dy for the infeasible runtime of these algorithms, we
then suggested to apply stochastic optimization met-
hods. Although these may be able to solve problems
with a several magnitudes higher scale in a close-to-
optimal way, their performance deteriorates with rising
scales too.
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Fig.15. Illustration of the rising speed of some functions, inspired
by [213].

9.2 Countermeasures
9.2.1 Parallelization and Distribution

When facing problems of large scale, the main “ob-
stacle” is the high runtime requirement. Thus, any
measure of using as much computational power as
available can be a remedy. Obviously, there (cur-
rently) exists no way to solve large-scale N"P-hard prob-
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lems exactly within feasible time. With more comput-
ers, cores, or hardware, a linear (actually, only sub-
linear?'4!) improvement of runtime can be achieved
at most. However, for problems residing in the
grey area between feasible and infeasible, distributed
computing?'®! may be the method of choice.

There is a long tradition of parallelizing and dis-
tributing the computational workload in EC[216-219],
The basic ways to parallelize an EA are:

1) Local Parallelization. To parallelize the execution
by using hardware with multiple CPUs[?2) in a single
computer, or, as is the current trend.

2) by utilizing modern graphics processing inits
(GPUs)[?21-222] t0 evaluate and process the individuals
in a population in parallel.

3) Parallel Restarts. 1t is also possible to run diffe-
rent instances of the same algorithm on multiple CPUs
or computers in a network at the same time, which
would be a parallel version of the restarting strategy.

4) Master/Slave Approach!?*3. If the evaluation of
a candidate solution is very time consuming, this step
can be parallelized to several workers (threads or com-
puters in a network), which receive their task from a
single central server maintaining a global population.

5) Island Model?*!.  Alternatively, each node (or
thread) may maintain an own population and, from
time to time, exchange promising candidate solutions
with neighboring nodes in the topology.

6) Of course, any combination of the above is
possible[219,

9.2.2 Generative Representations

Another way, possibly the best way, to tackle a large-
scale problem is to “solve” it as a small-scale problem.
For some optimization tasks, it is possible to choose
a search space G having a smaller size (e.g., a small
number {g of genes) than the problem space X (i.e.,
having ¢x > fg decision variables). Indirect genotype-
phenotype mappings can link the spaces together.

Here, one option is the generative mapping, which
step-by-step constructs a complex phenotype by trans-
lating a genotype according to some static rules. Gram-
matical evolution!??®), for instance, unfolds a start sym-
bol according to a grammar with rules identified in a
genotype. This recursive process can basically lead to
arbitrarily complex phenotypes.

9.2.3 Developmental Representations

Applying a developmental, ontogenic mapping!!®226]
that uses feedback from simulations or objective func-
tions in the process of building a candidate solution
is another possible countermeasure. If, for instance, a
rigid truss composed of fx = 600 beams is to be found,

instead of optimizing the volumes of each of the beams
directly, the goal would be to find a suitable function
that receives as a parameter the mechanical stress on a
given beam and returns how much the cross section of
the beam should be increased.

Beginning with a basic beam structure, the mechani-
cal stress is evaluated and the function is applied to
each of the beams. The updated truss is simulated
again and the process is repeated a couple of times.
The resulting structure would be the phenotype. The
genotype can be an artificial neural network represent-
ing the function, encoded as real vectors containing the
neural weights, thus having much fewer variables (e.g.,
¢ = 12). Moreover, (g is independent from fx, and
therefore, much larger problem spaces can become tan-
gible and excellent results may be obtained in reason-
able time, likely with better quality and faster than
using generative mappings!'®l.

9.2.4 Adaptive Encodings

Somewhat in between purely generative and a de-
velopmental approach is the Dynamic Parameter En-
coding (DPE) method[?"), which is basically a dynamic
genotype-phenotype mapping for binary-encoded real
vectors. Traditionally, the number of bits in each gene
is fixed and corresponds to the desired precision. In
DPE, the interval in the problem space represented by
each gene is assigned dynamically, iteratively shrinking
down from the full range: If the GA used for optimiza-
tion has converged to some values of the bits of a gene,
a zooming operation changes the meaning of that gene
to now represent the corresponding sub-interval only.
This way, the number of bits needed to achieve a given
solution precision can be significantly reduced. In other
words, although it still needs one gene in the genotype
per decision variable in the phenotype, the genes them-
selves only consist of a few bits (e.g., three) and are thus
much more compact than in fixed genotype-phenotype
mappings.

9.2.5 Exploiting Separability

If a large-scale problem cannot be solved as a single
small-scale problem, solving it as multiple small-scale
problems may be another option for saving runtime.
Sometimes, parts of candidate solutions are indepen-
dent from each other and can be optimized more or less
separately. In such a case (low epistasis, see Section 6),
a large-scale problem can be divided into several com-
ponents of smaller-scale to be optimized separately. If
solving a problem of scale ¢x takes 2% algorithm steps,
solving two problems of scale 0.5¢x will clearly lead to
a great runtime reduction. Such a reduction may even
be worth the sacrifice of some solution quality. If the
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optimization problem at hand exhibits low epistasis or
is separable, such a sacrifice may even be avoided.
Coevolution has shown to be an efficient approach
in combinatorial optimization(227. If extended
with a cooperative component (i.e., to Cooperative

Coevolution'*6-157) " it can efficiently exploit sepa-
rability in numerical problems and lead to better
results[196,2281

9.2.6 Combination of Techniques

Generally speaking, it can be a good idea to
concurrently use different sets of algorithms(?! or
portfolios!?3% to work on the same or different popula-
tions. This way, the strengths of different optimization
methods can be combined. In the beginning, for in-
stance, an algorithm with good convergence speed may
be granted more runtime. Later, the focus can shift
towards methods that can retain diversity and are not
prone to premature convergence. Alternatively, a se-
quential approach can be performed, which starts with
one algorithm and switches to another one when no fur-
ther improvements can be found®!. By doing this, an
interesting area in the search space can first be disco-
vered, and then be investigated more thoroughly.

10 No Free Lunch Theorem

So far, we have discussed various difficulties that
could arise when applying an optimization algorithm to
a given problem. The fact that not a single optimization
method is likely to be able to outperform all other met-
hods on all problems can easily be accepted. Instead,
we see a variety of optimization methods specialized in
solving different types of problems. There are also algo-
rithms that may deliver good results for many different
problem classes, but could be outperformed by highly
specialized methods in each of them. These facts have
been formalized by Wolpert and Macready!?3!] in their
No Free Lunch Theorems for search and optimization
algorithms.

The performance of an algorithm a executed for
p steps on an optimization problem can be defined
as the conditional probability of finding a particular
sample (such as the global optimum). Wolpert and
Macready(23! proved that the sum of such probabil-
ities over all possible optimization problems on finite
domains is always identical for all optimization algo-
rithms. This means that the average performance over
all finite problems is independent of the algorithm ap-
plied. From this theorem, we can immediately follow
that, in order to outperform algorithm a; in one op-
timization problem, algorithm as will necessarily per-
form worse in another problem, as sketched in Fig.16.
This implies that it is impossible for any optimization
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algorithm to always outperform non-repeating random
walks or exhaustive enumerations.
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Fig.16. A visualization of the No Free Lunch Theorem.

In practice, an optimizer is not applied to all pos-
sible problems but to only some, restricted classes. In
terms of these classes, it is well possible to perform
comparisons and to make statements regarding which
algorithms perform the best (which, by the way, is of-
ten the topic of challenges and competitions!'42-143]),
Furthermore, it was recently shown that the No Free
Lunch Theorem holds only in a weaker form for count-
able infinite and not for continuous domains/?32.

Another interpretation of the No Free Lunch The-
orem is that every useful optimization algorithm uti-
lizes some form of problem-specific knowledge. In [233],
it is stated that without such knowledge, search algo-
rithms cannot exceed the performance of simple enu-
merations. Incorporating knowledge starts with rely-
ing on simple assumptions like causality (see Subsection
3.1). The more problem specific knowledge is integrated
into the algorithm structure, the better the algorithm
can perform!'®!.

11 Concluding Remarks

The subject of this article is to address questions
about issues that make optimization problems difficult
to solve, with a particular focus on evolutionary opti-
mization. We have discussed a variety of scenarios that
can influence/affect the optimization process and lead
to disappointing results.

If an optimization process has converged prema-
turely, it is said to be trapped in a non-optimal re-
gion of the search space from which it cannot “escape”
anymore (Section 2). Ruggedness (Section 3) and de-
ceptiveness (Section 4) in the fitness landscape, often
caused by epistatic effects (Section 6), can misguide the
search into such a region. Neutrality and redundancy
(Section 5) may either slow down optimization or con-
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tribute positively. Noise is present in virtually all prac-
tical optimization problems. The solutions that are de-
rived for them should thus be robust (Section 7). Also,
many practical problems are multi-objective in nature,
i.e., involve the optimization of more than one criterion
at a time (see Section 8).

The No Free Lunch Theorem argues that it is not
possible to develop a universal optimization algorithm,
the problem-solving machine that can provide us with
near-optimal solutions in short time for every possible
optimization task in finite domains. Such a statement
may sound depressing for those who are new to this
subject.

Actually, quite the opposite is the case, at least from
the point of view of a researcher. The No Free Lunch
Theorem means that there will always be new ideas,
new approaches that will lead to better optimization
algorithms to solve a given problem. Instead of being
doomed to obsolescence, it is far more likely that most
of the currently known optimization methods have at
least one niche, one area where they could excel in. This
fact has contributed to the emergence of memetic, hy-
brid and the new area of portfolio-type algorithms(23%,
which combine different optimization methods.

It is most likely that the “puzzle”@ of optimization
algorithms as sketched in Fig.17 will never be com-
pleted. There will always be a chance that an inspiring
moment, an observation in nature, for instance, may
lead to the invention of a new optimization algorithm
that performs better in some problem areas than all the
currently known ones.

Evolutionary
Algorithms

GA, GP, ES,

Extremal
Optimiz.

Downhill
Simplex Random

Optimiz.

Fig.17. Puzzle of optimization algorithms.
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