
Gallagher JC, Oppenheimer MW. An improved evolvable oscillator and basis function set for control of an insect-scale

flapping-wing micro air vehicle. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 27(5): 966–978 Sept.

2012. DOI 10.1007/s11390-012-1277-1

An Improved Evolvable Oscillator and Basis Function Set for Control

of an Insect-Scale Flapping-Wing Micro Air Vehicle

John C. Gallagher1, Senior Member, IEEE, and Michael W. Oppenheimer2, Senior Member, IEEE

1Department of Computer Science and Engineering, Wright State University, Dayton, Ohio, 45435-0000, U.S.A.
2Control Sciences Branch, Air Force Research Laboratory, WPAFB, Ohio, 45433-7531, U.S.A.

E-mail: john.gallagher@wright.edu; michael.oppenheimer@wpafb.af.mil

Received August 31, 2011; revised July 17, 2012.

Abstract This paper introduces an improved evolvable and adaptive hardware oscillator design capable of supporting
adaptation intended to restore control precision in damaged or imperfectly manufactured insect-scale flapping-wing micro
air vehicles. It will also present preliminary experimental results demonstrating that previously used basis function sets
may have been too large and that significantly improved learning times may be achieved by judiciously culling the oscillator
search space. The paper will conclude with a discussion of the application of this adaptive, evolvable oscillator to full vehicle
control as well as the consideration of longer term goals and requirements.

Keywords evolvable and adaptive hardware, micro air vehicle, evolutionary algorithm

1 Introduction

The technical challenges inherent in building insect-
scale Flapping-Wing Micro Air Vehicles (FW-MAVs)
are daunting. Not among the least of those challenges is
recovery of flight control precision in vehicles with dam-
aged air frames. Previous work examined an adaptive
altitude controller for a simple insect-sized FW-MAV
that hybridized mathematically rigorous control the-
ory with a compact evolvable and adaptive hardware
(EAH) oscillator[1-3]. The goal of that hybridization
was to provide the target vehicle with the ability to
correct for vehicle anomalies via flight control adjust-
ment in-flight and while conducting normal missions.
Such an adaptive learning capability is considered vital
due to the potentially significant manufacturing vari-
ability in the vehicles as well as the possibility that the
delicate insect-scale structures might be subjected to
physical damage and wear while in service.

The adaptive hardware oscillator originally
presented[2] was intended as a proof-of-concept and
supported altitude control only. This paper presents
an improved oscillator design that will be capable
of supporting all anticipated vehicle flight modes
(e.g., roll control, pitch control, forward translation)
This new oscillator is tested, in simulation, on a two
degree-of-freedom (2-DOF) control task that requires
simultaneous regulation of vehicle altitude and roll and

online learning to restore appropriate flight behavior in
the face of vehicle damage. It has also been recently
discovered that the set of basis functions employed by
the adaptive engine inside the oscillator may have been
too large for the actual needs of the control problem.
This is significant because judiciously restricting the
search space may provide significant gains in learning
time and circuit resources. This paper will provide ex-
perimental evidence demonstrating that smaller basis
function sets deliver improved learning performance. It
will begin with a description of the vehicle and a brief
synopsis of previous work that focuses primarily on a
conceptual view of the operation of the older oscilla-
tor. It will then discuss the changes necessary to that
oscillator needed to enable control adaptation for all
flight behaviors of which the vehicle is capable. Fol-
lowing, the paper will provide an example of the new
oscillator being used to correct wing-motion behavior
in a 2-DOF altitude and roll controller applied to ve-
hicles with simulated damage as well as with judicious
reductions in search space in place. The paper will
conclude with discussion of intended future work and
outstanding challenges.

2 Background and Previous Work

2.1 Evolvable and Adaptive Hardware

Evolvable and adaptive hardware (EAH)[4] is an

Regular Paper
This material was assigned a clearance of CLEARED on 16 Dec. 2011 with case number 88ABW-2011-6488.
©2012 Springer Science +Business Media, LLC & Science Press, China



John C. Gallagher et al.: An Improved Evolvable Oscillator 967

emerging subspecialty within evolutionary computation
(EC)[5-7] in which one evolves designs for mechanical,
computational, or electrical devices. EAH practitioners
use search algorithms based on natural evolution to as-
semble mechanisms from sets of basic building blocks.
In the context of controller design, the key difference
between conventional automated controller tuning and
EAH methodology is the amount of control the au-
tomated technique exercises over the final controller
design. Conventional automated parameter tuning is
limited to adjusting parameters of a human designed
device. EAH is allowed significantly more design free-
dom and may combine solution building blocks in ways
that defy any specific design paradigm. For example, a
human-designed, computer-tuned, linear proportional
feedback controller would remain a linear proportional
feedback controller no matter how much its parameters
were adjusted. Contrast this with an EAH control de-
vice that might come to evolve to operate like a linear
proportional controller, but could just as easily have
evolved to operate as a linear quadratic regulator or
even in ways that defy conventional description. In this
work, an EAH oscillator will replace a traditional os-
cillator inside a conventionally defined flight controller
with the goal of restoring whole-system control efficacy
in the face of damage to the vehicle. This replacement
of a component, rather than the whole controller, with
EAH hardware also allows us to limit the amount of risk
to the system. Discussion on risk limitation specifically
can be found in [2].

2.2 The Vehicle

The Micro Air Vehicle (MAV) considered here is

a variant of the Harvard RoboFly[8]. The original
RoboFly uses a single piezoelectric actuator to drive
identical forward and backward stroking of two wings.
The vehicle considered here (Fig.1) employs two inde-
pendent piezoelectric actuators, each of which indepen-
dently drives the motion of one wing. The basic wing
motion can be best perceived in the top view (left top
portion of Fig.1), which represents the wings as 15 mm
lines extending from either side of the body. These
lines represent wing span spars that can be indepen-
dently moved to angles φL and φR for the left and
right wings respectively. The triangular wing plan-
forms (wing shapes) shown in the front view in Fig.1
hang down from the support spars, to which they are
passively hinged. As the wing spars stroke forward
and backward, dynamic air pressure lifts the triangu-
lar planforms to an angle α under the plane of the
spars (see the side view in the lower right hand part
of Fig.1). Complete kinematics and dynamics of this
modified two-effector vehicle can be found in [9] and
[10]. Those same sources show how idealized versions
of this specific vehicle can be controlled at up to five
degrees of spatial and rotational freedom employing a
cycle-averaged approach that supplies specially shaped
periodic waveforms to each wing. Previous and current
work explicitly presumes that the vehicle’s center of
mass corresponds to the geometric center of the body
and that accurate vehicle altitude and roll measure-
ments are available.

2.3 Cycle-Averaged Split-Cycle Cosine
Control

All control devices considered in both previous and

Fig.1. Orthographic view of flapping wing MAV. Both wing spars are restricted to rotational motion about their joints with the body

and in the Yb/Zb plane. The range of those rotations is [−1..1] radians. As the spars rotate, dynamic air pressure lifts the triangular

wing segments up to an angle of α radians under a base vector embedded in the Yb/Zb plane.



968 J. Comput. Sci. & Technol., Sept. 2012, Vol.27, No.5

current work are cycle-averaged. Cycle-averaged con-
trollers close the vehicle control loop over complete
wingbeat cycles of the vehicle. Rigorous derivations of
the cycle-averaged (whole wingbeat) wing-applied vehi-
cle forces and torques can be used to create a model re-
lating specific sinusoidal and modified sinusoidal wing-
beat patterns to vehicle forces and torques. With those
relationships, it becomes fairly straightforward to close
a feedback control loop around a desired vehicle atti-
tude and position by actuating torques and forces ap-
plied to the body. Cycle-averaged control is desirable
because the computation of control efforts on a once-
per-wingbeat basis is far less resource intensive than
equivalent computations at a finer time scale. Updates
of wing flap frequencies would be, therefore, very in-
frequent even from the perspective of a simple control
computer operating at a few MHz. Cycle-averaged con-
trol, however, does come with some serious challenges
that could render it impractical on a real vehicle. Three
of these are limited precision of onboard Digital-to-
Analog and Analog-to-Digital converters, fidelity of ve-
hicle models underlying controller derivations, and the
accumulation of vehicle damage and wear that could
introduce further model/vehicle mismatches. These is-
sues were considered more completely in [2] and [11],
but ultimately are variants of the same problem — mis-
matches between the actual and the modeled relation-
ships between body torques and forces and wingbeat
patterns. Evolvable Hardware adaptation is intended
to tune those wingbeats to restore the expected rela-
tionships between control efforts and force/torque gen-
eration which allows the original cycle-averaged flight
controllers to be used on damaged or otherwise com-
promised vehicles.

The specific form of cycle-averaged control consi-
dered here is split-cycle control. In split-cycle con-
trol, each wing is provided a wingbeat frequency and
a waveform shape parameter at the beginning of its
wing stroke. In the current generation of controllers,
the wing motion envelopes are defined by a split-cycle
cosine wave in which the upstroke phase (motion from
+1 to −1 radians) is a cosine whose frequency is im-
peded or advanced by an amount δ rad/s, and whose
downstroke phase (motion from −1 radians back to 1
radian) is governed by a cosine that is impeded or ad-
vanced so that it reaches 1 radian at the same time it
would have if it had been driven by a nominal cosine
with the base frequency. Fig.2 illustrates the nature of
a split-cycle cosine. The upstroke and downstroke wing
motions indicated by that split-cycle cosine are defined
as:

φU = cos
(
(ω − δ)t

)
, (1)

φD = cos
(
(ω + σ)t + ξ

)
, (2)

where δ is the frequency offset that defines how much
the upstroke phase is impeded or advanced and σ and
ξ, defined below, characterize a downstroke consistent
with the previously described split-cycle philosophy.

σ =
δω

ω − 2δ
, (3)

ξ =
−2πδ

ω − 2δ
. (4)

Fig.2. Split cycle cosine.

With split-cycle control as defined here, it is possible
to define cycle-averaged control laws to govern motion
of up to five degrees of whole vehicle motion. The spe-
cial case of altitude-only control requires only modu-
lation of wing beat frequency of a pure cosine (zero
split-cycle shift). Control of more than just hover re-
quires active control of both frequency and split-cycle
delta shift.

2.4 EAH Augmented Control

The work in [2] introduces an evolvable and adap-
tive hardware (EAH) oscillator that corrects altitude
control precision problems by learning wingbeat mo-
tion schedules that allow a specific damaged vehicle to
match the force-to-frequency mapping implicit in the
altitude command tracking controller (ACTC). The ra-
tionale is that, although convenient for mathematical
analysis and correct for idealized vehicles, pure cosines
might not produce correct mappings between vehicle
force and torque and wing motion when the vehicle
has suffered physical damage by any means. The split-
cycle cosine oscillator driving each wing, therefore, is
replaced with an adaptive evolvable hardware oscillator
that learns wing beat motion functions for each wing
that improve the vehicle’s ability to match flight pro-
files that arise during normal flight. Although these
patterns are evolved based only on samples of measured
error between desired and actual vehicle attitude and



John C. Gallagher et al.: An Improved Evolvable Oscillator 969

position in flight, there is strong experimental evidence
that the system learns wingbeat motions that restore
the mappings between controller commands and the
forces and torques generated in response[11].

The EAH oscillator maintains a library of sampled,
pre-computed basis functions. Each wing’s runtime mo-
tion waveform is the arithmetic average of eight pre-
computed and sampled basis functions selected from a
set of 4 096 bases. An on-board evolutionary algorithm
learns the eight basis function indices for each wing,
resulting in a genome of 16 integers in the range of
[0..4 095]. One can view this genome as the concate-
nation of two eight-element multisets, resulting in ap-
proximately 4×1024 unique wing oscillation patterns. A
full explanation of the rationale behind the basis func-
tions is included in [11]. Here it is sufficient to note
that the basis functions were specifically chosen to pro-
mote three goals: minimization of the chances of crash-
ing; avoidance of complicating the analysis of any aug-
mented controllers that evolve; and avoidance of a need
for complicated floating-point computations. A simple
digital circuit to produce oscillations subject to those
constraints is provided in [2]. We will first focus on the
operation of the old style signal generator as a prelude
to discussing the modifications necessary to support a
full palette of flight control modes.

2.5 Old Style Oscillator

A simplified Register Transfer Level (RTL) data
path description of the signal generator is given in Fig.3.
In its original form, the circuit takes in a single eight-bit
wing flap frequency (ω) that is used for both wings and
two eight-bit split-cycle shift values (δL and δR). These
values are stored in registers in circuit areas A and B
as indicated in Fig.3. The register DC is a free-counter
tied to a system clock that advances once per clock
tick. The register is sized in tandem with that clock so
that the upper eight bits of DC increment once every
base time step of the oscillator. The period of wing-
beat position updates in terms of the base time step
is computed from OF by a wired reciprocal operation,
and when the running counter is equal to this value, it
increments the TCC register, an eight-bit counter. The
end effect is that TTC increments at evenly spaced time
intervals 256 times during the actual period of a vehicle
wing flap. This portion of the address to the Wave Ta-
ble ROM (basis function library) is intended to “step
through” the waveform so that individual wing position
updates can be computed and presented to the wings.

One will note that the Wave Table ROM, which
stores the precomputed basis functions as described in
[11], derives part of its address from TCC and part from
a component titled the “Shuffle LUT RAM” (Shuffle

LookUp Table RAM). The Shuffle LUT maintains a file
of 16-element basis function identifiers, eight for each
wing. These are the identities of the precomputed basis
functions that will be combined to produce the driving
function for each wing. In this original version of the
oscillator circuit, the intent was to evolve and store a
shuffle vector for each ω, δL and δR. This is the expla-
nation of circuit block B, which merely uses controller
provided delta shift values to select one of a set of learn-
able compositions of basis functions. Subsequent sensi-
tivity analyses of the controllers providing wing ω, δL,
and δR rendered this approach infeasible. The granula-
rity and range of adjustments necessary to the δL, and
δR, values for practical vehicle control preclude storage
in a lookup table one could easily accommodate on-
board the vehicle.

Fig.3. Old style wing motion signal generator.

The remainder of the circuit consists of a simple
adding register and a multiplexer. As a new wing posi-
tion is needed, eight wave table ROM lookups are made
per wing, these are added in TP subsequent to a wired
logical shift to affect a division by eight. These wing
position values are multiplexed into the PR and PL re-
gisters to drive wing position directly. Since the vehicle



970 J. Comput. Sci. & Technol., Sept. 2012, Vol.27, No.5

wings and the TCC count events operate in the range
of KHz, even a slow digital system clock of 1 MHz will
not produce significant skew in wing position outputs.

Due to both granularity and combinatoric issues in
addition to the need for an ωL and ωR unique to each
wing, circuit areas A and B require significant redesign
to support non hover-only flight.

3 New Evolvable Oscillator

3.1 Theory of Operation

The most direct means of accomplishing split-cycling
of arbitrary, table-defined, wing position functions
(φL(t), and φR(t)) is to employ different update in-
tervals between wing position updates in the upstroke
and downstroke phases of the wingbeat. Fig.4(a) il-
lustrates wingbeat motion generation as accomplished
in the old circuit which used a fixed interval size be-
tween individual wing position updates. The original
circuit employed fixed duration time steps between sub-
sequent updates of the cosine. One can accomplish
split-cycling by employing different update intervals for
the up and down strokes of the wing as illustrated in
Fig.4(b). As opposed to the conceptual operation illus-
trated in Fig.4(b) that uses two groups of five intervals
each, the real circuit uses two ranges of 127 intervals
each. One would compute and use one interval for the
first 127 wing motion updates and another interval for
those updates remaining after. The sizes of the update
intervals required to achieve a specific split-cycle shift
can be computed arithmetically with a purely combi-
national digital circuit.

Fig.5 is an updated datapath that would be dropped
into the circuit in [2] to create the new EAH oscillator.
Area B in the new circuit has the same conceptual func-
tion as it did in the earlier circuit, except this time it,
via multiplexer, routes stored δL and δR values through
a combinational circuit (CONV B) that outputs the

upstroke and downstroke intervals respectively. Area
A of Fig.5, as with Area A of Fig.3, is responsible
for timing of individual generations of wingbeat motion
function points. It is bilaterally symmetric and dupli-
cates the same timing functionality for the left and right
wings respectively. As needed and under the control of
a microcontroller (not shown), the left and right FS Inc
and BS Inc blocks would be loaded with their appro-
priate “front side” and “back side” intervals. For the
first 127 wing position updates, the FS interval would
be routed through the multiplexer into the left and/or
right D Count registers as needed. The D Count regis-
ters are downcounters, and when they reach zero, the
corresponding left or right TCC register is incremented.
The left and right TCC registers serve the same func-
tion they do in the old circuit, and drive an identical
waveform generation block to create the actual wing
position updates. In this new circuit, the Shuffle LUT
RAM becomes the working memory of the evolution-
ary algorithm’s population of candidate wing motion
functions as opposed to a working store of split-cycle
parameter specific compositions.

This basic circuit template provides asynchronous
updating of left and right wing time intervals and in-
dependent setting of left and right wing split-cycle pa-
rameters. These are necessary capabilities for advanced
flight controllers. Also, by choosing the sizes of the
various timing registers and driving clocks appropria-
tely, one can arbitrarily tune the amount of precision
in which one may specify split-cycle parameters.

4 Experimental Verification

4.1 A 2-DOF Roll and Altitude Controller

The operation of the new adaptive oscillator is ver-
ified by placing it inside a 2-DOF controller derived
specifically to test the oscillator’s ability to learn wing-
beat motion functions for a multi-degree-of-freedom

Fig.4. Conceptual old and new style wing position generation.



John C. Gallagher et al.: An Improved Evolvable Oscillator 971

Fig.5. New style wing motion signal generator.

control adaptation task. In this work, the FW-MAV
is constrained to move up and down a single guide
wire. This means the vehicle can translate up and
down the wire (altitude) and it can rotate around the
wire (roll). Fig.6 presents a block diagram of the
plant and controller models that includes calculation

of body forces and moments as well as independent
altitude and roll feedback controllers. Note that the
Roll Command Tracking Controller (RCTC) at the top
of Fig.6 is nearly identical in function to the previ-
ously discussed Altitude Command Tracking Controller
(ACTC)[12] at the bottom of Fig.6. The RCTC uses
an explicit model of the relationship between desired
cycle-averaged body roll moment (Mxdes) and split-
cycle delta shift (δMx(t)) to provide the oscillator with
an appropriate delta shift at the beginning of each wing
beat. Fig.6 replaces a simple cosine oscillator with a
Symmetric Shift Split-Cycle Oscillator, which simply
produces two wing beat signals, one with the provided
delta shift, and the other with a delta shift equal to
the negative value of that provided. In effect, this pro-
duces a “push/pull” relationship between the wings and
produces rotational moments around the body’s cen-
tral axis. In the case of combined roll and altitude
control, the RCTC uniquely determines delta shift and
the ACTC uniquely determines wing flap frequency. At
the level of ACTC/RCTC control, beat frequency and
delta shift are decoupled, so there is no need to conduct
controller allocation operations and the two controllers
can operate in parallel. Note that the symmetric shift
split-cycle oscillator is a special case of the circuit given
earlier in this paper and can be achieved by wiring both
frequency inputs to the same source and by appropri-
ately constraining the split-cycle shift inputs.

4.2 Experimental Setup

The vehicle and oscillator simulations were custom
coded in C. The vehicle model was verified against a
MATLAB implementation of the original vehicle mod-
els prior to use. In each experiment, a faulty vehicle
is simulated by randomly modifying the drag and lift
produced by each wing by a random factor of 50% to
150%. This results in a wide variety of mismatches be-
tween expected and actual generated upward force and
roll torques. It also produces these faults at a level of
abstraction below that of cycle-averaged modeling or
the actions of the ACTC or RCTC. This form of the ex-
periment also represents a far more aggressive test than
those previously tested against fixed fault conditions.

The learning engine (evolutionary algorithm (EA))
used in this work is a variant of the mini-population
(MiniPop) genetic algorithm[13]. This learning imple-
ments a small, but user selectable, number of stochastic
hill climbers. Each hill is centered around a bitstring
that is the best candidate seen on that hill to date.
Search progresses by running a tournament for each hill
that pits the current champion against a mutant ver-
sion of itself with the winner taking the champion slot
of the island. At the end of each round of tournaments



972 J. Comput. Sci. & Technol., Sept. 2012, Vol.27, No.5

Fig.6. 2-DOF control: Altitude and roll command tracking controllers.

on all islands, a hypermuation may occur with a proba-
bility selected by the user. If a hypermutation occurs,
the island containing the worst performing genome is
randomized. This algorithm is purely mutation driven.
Although it is possible for all islands to occasionally
contain the same bitstring, the continuous mutation-
based tournaments will end any such “convergence
events” unless that condition actually represents a local
or global error minimum.

This learning algorithm was selected because it re-
quires very little chip area and no expensive floating-
point operations[14]. For use onboard an FW-MAV, the
following modifications have been made:

1) The bitstring initialization in the original is
changed from random bits to LUT encodings for the
standard split-cycle cosine generation.

2) The hypermutation tournament is removed and
replaced with a best-to-worst drift operation that, with
a user-selected probability, overwrites the worst LUT
encoding in the population with the encoding for the
best LUT in the population.

3) A wing-beats per evaluation parameter is added
to allow evaluation scores to be taken after a user-
selected number of wing beats. This provides both more
accurate estimates of the quality of a candidate LUT
and a possible ability to correct for phenomena seen
only after multiple wing beats.

4) Mutation rates are expressed as an expected num-
ber of bits to mutate per genome.

5) The learning loop never terminates, as learning is
conducted inline with actual control. A user might add

a flag variable that turns off updates to the LUT after
a certain number of evaluations or upon satisfaction of
some other condition.

6) Dummy evaluations of the best genome seen to
the current time in an ongoing search are inserted prior
to any evaluation of a candidate that is scored and used
for search. These spare evaluations compensate for de-
ceptively low scores that could result by evaluating a
good candidate right after a very bad candidate. This
heuristic is less expensive in time than increasing the
evaluation period.

A MAV MINIPOP hardware implementation would
consist of a state machine in which all operations are
indexed to a state counter controlled by the wing po-
sition generation circuitry. The data path required to
implement MAV MINIPOP would be identical to that
presented in [14]. An appropriate microcontroller can
be trivially derived from a description of the algorithm
by conversion into an algorithmic state machine and
subsequent expression as a microcoded sequence con-
troller. The new microcontroller would be approxi-
mately the same physical size as that used for stan-
dard MINIPOP. These learning components, combined
with the LUT-based wing position generator constitute
a complete EAH augmented synthesized oscillator.

Evolutionary runs were conducted online, while the
vehicles were in simulated flight, and wing functions
were evaluated based on the mean squared error be-
tween actual and desired roll angle and altitude over a
user definable period of flight measured in wing beats.
MAV MINIPOP learning parameters were set as



John C. Gallagher et al.: An Improved Evolvable Oscillator 973

follows: population size = 8, wing flaps per evaluation
= 50, DRIFT = 100%, and MRATE = 16 expected
bit flips per mutation event. These settings correspond
to the optimal learning settings determined for altitude
control only learning[11]. The genome consists of 16
LUT (lookup table) indices (eight for each wing) en-
coded each in 12 bits. The resulting genome is 192 bits
in length. Learning was run online, while the simulated
vehicle was in flight, with a termination condition of
acquisition of acceptable as measured by absolute po-
sition and attitude error. The error score considered
“minimally acceptable” was set to correspond to alti-
tude control precision of 1 mm or less and roll angle
control precision of 0.5 degrees or less.

4.3 Experimental Results

Using a C language simulation of the vehicle and
the underlying adaptive circuitry, 44 973 independent
learning trials were conducted using the experimental
setup defined previously. Over all 44 973 runs, 86.6%
resulted in at least a minimally acceptable controller.
The rest had failed to find minimally acceptable con-
trollers prior to the experiments’ hard-coded time limit
of approximately six hours of vehicle flight time. Table
1 presents experiment success percentages broken down
by levels of maximum wing fault. Note that the table
rows are cumulative and reflect all runs with less than
or equal to the level of maximum error indicated (e.g.,
the 30% entry also contains the data for the 20% and
10% levels of error).

Table 1. Percent Acceptable Solutions Evolved

Maximum Trials Percent Percent

Drag/Lift Acceptable Unacceptable

Error (%)

10 1 824 99.7 0.3

20 7 276 99.0 1.0

30 15 734 97.0 3.0

40 28 911 93.0 7.0

50 44 973 86.6 13.4

Table 1 provides percentage yields for different mag-
nitudes of wing fault. In that table, “percent accept-
able” is the percentage of controllers that adapted to
have performance at least equal to the level defined as
acceptable previously in this paper. “Percent unaccept-
able” is the percentage of controllers that did not learn
to perform to that standard, though it should be noted
that even unacceptable controllers were capable of flight
and did not crash. From Table 1, one can see that yields
are very good for moderate to high levels of wing fault
damage (up to 30%). They are less impressive, though
still encouraging even when near-catastrophic (40% and

higher) wing faults are admitted. Preliminary qualita-
tive analysis of controller learning at very high levels of
wing fault reveal that the largest difficulty the evolu-
tionary algorithm (EA) encounters is that so little (or
so much) upward force is generated that the internal os-
cillators would need to operate outside their designed
frequency limits to produce correct forces. One could
argue that most failures at very high levels of wing dam-
age are due to insurmountable physical limitations of
the vehicle or a lack of appropriate basis functions in
the basis function library. On the other hand, the fail-
ures to learn at low to moderate levels of wing faults
are very likely due to shortcomings in the learning algo-
rithm. This is an issue to be addressed in future work.

Table 2 shows the average and 75th percentile (Q3)
times required for the vehicle to achieve minimally ac-
ceptable performance as defined earlier. For this table,
non-acceptable controllers were culled to give a picture
of how long MAV MINIPOP requires to achieve accept-
able controller performance in those cases when it does
function acceptably.

Table 2. Time to Evolve Acceptable Solutions

Maximum Drag/ Acceptable Average Q3 Time

Lift Error (%) Trials Time (min) (min)

10 1 818 49.36 67.08

20 7 204 55.68 73.98

30 15 734 62.32 82.61

40 26 895 69.00 92.27

50 38 937 74.72 102.52

Table 2 indicates what might be unacceptable
amounts of vehicle flight time required to correct for ve-
hicle faults. At moderate levels of wing damage (30%),
one, on average, has to wait for the vehicle to be in flight
for about one hour before minimally acceptable control
(as defined earlier) is achieved. These vehicle would
most likely make relatively small flights punctuated by
periods of passive station-keeping for energy recharge
or to serve mission objectives. Therefore, one would
desire to keep learning times as short as possible. The
above results are encouraging, but more sophisticated
learning will be needed in the future.

4.4 Experimental Results: Typical Flight
Trajectories

Figs. 7 and 8 show the flight trajectories for a broken
vehicle (left wing has 50% reduced lift and drag) and the
same vehicle after adaptive oscillator learning had con-
cluded. The vehicle was commanded to simultaneously
follow the target altitude and roll trajectories shown in
Figs. 7 and 8. Note that the trajectories represented in
the figures are different from that used during learning,



974 J. Comput. Sci. & Technol., Sept. 2012, Vol.27, No.5

suggesting that the adaptive oscillator is not over learn-
ing to a specific flight profile. The performance shown
is typical of that of all minimally acceptable controllers
under all wing fault conditions tested.

Fig.7. Typical altitude control.

Fig.8. Typical roll control.

5 Minimization of Basis Functions and
Structured Search

The main contribution of this paper is that an EAH
oscillator is feasible in this application both in terms
of implementability as a simple digital circuit and in
terms of efficacy in solution yield and learning time.
That being said, it must be noted that learning times
on the order of hours, though encouraging from the per-
spective of feasibility, may not be sufficient for practi-
cal operational systems. It must also be said that the
EA used here is little more complicated than a commu-
nity of stochastic hill climbers. Again, that a simplistic
approach does so well is interesting from a feasibility
standpoint, but one would be remiss in not observing
that there is room to improve. There are two obvious
means of improving learning times. First, one may cull

the size of the basis function set (currently 4 096 func-
tions) in an attempt to shrink the size of the search
space that must be considered during in-flight learning.
Presuming that there are operational redundancies in
the basis function set, one could imagine this could be
done with no harm. Second, one can improve the EA
algorithm itself. There are obvious EA techniques that
have not yet been brought to the table. Both are cur-
rently under consideration. Here we will present some
interesting observations with respect to culling of the
basis function library that have bearing on both ap-
proaches and may inspire future improvements.

First, consider the structure of the basis function
set. The basis function set contains 4 096 precomputed
wing motion schedules themselves partitioned into 16
distinct shape families. Each shape family is defined as
a combination of two members of a smaller core of four
basic core shapes. The four core basis functions (bases
A though D) are given below:

A(x) = cos(x), (5)

B(x) =
cos(x) + cos(3x)

2
, (6)

C(x) =
2 cos(x) + cos(3x)

3
, (7)

D(x) =
4 cos(x) + cos(3x)

5
. (8)

These four basis functions were chosen for the fol-
lowing reasons: 1) They all satisfy the condition that
the wings be fully forward (φ(t) = 1.0 rad) at the be-
ginning and end of each wingbeat; 2) They all repre-
sent a mostly normal cosine wingbeat with more or less
aggressive superimposed mini-wing beats; 3) They en-
capsulate non power-of-two divides and multiplies into
pre-computed basis function tables.

One is free to combine the upstroke and downstroke
split-cycles of more than one core basis function. Fig.9
illustrates the 16 possible pairwise combinations of the
four core basis functions. In addition, one may compute
an arbitrary number of δ shifted versions. In this pa-
per, each of the 16 mixed core basis functions comes in
one of 256 shifted varieties, with the shifts being evenly
spaced between δ = [−1.5..0.38] rad/s. This results in
a set of basis functions of cardinality 16× 256 = 4 096.
In the reference circuit implementation, 256 elements of
each of the 4096 functions are computed at eight bits
of precision and concatenated into an ROM, resulting
in a 1 MB ROM lookup table.

The computation required to average these functions
at run time is trivial so long as one chooses to sum and
subsequently divide a number of values equal to a power
of two. In this work, the actual functions driving wing
motions are the average of eight of the basis functions.



John C. Gallagher et al.: An Improved Evolvable Oscillator 975

Fig.9. 16 pairwise combinations of core basis functions.

A single serial adder circuit and an inexpensive shift
register are all that are required to compute runtime
wing positions. In this paper, the left and right wings
are driven by different oscillatory signals which are each
stored as eight indexes into the 1 MB table of pre-
computed functions. The oscillator, rather than play-
ing a simple cosine, reads eight basis function outputs
per wing, averages these values, then commands the
resulting wing positions. Circuitry to accomplish this
is given in [2]. Note that with this circuit, the φ(t)
function driving each wing is represented by a lookup
table index multiset of size eight selected from a pool
of size 4 096. This results in approximately 1.978×1024

unique possible φ(t) functions. For a two-winged vehi-
cle, therefore, there are approximately 4 × 1024 possi-
ble composed split-cycle oscillators under this scheme.
This is quite obviously a huge search space, and it is
legitimate to ask if a restricted, easier to search, space
would still contain sufficiently many operationally fit
flight solutions.

As an initial exploration, we ran five hundred

randomized learning trials of a modification of the
FW-MAV algorithm used elsewhere in this paper with
a randomized wing torque/force error of 30% applied
to each wing. The modification was to replace the re-
placement of the worst individual in the given algorithm
with a randomly selected worst-with-best replacement
or a hypermutation. In these new runs, the adaptive
oscillator was only allowed to construct solutions us-
ing one of the 16 basis function families. Instead of
having a pallet of 4 096 basis functions, each of these
16, 500 trial, sets had a different pallet of 256 basis
functions. It is not surprising that hypermutation ap-
plied so liberally would be disruptive to search and we
would see increases in learning time. Indeed, in a run
of this modified algorithm using the whole set of 4 096
basis functions, the average flight time required to find
an acceptable solution increased to an average of 5.56
hours. On a positive note, yield increased from the 97%
reported earlier in this paper to 100%. The surprising
results were seen in the reduced scope runs. One basis
function family (AC from Fig.9) produced acceptable



976 J. Comput. Sci. & Technol., Sept. 2012, Vol.27, No.5

solutions with 100% yield and an average learning time
of about 40 minutes, even when using the same highly
disruptive hypermutation operator that slowed whole
basis set learning times to 5.56 hours. The full results
of the 16 runs are given in Table 3. The row and column
labels correspond to basis function grid given in Fig.9.
Kruskal-Wallis ANOVA testing[15] on all 16 experiment
sets represented in Table 3 allows us to reject the null
hypothesis that the average learning times are drawn
from the same underlying distribution (99% confidence
level).

Table 3. Average Minutes to Solution for Restricted

Basis Function Sets

A B C D

A 75.9 65.8 40.0 89.7

B 163.5 368.3 152.4 138.5

C 64.3 80.9 62.0 88.1

D 252.1 46.3 77.7 253.2

Note that for this problem, we apparently did not
need the vast majority of the basis function library to
find quality solutions. At this juncture, of course, we
have no way to know that one will not need the full
set when we attack control of more than two degrees
of the vehicle’s spatial freedom. We do know, however,
that experimentation and tuning of the basis function
set will likely lead to gains in search performance and
should be studied as more complex control schemes are
tested.

Two other sets of experiments are worth mention-
ing in that they shed light on the structure of solution
space for this problem. Restricting search to one of the
16 basis function families is one end of a continuum of
restriction options. One could just as easily choose any
subset of the 16 of any cardinality between 1 and 16.
Although testing all of these subsets is cost prohibitive
at this time, two were tried. We ran 500 random ve-
hicle damage trials for basis function sets composed of
(AB and AC) and (AA, AB, AC, and AD). We ran each
restricted set under two conditions. In the first, both
hypermutation and mutation varied over the whole set.
In the second, although hypermutation varied over the
whole set, regular mutation was restricted to the core
basis function set that an allele was already in. This
created a choice between a “full-range” mutation and a
“tiered full-range” mutation on hypermutation events
and a localized in-family mutation on tournament mu-
tations. The results here too were telling. The tiered
mutation was consistently better in terms of learning
time. Table 4 summarizes these values.

There are two salient observations. The first is
that tiered mutation seems superior, as it allows global
search via hypermutation and localized search during

regular tournament mutation. Also note that the AB,
AC tiered mutation set appears to have done slightly
better than just AC alone. Kruskal-Wallis ANOVA
testing[15] on the four experimental sets represented in
Table 4 allows us to reject the null hypothesis that the
average learning times are drawn from the same un-
derlying distribution at a 99% confidence level. Also,
a Mann-Whitney test[16] between the 69.0 and 39.6
minute datasets allows us to reject the hypothesis that
those sets are drawn from the same underlying distri-
bution at a 99% confidence level.

Table 4. Average Time to Solution for Dual and Quad

Basis Function Sets

Algorithm Type Average Time to

Solution (min)

AA, AB, AC, AD Full Mutation 176.7

AA, AB, AC, AD Restricted Mutation 69.0

AB, AC Full Mutation 122.3

AB, AC Restricted Mutation 39.6

6 Related Work

Control of flapping-wing vehicles has attracted con-
siderable interest. Some representative, alternative,
conventional approaches to FW-MAV control are de-
scribed in [17-19]. It is presumed that these traditional
efforts could also be augmented with EAH methods as
they were in this work, as they are not inherently in-
compatible with the techniques described in this paper.
Various non-conventional, soft-computation approaches
to the problem of flapping-wing flight control are in the
literature. Representative of these efforts are [20-26].
All of these appear to apply learning at the level of
flight-mode control laws and/or controller and vehicle
co-evolution, as opposed to our application of learn-
ing at a lower level of abstraction underneath a tradi-
tionally derived control law. One of these efforts[21] is
somewhat similar to the work reported here. The pri-
mary differences between that work and our work are:
1) We represented wing motion schedules as composi-
tions of pre-computed basis functions and they repre-
sented wing motion schedules as Bezier curves; 2) We
employed a custom EA designed to be implementable
in small chip area and they used a standard elitism ge-
netic algorithm; and 3) Our work is designed for inflight
use on a real, pre-designed, vehicle with attention given
to not crashing the vehicle and theirs as focused on co-
evolving controllers and bodies in simulation with the
goal of later construction.

7 Discussion and Conclusions

This paper has demonstrated that EAH methods
previously introduced to augment FW-MAV altitude



John C. Gallagher et al.: An Improved Evolvable Oscillator 977

controllers do, with some modification, scale for use in
2-DOF control consisting of simultaneous command of
vehicle roll and altitude. At the outset, it was unknown
if wing motion shapes that simultaneously matched
damaged vehicle behavior to the cycle-averaged models
implicit in the ACTC and RCTC were even learnable
using the basis functions adopted. The work presented
here represents the first evidence that such shapes in-
deed do exist and can be learned using very simple
EA methods during normal vehicle flight. Previous
work did not explicitly employ split-cycle manipula-
tions, as such is not needed for pure altitude control.
The method for generating split-cycle signals of arbi-
trary piecewise linear curve approximations is novel, if
perhaps somewhat obvious. Previous work was con-
ducted with respect to two specific wing failure modes.
This work extended the set to over 40 thousands ran-
domized wing failures and provides, for the first time,
evidence that learning successes are not limited to only
two special cases of wing failure types. It has been
demonstrated that learning yields are very high (97%
or better for moderate wing damage) and learning times
(one hour flight time on average for moderate wing
damage) are reasonable, if not yet as fast as mission
planners might desire. We have also demonstrated that
practicality issues like the physical size of the digital
circuitry required to store the basis set and the actual
time required to find acceptable solutions can be effec-
tively attacked via better EA search (including tiered
mutation as demonstrated here) and judicious restric-
tion of the basis function set. There is much work to be
done on those issues yet, but there is even at this early
juncture significant reason to believe that those efforts
will be fruitful.

The adaptive oscillator circuit of [2] could be trivia-
lly constructed using 1980’s or earlier technology and
requires a very slow 1 MHz clock. The expanded circuit
presaged in this paper would require only slightly more
circuitry and a 250 MHz clock to accommodate the finer
timings needed for roll control. Once one is willing to
presume a 250 MHz clock inside the adaptive oscillator
unit, and we must now presume that because of physi-
cal necessity, there is less reason to continue avoidance
of extensive processing of EA populations and poten-
tially complex evaluation methods. The primary bottle
neck involved in learning is that every candidate oscil-
lator must be, under the current methods, evaluated for
about 0.5 seconds of flight time. Increasing or decreas-
ing that evaluation period severely degrades learning
performance[11]. A more sophisticated evaluation pro-
cess could attempt to take shorter samples of perfor-
mance and employ predictive models to generate esti-
mates of performance over longer segments of time.

It is expected that although MAV MINIPOP was

sufficient for us to develop a workable basis function set
and demonstrate feasibility, it is unlikely to fly in the
actual vehicle. Whatever does fly, however, would still
have to function under rather severe resource and error
feedback limitations. Further development of the ulti-
mate learning engine will represent a significant chal-
lenge to be attacked over the next few years. This work
has demonstrated the feasibility of in-flight controller
tuning using an adaptive oscillator and has provided
guidance on what issues should be studied in the pur-
suit of the next generation learning algorithm.

References

[1] Gallagher J, Oppenheimer M. An improved evolvable oscilla-
tor for all flight mode control of an insect-scale flapping wing
micro air vehicle. In Proc. the 2011 IEEE Congress on Evo-
lutionary Computation, June 2011, pp.417-425.

[2] Gallagher J, Doman D, Oppenheimer M. The technology of
the gaps: An evolvable hardware synthesized oscillator for the
control of a flapping-wing micro air vehicle. IEEE Transac-
tions on Evolutionary Computation, in press.

[3] Gallagher J, Oppenheimer M. Cross-layer learning in an
evolvable oscillator for in-flight controller adaptation in a
flapping-wing micro air vehicle. In Proc. the 45th Asillo-
mar Conference on Signals, Systems, and Computers, Nov.
2011, pp.1547-1551.

[4] Greenwood G, Tyrrell A. Introduction to Evolvable Hard-
ware: A Practical Guide for Designing Self-Adaptive Systems.
Wiley-IEEE Press, 2006.

[5] Goldberg D. Genetic Algorithms in Search, Optimization, and
Machine Learning. Boston, MA, USA: Addison-Wesley, 1989.

[6] Fogel D. System Identification through Simulated Evolution:
A Machine Learning Approach to Modeling. Ginn Press,
1991.

[7] Bäck T, Hammel U, Schwefel H. Evolutionary computation:
Comments on the history and current state. IEEE Transac-
tions on Evolutionary Computation, 1997, 1(1): 3-17.

[8] Wood R. The first takeoff of a biologically-inspired at-scale
robotic insect. IEEE Transactions on Robotics, 2008, 24(2):
341-347.

[9] Doman D, Oppenheimer M, Sigthorsson D. Dynamics and
control of a minimally actuated biomimetic vehicle: Part i—
Aerodynamic model. In Proc. the AIAA Guidance, Naviga-
tion, and Control Conference, August 2009.

[10] Doman D, Oppenheimer M, Sigthorsson D. Dynamics and
control of a minimally actuated biomimetic vehicle: Part ii—
Control. In Proc. the AIAA Guidance, Navigation, and Con-
trol Conference, August 2009.

[11] Gallagher J, Doman D, Oppenheimer M. Practical in-flight
altitude controller learning in a flapping-wing micro air vehi-
cle. Technical Report 12-01, Department of Computer Science
and Engineering, Wright State University, 2012.

[12] Doman D, Oppenheimer M, Bolender M, Sigthorsson D. Alti-
tude control of a single degree of freedom flapping wing micro
air vehicle. In Proc. the AIAA Guidance, Navigation, and
Control Conference, August 2009.

[13] Kramer G, Gallagher J. Ananalysis of the search performance
of a mini-population evolutionary algorithm for a robot loco-
motion control problem. In Proc. the 2005 IEEE Congress
on Evolutionary Computation, Sept. 2005, pp.2768-2775.

[14] Vigraham S, Gallagher J. A space saving digital VLSI evo-
lutionary engine for CTRNN-EH devices. In Proc. the 2005
CEC, Sept. 2005, pp.2483-2490.



978 J. Comput. Sci. & Technol., Sept. 2012, Vol.27, No.5

[15] Kruskal W, Wallis A. Use of ranks in one-criterion variance
analysis. Journal of the American Statistical Association,
1952, 47(260): 583-621.

[16] Mann H, Whitney D. On a test of whether one of two ran-
dom variables is stochastically larger than the other. Annals
of Mathematical Statistics, 1947, 18(1): 50-60.

[17] Schenato L, Wu W, Sastry S. Attitude control for a mi-
cromechanical flying insect via sensor output feedback. IEEE
Transactions on Robotics and Automation, 2004, 20(1): 93-
106.

[18] Deng X, Schenato L, Sastry S. Flapping flight for biomimetic
robotic insects: Part ii — Flight control design. IEEE Trans-
actions of Robotics, 2006, 22(4): 789-803.

[19] Epstein M, Waydo S, Fuller S, Dickson W, Straw A, Dick-
inson M, Murray R. Biologically inspired feedback design for
drosophila flight. In Proc. the 26th American Control Con-
ference (ACC), July 2007, pp.3395-3401.

[20] Augustsson P, Wolff K, Nordin P. Creation of a learn-
ing, flying robot by means of evolution. In Proc. of the
2002 Conference on Genetic and Evolutionary Computation
(GECCO2002), July 2002, pp.1279-1285.

[21] van Breugel F, Lipson H. Evolving buildable flapping or-
nithropters. In Proc. the 2005 Conference on Genetic and
Evolutionary Computation, June 2005.

[22] Hunt R, Hornby G, Lohn J. Toward evolved flight. In Proc.
the 2005 Conference on Genetic and Evolutionary Computa-
tion (GECCO2005), June 2005, pp.957-964.

[23] Mouret J B, Doncieux S, Meyer J A. Incremental evolu-
tion of target-following neuro-controllers for flapping-wing an-
imats. In Lecture Notes in Computer Science 4095, Nolfi
S, Baldassarre G, Calabretta R, Hallam J, Marocco D,
Meyer J A, Miglino O, Meyer J, Parisi D (eds.), Springer
Berlin/Heidelberg, 2006, pp.606-618.

[24] Weng L, Cai W, Zhang M, Liao X, Song D. Neural-memory
based control of micro air vehicles (MAVS) with flapping
wings. In Lecture Notes in Computer Science 4491, Liu
D, Fei S, Hou Z G, Zhang H, Sun C (eds.), Springer
Berlin/Heidelberg, 2007, pp.70-80.

[25] Guo Q, Hu M, Wei R, Xu J, Song H. Hovering control based
on fuzzy neural networks for biomimetic flying robotic. In

Proc. the IEEE Int. Conf. Information and Automation
2008 (ICIA2008), June 2008, pp.504-508.

[26] Boddhu S, Gallagher J. Evolved neuromorphic flight control
for a flapping-wing mechanical insect. In Proc. the 2008
IEEE Congress on Evolutionary Computation, June 2008,
pp.1744-1751.

John C. Gallagher is an asso-
ciate professor of computer science
and engineering at Wright State Uni-
versity in Dayton, USA. He holds
a Ph.D. degree in computer engi-
neering from Case Western Reserve
University. He is a senior mem-
ber of the IEEE and a recipient of
an NSF Young Investigator’s Award
(CAREER). Dr. Gallagher’s research

interests are in evolvable and adaptive hardware, soft com-
putation, and cyber-physical systems.

Michael W. Oppenheimer is
a senior electronics engineer at the
Control Design and Analysis Branch
at the Air Force Research Labo-
ratory, Wright Patterson Air Force
Base, USA. He is the author or co-
author of more than 70 publications
including refereed conference papers,
journal articles, and technical re-
ports. He holds a Ph. D. degree in

electrical engineering from the Air Force Institute of Tech-
nology and is an Associate Fellow of AIAA and a senior
member of IEEE. Dr. Oppenheimer’s research interests are
in the areas of reconfigurable flight control, control alloca-
tion, and control of flapping wing micro air vehicles.


