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Abstract Differential evolution (DE) has become a very popular and effective global optimization algorithm in the area
of evolutionary computation. In spite of many advantages such as conceptual simplicity, high efficiency and ease of use,
DE has two main components, i.e., mutation scheme and parameter control, which significantly influence its performance.
In this paper we intend to improve the performance of DE by using carefully considered strategies for both of the two
components. We first design an adaptive mutation scheme, which adaptively makes use of the bias of superior individuals
when generating new solutions. Although introducing such a bias is not a new idea, existing methods often use heuristic
rules to control the bias. They can hardly maintain the appropriate balance between exploration and exploitation during
the search process, because the preferred bias is often problem and evolution-stage dependent. Instead of using any fixed
rule, a novel strategy is adopted in the new adaptive mutation scheme to adjust the bias dynamically based on the identified
local fitness landscape captured by the current population. As for the other component, i.e., parameter control, we propose
a mechanism by using the Lévy probability distribution to adaptively control the scale factor F of DE. For every mutation
in each generation, an Fi is produced from one of four different Lévy distributions according to their historical performance.
With the adaptive mutation scheme and parameter control using Lévy distribution as the main components, we present a
new DE variant called Lévy DE (LDE). Experimental studies were carried out on a broad range of benchmark functions in
global numerical optimization. The results show that LDE is very competitive, and both of the two main components have
contributed to its overall performance. The scalability of LDE is also discussed by conducting experiments on some selected
benchmark functions with dimensions from 30 to 200.
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1 Introduction

Differential evolution (DE), proposed by Storn and
Price[1], has become a very popular evolutionary al-
gorithm (EA) for global numerical optimization prob-
lems. It has shown superior performance in solving
both function optimization benchmarks and real-world
applications[2-4]. Like other evolutionary algorithms
(EAs), DE adopts a population-based iterative stochas-
tic search procedure, and in each generation it uses mu-
tation, crossover and selection operators to move the
current population toward the global optimum. In the
classical DE[1] there are only three control parameters,
i.e., the population size NP , the mutation scale factor
F , and the crossover rate CR. Such a desired feature
makes it very easy to use in practice.

Besides the classical DE, many DE variants have

been proposed in the last decade to study and improve
its performance. The previous work found that the
performance of DE mainly depends on its two com-
ponents. One is the mutation scheme, which provides
the original driving force for solution variations. In
the classical DE, mutation is implemented by adding
a weighted difference vector between two individuals
to a third individual[1]. Although such a classical mu-
tation scheme based on three randomly selected in-
dividuals is quite simple and effective in some scena-
rios, it forms the difference vector only randomly, and
thus is often not efficient enough. Some more ad-
vanced ideas are to formulate the mutation equation
with the bias of some superior individuals in the cur-
rent population[5-6], or even utilize multiple different
mutation schemes simultaneously[7-8]. In spite of these
methods did achieve better results, it is often very hard
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to determine what kind of individuals should be in-
cluded in the mutation equation to provide such a bias,
and in practice only some heuristic rules (e.g., choose
the best individual so far) were suggested. There still
lacks a technique, which can adaptively control the bias,
to maintain a reasonable balance between exploration
and exploitation during the search process. The other
component that affects DE’s performance significantly
is how to control its parameters. Empirical parameter
settings are not sufficient, because DE’s performance
is very sensitive to them, and there is no fixed pa-
rameter setting that is suitable for various problems or
even at different evolution stages of a single problem[9].
In addition, suitable parameter settings also correlate
with the choice of mutation scheme. The work in [10]
found that it is beneficial to provide multiple choices for
the generation of trial solutions by randomly combin-
ing three mutation schemes with three parameter set-
tings. A commonly used parameter control technique
is to generate parameter values randomly according to
a certain probability distribution, and then adaptively
adjust the probability distribution in the succeeding
generations based on the feedback of the search process.
In particular, DE with parameter control using the uni-
form distribution[11-12], the Gaussian distribution[13-14]

and the Cauchy distribution[8,15] were frequently inves-
tigated. However, which probability distribution is bet-
ter and can they fit into a more general distribution are
still not clear.

In this paper, we aim at improving the performance
of DE by utilizing more carefully considered strategies
for the two important components discussed in the last
paragraph. To be specific, for the first component we
propose an adaptive mutation scheme that can adap-
tively make use of the bias of superior individuals in
generating mutated individuals. A novel strategy is
adopted to adjust the bias dynamically based on the
identified local fitness landscape captured by the cur-
rent population. For the other component, we design
a mechanism based on the Lévy distribution to adap-
tively control the scale factor F of DE. For every mu-
tation in each generation, an Fi is produced from one
of four predefined Lévy distributions according to their
historical performance. The motivation of introducing
the Lévy distribution is as follows. As one of the most
important parameters of DE, it was found that the scale
factor F has direct influence on DE’s search step size[15].
Inspired by the search step size control strategies in
evolutionary programming (EP)[16-17], both Gaussian
distribution and Cauchy distribution, which are spe-
cial cases of more generalized Lévy distribution, have
been introduced into DE to control the parameter F
appropriately. Although Lévy distribution was proven

to be better for search step size controlling[18], it has
been seldom used in DE. That is why DE with pa-
rameter control using Lévy distribution deserves more
investigation. With the adaptive mutation scheme and
parameter control using Lévy distribution as the main
contributions, we present a new DE variant, called Lévy
DE (LDE). Experiments have been conducted to eva-
luate the efficacy of LDE and its components on a test
suite with 28 benchmark functions. The results are
compared with the classical DE, three state-of-the-art
DE variants and two EP variants. To further study its
scalability, LDE has also been evaluated on some se-
lected benchmark functions with dimensionality from
30 to 200.

The rest of this paper is organized as follows. Sec-
tion 2 gives some preliminaries, including the problem
formulation, the classical DE and the Lévy distribu-
tion. Section 3 provides a review on recent adaptive
DE variants. Section 4 describes the proposed LDE
algorithm. Section 5 presents the experimental stud-
ies and discussions. Finally, Section 6 concludes this
paper briefly with several remarks and future research
directions.

2 Preliminaries

2.1 Global Numerical Optimization

In this paper we have chosen global numerical op-
timization as the test-bed. According to the descrip-
tion in [17], a global numerical optimization problem①

can be formalized as a pair (S, f), where S ⊆ RD is a
bounded set on RD, and f : S 7→ R is a D-dimensional
real-valued function. The problem is to find a point
x∗ ∈ S such that f(x∗) is a global optimum on S. More
specifically, the task is to find an x∗ ∈ S such that

∀x ∈ S : f(x∗) 6 f(x), (1)

where f is not required to be continuous, but it must
be bounded. Here we consider only single-objective
unconstrained (or bound-constrained) numerical opti-
mization. The key difficulty in global numerical op-
timization is to locate the global optimum efficiently
without being trapped in local optima.

2.2 Classical DE

DE algorithm aims at evolving a population of NP
individuals, i.e., xi, ∀i ∈ {1, . . . ,NP}, for problem solv-
ing. The parameter NP is called population size. Each
individual in the population is corresponding to a can-
didate solution in the search space, and for numerical
optimization problems it is often represented using a

①Without loss of generality, we consider only minimization problem in this paper.
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D-dimensional real-valued vector, where D is the num-
ber of decision variables. The main operations of the
classical DE can be summarized as follows[2]:

1) Mutation:

vi = xr1 + F · (xr2 − xr3), (2)

where r1, r2, r3 ∈ {1, . . . ,NP} are random and mutu-
ally different integers, and they are also different with
the index i. Scale factor F ∈ (0, 2] is a real constant
factor and it is often set to 0.5 empirically.

2) Crossover:

ui(j) =
{

vi(j), if Uj(0, 1) 6 CR or j = jr,

xi(j), otherwise,
(3)

where Uj(0, 1) stands for a uniform random number
between 0 and 1, and jr ∈ {1, . . . ,NP} is a randomly
chosen index to ensure that the trial solution ui does
not duplicate xi. The parameter CR ∈ [0, 1] is the
crossover rate, which is often set to 0.9 empirically. The
crossover is called binomial crossover in DE.

3) Selection:

x′i =
{

ui, if f(ui) 6 f(xi),

xi, otherwise,
(4)

where x′i is the offspring of xi for the next generation.
In spite of the classical one described above, there

are several variants of DE based on different mutation
schemes they adopt. Some popular mutation schemes
are listed as follows[2].

vi = xr1 + F · (xr2 − xr3), (5)

vi = xbest + F · (xr1 − xr2), (6)

vi = xr1 + F · (xr2 − xr3 + xr4 − xr5), (7)

vi = xbest + F · (xr1 − xr2 + xr3 − xr4), (8)

vi = xi + F · (xbest − xi + xr1 − xr2). (9)

Schemes (5) and (9), with notations as “DE/rand/1”
and “DE/current-to-best/2”, are frequently used in
practice due to their superior performance[2-3,7].

Binomial crossover is also not the only choice for
the crossover operation in DE. Recent studies indicate
that exponential crossover[19] appears to be better for
some large-scale optimization problems[20]. Due to de-
sign preference, both the binomial crossover and ex-
ponential crossover only visit one vertex of the hyper-
rectangle defined by the mutant and target vectors. To
complement such an issue, Wang et al.[21] introduced
a quantization orthogonal crossover (QOX) into DE.
It was found that the QOX operator is effective and
efficient in a number of numerical optimization test in-
stances.

2.3 Lévy Distribution

The Lévy distribution, which is a class of probability
distributions having an infinite second central moment
and governing the sum of these random variables[22-23],
was discovered by P. Lévy in the 1930s. According to
the description in [22-23], it can be given in the follow-
ing form:

Lα,γ(y) =
1
π

∫ ∞

0

e−γqα

cos(qy)dq, y ∈ R. (10)

The distribution is symmetric with respect to y = 0
and has two parameters γ and α. γ is the scaling factor
satisfying γ > 0, and α controls the shape of the distri-
bution, requiring α ∈ (0, 2). The analytic form of the
integral is unknown for general α, but is known for a
few cases. In particular, for α = 1, the integral can be
reduced to the analytic form resulting in the Cauchy
distribution, and in the limit of α → 2, the distribu-
tion is no longer the Lévy distribution and becomes the
Gaussian distribution[18].

3 Review of Recent Adaptive DE Variants

3.1 jDE

jDE was proposed by Brest et al.[11] based on the
self-adaptation of the scale factor F , and the crossover
rate CR. It associates each individual with its own
control parameters Fi and CRi. Before the algorithm
starts, Fi and CRi are set to 0.5 and 0.9 respectively.
And then, at each generation G new values for Fi and
CRi are produced as follows:

Fi,G+1 =
{

0.1 + 0.9× rand1, if rand2 < τ1,

Fi,G, otherwise,
(11)

and

CRi,G+1 =
{

0.1 + 0.9× rand3, if rand4 < τ2,

CRi,G, otherwise,
(12)

where rand j , j = 1, 2, 3, 4, are uniform random values
in [0, 1]. Parameters τ1 = τ2 = 0.1 represent the proba-
bility to adjust previous control parameter values. The
newly generated parameter values are used in the mu-
tation and crossover operations to create corresponding
offspring and will replace the previous parameter values
if the offspring survives in the selection process.

3.2 SaDE

SaDE proposed by Qin et al.[7,24] gave the first at-
tempt to simultaneously adopt more than one muta-
tion schemes in DE. The main propose is to reduce the
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problem-solving risk by distributing available compu-
tational resources to multiple search techniques with
different biases. Some similar ideas have been success-
fully used to build algorithm portfolios[25]. The utilized
adaptation techniques in SaDE consist of two parts: 1)
the adaptation of the probability, pk, of applying the
k-th mutation scheme for each individual; and 2) the
adaptation of the parameters F and CR.

For the adaptation of mutation schemes, the proba-
bility of applying the k-th mutation scheme is repre-
sented using pk, k = 1, 2, . . . , m, where m is the to-
tal number of candidate schemes. All the pk’s are
initialized as 1

m , which means all schemes have the
same probability to be chosen. Four different muta-
tion schemes, i.e., “DE/rand/1”, “DE/rand-to-best/2”,
“DE/rand/2” and “DE/current-to-rand/1”, are used as
candidates in SaDE[7].

At the generation G, after evaluating all the gene-
rated trial individuals, the number of trial individu-
als generated by the k-th scheme that can successfully
enter the next generation is recorded as nsk,G, while
the number of trial individuals generated by the k-th
schemes that are discarded in the next generations is
recorded as nf k,G. And then the probability of choos-
ing the k-th scheme is updated by

pk,G =
Sk,G

m∑

k=1

Sk,G

, k = 1, . . . , m, (13)

with

Sk,G =

G−1∑

g=G−LP

nsk,g

G−1∑

g=G−LP

nsk,g +
G−1∑

g=G−LP

nf k,g

+ ε, (14)

where LP means learning period, which is a predefined
number of generations (e.g., 50 in SaDE). The small
constant value ε = 0.01 is used to avoid the possible
null success rate.

For the adaptation of the scale factor F , individual-
based Fi are generated at the start of each generation
according to a Gaussian distribution with mean 0.5,
and standard deviation 0.3, i.e.:

Fi = Ni(0.5, 0.3), (15)

where Ni(µ, δ2) denotes a Gaussian random number
with mean µ and standard deviation δ. All Fi will be
truncated to the interval (0, 2] based on the empirical
range of F .

For the adaptation of crossover rate CR, individual-
based CRi are generated every 5 generations according

to a Gaussian distribution with mean CRm and stan-
dard deviation 0.1, i.e.:

CRi = Ni(CRm, 0.1). (16)

The center CRm is initialized to 0.5, and then is up-
dated every 25 generations according to

CRm =
1

|CRsuc|
|CRsuc|∑

j=1

CRsuc(j), (17)

where CRsuc are the recorded successful CR values
which are able to make the corresponding offspring en-
ter the next generation in the last 25 generations.

3.3 SaNSDE

SaNSDE proposed in [8] can be regarded as an im-
proved version of the SaDE in Subsection 3.2. Its mu-
tation is executed in the same way as SaDE except that
only two mutation schemes are used, and the scale fac-
tor F in the adopted mutation schemes are generated
according to either a Gaussian distribution or a Cauchy
distribution, i.e.,

Fi =
{

Ni(0.5, 0.3), if Ui(0, 1) < fp,

Ci(0, 1), otherwise,
(18)

where Ci(µ, δ) denotes a random value from a Cauchy
distribution with location and scale parameters µ, δ.
The probability, fp, of applying either of the two distri-
butions is controlled adaptively in a manner similar to
(13) in SaDE.

As for the adaptation of the crossover rate CR,
SaNSDE follows the method in SaDE except that a
weighting strategy is applied:

CRm =
|CRsuc|∑

k=1

wk × CRsuc(k), (19)

wk = δf (k)
/( |δf |∑

k=1

δf (k)
)
, (20)

where δf (k) is the corresponding fitness improvement
related to each successful crossover rate CRsuc(k).

3.4 JADE

JADE[6] is another recent DE variant, in which a
new mutation scheme named “DE/current-to-pbest” is
adopted. The mutated individuals are generated as fol-
lows:

vi = xi + Fi · (xp best − xi + xr1 − x̃r2), (21)

where xp best is randomly chosen as one of the best
100p% individuals in the current population with p ∈
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(0, 1]. Individual xr1(r1 6= i) is randomly selected from
the population, and x̃r2 is an individual (distinct from
xi and xr1) randomly chosen from the union of the
current population and an external archive of inferior
solutions. The archive is initialized to be empty and
then filled with the parent solutions that fail in the se-
lection process of each generation. If the archive size
exceeds a certain threshold, say NP , then some solu-
tions are randomly removed from the archive to keep
its size at NP .

At each generation, Fi and CRi in JADE are ran-
domly generated for each individual according to the
following equations:

Fi = Ci(Fm, 0.1), (22)

CRi = Ni(CRm, 0.1), (23)

where CRm and Fm are updated in the following adap-
tive manner:

Fm = (1− c)× Fm + c×meanL(Fsuc), (24)

CRm = (1− c)× CRm + c×meanA(CRsuc), (25)

where CRsuc and Fsuc are the respective sets of all
successful crossover probabilities and successful muta-
tion factors obtained in the selection process at current
generation. Parameter c is a positive constant between
0 and 1. meanA(·) is the usual arithmetic mean and
meanL(·) is the Lehmer mean:

meanL(Fsuc) =

∑
F∈Fsuc

F 2

∑
F∈Fsuc

F
, (26)

which pays more weight on larger scale factor F to im-
prove the evolutionary progress.

4 DE with Adaptive Mutation and Parameter
Control Using Lévy Distribution

4.1 Motivation and Adaptive Mutation
Scheme

As mentioned in Section 1, mutation is one of the
key operators in DE. It is actually the only operator
that can provide the original driving force for indivi-
dual variations. Although the idea of utilizing the diffe-
rences among individuals in mutation is simple enough,
it is not easy to determine how the mutation scheme
should be formulated. The classical mutation scheme,
which is given as (5) based on three randomly selected
individuals, is frequently used as a fair choice. How-
ever, since such a scheme forms the difference vector
only randomly, it is often not efficient enough, and thus
slows down the overall convergence speed of DE. In de-
signing more efficient mutation schemes, a commonly

used idea is to take advantage of the bias of some supe-
rior individuals in the population. The schemes given
as (6), (8) and (9) are of this kind. They all gener-
ate new individuals with the consideration of the best
individual found so far. Although with this kind of
mutation DE’s performance could be improved in some
scenarios, a number of side effects are also introduced
unfortunately. The most notable one is that the proba-
bility of the algorithm to be trapped in the local optima
of multimodal problems is increased significantly, com-
pared with the classical DE[6]. So how to maintain the
balance between global optimization ability (i.e., ex-
ploration) and search efficiency (i.e., exploitation) has
become a very important issue in designing suitable mu-
tation schemes for DE.

The idea of balancing exploration and exploitation
has already been used to design more advanced muta-
tion schemes for DE. The SaDE[7,24] described in Sub-
section 3.2 simultaneously adopts more than one mu-
tation schemes with different search characteristics. A
new parameter is introduced for each mutation scheme
to control the probability to use it for each indivi-
dual, and it is adaptively updated based on the per-
formance of a corresponding mutation scheme in a pre-
defined learning period. The JADE[6] described in Sub-
section 3.4 intends to acquire such a balance by propos-
ing a new mutation scheme “DE/current-to-pbest”, as
given in (21). The basic idea is to perform the muta-
tion with the bias of one of the best 100p% individuals
in the current population, where p ∈ (0, 1] is a new in-
troduced probability parameter. Although both SaDE
and JADE have achieved great success over the classical
DE, there is still room for improvements. For SaDE, it
is often hard to determine which and how many muta-
tion schemes should be included as the candidates. As
for JADE, the optimal setting of the new parameter p is
a hard optimization problem itself. Only a fixed value
in an empirical interval [5%, 20%] was suggested[6].

In order to seek for a more appropriate trade-off be-
tween exploration and exploitation, in this paper we
propose a new mutation scheme as follows:

vi = xr1 + Fi · (x̃p best − xr1 + xr2 − xr3), (27)

where r1, r2, r3 ∈ [1,NP ] are random and mutually dif-
ferent integers, and x̃p best is a member randomly cho-
sen from a set Sp, which is generated at the beginning
of each generation according to the procedure described
in Algorithm 1, where

p: probability parameter,
NP: populationsize,
POP: the current population,
max(a, b): return the larger one between a and b,
round(a): return the nearest integer to a.
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Algorithm 1: Procedure to Generate the Set Sp for

x̃p best Candidates

Input: p, NP , POP = {xi| 1 6 i 6 NP}
Output: Sp

1 Sp = ∅;

2 elemNum = max(round(p×NP), 1);

3 neighborNum = max(round( NP
elemNum

), 1);

4 while (POP 6= ∅) do

5 Select the best individual xbest from POP ;

6 Sp = Sp ∪ {xbest};
7 POP = POP − {xbest};
8 j = 1;

9 while (j < neighborNum) and (POP 6= ∅) do

10 Select the nearest neighbor x to xbest from

POP , with euclidean distance as the metric;

11 POP = POP − {x};
12 j = j + 1;

13 end

14 end

15 return Sp;

Based on the traditional naming rule in DE research,
the new mutation scheme can be denoted as “DE/rand-
to-pbest/2”. “DE/rand-to-pbest/2” given as (27) may
look similar to the “DE/current-to-pbest/2” of JADE
in (21). But they are actually quite different in at least
the following aspects:

1) In the scheme “DE/rand-to-pbest/2”, the base
vector, i.e., xr1 , is selected randomly. Compared with
JADE, the number of different possible mutations is
increased from NP(NP − 1) to NP(NP − 1)(NP − 2).
This would enhance the flexibility of mutation in DE.

2) In JADE, xp best is randomly chosen from the best
100p% individuals in the current population. If all these
individuals are in the attractive basin of a single local
optimum, the risk of DE to be trapped in local optima
is very high. In contrast, x̃p best is selected based on not
only its fitness, but also its location in the distribution
of the current population. The search process is not
likely to be overwhelmingly affected by any single local
optimum.

The crucial idea of the new mutation scheme
“DE/rand-to-pbest/2” is to efficiently utilize the bias of
superior individuals without introducing the high risk
of being trapped by local optima, which is desired in
balancing exploration and exploitation. Like the mu-
tation in JADE, a new probability parameter, p, is in-
troduced in “DE/rand-to-pbest/2” as well. Instead of
using any fixed value, it would be nice if we have an
adaptive strategy to set and adjust it automatically.

From Algorithm 1 it is easy to find out the scheme
“DE/rand-to-pbest/2” degenerates to “DE/rand/2” in

(7) if p = 1, and it is more like ”DE/current-to-best/2”
in (9) when p 6 1

NP . As p decreases from 1 to 1
NP ,

“DE/rand-to-pbest/2” places more and more emphasis
on the bias of top individuals in the current population.
For unimodal problems, it is good to set p to a small
value since it will help DE converge faster. However,
for multimodal problems such a setting will increase the
probability of premature convergence, and thus large
p values are more suitable. This can be used as the
basic guideline to set the parameter p. Although the
precise characteristics (e.g., unimodal or multimodal)
of an unknown objective problem are often not avai-
lable, we can use some approximate approaches to have
a guess based on the local fitness landscape represented
by the current population. Since each individual is in a
population, the population forms an observation of the
local fitness landscape. By sorting other individuals in
the population based on their distances to the best in-
dividual in the current population, we can check how
the fitness of each changes over the distance[26]. If the
fitness is increasing with the distance, then the local
fitness landscape is like a unimodal landscape; other-
wise, it belongs to a multimodal landscape. Based on
the simple idea, the following procedure is proposed in
[26] to detect problem characteristics.

1) Find out the best individual, xbest, among the
population, and then calculate the distance between
each individual xi, i = 1, . . . ,NP and xbest with a cer-
tain distance metric:

di = |xi − xbest|. (28)

The Euclidean distance will be used as the distance
metric in this paper.

2) Sort the individuals based on the distance value
in ascending order: xs1 , . . . ,xsNP

.
3) Introduce a metric χ to measure the shape of the

local fitness landscape. Assume χ to be 0 initially, and
then it will be increased by 1 if f(xsi+1) 6 f(xsi

). Nor-
malize the value as:

ϕ =
χ

NP
. (29)

As local fitness landscape is actual a fuzzy concept,
the indicator ϕ can be regarded as the roughness of
observed fitness landscape. If ϕ = 0, the local fitness
landscape is more like a unimodal landscape; if ϕ = 1,
the local fitness landscape is very rough, and thus is
more likely to be multimodal. So basically ϕ can be
used to set the parameter p in the mutation scheme
“DE/rand-to-pbest/2”. However, since the detection
procedure is not always precise, it is not proper to set
p = ϕ directly. For example, set p very close to 0,
which means to use only the bias of xbest, is quite risky
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if a multimodal problem is regarded as unimodal by
mistake. A lower bound pl for p should be introduced
to avoid such a case. On the other hand, set p very
close to 1, which means to perform the mutation ran-
domly, is not a clever choice either because even for
multimodal problems the bias of superior individuals is
still very helpful for the algorithm to make progress. So
an upper bound pu for p is also needed. Based on these
discussions, in this paper the parameter p is set as:

p = pl + (pu − pl)× ϕ, (30)

where pl and pu are the lower and upper bounds, re-
spectively. According to the study in [6], it is reasonable
to set pl = 0.05. As for the upper bound, we suggest
p = 0.5 which means that at least the top 50% individu-
als of the current population should be used to provide
the search bias.

With (27) and (30), we have presented a new mu-
tation scheme “DE/rand-to-pbest/2”. The new scheme
is expected to be able to maintain more appropriate
balance between exploration and exploitation by adap-
tively adjusting the bias of superior individuals dynami-
cally.

It is notable that the adaptive mutation scheme may
have some computational overhead compared with the
classical mutation scheme, because the distance be-
tween some individuals is needed when selecting the su-
perior individuals and updating the parameter p. In the
worst case, the distance is calculated between any two
individuals. So the computational complexity of calcu-
lating these distances is NP × (NP − 1)/2, where NP
is the population size. Since we use the euclidean dis-
tance, which can be calculated very fast, as the distance
metric, the computational overhead in the adaptive mu-
tation would not be significant as compared with the
time spent on fitness evaluations.

4.2 Parameter Control Using Lévy
Distribution

Search step size controlling is very important in EAs,
because it affects the efficiency of the entire search pro-
cess significantly[27]. Based on the main operations
given in Subsection 2.2, the search step size of DE
mainly depends on two parts. The first part is the dif-
ference vector, which is formed using the difference be-
tween selected individuals. The other part is the scale
factor F which is used to scale the difference vector.
Since the difference vector is determined by the diver-
sity of the current population and thus not easy to ma-
nipulate, the adaptation of the scale factor F has been
used as one of the main strategies in seeking for appro-
priate search step size controlling in DE.

Inspired by the related work on search step size

controlling in EP[17], both Gaussian and Cauchy dis-
tributions, which are two special cases of the more
generalized Lévy distribution, have been successfully
introduced into DE for the adaptation of the scale fac-
tor F [7-8]. Although Lévy distribution was found even
better for search step size controlling[18], it has seldom
been used in DE. To study the characteristics of Lévy
distribution for search step size controlling in DE, we
propose a new adaptive strategy to control the scale
factor F . Firstly, an Fi is associated with every mu-
tation in each generation. Then Fi will be produced
using one Lévy distribution selected from the candi-
date set {L(αj , γ)|j = 1, 2, . . . , m} with the probability
{ψj |j = 1, 2, . . . , m} respectively, i.e.,

Fi = L(αj , γ), if
j−1∑

k=1

ψk < Ui(0, 1) 6
j∑

k=1

ψk, (31)

where αj and γ are the parameters of Lévy distribution,
and Ui(0, 1) stands for a uniform random number be-
tween 0 and 1. Obviously, the condition

∑m
j=1 ψj ≡ 1

holds for the parameters {ψj |j = 1, 2, . . . , m}. Accord-
ing to the study in [18], we set γ = 1, m = 4, and
αj ∈ {1.0, 1.3, 1.7, 2.0}.

The next question is how to set and adapt the proba-
bilities {ψj |j = 1, 2, . . . , m}, with the purpose of choos-
ing a suitable Lévy distribution from the candidate set
{L(αj , γ)|j = 1, 2, . . . , m}. Initially, it is reasonable to
set ψj = 1

m , j = 1, 2, . . . , m, because we have no clue
which one is better. But after a number of generations
we should be able to adjust them adaptively based on
the performance of each L(αj , γ).

Assuming the individual xi,G+1 is the offspring of
xi,G at the generation G, the fitness improvement be-
tween them is denoted as ∆fi,G, and all fitness im-
provements obtained by L(αj , γ) are accumulated in
∆Fj,G. We introduce fitness improvement memories to
store these numbers within a fixed number of previous
generations hereby named learning period (LP). After
the initial LP generations, the probabilities of choos-
ing different Lévy distributions will be updated at each
subsequent generation based on the recorded fitness im-
provement memories. For example, at the generation
G, the probability of choosing L(αj , γ) is updated by

ψj =
Sj,G

m∑

k=1

Sk,G

, j = 1, . . . , m, (32)

where

Sj,G =
G−1∑

g=G−LP

∆Fj,g

maxNP
k=1 ∆fk,g −minNP

k=1 ∆fk,g + ε
,

(33)
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where Sj,G, j = 1, . . . , m represents the normalized fit-
ness improvement obtained by using L(αj , γ) to gene-
rate Fi over the previous LP generations. The small
constant value ε = 0.01 is used to avoid possible null fit-
ness improvement. Through such an adaptation strat-
egy, the larger the fitness improvement for L(αj , γ)
within the previous LP generations, the larger the
probability of applying it to generate Fi at the cur-
rent generation. LP can be set to 50 as suggested in
SaDE[7].

4.3 LDE: Proposed Algorithm

In Subsections 4.1 and 4.2 we have proposed an
adaptive mutation scheme and a parameter control
strategy for the scale factor F using the Lévy distri-
bution, respectively. They are the two key components
to formulate an effective DE variant. As for another
parameter, i.e., crossover rate CR, we will not use any
sophisticated adaptation methods because it was found
that the performance of DE is superior and stable with
empirical values around CR = 0.1 or CR = 0.9. The
following very simple method will be used to generate
CRi,G for the crossover of each individual in the genera-
tion G:

CRi,G =





CRi,G−1, if f(ui,G−1) 6 f(xi,G−1),

0.1, if Ui(0, 1) < 0.5,

0.9, otherwise,
(34)

where Ui(0, 1) stands for a uniform random number in
[0, 1], and CRi,0 = 0.9 is used as the initial setting.

With the new adaptive mutation scheme “DE/rand-
to-pbest/2” and adaptive parameter control strategy,
we have proposed a new DE variant. Since the intro-
ducing of Lévy distribution is one of the main contribu-
tions, the new algorithm is denoted as Lévy DE (LDE)
in this paper. The complete procedure of LDE is sum-
marized as follows.

1) Generate the initial population of NP individuals,
i.e., {xi|1 6 i 6 NP}, and set G = 1.

2) Set αj ∈ {1.0, 1.3, 1.7, 2.0}, γ = 1.0 for L(αj , γ),
and ψj = 0.25, j = 1, 2, 3, 4.

3) Evaluate the fitness for each individual xi of the
population based on the objective function, f(xi).

4) Calculate the parameter p according to (30).
5) Generate the set Sp for x̃p best members based on

Algorithm 1.
6) if G > LP , update ψj , j = 1, 2, 3, 4 based on (32)

and (33).
7) For each individual xi, produce Fi with (31),

randomly select x̃p best from Sp, and then generate a
mutated individual vi using “DE/rand-to-pbest/2” as
given in (27).

8) For each pair (xi,vi), produce CRi,G with (34),
and then generate a trial individual ui by:

ui(j) =
{

vi(j), if Uj(0, 1) 6 CRi,G or j = jr,

xi(j), otherwise,
(35)

where Uj(0, 1) stands for a uniform random number
between 0 and 1, and jr is a randomly chosen index
in [1,NP ] to ensure that the trial vector ui does not
duplicate xi.

9) For each pair (xi,ui), replace xi with ui and
record the fitness improvement if f(ui) 6 f(xi).

10) Stop if the halting criterion is satisfied; other-
wise, G = G + 1, and go to step 4.

5 Experimental Studies

5.1 Benchmark Functions

A test suite with 28 benchmark functions was used
in our experimental studies. The first 23 functions are
from a classical test suite, which has been widely used
to evaluate and analyze EAs’ performance[16-17,28]. The
other functions were selected from a new benchmark
set developed for the special session on real-parameter
optimization[29] in the 2005 IEEE Congress on Evolu-
tionary Computation (CEC2005).

The definitions of the classical 23 functions are given
in Table 1. Functions f1 ∼ f13 are scalable problems,
while functions f14 ∼ f23 are fixed low-dimensional
problems. The 23 functions can be classified into three
categories based on different problem characteristics.
Functions f1 ∼ f6 are unimodal. Function f5 is the
step function, which has one optimum and is discon-
tinuous. Function f6 is a noisy quartic function, where
random[0, 1) is a uniformly distributed random variable
in interval [0, 1). Functions f7 ∼ f13 are multimodal
functions where the number of local optima increases
exponentially with the problem dimension[28]. Func-
tions f14 ∼ f23 are low-dimensional functions which
have only a few local optima. In practice, the second
category, i.e., multimodal functions with many optima,
appears to be the most difficult class of problems for
many optimization algorithms. A more detailed de-
scription of each benchmark function can be found in
the Appendix of [17].

Although the CEC2005 test suite includes 25 func-
tions with different complexities, only the first 14 func-
tions are resoluble with existing methods. All the 14
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Table 1. Classical 23 Functions

Function S fmin

f1(x) =
∑n

i=1 x2
i [−100, 100]n 0

f2(x) =
∑n

i=1 |xi|+ Πn
i=1|xi| [−10, 10]n 0

f3(x) =
∑n

i=1(
∑i

j=1 xj)
2 [−100, 100]n 0

f4(x) = maxi{|xi|, 1 6 i 6 n} [−100, 100]n 0

f5(x) =
∑n

i=1(bxi + 0.5c)2 [−100, 100]n 0

f6(x) =
∑n

i=1 ix4
i + random[0, 1) [−1.28, 1.28]n 0

f7(x) =
∑n−1

i=1 [100(xi+1 − x2
i )2 + (xi − 1)2] [−30, 30]n 0

f8(x) =
∑n

i=1−xi sin(
√
|xi|) [−500, 500]n ≈ −418.982 887× n

f9(x) =
∑n

i=1(x2
i − 10 cos(2πxi) + 10) [−5.12, 5.12]n 0

f10(x) =−20 exp
(
− 0.2

√
1
n

∑n
i=1 x2

i

)
− exp

(
1
n

∑n
i=1 cos(2πxi)

)
+ 20 + e [−32, 32]n 0

f11(x) = 1
4000

∑n
i=1 x2

i −Πn
i=1 cos

(
xi√

i

)
+ 1 [−600, 600]n 0

f12(x) = π
n

[
10 sin2(πy1) +

∑n−1
i=1 (yi − 1)2(1 + 10 sin2(πyi+1)) + (yn − 1)2

]
+ [−50, 50]n 0

∑n
i=1 u(xi, 10, 100, 4),

yi = 1 + 1
4
(xi + 1),

u(xi, a, k, m) =





k(xi − a)m, if xi > a,

0, if − a 6 xi 6 a,

k(−xi − a)m, if xi < −a

f13(x) =0.1[sin2(3πx1) +
∑n−1

i=1 (xi − 1)2(1 + sin2(3πxi+1)) + (xn − 1)(1 + sin2(2πxn))]+ [−50, 50]n 0
∑n

i=1 u(xi, 5, 100, 4)

f14(x) =
[

1
500

+
∑25

j=1
1

j+
∑2

i=1(xi−aij)6

]−1
[−65.536, 65.536]2 ≈ 0.998 004

f15(x) =
∑11

i=1[ai − x1(b2i +bix2)

b2i +bix3+x4
] [−5, 5]4 ≈ 0.000 307 486

f16(x) =4x2
1 − 2.1x4

1 + 1
3
x6
1 + x1x2 − 4x2

2 + 4x4
2 [−5, 5]2 ≈ −1.031 63

f17(x) =(x2 − 5.1
4π2 x2

1 + 5
π

x1 − 6)2 + 10(1− 1
8π

) cos x1 + 10 [−5, 10]× [0, 15] ≈ 0.397 887

f18(x) =[1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]× [−2, 2]2 ≈ 3

[30 + (2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

f19(x) =−∑4
i=1 ci exp(−∑3

j=1 aij(xj − pij)
2) [0, 1]3 ≈ −3.862 78

f20(x) =−∑4
i=1 ci exp(−∑6

j=1 aij(xj − pij)
2) [0, 1]6 ≈ −3.322 37

f21(x) =−∑5
i=1[(x− ai)(x− ai)

T + ci]
−1 [0, 10]4 ≈ −10.153 2

f22(x) =−∑7
i=1[(x− ai)(x− ai)

T + ci]
−1 [0, 10]4 ≈ −10.402 9

f23(x) =−∑10
i=1[(x− ai)(x− ai)

T + ci]
−1 [0, 10]4 ≈ −10.536 4

Note: n is the problem dimension, fmin is the global optimum, and S ⊆ Rn is the search space. The parameters of f14, f15 and

f19 ∼ f23 can be found in the Appendix of [17].

functions are scalable, and many of them are the
shifted, rotated variants of the classical functions in
order to make them more resistant to simple search
tricks[30]. Since a single “shift” operation has little in-
fluence on the performance of DE variants, we consider
only the five shifted and rotated functions in this test
suite which are listed as f24 ∼ f28 in Table 2.

5.2 Experimental Setting and Results

The performance of LDE was compared with that of

the classical DE, three recent DE variants, i.e., JADE,
jDE and SaNSDE, and two EP variants FEP and LEP.
The problem dimension was set to 30 for all the scal-
able functions, i.e., f1 ∼ f13 and f24 ∼ f28. Error
value, which is the difference between the current func-
tion value and the optimum, was used to indicate the
quality of a solution. For fair comparison, all the algo-
rithms used the same number of maximum fitness eval-
uations (MaxFEs), i.e., 150 000 for f1, f2, f5, f6, and
f8 ∼ f13, 300 000 for f3, f4 and f24 ∼ f28, 900 000 for
f7, and 20 000 for low-dimensional functions f14 ∼ f23.
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Table 2. Shifted and Rotated Functions Used in the Experimental Studies

Function S fmin

f24(x) =
∑D

i=1(106)
i−1
D−1 z2

i − 450 [−100, 100]n −450

f25(x) =
∑D

i=1
z2

i
4000

−ΠD
i=1 cos( zi√

i
) + 1− 180 [−600, 600]n −180

f26(x) =−20 exp(−0.2
√

1
n

∑n
i=1 z2

i )− exp( 1
n

∑n
i=1 cos(2πzi)) + 20 + e− 140 [−32, 32]n −140

f27(x) =
∑D

i=1(z2
i − 10 cos(2πzi) + 10)− 330 [−5, 5]n −330

f28(x) =
∑D

i=1(
∑20

k=0[ak cos(2πbk(zi + 0.5))])−D
∑20

k=0(ak cos(2πbk0.5)) + 90 [−0.5, 0.5]n 90

Note: z = (x− o)×M for each of the functions, where the shift vector o and rotation matrix M are given in [29], n is the

dimension, fmin is the global optimum, and S ⊆ Rn is the search space.

Due to the representation limitation of floating point
numbers, the quality of the obtained final solution when
MaxFEs are used up may not be distinguishable when
all algorithms have found very high-precision solutions.
So we introduced the Expected Running Time (ERT)
as another performance comparison metric to comple-
ment the final solution quality indicator. According to
[31], the definition of ERT can be described as follows.
Given a Value to Reach (VTR), a run of an optimizer is
considered to be successful if and only if the optimizer
has discovered a candidate solution for which the objec-
tive function takes on a value below or equal to VTR.
The Function Evaluations to Success (FES) is further
defined to be the number of function evaluations (FEs)
spent in one specific successful run until such a candi-
date solution is discovered. Let FES be the arithmetic
mean over all FESs of all successful runs according to
one objective function and VTR. ERT is defined as fol-
lows.

ERT =
SR × FES + (1− SR) ·MaxFEs

SR
, (36)

where SR stands for success rate:

SR =
Number of successful runs

Number of total runs
. (37)

ERT will be given as “-” when SR = 0 in the following.
To be consistent with previous work[31], VTR was set to
1.0e−08 for all benchmark functions except f6, which
is a noise function and VTR = 1.0e− 02 was used.

The parameters of LDE were set exactly the same
as the description given in Section 4. The main pa-
rameters are αj ∈ {1.0, 1.3, 1.7, 2.0}, γ = 1.0 for Lévy
distribution, pl = 0.05, pu = 0.5 for the lower and up-
per bounds of parameter p, and LP = 50 for the learn-
ing period. As for other algorithms, we followed the
parameter settings in their original papers. The exper-
imental results over 30 independent runs are summa-
rized in Tables 3∼6, where the best result in each row
is given in boldface. The evolution curves of the com-
pared algorithms on some selected functions are shown

in Figs. 1 and 2.
For unimodal functions f1 ∼ f6, it can be found that

LDE and JADE are the top two among all the compared
algorithms. Their results are better than those of others
on all the functions except for the simple step function
f5, on which all the algorithms found exactly the same
result. The results of all DE variants, including the
classical DE, are significantly better than those of EP
variants on five out of the six functions. That may be
one of the reasons that DE is very popular for numeri-
cal optimization. On the comparison between LDE and
JADE, there is no clear winner because JADE is better
on f1, f3 and f6, while LDE is better on f2 and f4.
JADE performed well because it is quite greedy, which
is very important in solving unimodal problems, by uti-
lizing the bias of the top 5% individuals for mutation.
However, too much greedy is not good for multimodal
problems. The main strategies used in LDE are to con-
trol the degree of greedy without affecting its efficiency.
The results on unimodal functions confirm that these
strategies did not introduce any serious side effect since
the performance of LDE is still at least comparable to
state-of-the-art DE variants.

For the multimodal functions f7 ∼ f13, LDE is the
clear winner in terms of overall performance. Compared
with all other algorithms, LDE performed better or at
least the same on six out of the seven functions for the
final solution quality. For the generalized Rosenbrock’s
function f7, although SaNSDE achieved the best result,
LDE still performed significantly better than other five
algorithms. Robustness is very important in solving
this function because some of its local optima are very
deceptive. The “Mean” and “Std Dev” values in Ta-
ble 4 indicate that LDE can find the global optimum
of f7 consistently over the tested 30 independent runs.
The ERT metric indicate that LDE converged very fast
to VTR of 1.0e−08 on f7. Compared with JADE, LDE
was outperformed only on f10 and f13 by ERT, and
the superiority is very slight. In contrast, LDE out-
performed JADE significantly on f7, for which JADE
performed quite worse because it was trapped in the
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Table 3. Experimental Results on the 30-D Unimodal Functions f1 ∼ f6

LDE JADE jDE SaNSDE DE FEP LEP

f1 Mean 2.28e−53 7.03e−62† 1.68e−29 4.07e−23 1.77e−13 5.7e−04 6.3e−04

Std Dev 2.27e−53 2.07e−61 1.78e−29 6.53e−23 1.35e−13 1.3e−04 7.6e−05

ERT 33 407 29 353 56 643 73 547 108 500 – –

f2 Mean 1.99e−27† 1.29e−23 1.04e−17 4.03e−11 7.43e−07 8.1e−03 1.3e−03

Std Dev 8.75e−28 3.92e−23 6.87e−18 4.87e−11 4.04e−07 7.7e−04 9.1e−04

ERT 50 933 51 523 80 000 119 837 – – –

f3 Mean 4.33e−19 3.18e−34† 1.97e−07 2.57e−15 9.22e−05 1.6e−02 4.2e−02

Std Dev 7.39e−19 1.64e−33 3.29e−07 8.21e−15 8.36e−05 1.4e−02 6.0e−02

ERT 155 073 94 250 1 791 780 198 783 – – –

f4 Mean 9.75e−20† 1.18e−14 4.67e−01 1.14e−05 4.80e−02 3.0e−01 1.4e−02

Std Dev 2.14e−19 2.99e−14 7.50e−01 1.99e−05 1.23e−01 5.0e−01 6.8e−02

ERT 135 217 166 650 – – – – –

f5 Mean 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Std Dev 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

ERT 10 843 11 040 21 050 28 557 40 623 – –

f6 Mean 1.84e−03 1.18e−03† 6.31e−03 7.23e−03 9.31e−03 7.6e−03 7.4e−03

Std Dev 5.94e−04 4.76e−04 1.64e−03 2.22e−03 2.86e−03 2.6e−02 3.9e−03

ERT 27 920 26 513 99 627 131 308 295 864 – –

Note: “Mean” indicates the average of the obtained minimum error values in 30 independent runs, “Std Dev” stands for the
corresponding standard deviation, “ERT” is the expected running time calculated based on (36), and “†” denotes that the result
is significantly better than all the others in the same row by Wilcoxon signed-rank test with p < 0.05.

Table 4. Experimental Results on the 30-D Multimodal Functions f7 ∼ f13

LDE JADE jDE SaNSDE DE FEP LEP

f7 Mean 4.12e−28 1.33e−01 1.33e−01 6.41e−30 1.33e−01 5.1e+00 4.3e+01

Std Dev 1.90e−27 7.28e−01 7.28e−01 1.02e−29 7.28e−01 5.9e+00 3.2e+01

ERT 237 753 276 797 615 279 268 837 456 248 – –

f8 Mean 0.00e+00 3.95e+00 0.00e+00 3.64e−13 1.54e+03 1.1e+03 1.1e+03

Std Dev 0.00e+00 2.16e+01 0.00e+00 8.81e−13 1.77e+03 3.1e+02 5.8e+00

ERT 74 520 130 479 88 223 121 227 – – –

f9 Mean 0.00e+00† 1.73e−11 1.18e−16 2.34e−05 1.78e+02 2.4e+01 5.9e+00

Std Dev 0.00e+00 1.02e−11 6.49e−16 3.24e−05 1.24e+01 1.2e−02 4.7e+00

ERT 109 593 129 503 114 977 – – – –

f10 Mean 4.44e−15 4.44e−15 7.28e−15 2.33e−12 1.40e−07 8.9e−02 1.9e−02

Std Dev 0.00e+00 0.00e+00 1.45e−15 1.70e−12 5.25e−08 9.1e−03 1.0e−03

ERT 51 227 45 373 87 230 111 953 – – –

f11 Mean 0.00e+00 2.47e−04 0.00e+00 0.00e+00 5.58e−13 1.6e−02 2.4e−02

Std Dev 0.00e+00 1.35e−03 0.00e+00 0.00e+00 5.04e−13 2.2e−02 2.8e−02

ERT 37 917 41 314 60 363 78 453 112 057 – –

f12 Mean 1.57e−32 1.57e−32 7.14e−31 3.52e−22 1.72e−14 9.2e−06 6.0e−06

Std Dev 5.57e−48 5.57e−48 6.22e−31 1.50e−21 1.07e−14 3.6e−06 1.0e−06

ERT 28 867 29 747 50 987 69 890 100 323 – –

f13 Mean 1.35e−32 1.35e−32 3.83e−30 2.50e−23 1.61e−13 1.6e−04 9.8e−05

Std Dev 5.57e−48 5.57e−48 3.88e−30 3.22e−23 1.15e−13 7.3e−05 1.2e−05

ERT 31 520 30 030 54 873 72 487 107 703 – –

Note: “Mean” indicates the average of the obtained minimum error values in 30 independent runs, “Std Dev” stands for the
corresponding standard deviation, “ERT” is the expected running time calculated based on (36), and “†” denotes that the
result is significant better than all others in the same row by Wilcoxon signed-rank test with p < 0.05.
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Table 5. Experimental Results on the Low-Dimensional Multimodal Functions f14 ∼ f23

LDE JADE jDE SaNSDE DE

f14 Mean 1.70e−16 2.22e−16 2.15e−16 2.15e−16 2.15e−16

Std Dev 9.55e−17 0.00e+00 4.05e−17 4.05e−17 4.05e−17

ERT 4 873 4 257 4 743 4 887 5 030

f15 Mean 2.34e−12 7.92e−12 1.23e−08 1.07e−04 1.28e−13

Std Dev 8.87e−12 4.17e−11 2.89e−08 9.46e−05 3.89e−13

ERT 14 653 14 697 22 667 – 12 680

f16 Mean 0.00e+00 4.44e−17 0.00e+00 7.48e−15 1.48e−17

Std Dev 0.00e+00 9.03e−17 0.00e+00 2.45e−14 5.63e−17

ERT 5 697 5 717 5 803 9 493 5 797

f17 Mean 2.84e−14 0.00e+00 0.00e+00 4.80e−09 0.00e+00

Std Dev 1.56e−13 0.00e+00 0.00e+00 2.22e−08 0.00e+00

ERT 7 883 7 607 7 370 14 739 6 787

f18 Mean 2.62e−15 1.92e−15 2.47e−15 2.86e−15 2.26e−15

Std Dev 2.43e−16 1.05e−15 5.30e−16 1.01e−15 6.84e−16

ERT 5 223 4 563 4 760 8 533 4 623

f19 Mean 0.00e+00 0.00e+00 0.00e+00 7.40e−17 0.00e+00

Std Dev 0.00e+00 0.00e+00 0.00e+00 1.68e−16 0.00e+00

ERT 4 440 4 543 5 067 7 467 4 927

f20 Mean 3.96e−03 1.59e−02 7.93e−03 1.01e−04 3.17e−02

Std Dev 2.17e−02 4.11e−02 3.02e−02 1.66e−04 5.35e−02

ERT 11 807 19 295 14 389 53 064 21 705

f21 Mean 1.36e−15 1.68e−01 2.76e−12 6.22e−03 1.95e−15

Std Dev 7.64e−16 9.22e−01 1.51e−11 2.21e−02 5.42e−16

ERT 11 227 13 848 12 593 600 000 12 263

f22 Mean 1.60e−15 1.89e−15 2.25e−15 2.10e−03 1.89e−15

Std Dev 5.42e−16 7.99e−16 9.25e−16 7.19e−03 4.51e−16

ERT 10 407 10 863 11 437 84 357 11 537

f23 Mean 1.07e−15 2.07e−15 5.92e−15 2.72e−04 1.66e−15

Std Dev 8.85e−16 1.41e−15 2.14e−14 9.12e−04 4.51e−16

ERT 10 477 11 133 11 677 149 300 11 337

Note: “Mean” indicates the average of the obtained minimum error values in 30 independent runs, “Std Dev” stands for the
corresponding standard deviation, “ERT” is the expected running time calculated based on (36), and “†” denotes that the
result is significant better than all others in the same row by Wilcoxon signed-rank test with p < 0.05.

Table 6. Experimental Results on the Shifted and Rotated Functions f24 ∼ f28

LDE JADE jDE SaNSDE DE

f24 Mean 1.71e+04 2.22e+04 2.03e+05 7.37e+04 7.20e+05

Std Dev 6.26e+03 2.39e+04 6.82e+04 5.04e+04 3.08e+05

ERT – – – – –

f25 Mean 0.00e+00† 1.07e−02 2.84e−14 9.47e−16 1.04e−14

Std Dev 0.00e+00 5.72e−03 0.00e+00 5.19e−15 1.39e−14

ERT 60 547 4 276 550 85 647 81 627 98 210

f26 Mean 2.09e+01 2.09e+01 2.09e+01 2.09e+01 2.09e+01

Std Dev 4.79e−02 2.44e−01 6.82e−02 4.97e−02 5.49e−02

ERT – – – – –

f27 Mean 3.98e+01 2.75e+01† 4.98e+01 5.07e+01 1.78e+02

Std Dev 8.77e+00 5.27e+00 8.88e+00 8.16e+00 8.09e+00

ERT – – – – –

f28 Mean 1.63e+01† 2.45e+01 2.57e+01 2.71e+01 3.95e+01

Std Dev 6.85e+00 1.82e+00 4.41e+00 1.43e+00 1.01e+00

ERT – – – – –

Note: “Mean” indicates the average of the obtained minimum error values over 30 independent runs, “Std Dev” stands for
the corresponding standard deviation, “ERT” is the expected running time calculated based on (36), and “†” denotes that the
result is significant better than all others in the same row by Wilcoxon signed-rank test with p < 0.05.
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Fig.1. Evolution curves of the compared algorithms on 30-D functions f2, f4, f6, f8, f9, and f10. (a) f2. (b) f4. (c) f6. (d) f8. (e)

f9. (f) f10.

high deceptive local optimum several times during the
30 independent runs. For jDE, DE, FEP and LEP, they
failed to find comparable results to that of LDE on most
of the functions except for f8 and f11. The class of mul-
timodal functions with many local optima are often re-
garded as being difficult to optimize because they have
many local optima, and their fitness landscapes appear

to be very “rugged”. The good performance of LDE on
this class of functions indicates that the proposed adap-
tive mutation scheme and parameter control strategies
worked well as expected.

Table 5 shows the results for low-dimensional mul-
timodal functions f14 ∼ f23. The results of FEP and
LEP were omitted because their performance was not
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Fig.2. Evolution curves of the compared algorithms on 30-D functions f12, f18, f20, f22, f26, and f28. (a) f12. (b) f18. (c) f20. (d)

f22. (e) f26. (d) f28.

comparable to that of DE variants. It can be found that
the performance of all the compared algorithms is quite
close to each other on most of the tested functions, and
the obtained results are also very close to the global op-
tima. For the overall performance, LEP performed well
on five out of the ten functions by both the final solution

quality and ERT values. It is very interesting to note
that even the simple classical DE found better results
on functions f15 and f17 than all other adaptive or self-
adaptive DE variants. The reason behind the observa-
tion can be explained in the following aspects. Firstly,
since most of these functions are very easy to solve, it
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is hard to say whether advanced adaptive strategies are
really needed. And, the used computation effort for
solving these functions is very little, i.e., 20 000 in 200
generations, which is usually not enough for any adap-
tive strategy to learn, and thus affects its efficacy. The
observation on the results of low-dimensional functions
is consistent with the intuition that adaptive strategies
are more helpful in dealing with difficult problems than
simple ones.

Table 6 shows the results for shifted and rotated
functions f24 ∼ f28. The first impression is that all the
compared algorithms performed quite badly on most of
these functions. Only one function, i.e., f25, in the five
functions was solved successfully. For the detailed re-
sults, LDE performed better than all other algorithms
on functions f24, f25 and f28, and was outperformed by
JADE on function f27. All the compared algorithms
obtained similar results on function f26. The results in
this part show that the compared algorithms may have
difficulty in solving rotated benchmark functions. This
is also a common problem for many other EAs[32]. It
would be very interesting to study how the rotation af-
fects the fitness landscape of a benchmark function and
how it is linked to real-world applications. The analy-
sis of EAs’ behaviors on rotated functions is one of the
focuses of our future work.

5.3 Efficacy of Adaptive Mutation Scheme
“DE/rand-to-pbest/2”

The mutation scheme “DE/rand-to-pbest/2”, which
utilizes an adaptive strategy to set its parameter p
based on the identified local fitness landscape, is one of
the main components underpinning the proposed LDE.
To verify its efficacy, we further formulated the follow-
ing three LDE variants to conduct experimental com-
parison:
• LDEp=0.05, which is the same as LDE except that

the parameter p is set to 0.05 constantly.
• LDEp=0.5, which is the same as LDE except that

the parameter p is set to 0.5 constantly.
• LDEr, which is the same as LDE except that the

parameter p is determined by:

p = pl + (pu − pl)× (1− ϕ), (38)

with pl = 0.05 and pu = 0.5 as the lower and upper
bounds, respectively.

Since the range of p is [0.05, 0.5], LDEp=0.05 and
LDEp=0.5 are just on the two extreme points. Com-
pared with LDE, LDEr uses a reversed strategy to ad-
just the parameter p. Summarized in Table 7 are the
simulation results of LDE and its three variants, where
the best result in each row is given in boldface. Com-
pared with LDEp=0.05, LDE performed better on mul-
timodal functions, but was outperformed on unimodal
functions. Since LDEp=0.05 puts extreme emphasis on
the bias of top individuals, it is natural get better re-
sults on unimodal functions. However, for difficult mul-
timodal functions such a greedy strategy is harmful be-
cause it may increase the risk of the optimizer to be
trapped in local optima. Compared with LDEp=0.5 and
LDEr, LDE is observed better performance on both
unimodal functions and multimodal functions. The re-
sults suggest that it is useful to introduce the bias of
superior individuals in mutation, and the bias should
be adaptively controlled in an appropriate manner. For
some low-dimensional multimodal functions in the set
of f14 ∼ f23, it is interesting to find that there is lit-
tle difference among all the compared variants. The
main reason is that these problems are quite easy to
solve, and the bias of superior individuals is not so im-
portant because all the global optima were already lo-
cated within only 200 generations. The performance
difference of the compared algorithms is also minor for
most of the rotated functions. It might be because the
obtained solutions are quite far away from the global
optimum, and thus it is difficult for LDE to make use
of the bias of superior solutions.

Table 7. Experimental Comparison Among LDE Variants with Different p Settings, Averaged over 30 Independent Runs

LDE LDEp=0.05 LDEp=0.5 LDEr

f1 ERT 33 407 31 970 42 650 39 340

Mean (Std Dev) 2.28e−53 (2.27e−53) 7.69e−54 (1.08e−54)+ 2.57e−39 (7.41e−39)− 1.13e−42 (1.98e−42)−

f2 ERT 50 933 47 503 64 803 59 707

Mean (Std Dev) 1.99e−27 (8.75e−28) 3.21e−28 (1.41e−28)+ 5.20e−22 (3.37e−22)− 7.23e−24 (3.48e−24)−

f3 ERT 155 073 164 643 434 930 482 833

Mean (Std Dev) 4.33e−19 (7.39e−19) 4.17e−18 (6.29e−18)− 1.45e−08 (3.16e−08)− 1.26e−08 (1.66e−08)−

f4 ERT 135 217 136 753 175 627 361 570

Mean (Std Dev) 9.75e−20 (2.14e−19) 4.02e−20 (4.06e−20)≈ 2.78e−14 (9.82e−14)− 5.71e−07 (1.24e−06)−

f5 ERT 10 843 10 707 15 267 14 120

Mean (Std Dev) 0.00e+00 (0.0e+00) 0.00e+00 (0.0e+00)≈ 0.00e+00 (0.0e+00)≈ 0.00e+00 (0.0e+00)≈

(to be continued)
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Table 7. (continued)

LDE LDEp=0.05 LDEp=0.5 LDEr

f6 ERT 27 920 23 120 29 457 23 440

Mean (Std Dev) 1.84e−03 (5.94e−04) 1.55e−03 (3.94e−04)+ 2.22e−03 (6.41e−04)≈ 1.62e−03 (5.79e−04)≈

f7 ERT 237 753 256 693 497 355 747 325

Mean (Std Dev) 4.12e−28 (1.90e−27) 1.33e−01 (7.28e−01)≈ 1.33e−01 (7.28e−01)− 7.97e−01 (1.62e+00)−

f8 ERT 74 520 74 317 84 177 76 730

Mean (Std Dev) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈

f9 ERT 109 593 112 000 120 673 118 570

Mean (Std Dev) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.0e+00)≈ 0.00e+00 (0.0e+00)≈

f10 ERT 51 227 55 543 65 570 60 783

Mean (Std Dev) 4.44e−15 (0.00e+00) 4.44e−15 (0.00e+00)≈ 4.44e−15 (0.00e+00)≈ 4.44e−15 (0.00e+00)≈

f11 ERT 37 917 38 173 43 983 46 079

Mean (Std Dev) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.0e+00)≈ 2.47e−04 (1.35e−03)≈

f12 ERT 28 867 30 830 35 740 32 767

Mean (Std Dev) 1.57e−32 (5.57e−48) 1.57e−32 (5.57e−48)≈ 1.57e−32 (5.57e−48)≈ 1.57e−32 (5.57e−48)≈

f13 ERT 31 520 39 255 40 317 42 266

Mean (Std Dev) 1.35e−32 (5.57e−48) 3.66e−04 (2.01e−03)− 1.35e−32 (5.57e−48)≈ 3.66e−04 (2.01e−03)−

f14 ERT 4 873 4 303 5 150 4 773

Mean (Std Dev) 1.70e−16 (9.55e−17) 2.00e−16 (6.78e−17)≈ 1.78e−16 (9.03e−17)≈ 1.85e−16 (8.42e−17)≈

f15 ERT 14 653 15 117 21 146 17 976

Mean (Std Dev) 2.34e−12 (8.87e−12) 4.07e−12 (4.69e−12)− 8.12e−09 (2.96e−08)− 1.37e−09 (3.14e−09)−

f16 ERT 5 697 6 227 6 047 6 247

Mean (Std Dev) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 7.40e−18 (4.05e−17)≈ 7.40e−18 (4.05e−17)≈

f17 ERT 7 883 7 760 8 003 7 937

Mean (Std Dev) 2.84e−14 (1.56e−13) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈

f18 ERT 5 223 5 277 5 497 5 173

Mean (Std Dev) 2.62e−15 (2.43e−16) 2.35e−15 (6.40e−16)+ 2.58e−15 (3.38e−16)≈ 2.63e−15 (1.62e−16)≈

f19 ERT 4 440 4 893 5 267 4 983

Mean (Std Dev) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈

f20 ERT 11 807 13 659 11 610 11 493

Mean (Std Dev) 3.96e−03 (2.17e−02) 1.19e−02 (3.63e−02)≈ 9.84e−15 (3.30e−14)+ 3.96e−03 (2.17e−02)≈

f21 ERT 11 227 12 573 12 233 11 487

Mean (Std Dev) 1.36e−15 (7.64e−16) 2.01e−15 (6.14e−16)− 3.20e−15 (5.87e−15)− 5.99e−13 (3.27e−12)≈

f22 ERT 10 407 11 420 11 557 10 503

Mean (Std Dev) 1.60e−15 (5.42e−16) 1.78e−15 (0.00e+00)≈ 3.49e−15 (8.09e−15)− 1.72e−15 (3.24e−16)≈

f23 ERT 10 477 11 120 11 443 10 560

Mean (Std Dev) 1.07e−15 (8.85e−16) 1.36e−15 (7.64e−16)≈ 1.84e−15 (9.88e−16)− 1.24e−15 (8.28e−16)≈

f24 ERT – – – –

Mean (Std Dev) 1.71e+04 (6.26e+03) 1.92e+04 (7.12e+04)≈ 3.47e+04 (1.36e+04)− 4.44e+04 (1.42e+04)−

f25 ERT 60 547 63 760 106 607 127 829

Mean (Std Dev) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 9.47e−16 (5.19e−15)≈ 2.99e−02 (1.14e−01)≈

f26 ERT – – – –

Mean (Std Dev) 2.09e+01 (4.79e−02) 2.09e+01 (4.99e−02)≈ 2.09e+01 (4.03e−02)≈ 2.09e+01 (5.87e−02)≈

f27 ERT – – – –

Mean (Std Dev) 3.98e+01 (8.77e+00) 3.34e+01 (8.02e+00)+ 3.95e+01 (8.75e+00)≈ 4.07e+01 (8.18e+00)≈

f28 ERT – – – –

Mean (Std Dev) 1.63e+01 (6.85e+00) 1.62e+01 (6.10e+00)≈ 1.75e+01 (7.28e+00)≈ 1.71e+01 (6.04e+00)≈

Note: Indicators “−”, “+” and “≈” denote that the performance of the corresponding algorithm is worse than, better than,
and similar to that of LDE, respectively, by the Wilcoxon signed-rank test at a 0.05 significance level.
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5.4 Efficacy of Parameter Adaptation Using
Lévy Distribution

To identify the benefit of parameter adaptation us-
ing Lévy distribution, which is the other main compo-
nent of LDE, we further consider the following three
DE variants:
• gaussianDE, which is the same as LDE except that

only Lévy distribution with α = 2.0, i.e., the Gaussian
distribution, is used to control the scale factor Fi.
• cauchyDE, which is the same as LDE except that

only Lévy distribution with α = 1.0, i.e., the Cauchy
distribution, is used to control the scale factor Fi.
• randomLDE, which is the same as LDE except that

the parameter α of Lévy distribution is selected ran-
domly from the candidate set {1.0, 1.3, 1.7, 2.0}, rather
than based on their performance.

Summarized in Table 8 are the simulation results of
LDE, gaussianDE, cauchyDE and randomLDE, where

the best result in each row is given in boldface. Com-
pared with gaussianLDE, LDE performed better on
multimodal functions, but was outperformed on uni-
modal functions. Compared with cauchyDE and ran-
domLDE, LDE performed better on both unimodal
functions and multimodal functions. Similar to the con-
clusion in Subsection 5.3 for adaptive mutation, there is
no much difference among all the compared algorithms
on rotated functions f24 ∼ f28. It seems it is very
difficult to perform any step size controlling technique
when the optimizer keeps making little progress. Based
on the comparison in the part, it can be concluded
that Gaussian and Cauchy distributions for parameter
control have quite different emphases. The introduc-
ing of Lévy distribution, which is more general, can
improve the overall performance of DE via parameter
control. However, the switch of different Lévy distri-
butions should be controlled adaptively based on their
performance, rather than randomly.

Table 8. Experimental Comparison Among LDE, gaussianDE, cauchyDE and randomLDE, Averaged over 30 Independent Runs

LDE gaussianDE cauchyDE randomLDE

f1 ERT 33 407 32 193 40 710 36 560

Mean (Std Dev) 2.28e−53 (2.27e−53) 3.85e−54 (4.16e−54)+ 3.52e−43 (3.25e−43)− 4.09e−48 (4.23e−48)−

f2 ERT 50 933 50 117 64 360 58 567

Mean (Std Dev) 1.99e−27 (8.75e−28) 8.39e−28 (3.55e−28)+ 2.85e−22 (1.08e−22)− 9.66e−25 (3.33e−25)−

f3 ERT 155 073 155 470 178 773 164 363

Mean (Std Dev) 4.33e−19 (7.39e−19) 4.09e−19 (1.01e−18)≈ 3.86e−16 (5.52e−16)− 3.77e−18 (4.59e−18)−

f4 ERT 135 217 135 300 139 830 136 700

Mean (Std Dev) 9.75e−20 (2.14e−19) 9.15e−20 (3.65e−19)≈ 1.36e−19 (3.21e−19)≈ 3.08e−19 (5.42e−19)≈

f5 ERT 10 843 13 087 15 427 14 160

Mean (Std Dev) 0.00e+00 (0.0e+00) 0.00e+00 (0.0e+00)≈ 0.00e+00 (0.0e+00)≈ 0.00e+00 (0.0e+00)≈

f6 ERT 27 920 23 817 30 897 26 827

Mean (Std Dev) 1.84e−03 (5.94e−04) 2.07e−03 (6.17e−04)≈ 2.38e−03 (8.80e−04)− 2.03e−03 (8.03e−04)≈

f7 ERT 237 753 325 378 382 677 330 493

Mean (Std Dev) 4.12e−28 (1.90e−27) 3.99e−01 (1.22e+00)− 5.32e−01 (1.38e+00)− 3.99e−01 (1.22e+00)−

f8 ERT 74 520 75 087 85 177 79 717

Mean (Std Dev) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈

f9 ERT 109 593 118 760 126 940 115 697

Mean (Std Dev) 0.00e+00 (0.00e+00) 3.32e−02 (1.83e−01)− 2.14e−14 (5.12e−14)− 0.00e+00 (0.00e+00)≈

f10 ERT 51 227 52 393 62 147 56 487

Mean (Std Dev) 4.44e−15 (0.00e+00) 4.44e−15 (0.00e+00)≈ 4.44e−15 (0.00e+00)≈ 4.44e−15 (0.00e+00)≈

f11 ERT 37 917 35 880 42 227 38 817

Mean (Std Dev) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈

f12 ERT 28 867 29 260 34 520 31 163

Mean (Std Dev) 1.57e−32 (5.57e−48) 1.57e−32 (5.57e−48)≈ 1.57e−32 (5.57e−48)≈ 1.57e−32 (5.57e−48)≈

f13 ERT 31 520 32 250 38 140 34 747

Mean (Std Dev) 1.35e−32 (5.57e−48) 1.35e−32 (5.57e−48)≈ 1.35e−32 (5.57e−48)≈ 1.35e−32 (5.57e−48)≈

f14 ERT 4 873 4 933 5 200 4 733

Mean (Std Dev) 1.70e−16 (9.55e−17) 1.92e−16 (7.68e−17)≈ 2.00e−16 (6.78e−17)≈ 2.00e−16 (6.78e−17)≈

f15 ERT 14 653 14 447 17 277 15 743

Mean (Std Dev) 2.34e−12 (8.87e−12) 1.35e−12 (2.74e−12)≈ 4.97e−10 (9.96e−10)− 3.05e−11 (5.38e−11)−

(to be continued)
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Table 8. (continued)

LDE gaussianDE cauchyDE randomLDE

f16 ERT 5 697 6 360 6 847 6 330

Mean (Std Dev) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 7.40e−18 (4.05e−17)≈ 0.00e+00 (0.00e+00)≈

f17 ERT 7 883 7 593 8 783 8 500

Mean (Std Dev) 2.84e−14 (1.56e−13) 0.00e+00 (0.00e+00)≈ 5.92e−17 (3.24e−16)≈ 1.78e−16 (9.73e−16)≈

f18 ERT 5 223 5 280 5 887 5 500

Mean (Std Dev) 2.62e−15 (2.43e−16) 2.53e−15 (3.53e−16)≈ 2.40e−15 (6.13e−16)≈ 2.59e−15 (3.51e−16)≈

f19 ERT 4 440 5 017 5 570 5 320

Mean (Std Dev) 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈

f20 ERT 11 807 10 877 12 127 11 123

Mean (Std Dev) 3.96e−03 (2.17e−02) 5.35e−14 (2.86e−13)≈ 3.74e−14 (8.64e−14)+ 4.43e−13 (2.42e−12)≈

f21 ERT 11 227 11 567 13 173 11 950

Mean (Std Dev) 1.36e−15 (7.64e−16) 1.18e−15 (1.08e−15)≈ 1.57e−14 (5.69e−14)− 1.66e−15 (4.51e−16)≈

f22 ERT 10 407 10 560 12 117 11 070

Mean (Std Dev) 1.60e−15 (5.42e−16) 1.60e−15 (5.42e−16)≈ 3.55e−15 (5.32e−15)− 1.78e−15 (8.08e−16)≈

f23 ERT 10 477 10 490 12 343 11 280

Mean (Std Dev) 1.07e−15 (8.85e−16) 1.01e−15 (8.95e−16)≈ 3.20e−15 (2.40e−15)− 1.42e−15 (7.23e−16)≈

f24 ERT – – – –

Mean (Std Dev) 1.71e+04 (6.26e+03) 1.56e+04 (7.58e+03)≈ 1.94e+04 (6.93e+03)≈ 1.69e+04 (8.93e+03)≈

f25 ERT 60 547 72 510 82 117 65 650

Mean (Std Dev) 0.00e+00 (0.00e+00) 1.40e−02 (7.67e−02)− 1.40e−02 (7.67e−02)− 9.47e−16 (5.19e−15)≈

f26 ERT – – – –

Mean (Std Dev) 2.09e+01 (4.79e−02) 2.10e+01 (4.19e−02)≈ 2.09e+01 (5.78e−02)≈ 2.10e+01 (3.75e−02)≈

f27 ERT – – – –

Mean (Std Dev) 3.98e+01 (8.77e+00) 4.26e+01 (8.12e+00)≈ 4.00e+01 (6.43e+00)≈ 4.30e+01 (1.07e+01)≈

f28 ERT – – – –

Mean (Std Dev) 1.63e+01 (6.85e+00) 1.69e+01 (4.81e+00)≈ 1.66e+01 (6.35e+00)≈ 1.73e+01 (6.70e+00)≈

Note: Indicators “−”, “+” and “≈” denote the performance of the corresponding algorithm is worse than, better than, and
similar to that of LDE, respectively, by the Wilcoxon signed-rank test at a 0.05 significance level.

5.5 Experimental Analysis on Scalability of
LDE

The scalability of an algorithm is also an important
measurement of how good and how applicable the al-
gorithm is[33]. So we have conducted additional experi-
ments to evaluate the scalability of LDE against the
growth of problem dimensions. We selected 11 scal-

able functions from the 28 benchmark functions. Be-
sides the previously tested dimension 30, the problem
dimensions D of these functions were set to 50, 100
and 200, respectively. The computation time used by
the compared algorithms was set to grow in the order
of O(D)[33]. Assuming the number of maximum FEs
for each 30-D benchmark function is MaxFEs, the cor-
responding maximum FEs will be set to D

30 ×MaxFEs

Table 9. Scalability Comparison on Selected Functions with Dimensions from 30 to 200

30D 50D 100D 200D

Mean (ERT) Mean (ERT) Mean (ERT) Mean (ERT)

f3 LDE 4.33e−19 (155 073) 7.01e−11 (402 403) 2.64e−03 (–) 5.33e+01 (–)

DE 9.22e−05 (–) 2.81e+00 (–) 2.38e+03 (–) 3.51e+04 (–)

jDE 1.97e−07 (1 791 780) 1.77e−03 (–) 4.32e+00 (–) 3.36e+02 (–)

JADE 3.18e−34† (94 250) 4.29e−22† (232 597) 3.91e−11† (819 870) 5.54e−04† (–)

SaNSDE 2.57e−15 (198 783) 4.63e−10 (444 510) 2.54e−04 (–) 9.18e+00 (–)

f5 LDE 0.00e+00 (10 843) 0.00e+00 (19 447) 0.00e+00 (289 100) 7.61e+01 (–)

DE 0.00e+00 (40 623) 0.00e+00 (62 670) 0.00e+00 (179 023) 1.64e+00 (2 313 630)

jDE 0.00e+00 (21 050) 0.00e+00 (29 560) 3.33e−02 (62 252) 1.15e+01 (14 078 000)

JADE 0.00e+00 (11 040) 1.33e−01 (56 504) 7.43e+00 (–) 1.95e+02 (–)

SaNSDE 0.00e+00 (28 557) 0.00e+00 (39 583) 6.67e−02 (190 332) 5.00e+00 (29 276 000)

(to be continued)
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Table 9. (continued)

30D 50D 100D 200D

Mean (ERT) Mean (ERT) Mean (ERT) Mean (ERT)

f7 LDE 4.12e−28 (237 753) 1.33e−01 (553 441) 2.66e−01 (1 807 718) 1.20e+00 (5 981 476)

DE 1.33e−01 (456 248) 1.33e−01 (1 074 503) 4.33e+01 (–) 2.07e+02 (–)

jDE 1.33e−01 (615 279) 2.66e−01 (1 214 532) 3.99e−01 (2 727 211) 1.19e+02 (178 996 700)

JADE 1.33e−01 (176 797) 3.99e−01 (510 641) 1.20e+00 (2 762 114) 1.45e+01 (19 295 400)

SaNSDE 6.41e−30 (268 837) 2.66e−01 (660 682) 6.64e−01 (2 164 744) 8.09e−01 (12 197 779)

f9 LDE 0.00e+00† (109 593) 0.00e+00 (178 609) 1.02e+02 (–) 1.62e+02 (–)

DE 1.78e+02 (–) 3.30e+02 (–) 5.48e+02 (–) 1.52e+02 (–)

jDE 1.18e−16 (114 977) 0.00e+00 (179 210) 0.00e+00† (326 823) 1.33e−01 (760 796)

JADE 1.73e−11 (129 503) 9.71e−12 (216 623) 3.55e−16 (391 010) 3.69e−14† (758 707)

SaNSDE 2.34e−05 (–) 4.66e−04 (–) 2.81e+00 (–) 3.24e+01 (–)

f11 LDE 0.00e+00 (37 917) 9.56e−12 (83 203) 1.69e−10 (161 548) 1.31e−14† (477 588)

DE 5.58e−13 (112 057) 5.86e−15 (168 423) 5.75e−04 (329 950) 3.36e−02 (1 186 719)

jDE 0.00e+00 (60 363) 0.00e+00 (81 417) 0.00e+00† (121 317) 2.79e−03 (409 788)

JADE 2.47e−04 (41 314) 1.89e−03 (106 462) 2.79e−03 (203 325) 2.10e−02 (966 347)

SaNSDE 0.00e+00 (78 453) 0.00e+00 (99 850) 2.14e−03 (291 458) 1.21e−02 (1 243 238)

f13 LDE 1.35e−32 (31 520) 1.35e−32 (60 420) 1.46e−03 (282 477) 8.32e−01 (1 338 022)

DE 1.61e−13 (107 703) 2.04e−14 (169 737) 1.20e−01 (537 758) 5.34e+01 (–)

jDE 3.83e−30 (54 873) 1.35e−32 (78 927) 7.32e−04 (164 904) 1.20e−01 (352 121)

JADE 1.35e−32 (30 030) 1.35e−32 (40 093) 5.32e−02 (209 117) 9.62e−01 (1 024 820)

SaNSDE 2.50e−23 (72 487) 4.96e−30 (98 910) 1.83e−03 (230 721) 4.43e−01 (793 750)

f24 LDE 1.71e+04 (–) 2.45e+05 (–) 1.30e+06 (–) 5.97e+06 (–)

DE 7.20e+05 (–) 7.27e+06 (–) 1.08e+07 (–) 1.46e+07 (–)

jDE 2.03e+05 (–) 1.06e+06 (–) 3.07e+06 (–) 1.11e+07 (–)

JADE 2.22e+04 (–) 2.31e+04† (–) 5.48e+05† (–) 4.02e+06 (–)

SaNSDE 7.37e+04 (–) 1.78e+05 (–) 1.04e+06 (–) 5.05e+06 (–)

f25 LDE 0.00e+00† (60 547) 2.63e−14 (99 241) 2.84e−14 (195 679) 4.50e−14† (577 167)

DE 1.04e−14 (98 210) 2.84e−14 (186 910) 3.69e−02 (674 533) 1.29e−01 (23 962 800)

jDE 2.84e−14 (85 647) 3.69e−14 (155 310) 1.00e−13 (299 537) 1.30e−01 (28 807 800)

JADE 1.07e−02 (4 276 550) 3.44e−03 (258 316) 6.48e−03 (1 310 676) 4.02e−03 (2 973 447)

SaNSDE 9.47e−16 (81 627) 2.84e−14 (132 733) 3.02e−02 (393 177) 1.12e−01 (8 553 150)

f26 LDE 2.09e+01 (–) 2.11e+01 (–) 2.13e+01 (–) 2.14e+01 (–)

DE 2.09e+01 (–) 2.11e+01 (–) 2.13e+01 (–) 2.14e+01 (–)

jDE 2.09e+01 (–) 2.11e+01 (–) 2.13e+01 (–) 2.14e+01 (–)

JADE 2.09e+01 (–) 2.11e+01 (–) 2.10e+01† (–) 2.12e+01† (–)

SaNSDE 2.09e+01 (–) 2.11e+01 (–) 2.13e+01 (–) 2.14e+01 (–)

f27 LDE 3.98e+01 (–) 8.87e+01 (–) 3.17e+03 (–) 1.43e+04 (–)

DE 1.78e+02 (–) 3.57e+02 (–) 1.90e+03 (–) 5.82e+03 (–)

jDE 4.98e+01 (–) 8.94e+01 (–) 2.02e+03 (–) 7.29e+03 (–)

JADE 2.75e+01 (–) 5.95e+01 (–) 2.82e+03 (–) 1.27e+04 (–)

SaNSDE 5.07e+01 (–) 1.10e+02 (–) 2.33e+03 (–) 9.68e+03 (–)

f28 LDE 1.63e+01 (–) 4.42e+01 (–) 1.21e+02 (–) 2.91e+02 (–)

DE 3.95e+01 (–) 7.33e+01 (–) 1.60e+02 (–) 3.42e+02 (–)

jDE 2.57e+01 (–) 5.23e+01 (–) 1.25e+02 (–) 1.49e+02 (–)

JADE 2.45e+01 (–) 5.21e+01 (–) 1.27e+02 (–) 2.95e+02 (–)

SaNSDE 2.71e+01 (–) 5.47e+01 (–) 1.28e+02 (–) 3.06e+02 (–)

Note: “Mean” indicates the average of the obtained minimum error values over 30 independent runs, “ERT” is the expected
running time calculated based on (36), “†” denotes that the result is significant better than all others in the same row by
Wilcoxon signed-rank test with p < 0.05.
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for the D-dimensional problem. The average results of
30 independent runs are summarized in Table 9, where
the best result in each row is in boldface.

For the overall performance, LDE obtained better
results than other algorithms on f5 under dimensions
30, 50, 100, f7 under dimensions 50, 100, f9 and f13 un-
der dimensions 30, 50, f11 under dimensions 30, 200, f24

under dimension 30, f25 under dimensions from 30 to
200, and f28 under dimensions 30, 50, 100 respectively.
Compared with JADE, it was outperformed on f3, be-
cause the greedy mutation scheme in JADE is very ef-
ficient for such unimodal functions. But LDE is still
the second best among all the compared algorithms.
JADE also obtained better results than LDE on f24

when the problem dimension is larger than 50. Com-
pared with SaNSDE, LDE performed better for func-
tions with dimensions smaller than 100 (included), but
was outperformed on seven out of the 11 200-D func-
tions. The phenomenon is very similar when compared
with jDE. As for the classical DE, it has only slight ad-
vantages on functions f5 and f27 with dimensions 100
and 200. From the results in this part, we can con-
clude that the proposed LDE is superior for problems
with dimensions 30 and 50, and is comparable for 100-
D problems, but may perform worse than other EAs on
some 200-D problems.

6 Conclusions

In this paper we presented a new DE variant, LDE,
by implementing its two main components, i.e., muta-
tion scheme and parameter control with several novel
adaptive strategies. For the first component, an adap-
tive mutation scheme is designed in order to appro-
priately maintain the balance between exploration and
exploitation during the search process. In the new mu-
tation scheme, the bias of superior individuals is taken
into account when generating new solutions, and it is
adaptively adjusted dynamically based on the identi-
fied local fitness landscape. For the other component,
inspired by the success of Gaussian and Cauchy distri-
butions in this respect, a more general Lévy distribution
was introduced to adaptively control the scale factor F
of DE. For every mutation in each generation, an Fi

is generated from one of four predefined Lévy distri-
butions. Probability parameters are introduced to de-
termine which distribution to use in practice. Those
probability parameters are adaptively updated based
on the historical performance of the corresponding Lévy
distributions.

To evaluate the efficacy of LDE, experimental stu-
dies were carried out on 28 widely used benchmark
functions in numerical optimization. LDE was com-
pared with the classical DE, three state-of-the-art DE

variants, i.e., JADE, jDE and SaNSDE, and two EP
variants, i.e., FEP and LEP. The results indicate that
the overall performance of LDE is better than those
six competitors. The behaviors of the two main com-
ponents of LDE were analyzed with additional experi-
ments. It was found that both the proposed adaptive
mutation scheme and parameter control using Lévy dis-
tribution had contributed significantly to the overall
performance of LDE. The scalability of LDE was also
evaluated on some selected benchmark functions with
dimensions from 30 to 200. Although LDE obtained re-
sults comparable to other state-of-the-art EAs, its per-
formance did deteriorate when the problem scale is as
large as 200 dimensions.

In recent years, large-scale optimization, which in-
tends to tacke problems with more than 1 000 vari-
ables, has become an active research topic. It was
found that the performance of most existing EAs deteri-
orates rapidly as the dimensionality of the search space
increases[34]. So it may not be proper to apply tradi-
tional EAs to those large-scale optimization problems
directly. It has been reported that divide-and-conquer
strategy implemented using cooperative co-evolution
appears to be a quite promising method[33]. Such an
idea has been extended to produce a general framework
for large-scale optimization in [30], and has been used
to expand the scalability of DE[30] and particle swarm
optimization (PSO)[35]. It would be a possible future
research direction to scale up LDE by fitting it into such
a framework.
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