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Abstract The object-oriented paradigm is widely applied in designing and implementing communication systems. Unified
Modeling Language (UML) is a standard language used to model the design of object-oriented systems. A protocol state
machine is a UML adopted diagram that is widely used in designing communication protocols. It has two key attractive
advantages over traditional finite state machines: modeling concurrency and modeling nested hierarchical states. In a
distributed communication system, each entity of the system has its own protocol that defines when and how the entity
exchanges messages with other communicating entities in the system. The order of the exchanged messages must conform to
the overall service specifications of the system. In object-oriented systems, both the service and the protocol specifications
are modeled in UML protocol state machines. Protocol specification synthesis methods have to be applied to automatically
derive the protocol specification from the service specification. Otherwise, a time-consuming process of design, analysis, and
error detection and correction has to be applied iteratively until the design of the protocol becomes error-free and consistent
with the service specification. Several synthesis methods are proposed in the literature for models other than UML protocol
state machines, and therefore, because of the unique features of the protocol state machines, these methods are inapplicable
to services modeled in UML protocol state machines. In this paper, we propose a synthesis method that automatically
synthesizes the protocol specification of distributed protocol entities from the service specification, given that both types of
specifications are modeled in UML protocol state machines. Our method is based on the latest UML version (UML2.3), and
it is proven to synthesize protocol specifications that are syntactically and semantically correct. As an example application,
the synthesis method is used to derive the protocol specification of the H.323 standard used in Internet calls.
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1 Introduction

Reliable computer communication protocols play a
critical role in providing effective communication ser-
vices. A communication protocol consists of a set
of rules that govern the orderly exchange of informa-
tion among network components to provide a speci-
fied set of services to service users located at diffe-
rent access points that are typically geographically dis-
tributed. A full protocol definition defines a precise for-
mat for valid messages (syntax), rules for the data ex-
change (grammar), and a vocabulary of valid messages
that can be exchanged, with well-defined meanings (se-
mantics). The communication service specification de-
scribes the distributed functions that a communication
system must provide to its service users. The specifi-
cation of a communication protocol includes the speci-
fication of the communicating protocol entities, each

servicing a particular service access point.
Fig.1 demonstrates the relation between the service

specification and the protocol specification. At a high
level of abstraction, a communication system can be
viewed as a service provider that offers some services to
users who access the system through many distributed
service access points (SAPs), using service functions
called service primitives (SPs) (Fig.1(a)). The SP iden-
tifies the type of the event and the SAP at which it
occurs. The specification of the service provided by
the layer is defined by the ordering of the visible SPs
and is called the service specification (S-SPEC). At a
more refined level of abstraction, the communication
services are provided to the service users by a number
of cooperating protocol entities that exchange protocol
messages through a communication medium (Fig.1(b)).
The protocol specification (P-SPEC) describes the ex-
change of messages between the protocol entities.
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Fig.1. Communication service and protocol concepts. (a) Com-

munication service. (b) Communication protocol. USAP: upper

SAP, LSAP: lower SAP, PE: protocol entity.

The protocol design includes constructing interact-
ing protocol entities to provide a set of services specified
in the service specification. Because of their complex
nature, communication protocols are difficult to design
properly in an informal and non-methodical fashion[1].
Design errors will eventually result in an erroneous pro-
tocol implementation unless they are detected at an
early stage. There are two types of design errors: se-
mantic and syntactic. Semantic design errors cause
the provision of incorrect or incomplete services to dis-
tributed protocol users, which implies that the designed
protocol is not consistent with the service specification.
Syntactic design errors can cause the protocol to dead-
lock. To verify the correctness of the protocol specifi-
cation, a time-consuming sequence of design, analysis,
error detection and correction has to be applied itera-
tively until the design of protocol specifications of the
distributed entities becomes error-free.

To overcome this problem, the protocol design pro-
cess can start from a complete and unambiguous service
specification. The construction of a protocol specifica-
tion from a given service specification is called protocol
synthesis. If the applied synthesis method is proven
to derive a correct and error-free protocol specification,
the resulting protocol specification will not require any
further validation. The synthesis approach is used to
construct or complete a partially specified protocol de-
sign such that the interactions between the constructed
or completed protocol entities proceed without encoun-
tering any logical error and provide the specified ser-
vice. In addition, the syntactic and semantic correct-
ness of the synthesized protocol is often a direct bypro-
duct of the synthesis method[2]. Several protocol syn-
thesis methods have appeared in the literature (e.g.,
[3-12]), where both S-SPEC and P-SPEC are mod-
eled in Petri nets, finite state machines (FSMs), or
other formal languages such as LOTOS. These met-
hods are applied to synthesize and design the required
protocol specification. Once the design is complete,

a programming language is used to implement the re-
quired protocol specification.

Because of the promised advantages of the object-
oriented approach, such as high reusability, modularity,
and maintainability[13], over the past decade, develo-
pers have shifted towards using object-oriented pro-
gramming languages such as Java and C++. As a re-
sult, object-oriented programming has been widely used
in the software industry for various applications such as
the development of communication systems (e.g., [14-
20]).

To develop an object-oriented system, developers use
the Unified Modeling Language (UML), a standardi-
zed, general-purpose modeling language used to spe-
cify, visualize, modify, construct, and document the ar-
tifacts of an object-oriented application[21]. UML is the
most widespread software modeling language. It can
be applied to the design modeling of any type of soft-
ware project, and it is the standard language adopted
by industry for modeling the design of object-oriented
systems[22]. The UML state machine (previously refe-
renced as a statechart) has been widely used to de-
scribe the service and protocol specifications for com-
munication systems (e.g., [23-33]). Despite the popu-
larity of using an object-oriented paradigm in develop-
ing modern communication systems, as far as we know,
none of the existing synthesis methods is applicable for
UML state machines. The existing synthesis methods
construct the protocol specifications from the service
specifications described by conventional models such as
Petri nets and finite state machines. As a result, be-
cause of the absence of the UML-based synthesis met-
hods, instead of automatically constructing the proven
error-free protocol specification directly from the ser-
vice specification, current developers of object-oriented
communication systems are forced to use traditional
design methods, i.e., applying the sequence of design,
analysis, error detection, and error correction on the
designed protocol specification iteratively until the de-
sign becomes error-free.

UML is supported by many available tools (e.g., [22,
34-40]). These tools support editing of the UML dia-
grams and fully- or semi-automating the generation of
the corresponding object-oriented code. This support
will be missed if other modeling diagrams such as Petri
nets and conventional finite state machines are used. In
addition, UML state machines are capable of modeling
specifications that include nested hierarchical states.
This feature reduces the complexity of the state ma-
chine diagram and allows for the building of more ex-
pressive diagrams[30]. Allowing for nested hierarchical
states is a feature that is neither supported by Petri
nets nor by conventional finite state machines, which



1152 J. Comput. Sci. & Technol., Nov. 2012, Vol.27, No.6

makes the synthesis methods based on these two models
inapplicable for service specifications that include hier-
archical states. Autonomous communication systems,
such as the Internet and mobile communication sys-
tems, are currently widely used (e.g., [24, 29, 32]). In
such systems, a user can initiate a service at any time.
As a result, distributed users at different SAPs may is-
sue simultaneous service primitives, and consequently,
it is possible that two or more users will simultaneously
issue service requests to each other. This situation leads
to message collision and requires careful consideration
during protocol design. Unfortunately, conventional fi-
nite machines do not model concurrency behaviors, and
therefore, their corresponding synthesis methods are in-
applicable to concurrent systems that can be modeled
in UML.

In this paper, we propose a new synthesis method
that automatically derives protocol specifications from
a service specification, where both the service and
the protocol specifications are modeled by UML state
machines. Our method is based on the latest UML
version[21]. The synthesis method considers complex
features of state machines that include concurrency and
hierarchical organization. The resulting protocol speci-
fications are guaranteed to conform to the service speci-
fication and to be free of syntactic errors. Therefore,
once the service specification is synthesized, the result-
ing protocol specification does not require any further
verification and will be ready to be fed to the code
generation tools (e.g., [34, 36, 38, 41]) to automatically
or semi-automatically implement the resulting protocol
specification. This paper provides an analysis for the
space and time complexity of the proposed synthesis
algorithm and shows one of its real applications. This
application considers the call establishment service of
the H.323 standard used in Internet calls.

This paper is organized as follows. In Section 2,
we present an overview of related research. The mod-
els used for the service and protocol specifications are
defined in Section 3. In Sections 4, 5, and 6, the UML-
based protocol synthesis method is introduced, its space
and time complexity is analyzed, and its correctness
is proven. An application for the proposed synthesis
method is illustrated in Section 7. Finally, Section 8
provides conclusions and a discussion of future work.

2 Related Work

This section provides an overview of the existing pro-
tocol synthesis methods and provides a brief description
of the UML state machine diagram.

2.1 Overview of Synthesis Methods

A substantial amount of research has been

performed on the development of formal methods for
the design of communication protocols. These methods
follow one of two types of design approaches, namely,
the analysis or synthesis approach[2]. In the analysis
approach, the protocol designer starts with a prelimi-
nary version of the protocol in which the syntactic and
semantic validation aspects are often overlooked. The
preliminary version is usually obtained by defining mes-
sages and the effect of message exchanges on the proto-
col entities under design. This approach often results in
an incomplete and erroneous design. Therefore, a de-
sign verification and analysis process is then performed
to detect errors and omissions in the protocol design.
The process of re-design, analysis, error detection and
correction is applied iteratively until the protocol design
becomes error-free. This approach is time consuming
because of its iterative, trial-and-error nature. Design
validation and analysis techniques have been proposed
by several researchers (e.g., [1, 31, 42-45]). In the syn-
thesis approach, the protocol design is constructed or
completed in such a way that no further validation is
needed. Some protocol synthesis methods initiate the
derivation process from a complete service specification
(e.g., [2, 6-9, 11, 47-48]), and others do not (e.g., [5,
8, 49]). The protocol synthesis methods can be further
classified according to the employed models. The mod-
els that are used include finite state machines (e.g., [2,
7, 9, 11-12]), Petri nets (e.g., [7, 47-48]), and LOTOS-
like (e.g., [6, 8]).

UML has been shown to be useful in modeling com-
munication protocols (e.g., [27-28, 32]). Specifically,
UML state machines are widely used in modeling pro-
tocols for object-oriented communication systems (e.g.,
[23-32]). However, as per our knowledge, no proto-
col synthesis method is available to derive the proto-
col specification starting from a service specification
modeled in UML state machines. The existing synthe-
sis methods for other types of models cannot be applied
to UML state machines because these methods do not
consider hierarchical state machines. Moreover, some
of the synthesis methods, such as those based on FSM
models, are not capable of dealing with the concurrency
behaviors of distributed systems.

2.2 State Machine Diagrams:
Concurrency and Hierarchical
Representations

In UML 2.x[50], a state machine (previously refe-
renced as a statechart in UML 1) is a diagram where
typical states are shown in rounded-corner rectangles
connected with labeled arrows that represent transi-
tions. There are two types of state machines: the be-
havior state machine, which describes the behavior of a
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part of a system, and the protocol state machine, which
describes the usage protocol of a part of a system. A
protocol state machine expresses legal transitions and
their order. In this paper, we are concerned with the
latter state machine type because it can be used to de-
scribe communication protocols. For the rest of this
paper, we will simply use the term “state machine” in-
stead of “protocol state machine”.

In a state machine, a transition is an allowable two-
state sequence. Each transition can be associated with
1) an event, 2) a set of predicates, and 3) a set of ex-
pected actions. To execute a transition, the protocol
must be in the accepting state of the transition, the
event is executed, and the predicates are evaluated to
true. The UML syntax for a transition is:

event-name [guard predicate]/action-expression.

A state can be simple, composite, or a submachine.
A simple state is a state that does not have any sub-
states. A composite state may contain states. These
states are called substates and can be of any of the
three types of states, which form nested or hierarchical
states. A submachine state is semantically equivalent
to the composite state, and it represents another state
machine. A composite state can include one or more or-
thogonal regions. The regions are separated by dashed
lines to represent a concurrent behavior. Each region
includes substates connected by transitions. The states
and transitions in different regions are orthogonal, and
they are concurrently executed.

From a different point of view, a state can be classi-
fied as typical or special. A typical state expresses a sta-
ble situation that represents the state context. Special
states have different semantics, and they include ini-
tial, final, join, fork, junction, and choice states. Each
of the initial, junction, and choice states is represented
by a solid filled circle. An initial state of a state ma-
chine represents the starting state of the protocol repre-
sented by the state machine. An initial state of a region
in a composite state represents the starting state of the
protocol specified by the region. An initial state has an
unlabeled outgoing transition. In this paper, we refer
to the destination state of this unlabeled outgoing tran-
sition as a stable initial state. A junction state is used
to attach its incoming transitions together. A choice
state is used to attach outgoing transitions together,
and when this state is reached, the executed transition
is the transition that has its guard predicates satisfied.
A final state is represented by a circle surrounding a
small, solid-filled circle, and it expresses the completion
of the protocol specified in a composite state region or
described by the state machine.

A state machine must have a single initial state and

can have multiple final states. A region in a compo-
site state can have at most one initial state and can
include multiple final states. An incoming transition
to a composite state represents an incoming transition
to the initial state in each region, whereas an outgoing
transition from a composite state represents an outgo-
ing transition from any substate within the composite
state. The composite state is exited by 1) reaching the
final state in each region, 2) executing a transition from
one of the substates within the composite state to an
outside state, or 3) executing one of the outgoing tran-
sitions from the composite state. Each of the fork and
join states is represented by a short, heavy bar. The
fork state splits an incoming transition into several un-
labeled transitions terminating on states in different re-
gions of a composite state. The join state merges multi-
ple incoming transitions from states of different regions
of a composite state into a single unlabeled outgoing
transition. The join state cannot be exited unless all of
its incoming transitions are executed.

Fig.2 shows an S-SPEC example modeled in a UML
state machine. This example demonstrates a simple
data transfer application consisting of three entities: a
server and two machines available at three SAPs. The
service described in the S-SPEC is a server-controlled
transfer of data between two machines, in which the

Fig.2. Service specification example modeled in a UML state

machine.
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users of the two machines exchange their data. The
server and the two machines process concurrently. The
service is initiated by the server user by issuing a Next
SP downward command to the sever machine. This ser-
vice request results in two concurrent upward requests,
Next SP at SAP2 and SAP3, asking the users at the
two SAPs to exchange their data. Each of the users at
SAP2 and SAP3 issues a downward DReq SP to request
the data from the other user and an upward DRes SP
as a response for the data requested by the other user.
Then, the service cycles back after receiving a Next SP
downward command from the server user. In this exam-
ple, if one or both machines have nothing to exchange,
then they send a NULL data message. In this example,
there are eight simple typical states, three initial states,
a join state, and a composite state. The composite state
includes two orthogonal regions.

3 Model Definition

UML state machines model concurrency behaviors,
and therefore, they can be used without extension to
model both service and protocol specifications. In this
section, the models used are formally defined in the con-
text of the layered communication system introduced in
Section 1. Both service and protocol specifications are
modeled using UML protocol state machines.

3.1 Service Specification Model

The service specification described in the UML state
machine defines sequences of primitives exchanged be-
tween users and processes through the service access
points. A service specification includes a concurrent
behavior, modeled by composite states that include
multiple regions, if two or more service primitives pass
through different SAPs simultaneously.

Definition 1. A service specification S-SPEC is
modeled by a UML state machine denoted by a tuple
(Ss, Ts, σ), where:

1) Ss is a non-empty finite set of service states. Each
state s ∈ Ss is either a simple or a composite state, as
described in Section 2, and it is a 2-tuple 〈id(s), Rg(s)〉,
where id(s) is the identifier of state s and Rg(s) is a
finite set of regions in state s. Each region rg ∈ Rg(s)
is a region in state s, such that |Rg(s)| = 0 for simple
states and |Rg(s)| > 0 for composite states. The re-
gion rg is a 2-tuple 〈id(rg), S(rg)〉, where id(rg) is the
identifier of region rg and S(rg) is a finite set of service
states included in region rg. A simple state can be an
initial, final, join, fork, junction, choice, or a typical
state as described in Section 2.

2) Ts is a finite set of transitions, such that each
transition t ∈ Ts is a 3-tuple 〈tail(t), head(t), SP〉,
where tail(t) and head(t) are the tail and the head states

of t, respectively, and SP is the service primitive that
defines the service event, its type, and the index of the
SAP through which the SP passes, which is denoted by
SAP(SP).

3) σ ∈ Ss is the initial service state.
For the service specification given in Fig.2, Ss =

{〈S0, {}〉, 〈S1, {}〉, 〈S2, {R1, R2}〉, 〈Sj , {}〉, 〈S7, {}〉},
where R1 = 〈r1, {Si, S3, S5}〉, R2 = 〈r2, {Sk, S4, S6}〉,
S0 is the service specification initial state, Si is the ini-
tial state in region r1, Sk is the initial state in region
r2, and Sj is the join state that is reached after termi-
nating state S2. The outgoing transition from state S1

in the service specification shown in Fig.2 is formally
defined as 〈S1, S2, ↓ Next1〉.

Definition 2. The set of SAPs through which the
SPs (that can first occur when leaving state s) pass is
denoted by OUT (s).

For the example given in Fig.2, OUT(S8) = {2}.
Definition 3. The set of SAPs through which the

SPs (that can first occur when reaching composite state
s) pass is denoted by InC (s).

For the example given in Fig.2, InC(S2) = {2, 3}.
Definition 4. The set of SAPs through which the

SPs included in a region R of a composite state pass is
denoted by OUT(R).

For the example given in Fig.2, OUT(r1) = {2, 3}.
Definition 5. A service primitive Pi is of type “↑”,

denoted as ↑Pi, if the SP is directed upward from the
protocol entity PE-SPECi to SAPi. Similarly, a service
primitive Pi is of type “↓”, denoted as ↓Pi, if the SP is
directed downward from the service user at SAPi to the
protocol entity PE-SPECi.

As shown in Fig.2, the types of the service primitives
are denoted by the corresponding upward and down-
ward symbols.

3.2 Protocol Specification Model

The protocol specification describes the specifica-
tions of the protocol entities that work together to offer
the service that is expressed in the service specification.
We assume that each protocol entity is executed by its
own processor and that different protocol entities are
simultaneously executed by different processors. This
constraint implies that none of the composite states in
the protocol specifications have multi-regions.

Definition 6. The protocol entity specification PE-
SPECi is modeled by a UML state machine denoted by
a tuple (Spi , Tpi , σpi), where:

1) Spi is a non-empty finite set of states of proto-
col entity i. Each state s ∈ Spi is either a simple or a
composite state, and it is a 2-tuple 〈id(s), S(s)〉, where
id(s) is the identifier of state s and S(s) is a finite set
of service states included in state s, such that |S(s)| = 0
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for simple states and |S(s)| > 0 for composite states. A
simple state can be an initial, final, join, fork, junction,
choice, or a typical state as described in Section 2. It
is important to note that the definition of the states in
the protocol specification is similar to the correspond-
ing definition for the states in the service specification,
which is given in Definition 1.

Fig.3. PE-SPEC2 corresponding to the S-SPEC given in Fig.2

(A: Next, B: DReq/!dreq3, C: ?dres3, D: ?dreq3, E: DRes/

!dres1,3).

2) Tpi is a finite set of transitions, such that each
transition t ∈ Tpi is a 3-tuple 〈tail(t), head(t), Ei〉,
where tail(t) and head(t) are the tail and the head states
of t, respectively, and Ei is a protocol event that can
be either: 1) an SP that passes through SAPi, 2) an
SP that passes through SAPi and an event message E
sent to PEj denoted by !ej, or 3) an event message E
received from PEj denoted by ?ej. The event of the
second type is denoted by E/!ej.

3) σpi ∈ Spi is the initial protocol state of the proto-
col entity specification PE-SPECi.

For example, the state S1 in PE-SPEC2, which is
given in Fig.3, is formally defined as 〈S1, {}〉. For the
PE -SPEC 2 given in Fig.3, the outgoing transition from
S1 and the two outgoing transitions from the choice
state in the outer composite state are formally defined
as follows: 〈S1, Sc, ?next1〉, 〈Sk, Sc1, Next〉, and 〈Sk,
Sc2, ?dreq3〉, respectively, where Sc is the outer compo-
site state, Sk is the choice state in the outer compos-
ite state, and Sc1 and Sc2 are the two inner composite
states included in the outer composite states.

Definition 7. A protocol specification (P-SPEC)
describes several simultaneously interacting PE-SPECs,

such that there is a one-to-one correspondence that ex-
ists between PE-SPECs and SAPs.

For example, there are three SAPs included in the
communication service described by the S-SPEC given
in Fig.2, and therefore, three PE-SPECs collaborate to
provide the required service. Because of the space limi-
tations, Fig.3 only shows one of these PE-SPECs, which
is PE-SPEC2. This paper shows how to synthesize the
PE-SPECs from the S-SPEC.

4 UML Protocol State Machine-Based
Synthesis Method

To synthesize the specifications of the protocol en-
tities from the service specification, it is required to
apply a set of remodeling and optimization rules. Fig.4
provides a synthesis algorithm to obtain the required
PE-SPECs in five main steps. The first step is a di-
rect adaptation of the corresponding step in the FSM-
based synthesis methods, which were proposed by [11-
12, 46], with respect to the context of the synthesis
problem that is based on a UML state machine. The
3rd and 5th steps are optimization actions. The key
differences between the UML state machine synthesis
algorithm and the existing FSM-based synthesis algo-
rithms, which were proposed by [11-12, 46], are in the
two main synthesis steps: the second and the fourth.
In these two steps, the projected service specification
states and transitions are remodeled to form the states
and transitions of the protocol specification. The tran-
sition synthesis rules proposed here consider the diffe-
rent types of UML state machine states. It is important

PE-SPEC Synthesis Algorithm. Derivation of a proto-
col specification for distributed concurrent entities from a
service specification modeled in a UML protocol state ma-
chine.

Input: Service specification modeled using a UML protocol
state machine.

Output: PE-SPEC for each of the distributed concurrent
entities.

Steps:

1. Project the S-SPEC onto each SAP to obtain the projected
protocol specifications (PR-SPECs).

2. Apply transition synthesis rules provided in Table 1 to
the transitions of the PR-SPECs to obtain the primary
protocol specifications of the entities (PPE-SPECs).

3. Remove ε-transitions and ε-cycles from the PPE-SPECs
and apply a state machine reduction technique to obtain
the minimized PPE-SPECs.

4. Remodel all composite states with multiple regions using
Rules 5 and 6 given in Fig.8 to obtain the protocol speci-
fications of the entities (PE-SPECs).

5. Apply a state machine reduction technique to obtain the
minimized PE-SPECs.

Fig.4. Protocol state machine based PE-SPEC synthesis algo-

rithm.
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to note that some of these states (e.g., composite, join,
fork) are undefined for FSM. The 4th step accounts for
remodeling composite states, a problem which is inap-
plicable for the basic FSM specification model. The five
steps are detailed as follows:

Step 1: Constructing PR-SPECs. In this step, i PR-
SPECs are constructed, where i is the number of dis-
tributed concurrent entities, and each PR-SPEC has
the same structure as the S-SPEC. Each PR-SPECi

has two types of transitions: SP-labeled and unla-
beled. The SP-labeled transitions correspond to the S-
SPEC transitions assigned to SPs, which are observed
at SAP i. Fig.5 shows the three PR-SPECs that cor-
respond to the S-SPEC given in Fig.2. For example,
the outgoing transition from S1 in PR-SPEC 1 given
in Fig.5 is labeled by the SP Next because this primi-
tive is observed at SAP1 as given in the S-SPEC shown
in Fig.2. The unlabeled transitions correspond to the
S-SPEC transitions assigned to SPs that are either ob-
served at SAPj , where i 6= j, or correspond to S-SPEC
unlabeled transitions (e.g., outgoing transitions from
initial or join states). For example, the outgoing tran-
sition from S1 in PR-SPEC 2 given in Fig.5 is unlabeled
because the corresponding S-SPEC transition is labeled
by an SP that is not observed at SAP2.

Fig.5. PR-SPECs corresponding to the S-SPEC given in Fig.2.

(a) PR-SPEC 1. (b) PR-SPEC 2. (c) PR-SPEC 3.

Step 2: Applying Transition Synthesis Rules. Transi-
tion synthesis rules are applied to each SP-labeled tran-
sition in each PR-SPEC. These rules are summarized
in Table 1. For example, Rule 3 is applied to an SP-
labeled transition whose destination state is a compo-
site in PR-SPEC i. This rule states that, according to
the formula in the third column of Table 1, we have to
find the set of protocol entities x that have to be syn-
chronized with protocol entity i. If the set x is empty,
the event E of the transition is unchanged and the cor-
responding transitions in the other PR-SPECs have to
be associated with event ε. Otherwise, the event E of
the transition of interest is replaced by E/!ex, which
means that a synchronization message has to be sent
to each entity in set x. The corresponding transition in
each entity in set x has to be associated with a recep-
tion event ?ei. The corresponding transition in each of
the rest of the entities that are unlisted in set x has to
be associated with event ε.

Rule 1. In this case, the SP originates from the ser-
vice user and takes the service back to its initial state.
Therefore, a synchronization message must be sent to
all of the other protocol entities to synchronize the pro-
tocol at the same initial global stable state.

Rule 2. This rule implies that the SP originates from
the service user at SAP i and is taking the service into
a state that is outside of the composite state. There-
fore, synchronization messages must be sent to all of the
protocol entities that issue the SPs that are modeled
within the composite state. This scenario would syn-
chronize the protocol and ensure that PE -SPEC i does
not leave the composite state unless other protocol enti-
ties x that are executing concurrently with PE -SPEC i

leave the same state also. In this case, it is guaran-
teed that some x protocol entities exist because having
multiple regions in a composite state implies the pres-
ence of at least another protocol entity that executes
concurrently with PE -SPEC i.

Rule 3. This rule implies that the SP originates from
the service user at SAP i and is taking the service into
a composite state. In this case, the SP can be followed

Table 1. Transition Synthesis Rules

Rule Condition (s1 and s2 are source and desti- x Event E of Corresponding Corresponding

ID nation states of the transition t of interest) Transition t Event in Event in Other

in SPEC i PR-SPECx PR-SPECs

1 s2 is a stable initial state of the state ma-
chine

all SAPs − SAPi E/!ex ?ei Not applicable

2 s2 is a final state in the composite state
cs or s1 is a substate of cs and s2 is not
a substate of cs or s1 is a composite state
(s1 = cs)

[
⋃

∀rg∈cs
OUT (rg)] −

SAP i

E/!ex ?ei Not applicable

3 s2 is a composite state InC (s2)− SAP i E/!ex, if x 6= ∅ ?ei ε

4 s2 is a simple state OUT (s2)− SAP i E, if x = ∅ ?ei ε
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by any of the SPs that can first occur when reaching
the composite state. If all of these SPs are observed at
SAP i, the flow of control is not required to be trans-
ferred from PE -SPEC i to another protocol entity or
service user, and no actions are needed to be performed
at any other PE-SPECs. Otherwise, a synchronization
message must transfer the flow of control to the proto-
col entities that correspond to the SAPs at which the
SPs are observed.

Rule 4. This rule implies that the SP originates from
the service user at SAPi and is followed by the occur-
rence of other SPs that are observed at the same SAP
or at other SAPs. If the SP is followed by the oc-
currence of other SPs that are observed at the same
SAPi, the flow of control is not required to be trans-
ferred from PE-SPECi to another protocol entity or
service user, and no actions are needed to be performed
at any other PE-SPECs. Otherwise, a synchronization
message must transfer the flow of control to the other
corresponding protocol entities.

It is important to note that the rules listed in Ta-
ble 1 only cover the basic scenarios. Any other sce-
nario is a combination of two or more of the basic
scenarios. For example, if the source and destina-
tion states of a transition are composite, the set x
(listed in the third column of Table 1) will be the
union of the corresponding sets of rules 2 and 3 (i.e.,
x = [

⋃
∀rg∈cs OUT (rg)]∪InC (s2)−SAP i). In addition,

if the source and destination states of a transition are
composite and simple states, respectively, the set x will
be the union of the corresponding sets of rules 2 and 4
(i.e., x = [

⋃
∀rg∈cs OUT (rg)] ∪OUT (s2)− SAP i).

Fig.6 shows the application of the transition synthe-
sis rules listed in Table 1 on the PR-SPECs given in
Fig.5. For example, the event Next associated with the
outgoing transition from S1 in PR-SPEC1 is replaced

with Next/!next2,3 according to rule 3. In this case,
x = {2, 3} − {1} = {2, 3}. The corresponding tran-
sitions in PPE-SPEC2 and PPE-SPEC3 are associated
with events ?next1. In addition, the event Data associa-
ted with the outgoing transition from S6 in PR-SPEC2

is replaced with DRes/!dres1,3, according to rules 2
and 4. In this case, the event causes the protocol to
leave the composite state and reach state S7. There-
fore, x = [

⋃
∀rg∈s2 OUT (rg)] ∪ OUT (s7) − SAP1 =

{2, 3} ∪ {1} − {1} = {2, 3}. The corresponding tran-
sitions in PPE-SPEC1 and PPE-SPEC3 are associated
with events ?dres2.

Step 3: Removing ε-Transitions and ε-Cycles. The
resulting PPE-SPECs can include ε-transitions and ε-
cycles. These transitions and cycles are no longer
needed, and they have to be removed because they do
not represent any action required by the protocol en-
tities. In addition, the state machines of the resulting
protocol specification can be reduced by applying state
machine reduction techniques such as those introduced
by [51-52]. Fig.7 shows the resulting minimized PPE-
SPECs after applying step 3 to the PPE-SPECs given
in Fig.6.

Steps 4 and 5: Remodeling Composite States and Ap-
plying Optimization Techniques. The composite states
in the resulting state machines can have multiple re-
gions, which represents concurrency behavior. In the
communication system considered, the protocol enti-
ties operate concurrently, and this concurrent behavior
is modeled in the state machine of the service specifi-
cation by the multi-region composite state(s). In other
words, each protocol entity has its own single processor,
which executes concurrently with the processors of the
other protocol entities of the communication system.
Having multi-region composite state(s) in the specifi-
cation of the protocol entity implies that the protocol

Fig.6. PPE-SPECs corresponding to the PR-SPECs given in Fig.5. (a) PPE-SPEC1. (b) PPE-SPEC2. (c) PPE-SPEC3.
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Fig.7. Minimized PPE-SPECs corresponding to the PPE-SPECs given in Fig.6. (a) PPE-SPEC1. (b) PPE-SPEC2. (c) PPE-SPEC3.

Fig.8. Rules 5 and 6 for remodeling composite states with multiple regions. (a) Rule 5. (b) Rule 6.

entity has multiple processors that operate concur-
rently, which is not assumed. Therefore, the multi-
region composite states of the resulting state machines
of the protocol entities have to be remodeled to single-
region composite states in such a way that 1) all of the
possible orderings of the events are preserved and 2) all

of the events are executed.
In any region of a composite state, a stable initial

state can have single or multiple outgoing transitions.
Rules 5 and 6 (Fig.8) deal with these two cases, respec-
tively. In rule 5, 1) a new choice state is added, 2)
the existing n regions are remodeled into n composite
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states, 3) each composite state i has the same structure
as the original composite state with the exception that
the first transition and its destination state in region i
are removed, 4) a transition is added from the added
choice state to each of the added composite states such
that the event associated with a transition that is in-
coming to composite state i is the same as the event
of the transition removed from the composite state i,
and 5) a junction state is added to be the destination
state of the transitions additionally initiated from the
added composite states or their join states. The appli-
cation of rule 5 results in removing a transition and its
destination state from each region. The region is elimi-
nated once it becomes empty or it includes meaningless
behavior (i.e., a single unlabeled transition from the ini-
tial to the final state). The rule has to be recursively
applied to each of the resulting composite states until
each composite state has a single region. Rule 6 con-
siders the case when the stable initial state of a region
has n multiple outgoing transitions. In this case, the
region that contains that initial stable state is remode-
led into n composite states, similar to the remodeling
performed in rule 5. Moreover, an additional composite
state is added to model the case when the first transi-
tion in the other region is executed first.

In the case of having nested composite states, rules
5 and 6 are first applied to the most inner compos-
ite states. Figs.9∼12 show the resulting PE-SPEC2

when the 1st, 2nd, 3rd, and 4th recursive iterations
of rule 5 were applied. The resulting PE-SPEC2 given
in Fig.12 does not include multiple-region composite
states. Similar to step 3, a state machine reduction
technique can be applied in step 5 to obtain the re-
duced PE-SPECs. The resulting PE-SPEC2 is shown
in Fig.3. The rest of the PE-SPECs can be obtained
similarly but are not shown here due to the space limi-
tation.

5 Space and Time Complexity Analysis

The space and time complexity of the proposed syn-
thesis algorithm is determined by finding the number
of states and transitions created by the algorithm and
analyzing the time and space required to create and
store the protocol specifications.

5.1 Space Complexity Analysis

Analysis of the space complexity requires finding the
number of states and transitions in the resulting pro-
tocol specification. The number of states and transi-
tions in each PR-SPEC created in step 1 of the algo-
rithm given in Fig.4 is equal to the number of states
and transitions in the S-SPEC. Given that s and t are

the number of states and transitions, respectively, in

Fig.9. Application of rule 5 (first iteration) to obtain PE-SPEC2.

Fig.10. Application of rule 5 (second iteration) to obtain PE-

SPEC2 (A: Next, B: DReq/!dreq3, C: ?dres3, D: ?dreq3, E:

DRes/!dres1,3).
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Fig.11. Application of rule 5 (third iteration) to obtain PE-SPEC2.

Fig.12. Application of rule 5 (fourth iteration) to obtain PE-SPEC2.

S-SPEC, and that n is the number of SAPs provided in
the system, the number of states and transitions created
in step 1 of the algorithm is n×s and n×t, respectively.
Steps 2 and 3 of the algorithm do not add any states
and transitions to the created models. Instead, step 2

requires parsing each transition to determine its event,
and step 3 requires removing the ε-transitions and ε-
cycles. The number of states and transitions removed
in step 3 depends on the need for the synchronization
messages introduced in step 2 and, in some cases, none
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of such ε-transitions and ε-cycles exists. Therefore, the
number of states and transitions existing after execut-
ing step 3 of the algorithm is still bounded by n×s and
n× t, respectively.

In step 4, rules 5 and 6 are applied recursively until
each composite state has a single region. In this case,
the resulting structure has paths from the initial state
to the final state of the composite state such that each
path includes a possible trace of all transitions in the
paths that are corresponding to the S-SPEC parallel
paths (i.e., paths that include transitions in different
regions). Formally, given a composite state k of mk

regions, such that each region has a single path from
the region’s initial state to its final state, when rule 5
is applied recursively, the number of transitions in each
of the resulting paths equals

∑mk

i=1 ni,k, where ni,k is
the number of transitions in the i-th region of the k-th
composite state.

Rule 5 remodels m paths that exist in m regions of
composite state k into corresponding paths Pk,m, such
that these paths cover all possible traces of the tran-
sitions in the m paths. The value of Pk,m is equal to
the number of different combinations of transitions in
the m paths, such that the order of the transitions in
each of the m path is preserved. In the case of having
a composite state k of only two regions, where one of
the regions has n1,k transitions and the other one has
n2,k transitions, the number of possible combinations is
calculated by using the following formula[53]:

Pk,2 =C(n1,k + n2,k, n2,k)

=
(

n1,k + n2,k

n2,k

)
=

(n1,k + n2,k)!
(n1,k!)(n2,k!)

. (1)

For example, there are two regions in the composite
state included in PPE-SPEC2, which is shown in Fig.7.
One of the regions has three transitions with events,
and the other has two transitions with events. There-
fore, the number of paths obtained by applying rule 5
equals C(2 + 3, 2) = 10, as shown in Fig.12.

Generally, given a composite state k with m regions,
where each region has a single path, the number of
paths Pk,m, produced using rule 5 is formally calcu-
lated as follows:

Pk,m =

( mk∑

i=1

ni,k

)
!

∏mk

i=1(ni,k!)
. (2)

Proof. To prove this formula using mathematical
induction, both basic and inductive steps have to be
proven as follows.

Basic Step. The minimum number of parallel paths

is two. In this case, using (2),

Pk,2 =

( 2∑

i=1

ni,k

)
!

∏2
i=1(ni,k!)

=
(n1,k + n2,k)!
(n1,k!)(n2,k!)

,

which is equal to the result obtained using (1) and
proven by [53].

Inductive Step. In the inductive step, assuming that
Pk,m is correct, we have to prove that Pk,m+1 is also
correct. As discussed earlier in this section, given mk

regions, each of the Pk,m paths produced using rule 5
consists of all transitions in all mk regions, which equals∑mk

i=1 ni,k. When adding region m+1, the transitions in
this additional region can be interleaved with the tran-
sitions in any of the Pk,m paths. Using (1), when the
transitions of the path in region m + 1 are interleaved
with the transitions of any region j, the number of re-
sulting paths equals C

( ∑mk

i=1 ni,k + nm+1,k, nm+1,k

)
.

As a result, considering all Pk,m paths, the total num-
ber of produced paths is calculated as follows:

Pk,m+1 =Pm,k × C
( mk∑

i=1

ni,k + nm+1,k, nm+1,k

)

=

( mk∑

i=1

ni,k

)
!

mk∏

i=1

(ni,k!)

×

( mk∑

i=1

ni,k + nm+1,k

)
!

( mk∑

i=1

ni,k

)
! × nm+1,k!

=

( mk∑

i=1

ni,k

)
!

mk∏

i=1

(ni,k!)

×

( mk+1∑

i=1

ni,k

)
!

( mk∑

i=1

ni,k

)
! × nm+1,k!

=

( mk+1∑

i=1

ni,k

)
!

mk∏

i=1

(ni,k!) × nm+1,k!

=

( mk+1∑

i=1

ni,k

)
!

mk+1∏

i=1

(ni,k!)

,

which is equal to Pk,m+1 found by (2). ¤
The space complexity of applying rule 5 to a com-

posite state k is bounded by the number of produced
transitions and states. The number of produced states
and transitions is itself bounded by the multiplication
result of the number of resulting paths and the num-
ber of transitions in each path (i.e., Pk,m ×∑mk

i=1 ni,k).
Rule 5 produces states and transitions such that there
is a direct correspondence between the number of states
and transitions. That is, except for the produced junc-
tion states, each resulting state has a unique incoming
transition. Therefore, the number of states produced
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by rule 5 is also bounded by Pk,m × ∑mk

i=1 ni,k. It is
important to note that rule 6 produces paths that sati-
sfy a more constrained condition than that which is
satisfied by the paths produced by rule 5, because rule
6 deals with some paths (i.e., paths that start with a
choice state) that only one of them will be executed.
These are the paths that exist within the same region.
The transitions of these paths will not be interleaved
with each other. Instead, they will only be interleaved
with the paths in the other region(s). As a result, the
space required by the application of step 4 of the syn-
thesis algorithm is bounded by the space required by
the application of rule 5.

Finally, step 5 of the proposed synthesis algorithm
does not introduce any further states and transitions
and, in some cases, it does not lead to any reduction in
the number of states and transitions. As a result, given
an S-SPEC with sp SAPs, t1 transitions that are not in-
cluded in composite states, and cs composite states, the
space complexity of the algorithm, in terms of the num-
ber of transitions, is bounded by sp × (t1 + t2), where
t2 =

∑cs
k=1

(
Pk,m ×∑mk

i=1 ni,k

)
. In addition, based on

the earlier discussion regarding the correspondence be-
tween the number of states and transitions produced by
rule 5, the space complexity of the algorithm, in terms
of the number of states, is bounded by sp × (s1 + t2),
where s1 is the number of S-SPEC states that are not
included in composite states. As a result, the total
space complexity, in terms of both numbers of states
and transitions, is bounded by sp × (s1 + t1 + t2).

5.2 Time Complexity Analysis

The time complexity of the proposed synthesis algo-
rithm is determined by the number of states and tran-
sitions that are produced in each step and every itera-
tion of the application of rules 5 and 6. The number of
states and transitions produced in each step is already
discussed in Subsection 5.1. However, the number of
states and transitions produced in each iteration of the
application of rules 5 and 6, which has not yet been
discussed, is described as follows.

In step 4, the composite states are remodeled using
rules 5 and 6. Given a composite state cs of rcs regions,
in iteration i of the application of rule 5, Ccs(i) = rcs
composite states are created, as shown in Fig.8. Except
for a removed transition, each of the new rcs composite
states has the same structure of the original composite
state that existed in iteration i−1, which means that, in
iteration i, the number of created states and transitions
from a composite state cs, which existed in iteration
i−1, is bounded by Ccs(i−1)×sccs and Ccs(i−1)×tccs ,
respectively, where sccs and tccs represent the number
of states and transitions included in the composite state

cs respectively. Therefore, given cs composite states in
iteration i− 1, the number of states produced in itera-
tion i is bounded by S(i) =

∑cs
k=1 Ck(i−1)×sck. Rule 5

is applied until each composite state has a single region.
In each iteration, a transition is removed from one of the
regions until the region becomes empty or it includes
meaningless behavior (i.e., a single unlabeled transi-
tion from the initial to the final state). This terminat-
ing condition requires the number of applied iterations
to be bounded by the total number of transitions in-
cluded in the original composite state t that exists in
PPE-SPEC. Consequently, the total number of states
produced in all iterations is bounded by

∑t
i=1 S(i). As

discussed in Subsection 5.1, the number of transitions
produced by rule 5 is bounded by the same equation
that is used for the number of states. In addition, the
discussion in Subsection 5.1 shows that the process of
applying rule 5 is more complex than that which per-
tains to rule 6.

As a result, given an S-SPEC with sp SAPs, t1 tran-
sitions that are not included in composite states, cs
composite states, and t transitions that are included in
composite states, the time complexity of the first four
steps of the algorithm, in terms of the number of transi-
tions, is bounded by sp×(t1+t2), where t2 =

∑t
i=1 S(i),

and the time complexity in terms of number of states, is
bounded by sp× (s1 + t2), where s1 is the number of S-
SPEC states that are not included in composite states.
The total time complexity, in terms of both numbers of
states and transitions, is bounded by sp× (s1 + t1 + t2).
The time complexity of step 5 of the algorithm depends
on the time complexity of the selected reduction tech-
nique.

6 Proofs of Correctness

Proving the correctness of the synthesis method is
needed to support the claim that the resulting proto-
col specification does not require any further valida-
tion. Both semantic and syntactic correctness have to
be proven.

6.1 Semantic Correctness

Proving semantic correctness requires proving that
the resulting protocol specification provides the same
service specified in the S-SPEC with the same possible
orderings of the SPs.

Definition 8. µ(SM ) is the collection of all of the
possible traces of SPs modeled in the state machine SM.

For example, (?next1, A, B, C, D, E, ?next1) is a
possible trace of SPs modeled in the PE-SPEC2 given
in Fig.3.

Lemma 1. µ(PPE-SPEC i) = µ(PR-SPEC i).
Proof. By definition, PPE-SPECi has the same
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structure of PR-SPECi, and step 2 of the synthesis algo-
rithm does not add, remove, or change any SP associa-
ted with any transition in PR-SPEC; it only adds syn-
chronization messages. Therefore, the possible traces of
SPs in PPE-SPECi are identical to the corresponding
traces in PR-SPECi. ¤

Definition 9.
∏

i(S-SPEC ) is the collection of all
of the possible traces of SPs observed at SAPi and spec-
ified in S-SPEC.

For example, (Next, DReq) is a possible trace of SPs
observed at SAP2 for the S-SPEC given in Fig.2.

Lemma 2.
∏

i(S-SPEC ) = µ(PPE-SPEC i).
Proof. Both S-SPEC and PR-SPECi have the same

structures, and by the definition, PR-SPECi is the
projection of S-SPEC at SAPi, which implies that∏

i(S-SPEC) = µ(PR-SPEC i). Therefore, according
to Lemma 1,

∏
i(S-SPEC) = µ(PPE − SPEC i). ¤

Definition 10.
∑
∀i∈SAPs

∏
i(S-SPEC ) is the col-

lection of all of the possible traces of SPs observed at
each SAP in the communication system.

For example, this collection includes all possible
traces of SPs observed at each of SAP1, SAP2, and
SAP3, for the S-SPEC given in Fig.2.

Definition 11.
∑
∀i∈SAPs µ(PPE-SPEC i) is the

collection of all of the possible traces of SPs in each
PPE-SPECi.

For example, this collection includes all possible
traces of SPs in each of PPE-SPEC1, PPE-SPEC2, and
PPE-SPEC3, which are shown in Fig.7.

Lemma 3.
∑
∀i∈SAPs

∏
i(S-SPEC ) =∑

∀i∈SAPs µ(PPE-SPEC i). That is, all of the SPs
specified in S-SPEC are also specified in PPE-SPECs
and vice versa.

Proof. The above equality is a direct result of the
relation between Definitions 10 and 11 and the equality
given in Lemma 2. ¤

Definition 12.
⋃

(PPE-SPEC i) is a state machine
derived from PPE-SPECi by replacing each reception of
a synchronization message by its corresponding SP.

For example,
⋃

(PPE -SPEC 1) is derived from PPE-
SPEC1, which is given in Fig.7, by replacing the ?dres3
message by the DRes SP and replacing the ?dres2 mes-
sage by the DRes SP.

Lemma 4. µ(
⋃

(PPE-SPEC i)) includes all of the
legal interleavings of SPs at SAPi with respect to some
SPs observed at other SAPs.

Proof. The reception of a synchronization message
in PPE-SPECi implies that a corresponding SP is ob-
served at another SAPj , where i 6= j. Therefore,
having an SP A preceeding ?b in PPE-SPECi implies
that A precedes B in both µ(

⋃
(PPE -SPEC i)) and

µ(S-SPEC). As a result, the order of SP occurrences in
µ(

⋃
(PPE -SPEC i)) is consistent with the order of SP

occurrences in µ(S-SPEC). ¤
Lemma 5. All of the traces in µ(S-SPEC ) are pre-

served in
∑
∀i∈SAPs µ(

⋃
(PPE-SPEC i)).

Proof. Any pair of adjacent SPs AiBj in µ(S-SPEC)
is observed either at the same SAP (i.e., i = j) or at
different SAPs (i.e., i 6= j). According to the transition
synthesis rules given in Table 1, when i = j, both SPs
appear adjacent in µ(

⋃
(PPE -SPEC i)). When i 6= j,

according to the transition synthesis rules, the pair
of SPs is modeled by contiguous events A?bj , which
is represented in µ(

⋃
(PPE -SPEC i)) by AB. There-

fore, in both cases, the same pair of SPs appears in∑
∀i∈SAPs µ(

⋃
(PPE -SPEC i)) at least once. ¤

Lemma 6. Assume that the composite states before
and after applying rule 5 or rule 6 are denoted by CS0

and CS1, respectively. Given the fact that the events
modeled in the composite state are executed by a proto-
col entity of a single processor, CS0 and CS 1 have an
identical behavior (i.e., they provide the same service
with the same event ordering).

Proof. When rule 5 is applied, CS1 initially allows
for the execution of any of the first executable transi-
tions in the regions of CS0. When any of these tran-
sitions t is executed, the transition t in CS1 will be
followed by the transition that follows t in the same re-
gion or by any of the other first executable transitions
in the other regions of CS0. Except for this modifi-
cation, which does not alter the orderings of the tran-
sition execution, the ordering of the transitions in the
regions of CS0 and CS1 are identical. This structure
means that both CS0 and CS1 have the same possible
event ordering, where the events are associated with
transitions. CS1 has an added choice state that results
in executing only one of the added composite states.
However, each of these composite states is identical to
the original composite state CS0 with the exception of
the removed transition from one of the regions. This
transition is added and is to be executed before any of
the transitions in the inner composite state. This ad-
dition guarantees that, when applying rule 5, CS1 has
the same behavior as CS0. The same argument applies
for rule 6. In this case, the first executable transitions
in the regions of CS0 are the outgoing transitions from
the choice state and the first executable transitions in
each of the other regions. When rule 6 is applied, each
of the first executable transitions t is followed by the
transition that follows t in the same region or by any
of the other first executable transitions in the other re-
gions of CS0. ¤

Theorem 1. The protocol entities derived using the
synthesis algorithm introduced in this paper are seman-
tically correct.

Proof. Lemmas 3 and 5 imply that the PPE-SPECs
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resulting from applying step 2 of the synthesis algo-
rithm provide the same service modeled in the S-SPEC
with the same possible orderings of the SPs. This
implies that the PPE-SPECs are semantically correct.
The correctness of the protocol entities derived in steps
3 and 5 is the result of the correctness of the used reduc-
tion, and ε-transitions and ε-cycles removal techniques.
Finally, Lemma 6 implies that the protocol entities de-
rived in step 4 are semantically correct with respect
to those obtained in step 3. As a result, the protocol
entities resulting from the application of the synthe-
sis algorithm proposed in this paper are semantically
correct. ¤

6.2 Syntactic Correctness

Proving the syntactic correctness requires proving
that the resulting protocol specification is free of syn-
tactic design errors, including unspecified receptions,
deadlocks, and livelocks.

Lemma 7. The synthesized protocol specification is
deadlock-free.

Proof. Deadlock errors occur when the protocol is
at a non-final state, all of the channels are empty, and
no transmission transition is specified. In other words,
a deadlock occurs when the protocol is at a state in
which all of its outgoing transitions are associated with
receiving events for messages that are not to be sent by
any other protocol entity. This case cannot happen in
the synthesized protocol because the transition synthe-
sis rules are based on a cause and effect principle. In
other words, the occurrence of a SP at SAPi will cause
either the sending of synchronization messages to one
or more of the other protocol entities or the preven-
tion of any protocol message from being sent. The first
case causes the other corresponding protocol entities to
receive the synchronization message and send the fol-
lowing SP accordingly. The second case occurs only
when reaching a final state or when the next occurring
SP is observed at the same SAP. As a result, when the
protocol is not at a final state, the transition synthesis
rules cause the protocol entities to always either issue
SPs or exchange synchronization messages until all of
the protocol entities reach their final states. There-
fore, the protocol entities resulting from applying the
transition synthesis rules are free of deadlock errors. In
addition, rules 5 and 6 do not cancel any of the synchro-
nization messages. Instead, they flatten the composite
states to remove the multiple regions without affecting
the services and their order (Lemma 6). Therefore, the
resulting protocol entities after applying step 4 of the
synthesis algorithm are also free of deadlock errors. The
correctness of the protocol entities obtained in steps 3
and 5 depends on the correctness of the applied tech-

niques. ¤
Lemma 8. The synthesized protocol specification is

livelock-free.
Proof. A livelock error occurs when the protocol

entities exchange messages that are meaningless with
respect to the provision of the desired service. The
resulting protocol entities include two types of events:
SPs and synchronization messages. The SP events are
required to provide the service specified in the S-SPEC,
and the synchronization messages are required to syn-
chronize the SPs between the distributed protocol enti-
ties and enforce the order of the SPs as described in the
S-SPEC. As a result, all of the messages exchanged be-
tween the protocol entities are meaningful for the pro-
vision of the desired service, and therefore, the protocol
entities are free of livelock errors. ¤

Lemma 9. The synthesized protocol specification is
free of unspecified reception errors.

Proof. An unspecified reception error occurs when a
protocol entity sends a synchronization message to an-
other protocol entity that cannot reach a state at which
the reception of this message is specified. The transi-
tion synthesis rules guarantee that whenever a synchro-
nization message is sent from a protocol entity i at a
global state z to another protocol entity j, the proto-
col entity j will not leave the state corresponding to
z unless it receives the sent message. This construct
occurs because whenever the transition synthesis rules
specify a message to be sent, they specify the corre-
sponding message to be received by all of the protocol
entities at which the message is expected to be received.
In the case of concurrency (modeled in the composite
states that have multiple regions in the S-SPEC), rule 5
and rule 6 remodel each composite state of multiple re-
gions in PPE-SPEC with nested composite states with
single regions so that each possible interleaving of the
events in different regions is represented in the result-
ing nested composite states. This restructuring implies
that any path from the initial state to the final state of
the composite state includes all of the possible recep-
tions modeled previously in different regions. Lemma
6 guarantees the correct ordering of these receptions
with respect to their preceding SP labeled transitions,
which guarantees that the remodeled composite states
will not cause any unspecified reception errors. As a
result, the resulting synthesized protocol specifications
are free from unspecified reception errors. ¤

7 Application

In this section, we provide a real application for the
proposed synthesis method and discuss the practical
limitations and lessons learned by applying the method.
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7.1 VoIP Call Establishment Application

We demonstrate the application of the synthesis
method to the specification of the call establishment
service of the H.323 standard① used for the transmis-
sion of real-time audio, video, and data communica-
tions over packet-based networks. The version of the
service adopted by VoIP② for call signaling includes a
gatekeeper G and two endpoints, denoted as P1 and
P2, all processing simultaneously. The gatekeeper is
a central point for all of the calls within its zone and
provides call control services for registered H.323 end-
points. The service starts when P1 sends an admission
request ARQ to G and G responds by sending back an
admission confirmation ACF. Then, P1 sends a setup
message to G, which in turn forwards the message to
P2. P2 then sends a call processing message CP to
G. In response, G forwards the call processing message

CP to P1, and concurrently, P2 sends an admission re-
quest message ARQ to G. G replies to P2 by sending
an admission confirmation message ACF. P2 responds
with an alerting message to G, which forwards the mes-
sage to P1. After that, G sends the alerting message to
P1, and concurrently, the handset at P2 can be picked,
which results in a connect message CON being sent
from P2 to G. This connect message is forwarded from
G to P1. We transformed the service written in En-
glish into a UML protocol state machine. Fig.13 shows
the service specification modeled in the UML protocol
state machine and the corresponding protocol specifica-
tion derived from S-SPEC using the proposed synthesis
method.

7.2 Limitations and Lessons

One of the key limitations of the proposed synthesis

Fig.13. S-SPEC and the synthesized PE-SPECs of the call establishment service of the H.323 standard. (a) S-SPEC. (b) PE-SPECP1.

(c) PE-SPECP2. (d) PE-SPECG.

①Telecommunication standardization sector. http://www.itu.int/ITU-T/index.html, July 2011.
②VoIP protocols: H.323 call flow. http://toncar.cz/Tutorials/VoIP/VoIP Protocols H323 Call Flow.html, June 2011.
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method is that, as it currently is, it is inapplicable to
real applications that have timing constraints or secu-
rity conditions. To consider such widely used applica-
tions, the S-SPEC model must be extended to specify
the timing and security constraints and the synthesis
rules have to be modified to derive P-SPEC that com-
plies with the specified constraints. Another practical
limitation for the proposed method is that, as discussed
in Section 5, the application of rules 5 and 6 causes the
P-SPEC to include large number of states and transi-
tions. This problem is partially solved by the applica-
tion of step 5 of the algorithm, given in Fig.4, in which
it is suggested to apply an existing state reduction tech-
nique. In addition, the application of rules 5 and 6 is
systematic and can be automated, which eliminates the
chances of making mistakes in dealing with the grow-
ing number of states and transitions in each recursive
iteration of the application of rules 5 and 6. Finally, we
noticed that most of the real applications in which the
service specification is modeled using the UML state
machine do not include many states and transitions in-
side the composite states. For example, the S-SPEC
given in Fig.13 includes a single transition with SP in
each region of a composite state. We believe that the
reason for having few states and transitions inside the
composite states of the S-SPECs of most of the real ap-
plications that we went through is that, typically, the
designers of the communication systems tend to reduce
the complexity of the service specifications by minimiz-
ing the number of concurrent behaviors. As a result,
although the proposed algorithm produces a huge num-
ber of states and transitions, in some cases, we found
that these cases are rare in real applications.

8 Conclusions and Future Work

This paper proposes a method to synthesize the com-
munication protocol specification of concurrent proto-
col entities from a service specification modeled in a
UML protocol state machine. The synthesis method
solves a problem faced by object-oriented communica-
tion system developers who start their work by design-
ing a protocol specification. The protocol specification
is typically complex and difficult to verify against the
service specification, especially when the protocol speci-
fication includes concurrent behaviors. On the other
hand, in contrast to a protocol specification, a service
specification is written at a highly abstract level, which
cannot be converted to object-oriented code using the
existing code generation tools. Using the proposed syn-
thesis method, the developers can start their design pro-
cess by formalizing the service specification into a UML
protocol state machine and using the synthesis method
to automatically derive the protocol specification. The

existing tools can then be applied to generate the re-
quired code. This paper proves that the derived proto-
col specification is syntactically and semantically cor-
rect, and therefore, it does not require any further veri-
fication. To demonstrate the usefulness of the synthesis
method, we applied it to synthesize the protocol speci-
fication of a real adopted application used in Internet
calling. The synthesis method can be extended by con-
sidering several factors such as the timing constraints,
the security of the exchanged messages, and the relia-
bility of the transmission medium.
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