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Abstract Though many hierarchical structures have been proposed to analyze the finer or coarser relationships between
two granulation spaces, these structures can only be used to compare the single granulation spaces. However, it should be
noticed that the concept of multigranulation plays a fundamental role in the development of granular computing. Therefore,
the comparison between two multigranulation spaces has become a necessity. To solve such problem, two types of the
multigranulation spaces are considered: one is the partition-based multigranulation space, the other is the covering-based
multigranulation space. Three different hierarchical structures are then proposed on such two multigranulation spaces,
respectively. Not only the properties about these hierarchical structures are discussed, but also the relationships between
these hierarchical structures and the multigranulation rough sets are deeply investigated. It is shown that the first hierarchical
structure is consistent with the monotonic varieties of optimistic multigranulation rough set, and the second hierarchical
structure is consistent to the monotonic varieties of pessimistic multigranulation rough set, the third hierarchical structure
is consistent to the monotonic varieties of both optimistic and pessimistic multigranulation rough sets.
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1 Introduction

Though Granular Computing (GrC) was firstly pro-
posed by Zadeh in fall 1996, the basic idea of granular
computing had been mentioned by John Von Neumann,
in 1951. In his “The General and Logical Theory of
Automata”[1], it is noted that “The natural systems
are of enormous complexity, and it is clearly neces-
sary to subdivide the problem that they represent
into several parts.” In granular computing theory,
an information granule is a clump of objects drawn
together by indistinguishability, similarity, and proxi-
mity of functionality[2-4]. A granulation structure is
a collection of the available information granules for
problem solving (granulation structure is also referred
as the granulation space in this paper). A quotient
structure[5-6] is the abstract of granulation structure,
in which not only each information granule is regarded
as a point, but also the relationships among information

granules in granulation space are transformed into the
relationships among points. A knowledge structure is
an improvement of quotient structure, in which each
point is replaced by a meaningful name. A linguistic
structure is not a mathematical formalism but a natu-
ral language formulation, and it is an unexplored field
presently.

Granular computing has three different views:
knowledge engineering, uncertainty theory, and how to
solve/compute[5]. Though granular computing is mo-
tivated by uncertainty, it has been widely explored
through knowledge engineering view, i.e., the infor-
mation granules are regarded as the basic vehicles of
knowledge.

Presently, although a well–accepted definition of
granular computing has not been presented, researchers
have obtained many gratifying results. These results
show that the current research is mainly dominated by
rough sets[7], fuzzy sets and quotient space theory[8].

Regular Paper
This work is supported by the National Natural Science Foundation of China under Grant Nos. 61100116, 61103133, the Natural

Science Foundation of Jiangsu Province of China under Grant No. BK2011492, the Natural Science Foundation of Jiangsu Higher
Education Institutions of China under Grant No. 11KJB520004, the Postdoctoral Science Foundation of China under Grant No.
20100481149, and the Postdoctoral Science Foundation of Jiangsu Province of China under Grant No. 1101137C.

©2012 Springer Science +Business Media, LLC & Science Press, China



1170 J. Comput. Sci. & Technol., Nov. 2012, Vol.27, No.6

It is worth mentioning that rough set has been demon-
strated to be useful in data mining, knowledge discove-
ring, pattern recognition, medical diagnose and so on.
In Pawlak’s rough set theory, the information gran-
ules are equivalence classes, the granulation space is
the partition on the universe of discourse, the quotient
structure is the abstract of such partition, in which
any two points (abstract of any two equivalence classes)
are disjoint, and the knowledge structure is the domain
of the attribute in Pawlak’s knowledge representation
system[7] (information system) since each object holds
one and only one value (name) on such attribute.

Obviously, rough set and most of the expanded
rough sets are constructed through one and only one
binary relation or covering. For such reason, we may
call these rough sets the single granulation rough sets.
In single granulation rough sets, a partition is a granu-
lation space, a binary neighborhood system[9] induced
by a binary relation is a granulation space, and a
covering[10-12] is also a granulation space. Neverthe-
less, this is not completely consistent to the basic
thinking of granular computing since granular comput-
ing emphasizes the granulation space characterized by
multilevel and multiview, i.e. we often need to de-
scribe concurrently a target concept from some inde-
pendent environments[13]. To solve such problem, Qian
et al.[14-16] proposed the concept of the multigranu-
lation rough set. The main difference between single
granulation and multigranulation rough sets is that we
can use multi-different sets of information granules for
the approximating of concept. Since each set of in-
formation granules can be considered as a granulation
space, the space induced by multi-different sets of in-
formation granules are referred as the multigranulation
space.

Presently, the multigranulation approach progresses
rapidly. For example, in Qian et al.’s multigranulation
rough set theory, there are two basic models: one is
the optimistic multigranulation rough set, the other is
the pessimistic multigranulation rough set[16]. Follow-
ing Qian et al.’s work, Yang et al. generalized multi-
granulation rough sets into fuzzy environment and then
proposed the multigranulation fuzzy rough sets in [17].
Wu and Leung[18] investigated the multi–scale informa-
tion system, which reflects the explanation of the same
problem at different scales (levels of granulations). In
[19], Qian et al. also proposed a positive approximation,
which can be used to accelerate a heuristic process of
attribute reduction. Since the positive approximation
uses a preference ordering, which can make the granu-
lation space finer step by step, positive approximation
also reflects the thinking of multigranulation. Moreover,

Tsau Young Lin, proposed the neighborhood system
based model for granular computing and the corre-
sponding rough set[6]. Generally speaking, a neighbor-
hood system contains a set of neighborhoods, if each
neighborhood is considered as an information granule,
then the neighborhood system is also a useful model
in multigranulation approach. From discussions above,
we can see that multigranulation approach is a power-
ful tool in granular computing.

The purpose of this paper is to study the hierar-
chial structures on multigranulation spaces. This is
mainly because most of hierarchical structures are pro-
posed to deal with single granulation spaces. For ex-
ample, Yao[20] suggested the use of hierarchical gran-
ulations for the study of stratified rough set approxi-
mations; Wang et al.[21] proposed a hierarchical knowl-
edge space chain in terms of different knowledge gran-
ulation levels; Huang et al. and Zhang et al. pro-
posed hierarchical structures on covering-based gran-
ulation space in [22] and [23], respectively. Zhang et
al.[24] constructed a hierarchical structure on fuzzy quo-
tient spaces through constructing normalized isosceles
distance function and then proposed the uncertainty
measurement of hierarchical quotient spaces in [25]．
Liang et al.[26-27] analyzed the varieties of information
entropy, rough entropy and knowledge granulation in
terms of the variety of levels in hierarchical structure.
Qian et al.[28-29] defined some operations on granulation
spaces and then analyzed the finer or coarser relation-
ships between original and operated granulation spaces.
Different from the hierarchical structures we mentioned
above, what will be discussed in this paper is based on
the comparisons between two different multigranulation
spaces. We may desire to find hierarchical structures
on multigranulation spaces in terms of the varieties of
multigranulation rough sets. We will also address such
topic from the viewpoints of partition- and covering-
based multigranulation rough sets, respectively.

To facilitate our discussions, we first present basic
notions of partition-based rough set and multigranula-
tion rough sets in Section 2. In Section 3, three different
hierarchical structures are defined on partition-based
multigranulation spaces (PBMS). Not only the relation-
ships among these hierarchical structures are discussed,
but also the relationships between these hierarchical
structures and multigranulation rough sets are investi-
gated. In Section 4, the optimistic and pessimistic rough
sets are introduced into covering-based multigranula-
tion space (CBMS). Similar to the partition case, in
Section 5, three different hierarchical structures are also
defined and analyzed on covering-based multigranula-
tion spaces. Results are summarized in Section 6.
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2 Preliminary Knowledge on Rough Sets

In this section, we will review some basic concepts
such as knowledge base, Pawlak’s rough set and Qian
et al.’s multigranulation rough sets.

2.1 Pawlak’s Rough Set

Let U 6= ∅ be a universe of discourse, A is a fa-
mily of the equivalence relations on U , then the pair
K = (U,A) is referred as a knowledge base. If P ⊆ A
and P 6= ∅, then

⋂
P (intersection of all equivalence re-

lations in P ) is also an equivalence relation, and will be
denoted by IND(P ). It is referred as an indiscernibility
relation over P in Pawlak’s rough set theory.
∀R ∈ A, we use U/R to represent the family of the

equivalence classes, which are generated from the equiv-
alence relation R. Therefore, ∀x ∈ U , [x]R is used to
denote an equivalence class in terms of R, which con-
tains x.

Suppose that P ⊆ A, then IND(P ) is also an
equivalence relation, U/IND(P ) is then the family
of the equivalence classes, which are generated from
the equivalence relation IND(P ). Each element in
U/IND(P ) is referred as a P -basic knowledge, [x]P =
{y ∈ U : (x, y) ∈ IND(P )} is the equivalence class of
IND(P ), which contains x. ∀X ⊆ U , if X is the union of
some P -basic knowledge, then X is P -definable; other-
wise X is P -undefinable. To describe the P -undefinable
set more clearly, Pawlak proposed his rough set model
as Definition 1 shows.

Definition 1[7]. Let K = (U,A) be a knowledge
base, P ⊆ A, then ∀X ⊆ U , the lower approximation
and upper approximation of X are denoted by P (X)
and P (X), respectively,

P (X) = {x ∈ U : [x]P ⊆ X}, (1)

P (X) = {x ∈ U : [x]P ∩X 6= ∅}. (2)

[P (X), P (X)] is referred as the rough set of X.

2.2 Multigranulation Rough Sets

The multigranulation rough set approach is differ-
ent from Pawlak’s rough set approach because the for-
mer is constructed on the basis of a family of the bi-
nary relations instead of a single one. In Qian et al.’s
multigranulation rough set theory, two different models
have been defined. The first one is the optimistic multi-
granulation rough set, the second one is the pessimistic
multigranulation rough set[16].

2.2.1 Optimistic Multigranulation Rough Set

Each equivalence relation can induce a partition on
the universe of discourse, and such partition can be

considered as a granulation space. Therefore, a family
of equivalence relations can induce a family of gran-
ulation spaces. In optimistic multigranulation lower
approximation, the word “optimistic” is used to ex-
press the idea that in multi–independent granulation
spaces, we need only at least one of the granulation
spaces to satisfy with the inclusion condition between
the equivalence class and target. The upper approxima-
tion of optimistic multigranulation rough set is defined
by the complement of the optimistic multigranulation
lower approximation.

Definition 2[15]. Let K = (U,A) be a knowle-
dge base, i.e., R = {R1, R2, . . . , Rm} in which
R1, R2, . . . , Rm ∈ A, then ∀X ⊆ U , the optimistic
multigranulation lower and upper approximations of X

are denoted by ROPT(X) and R
OPT

(X), respectively,

ROPT(X) = {x ∈ U : ∃Ri ∈ R, [x]Ri
⊆ X}, (3)

R
OPT

(X) =∼ ROPT(∼ X), (4)

where ∼ X is the complement of set X.
[ROPT(X),R

OPT
(X)] is referred as the optimistic

multigranulation rough set of X. By optimistic multi-
granulation lower and upper approximations, the opti-
mistic multigranulation boundary region of X is

BN OPT
R (X) = R

OPT
(X)−ROPT(X). (5)

Theorem 1. Let K = (U,A) be a knowledge base,
R = {R1, R2, . . . , Rm} in which R1, R2, . . . , Rm ∈ A,
then ∀X ⊆ U , we have

R
OPT

(X) = {x ∈ U : ∀Ri ∈ R, [x]Ri
∩X 6= ∅}. (6)

Proof. It can be derived directly from Definition 2.
¤

By Theorem 1, we can see that though the opti-
mistic multigranulation upper approximation is defined
by the complement of the optimistic multigranulation
lower approximation, it can also be considered as a set,
in which objects have non–empty intersection with the
target in terms of each granulation space.

2.2.2 Pessimistic Multigranulation Rough Set

In the pessimistic multigranulation rough set, the
target is still approximated through a family of equiva-
lence relations. However, the pessimistic case is differ-
ent from the optimistic case. In pessimistic multigran-
ulation lower approximation, the word “pessimistic” is
used to express the idea that we need all of the granu-
lation spaces to satisfy with the inclusion condition be-
tween the equivalence class and target. The upper ap-
proximation of pessimistic multigranulation rough set
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is still defined by the complement of the pessimistic
multigranulation lower approximation.

Definition 3[16]. Let K = (U,A) be a knowledge
base, R = {R1, R2, . . . , Rm} in which R1, R2, . . . , Rm ∈
A, then ∀X ⊆ U , the pessimistic multigranulation
lower and upper approximations of X are denoted by
RPES(X) and R

PES
(X), respectively,

RPES(X) = {x ∈ U : ∀Ri ∈ R, [x]Ri
⊆ X}, (7)

R
PES

(X) =∼ RPES(∼ X). (8)

[RPES(X),R
PES

(X)] is referred as the pessimistic
multigranulation rough set of X. By pessimistic multi-
granulation lower and upper approximations, the pes-
simistic multigranulation boundary region of X is

BN PES
R (X) = R

PES
(X)−RPES(X). (9)

Theorem 2. Let K = (U,A) be a knowledge base,
R = {R1, R2, . . . , Rm} in which R1, R2, . . . , Rm ∈ A,
then ∀X ⊆ U , we have

R
PES

(X) = {x ∈ U : ∃Ri ∈ R, [x]Ri
∩X 6= ∅}. (10)

Proof. It can be derived directly from Definition 3.
¤

Different from upper approximation of optimistic
multigranulation rough set, upper approximation of
pessimistic multigranulation rough set is a set, in which
objects have non–empty intersection with the target in
terms of at least one of the granulation spaces.

For more details about multigranulation rough sets,
we refer the readers to [13-16].

3 Hierarchical Structures on Partition-Based
Multigranulation Spaces

Generally speaking, we can use a preference rela-
tion to represent the hierarchical structure on granula-
tion spaces. However, it should be noticed that most
of the proposed preference relations can only be used
to judge whether a single granulation space is finer or
coarser than another single granulation space, i.e., these
preference relations are used to compare different single
granulation spaces. In the above section, we have men-
tioned how to construct rough sets in multigranulation
space and then, it is an interesting issue to discuss the
hierarchical structures on multigranulation spaces.

Given a knowledge base, in which R ∈ A, since R is
an equivalence relation, then we can induce a partition-
based granulation space such as U/R. Moreover, sup-
pose that R ⊆ A, then the integration of all the granu-
lation spaces forms a multigranulation space. Formally,

a partition-based multigranulation space (PBMS) is de-
noted by K(R) such that

K(R) = {U/R : R ∈ R}. (11)

In (11), the multigranulation space is a family of the
partitions on the universe of discourse. In the following,
we will propose three different hierarchical structures
to investigate the finer or coarser relations between two
partition-based multigranulation spaces.

3.1 Definitions of Three Hierarchical
Structures

Definition 4 (First Hierarchical Structure of
PBMS). Let K = (U,A) be a knowledge base in which
R1,R2 ⊆ A, if ∀[x]Rj

(Rj ∈ R2), there must be
[x]Rk

(Rk ∈ R1) such that [x]Rk
⊆ [x]Rj , then we say

that K(R1) is finer than K(R2) or K(R2) is coarser
than K(R1), which is denoted by K(R1) ¹1 K(R2) or
K(R2) º1 K(R1); if K(R1) ¹1 K(R2) and K(R1) 6=
K(R2), then we say that K(R1) is strictly finer than
K(R2), which is denoted by K(R1) ≺1 K(R2).

Definition 5 (Second Hierarchical Structure of
PBMS). Let K = (U,A) be a knowledge base in which
R1,R2 ⊆ A, if ∀[x]Rk

(Rk ∈ R1), there must be
[x]Rj (Rj ∈ R2) such that [x]Rk

⊆ [x]Rj , then we say
that K(R1) is finer than K(R2) or K(R2) is coarser
than K(R1), which is denoted by K(R1) ¹2 K(R2) or
K(R2) º2 K(R1); if K(R1) ¹2 K(R2) and K(R1) 6=
K(R2), then we say that K(R1) is strictly finer than
K(R2), which is denoted by K(R1) ≺2 K(R2).

Definition 4 and Definition 5 are two different
hierarchical structures, which are proposed to com-
pare two partition-based multigranulation spaces. The
first hierarchical structure says that each equivalence
class in the second multigranulation space should in-
clude at least one of the equivalence classes in the first
multigranulation space; the second hierarchical struc-
ture says that each equivalence class in the first multi-
granulation space should be included into at least one
of the equivalence classes in the second multigranula-
tion space. The following example will show that there
is not a necessary causality between these two hierar-
chical structures.

Example 1. Suppose that U = {x1, x2, x3, x4, x5, x6,
x7, x8} is the universe, three families of the equivalence
relations are given by K(R1) = {U/R1, U/R2}, K(R2)
= {U/R3, U/R4} and K(R3) = {U/R5, U/R6} such
that U/R1 = {{x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}},
U/R2 = {{x1, x4, x5}, {x2, x3}, {x6, x7, x8}}, U/R3

= {{x1, x2, x3, x4, x5, x6}, {x7, x8}}, U/R4 = {{x1, x2,
x3, x4}, {x5, x6}, {x7, x8}}, U/R5 = {{x1, x2, x3, x4,
x5, x6, x7, x8}}, U/R6 = {{x1, x2, x3, x7, x8}, {x4, x6},
{x5}}.
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By Definition 4, we can see that K(R1) ¹1 K(R2)
holds obviously. However, K(R1) ¹2 K(R2) does not
hold since [x6]R2 6⊆ [x6]R3 and [x6]R2 6⊆ [x6]R4 .

By Definition 5, we can see that K(R1) ¹2 K(R3)
holds obviously. However, K(R1) ¹1 K(R3) does not
hold since [x4]R1 6⊆ [x4]R6 and [x4]R2 6⊆ [x4]R6 .

Example 1 tells us that there is not a necessary
causality from the fist hierarchical structure to second
hierarchical structure; conversely, there is also not a
necessary causality from the second hierarchical struc-
ture to the first hierarchical structure; i.e.,

¹1 6−→¹2, ¹2 6−→¹1 .

Theorem 3. Let K = (U,A) be a knowledge base,
¹1 is reflexive and transitive.

Proof.
1) Suppose that R ⊆ A, then by Definition 4,

K(R) ¹1 K(R) holds obviously, ¹1 is reflexive.
2) Suppose that R1,R2,R3 ⊆ A, K(R1) ¹1 K(R2)

and K(R2) ¹1 K(R3). By K(R1) ¹1 K(R2) we know
that ∀[x]Rj (Rj ∈ R2), there must be [x]Rk

(Rk ∈ R1)
such that [x]Rk

⊆ [x]Rj
; by K(R2) ¹1 K(R3) we know

that ∀[x]Rl
(Rl ∈ R3), there must be [x]Rj

(Rj ∈ R2)
such that [x]Rj ⊆ [x]Rl

. Therefore, we can conclude
that ∀[x]Rl

(Rl ∈ R3), there must be [x]Rk
(Rk ∈ R1)

such that [x]Rk
⊆ [x]Rl

, i.e., K(R1) ¹1 K(R3), it fol-
lows that ¹1 is transitive. ¤

Theorem 4. Let K = (U,A) be a knowledge base,
¹2 is reflexive and transitive.

Proof. The proof of Theorem 4 is similar to the proof
of Theorem 3. ¤

Example 2. Suppose that U = {x1, x2, x3, x4, x5, x6,
x7, x8} is the universe, three families of the equiva-
lence relations are given by K(R1) = {U/R1, U/R2},
K(R2) = {U/R3, U/R4} and K(R3) = {U/R5, U/R6}
such that U/R1 = {{x1, x2, x3}, {x4, x5, x6}, {x7, x8}},
U/R2 = {{x1}, {x2, x3}, {x4, x5}, {x6}, {x7, x8}},
U/R3 = {{x1, x2, x3}, {x4, x5}, {x6}, {x7, x8}}, U/R4

= {{x1}, {x2, x3}, {x4, x5}, {x6}, {x7, x8}}, U/R5 =
{{x1}, {x2},{x3}, {x4, x5}, {x6}, {x7}, {x8}}, U/R6 =
{{x1, x2, x3}, {x4, x5, x6}, {x7, x8}}.

By Definition 4 and Definition 5, we can see that
K(R1) ¹1 K(R2) and K(R2) ¹1 K(R1). However,
K(R1) 6= K(R2), from which we can see that ¹1 is a
binary relation without the condition of the antisym-
metric.

By Definition 4 and Definition 5, we can see that
K(R1) ¹2 K(R3) and K(R3) ¹2 K(R1). However,
K(R1) 6= K(R3), from which we can see that ¹2 is
also a binary relation without the condition of the an-
tisymmetric.

Example 2 tells us that both ¹1 and ¹2 are not an-
tisymmetric. By such example and Theorem 3, we can

conclude that such two hierarchical structures are not
partial order in general.

By investigation of the above two hierarchical struc-
tures, it is not difficult to present the third hierarchical
structure on partition-based multigranulation spaces as
Definition 6 shows.

Definition 6 (Third Hierarchical Structure of
PBMS). Let K = (U,A) be a knowledge base in which
R1,R2 ⊆ A, if ∀[x]Rk

(Rk ∈ R1) and ∀[x]Rj (Rj ∈ R2),
we have [x]Rk

⊆ [x]Rj
, then we say that K(R1) is finer

than K(R2) or K(R2) is coarser than K(R1), which
is denoted by K(R1) ¹3 K(R2) or K(R2) º3 K(R1);
if K(R1) ¹3 K(R2) and K(R1) 6= K(R2), then we
say that K(R1) is strictly finer than K(R2), which is
denoted by K(R1) ≺3 K(R2).

The third hierarchical structure says that each
equivalence class in the first multigranulation space
should be included into each equivalence class in the
second multigranulation space in terms of each object
in the universe. Obviously, the third hierarchical struc-
ture is stricter than both the first and the second hier-
archical structures.

Theorem 5. Let K = (U,A) be a knowledge base,
¹3 is antisymmetric and transitive.

Proof.
1) Suppose that R1,R2 ⊆ A and K(R1) 6= K(R2),

then there must be [x]Rk
(Rk ∈ R1) and [x]Rj (Rj ∈ R2)

such that [x]Rk
6= [x]Rj

. It follows that [x]Rk
6⊆ [x]Rj

or [x]Rk
6⊇ [x]Rj

. In other words, ∃[x]Rk
(Rk ∈ R1) and

∃[x]Rj (Rj ∈ R2) such that [x]Rk
6⊆ [x]Rj or [x]Rk

6⊇
[x]Rj

, from which we can conclude that K(R1) 6¹3

K(R2) or K(R2) 6¹3 K(R1) and then ¹3 is antisym-
metric.

2) Suppose that R1,R2,R3 ⊆ A, K(R1) ¹3 K(R2)
and K(R2) ¹3 K(R3). By K(R1) ¹3 K(R2) we
know that ∀[x]Rk

(Rk ∈ R1) and ∀[x]Rj
(Rj ∈ R2),

[x]Rk
⊆ [x]Rj holds; by K(R2) ¹3 K(R3) we know that

∀[x]Rj
(Rj ∈ R2) and ∀[x]Rl

(Rl ∈ R3), [x]Rj
⊆ [x]Rl

holds. Therefore, we can conclude that ∀[x]Rk
(Rk ∈

R1) and ∀[x]Rl
(Rl ∈ R3), [x]Rk

⊆ [x]Rl
holds, i.e.,

K(R1) ¹3 K(R3), ¹3 is transitive. ¤
It should be noticed that the third hierarchical struc-

ture is not necessarily reflexive if the multigranulation
space contains two or more partitions. Nevertheless, if
the multigranulation space degenerates into single gran-
ulation space, then the third hierarchical structure is
reflexive.

Theorem 6. Let K = (U,A) be a knowledge base
in which R1,R2 ⊆ A, if K(R1) ¹3 K(R2), then
K(R1) ¹1 K(R2) and K(R1) ¹2 K(R2).

Proof. By the above definitions of the three hierar-
chical structures, it is trivial to prove this theorem. ¤
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The result in Theorem 6 is

¹3−→¹1 and ¹2 .

The following example will show that the inverse of
Theorem 6 does not hold.

Example 3. Suppose that U = {x1, x2, x3, x4, x5, x6,
x7, x8} is the universe, two families of the equiva-
lence relations are given by K(R1) = {U/R1,
U/R2} and K(R2) = {U/R3, U/R4} such that
U/R1 = {{x1, x2, x3}, {x4, x5, x6}, {x7, x8}}; U/R2 =
{{x1}, {x2, x3}, {x4, x5}, {x6}, {x7, x8}}; U/R3 = {{x1,
x2, x3, x4, x5, x6, x7, x8}}; U/R4 = {{x1}, {x2, x3},
{x4, x5, x6}, {x7, x8}}.

By Definition 4 and Definition 5, K(R1) ¹1 K(R2)
and K(R1) ¹2 K(R2) hold obviously. However,
K(R1) ¹3 K(R2) does not hold since [x1]R1 6⊆ [x1]R4 .

Example 3 tells us that there is not a necessary
causality from the integration of the first and second
hierarchical structures to the third hierarchical struc-
ture, i.e.,

¹1 and ¹2 6−→¹3 .

From what has been discussed in this subsection,
the relationships among the proposed three hierarchi-
cal structures are

Fig.1. Relationships among the three hierarchical structures on

partition-based multigranulation spaces.

3.2 Relationships between Hierarchical
Structures and Multigranulation Rough
Sets

In Section 2, optimistic and pessimistic multigranu-
lation rough sets have been briefly introduced. In Sub-
section 3.1, three different hierarchical structures have
been proposed. Then in the following, we will investi-
gate the relationships between these hierarchical struc-
tures and the varieties of multigranulation rough sets.

Theorem 7. Let K = (U,A) be a knowledge base
in which R1,R2 ⊆ A, if K(R1) ¹1 K(R2), then
R1

OPT(X) ⊇ R2
OPT(X) for each X ⊆ U .

Proof. ∀x ∈ R2
OPT(X), then by Definition 2, there

must be Rj ∈ R2 such that [x]Rj
⊆ X. By condition

we know that K(R1) ¹1 K(R2), then by Definition 4,
there must be [x]Rk

(Rk ∈ R1) such that [x]Rk
⊆ [x]Rj

,
and it follows that [x]Rk

⊆ X, i.e., x ∈ R1
OPT(X). ¤

Theorem 7 tells us that using the first hierarchical
structure, if the partition-based multigranulation space
is finer, then greater optimistic multigranulation lower
approximation will be obtained.

Theorem 8. Let K = (U,A) be a knowledge base
in which R1,R2 ⊆ A, if K(R1) ¹1 K(R2), then
R1

OPT
(X) ⊆ R2

OPT
(X) for each X ⊆ U .

Proof. The proof of Theorem 8 is similar to the proof
of Theorem 7. ¤

Theorem 8 tells us that using the first hierarchical
structure, if the partition-based multigranulation space
is finer, then the smaller optimistic multigranulation
upper approximation will be obtained.

Theorem 9. Let K = (U,A) be a knowledge base
in which R1,R2 ⊆ A, if R1

OPT(X) ⊇ R2
OPT(X) for

each X ⊆ U , then K(R1) ¹1 K(R2).
Proof. Suppose that K(R1) 6¹1 K(R2), then by

Definition 4, ∃[x]Rj
(Rj ∈ R2) such that [x]Rk

6⊆ [x]Rj

for each [x]Rk
(Rk ∈ R1). x ∈ R2

OPT([x]Rj
) holds ob-

viously since [x]Rj
⊆ [x]Rj

. However, [x]Rk
6⊆ [x]Rj

holds for each [x]Rk
(Rk ∈ R1), it follows that x /∈

R1
OPT([x]R2j

). From discussions above, we know that
∃Y ⊆ U such that R1

OPT(Y ) 6⊇ R2
OPT(Y ). ¤

Theorem 9 is the inverse of Theorem 7, i.e., if
the optimistic multigranulation lower approximation
is greater, then the multigranulation space is finer in
terms of the first hierarchical structure.

Theorem 10. Let K = (U,A) be a knowledge base
in which R1,R2 ⊆ A, if R1

OPT
(X) ⊆ R2

OPT
(X) for

each X ⊆ U , then K(R1) ¹1 K(R2).
Proof. The proof of Theorem 10 is similar to the

proof of Theorem 9. ¤
Theorem 10 is the inverse of Theorem 8, i.e., if

the optimistic multigranulation upper approximation
is smaller, then the multigranulation space is finer in
terms of the first hierarchical structure.

Example 4. Suppose that the director of the school
must give a global evaluation to some students. This
evaluation should be based on the level in mathemat-
ics, physics and literature. The director gave the exa-
mples of evaluation as shown in Table 1. The exam-
ple contains eight students described by means of four
attributes: a1 ⇒ level in mathematics (condition at-
tribute), a2 ⇒ level in physics (condition attribute),
a3 ⇒ level of literature (condition attribute), d ⇒
global evaluation (decision attribute).
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Table 1. Example of Students’ Evaluations

U a1 a2 a3 d

x1 2 3 2 Bad

x2 5 1 3 Medium

x3 5 2 4 Bad

x4 3 5 3 Good

x5 1 3 4 Bad

x6 2 5 3 Medium

x7 3 1 2 Bad

x8 2 1 2 Medium

Suppose that K(R1) = {U/IND({a1, a2, a3})},
K(R2) = {U/IND({a1}), U/IND({a2}), U/IND({a3})},
then we can see that K(R1) ¹1 K(R2) holds ob-
viously. Since the decision attribute d partitions
the universe into subsets such that U/IND({d}) =
{Bad,Medium,Good} = {{x1, x3, x5, x7}, {x2, x6, x8},
{x4}}, then it is not difficult to compute optimistic
multigranulation rough sets in terms of two different
multigranulation spaces as following:

R1
OPT(Bad) = {x1, x3, x5, x7},

R1
OPT(Medium) = {x2, x6, x8},

R1
OPT(Good) = {x4};

R2
OPT(Bad) = {x1, x3, x5},

R2
OPT(Medium) = ∅,

R2
OPT(Good) = ∅;

R1
OPT

(Bad) = {x1, x3, x5, x7},
R1

OPT
(Medium) = {x2, x6, x8},

R1
OPT

(Good) = {x4};
R2

OPT
(Bad) = {x1, x3, x5, x7, x8},

R2
OPT

(Medium) = {x2, x6, x8},
R2

OPT
(Good) = {x4}.

By the above results, we can see that R1
OPT(X) ⊇

R2
OPT(X) and R1

OPT
(X) ⊆ R2

OPT
(X) in which X

is the decision class in U/IND({d}). In other words,
this example shows the relationships between the first
hierarchical structure and optimistic multigranulation
rough set in detail.

Theorem 11. Let K = (U,A) be a knowledge
base in which R1,R2 ⊆ A, if K(R1) ¹2 K(R2), then
R1

PES(X) ⊇ R2
PES(X) for each X ⊆ U .

Proof. ∀x ∈ R2
PES(X), by Definition 3, we know

that [x]Rj
⊆ X holds for each Rj ∈ R2. By condition,

K(R1) ¹2 K(R2), then by Definition 5, ∀[x]Rk
(Rk ∈

R1), there must be [x]Rj (Rj ∈ R2) such that [x]Rk
⊆

[x]Rj
. Since [x]Rj

⊆ X for each Rj ∈ R2, then we
can conclude that [x]Rk

⊆ X for each Rk ∈ R1, i.e.,
x ∈ R1

PES(X). ¤

Theorem 11 tells us that using the second hierar-
chical structure, if the partition-based multigranulation
space is finer, then the greater pessimistic multigranu-
lation lower approximation will be obtained.

Theorem 12. Let K = (U,A) be a knowledge
base in which R1,R2 ⊆ A, if K(R1) ¹2 K(R2), then
R1

PES
(X) ⊆ R2

PES
(X) for each X ⊆ U .

Proof. The proof of Theorem 12 is similar to the
proof of Theorem 11. ¤

Theorem 12 tells us that using the second hierar-
chical structure, if the partition-based multigranulation
space is finer, then the smaller pessimistic multigranu-
lation upper approximation will be obtained.

Theorem 13. Let K = (U,A) be a knowledge base
in which R1,R2 ⊆ A, if R1

PES(X) ⊇ R2
PES(X) for

each X ⊆ U , then K(R1) ¹2 K(R2).
Proof. Suppose that K(R1) 6¹2 K(R2), then by Def-

inition 5, ∃[x]Rk
(Rk ∈ R1) such that [x]Rk

6⊆ [x]Rj for
each [x]Rj

(Rj ∈ R2). Let Y =
⋃{[x]Rj

: ∀Rj ∈ R2},
by Definition 3 we know that x ∈ R2

PES(Y ) since
[x]Rj

⊆ Y for each Rj ∈ R2. However, since [x]Rk
6⊆

[x]Rj
for each [x]Rj

(Rj ∈ R2), then [x]Rk
6⊆ Y , and it

follows that x /∈ R1
PES(Y ). From discussion above, we

know that ∃Y ⊆ U such that R1
PES(Y ) 6⊇ R2

PES(Y ).
¤

Theorem 13 is the inverse of Theorem 11, i.e., if
the pessimistic multigranulation lower approximation
is greater, then the multigranulation space is finer in
terms of the second hierarchical structure.

Theorem 14. Let K = (U,A) be a knowledge base
in which R1,R2 ⊆ A, if R1

PES
(X) ⊆ R2

PES
(X) for

each X ⊆ U , then K(R1) ¹2 K(R2).
Proof. The proof of Theorem 14 is similar to the

proof of Theorem 13. ¤
Theorem 14 is the inverse of Theorem 12, i.e., if

the pessimistic multigranulation upper approximation
is smaller, then the multigranulation space is finer in
terms of the second hierarchical structure.

Example 5. Take Table 1 for instance, by Definition
5, we know that K(R1) ¹2 K(R2). Therefore, it is not
difficult to obtain the following pessimistic multigranu-
lation rough sets:

R1
PES(Bad) = {x1, x3, x5, x7},

R1
PES(Medium) = {x2, x6, x8},

R1
PES(Good) = {x4};

R2
PES(Bad) = {x5},

R2
PES(Medium) = ∅,

R2
PES(Good) = ∅;

R1
PES

(Bad) = {x1, x3, x5, x7},
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R1
PES

(Medium) = {x2, x6, x8},
R1

PES
(Good) = {x4};

R2
PES

(Bad) = U,

R2
PES

(Medium) = {x1, x2, x3, x4, x6, x7, x8},
R2

PES
(Good) = {x2, x4, x6, x7}.

By the above results, we can see that R1
PES(X) ⊇

R2
PES(X) and R1

PES
(X) ⊆ R2

PES
(X) in which X

is the decision class in U/IND({d}). In other words,
this example shows the relationships between the se-
cond hierarchical structure and pessimistic multigran-
ulation rough set in detail.

Since the third hierarchical structure can generate
the first and the second hierarchical structures (see
Fig.1), then by the above theorems, it is not difficult to
obtain the following corollaries.

Corollary 1. Let K = (U,A) be a knowledge base
in which R1,R2 ⊆ A, if K(R1) ¹3 K(R2), then
R1

OPT(X) ⊇ R2
OPT(X) for each X ⊆ U .

Corollary 2. Let K = (U,A) be a knowledge base
in which R1,R2 ⊆ A, if K(R1) ¹3 K(R2), then
R1

OPT
(X) ⊆ R2

OPT
(X) for each X ⊆ U .

Corollary 3. Let K = (U,A) be a knowledge base
in which R1,R2 ⊆ A, if K(R1) ¹3 K(R2), then
R1

PES(X) ⊇ R2
PES(X) for each X ⊆ U .

Corollary 4. Let K = (U,A) be a knowledge base
in which R1,R2 ⊆ A, if K(R1) ¹3 K(R2), then
R1

PES
(X) ⊆ R2

PES
(X) for each X ⊆ U .

The above four corollaries tell us that if the
partition-based multigranulation space is finer, then
the optimistic and pessimistic multigranulation lower
approximations are greater and the optimistic and
pessimistic multigranulation upper approximations are
smaller.

4 Multicovering Rough Sets

In Pawlak’s knowledge base, an indiscernibility rela-
tion can induce a partition, which is the basic knowle-
dge for approximating the target concept. However, in
many practical applications, the granules are formed in
the covering, in which two granules may not be disjoint
to each other. In many rough set literatures, several
types of covering-based rough sets have been proposed
and deeply investigated. However, it should be noticed
that those covering-based rough sets were constructed
on the basis of one and only one covering. By employ-
ing the basic thinking of multigranulation rough sets,
it is natural to study the multicovering rough sets ap-
proaches. To simplify our discussion, we will use a sin-
gle covering-based rough set, which has been studied in

[11, 30], to construct our multicovering rough sets.

4.1 Single Covering-Based Rough Set

Definition 7. Let U be the universe of discourse,
B = {C1, C2, . . . , Cn} is a family of the subsets of U , if⋃

B = U , then B is referred as a covering on U .
Definition 8. Let U be the universe of discourse,

B = {C1, C2, . . . , Cn} is a covering on U , ∀X ⊆ U , the
lower and upper approximations of X can be denoted by
B(X) and B(X), respectively,

B(X) = {x ∈ U : NB(x) ⊆ X}, (12)

B(X) = {x ∈ U : NB(x) ∩X 6= ∅}, (13)

where NB(x) =
⋂{C : C ∈ B ∧ x ∈ C} is the neighbor-

hood of x.

4.2 Multicovering-Based Rough Sets

In the following, we may consider a family of the
coverings on the universe and then propose the multi-
covering rough sets.

Definition 9. Let U be the universe of discourse,
C = {B1, B2, . . . , Bm} is a family of the coverings on
the universe of discourse, ∀X ⊆ U , the optimistic mul-
ticovering lower and upper approximations of X are de-
noted by C OPT(X) and C

OPT
(X), respectively,

C OPT(X) = {x ∈ U : ∃Bi ∈ C , NBi
(x) ⊆ X}, (14)

C
OPT

(X) =∼ C OPT(∼ X). (15)

[C OPT(X),C
OPT

(X)] is referred as the optimistic
multicovering rough set of X. Similar to partition-
based optimistic multigranulation rough set (see Defini-
tion 2), in multicovering case, each covering can induce
a neighborhood for each object. If at least one of these
neighborhoods for an object is included into the target
concept, then such object belongs to the optimistic mul-
ticovering lower approximation. The optimistic multi-
covering upper approximation shows the complement
property of the optimistic multicovering rough set.

Definition 10. Let U be the universe of discourse,
C = {B1, B2, . . . , Bm} is a family of the coverings on
the universe of discourse, ∀X ⊆ U , the pessimistic mul-
ticovering lower and upper approximations of X are de-
noted by C PES(X) and C

PES
(X), respectively,

C PES(X) = {x ∈ U : ∀Bi ∈ C , NBi
(x) ⊆ X}, (16)

C
PES

(X) =∼ C PES(∼ X). (17)

[C PES(X),C
PES

(X)] is referred as the pessmistic
multicovering rough set of X. Similar to partition-
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based pessimistic multigranulation rough set (see Def-
inition 3), in multicovering case, each covering can in-
duce a neighborhood for each object. If all of these
neighborhoods of an object is included into the target
concept, then such object belongs to the pessimistic
multicovering lower approximation. The pessimistic
multicovering upper approximation shows the comple-
ment property of the pessimistic multicovering rough
set.

Theorem 15. Let U be the universe of discourse,
C = {B1, B2, . . . , Bm} is a family of the coverings on
the universe of discourse, ∀X ⊆ U , we have

C
OPT

(X) = {x ∈ U : ∀Bi ∈ C , NBi(x) ∩X 6= ∅}.
(18)

Theorem 16. Let U be the universe of discourse,
C = {B1, B2, . . . , Bm} is a family of the coverings on
the universe of discourse, ∀X ⊆ U , we have

C
PES

(X) = {x ∈ U : ∃Bi ∈ C , NBi
(x)∩X 6= ∅}. (19)

Theorem 15 tells us that though optimistic multi-
covering upper approximation is defined by the comple-
ment of optimistic multicovering lower approximation,
it can also be considered as a set, in which objects have
non-empty intersection with the target in terms of each
covering. Theorem 16 tells us that though pessimistic
multicovering upper approximation is defined by the
complement of pessimistic multicovering lower approx-
imation, it can also be considered as a set, in which
objects have non-empty intersection with the target in
terms of at least of one of the coverings.

Proposition 1. Let U be the universe of discourse,
C = {B1, B2, . . . , Bm} is a family of the coverings on
the universe of discourse, then we have following pro-
perties about optimistic multicovering lower and upper
approximations:

1) C OPT(X) ⊆ X ⊆ C
OPT

(X),

2) C OPT(∅) = C
OPT

(∅) = ∅,

C OPT(U) = C
OPT

(U) = U,

3) C OPT(X) =
⋃m

i=1Bi(X),

C
OPT

(X) =
⋂m

i=1Bi(X),
4) X ⊆ Y ⇒ C OPT(X) ⊆ C OPT(Y ),

X ⊆ Y ⇒ C
OPT

(X) ⊆ C
OPT

(Y ),
5) C OPT

(
C OPT(X)

)
= C OPT(X),

C
OPT

(
C

OPT
(X)

)
= C

OPT
(X).

Proof.
1) ∀x ∈ C OPT(X), by Definition 9, there must be

Bi ∈ C such that NBi
(x) ⊆ X. Since NBi

(x) =
⋂{C :

C ∈ Bi ∧ x ∈ C}, then we have x ∈ NBi
(x), and it

follows that x ∈ X, i.e., C OPT(X) ⊆ X.

∀x /∈ C
OPT

(X), by (15), we know that x ∈ C OPT(∼
X). In other words, there must be Bi ∈ C such that
NBi(x) ⊆∼ X. Since x ∈ NBi(x), then x ∈∼ X, x /∈
X, from which we can conclude that X ⊆ C

OPT
(X).

2) By the result of 1) we know that C OPT(∅) ⊆ ∅.
Thus, it must be proved that ∅ ⊆ C OPT(∅). For each
x /∈ C OPT(∅), by Theorem 15, ∀Bi ∈ C , NBi

(x) 6⊆ ∅
holds, and it follows that x ∈ U , i.e., x /∈ ∅, from which
we can conclude that ∅ ⊆ C OPT(∅).

Similarly, it is not difficult to prove that C
OPT

(∅) =
∅.

By the result of 1) we know that C OPT(U) ⊆ U .
Thus, it must be proved that U ⊆ C OPT(U). For each
x /∈ C OPT(U), by Theorem 15, ∀Bi ∈ C , NBi

(x) 6⊆ U
holds, and it follows that x ∈ ∅, i.e., x /∈ U , from which
we can conclude that U ⊆ C OPT(U).

Similarly, it is not difficult to prove that C
OPT

(U) =
U .

3) ∀x ∈ U , by Definition 9, we have

x ∈ C OPT(X) ⇔∃Bi ∈ C s.t. NBi
(x) ⊆ X

⇔∃Bi ∈ C s.t. x ∈ Bi(X)

⇔x ∈ ⋃m
i=1Bi(X).

∀x ∈ U , by Theorem 15, we have

x ∈ C
OPT

(X) ⇔∀Bi ∈ C , NBi
(x) ∩X 6= ∅

⇔∀Bi ∈ C , x ∈ Bi(X)

⇔x ∈ ⋂m
i=1Bi(X).

4) ∀x ∈ C OPT(X), there must be Bi ∈ C such that
NBi

(x) ⊆ X. Since X ⊆ Y , then NBi
(x) ⊆ Y also

holds, it follows that x ∈ C OPT(Y ), i.e., C OPT(X) ⊆
C OPT(Y ).

Similarly, it is not difficult to prove C
OPT

(X) ⊆
C

OPT
(Y ).

5) By the result of 1), we have C OPT
(
C OPT(X)

)
⊆

C OPT(X). Thus, it must be proved that C OPT
(
C OPT(X)

) ⊇ C OPT(X).
∀x ∈ C OPT(X), there must be Bi ∈ C

such that NBi
(x) ⊆ X. By the result of 4),

we have C OPT(NBi
(x)) ⊆ C OPT(X). ∀y ∈

NBi(x), we have NBi(y) ⊆ NBi(x) and then
y ∈ C OPT(NBi

(x)), from which we can conclude
that NBi

(x) ⊆ C OPT(NBi
(x)) ⊆ C OPT(X), i.e.,

x ∈ C OPT
(
C OPT(X)

)
. From discussions above,

C OPT
(
C OPT(X)

)
⊇ C OPT(X) holds.

∀X ⊆ U , by the above results, we have
C OPT

(
C OPT(∼ X)

)
= C OPT(∼ X). By Definition
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9, we have the following:

C OPT
(
C OPT(∼ X)

)
= C OPT(∼ X)

⇒C OPT
(
∼ C

OPT
(X)

)
=∼ C

OPT
(X)

⇒ ∼ C
OPT

(
C

OPT
(X)

)
=∼ C

OPT
(X)

⇒C
OPT

(
C

OPT
(X)

)
= C

OPT
(X).

That completes the proof of C
OPT

(
C

OPT
(X)

)
=

C
OPT

(X). ¤
Proposition 2. Let U be the universe of discourse,

C = {B1, B2, . . . , Bm} is a family of the coverings on
the universe of discourse, then we have following pro-
perties about pessimistic multicovering lower and upper
approximations:

1) C PES(X) ⊆ X ⊆ C
PES

(X),

2) C PES(∅) = C
PES

(∅) = ∅,

C PES(U) = C
PES

(U) = U,
3) C PES(X) =

⋂m
i=1Bi(X),

C
PES

(X) =
⋃m

i=1Bi(X),
4) X ⊆ Y ⇒ C PES(X) ⊆ C PES(Y ),

X ⊆ Y ⇒ C
PES

(X) ⊆ eC
PES

(Y ),
5) C PES

(
C PES(X)

)
= C PES(X),

C
PES

(
C

PES
(X)

)
= C

PES
(X).

Proof. The proof of Proposition 2 is similar to the
proof of Proposition 1. ¤

5 Hierarchical Structures on Covering-Based
Multigranulation Spaces

In this section, we may generalize the hierarchical
structures, which have been proposed in Section 3 into
covering-based multigranulation spaces (CBMSs).

Let U be the universe of discourse, B is a covering
on U . Moreover, suppose that C = {B1, B2, . . . , Bm}
is a family of the coverings on the universe of discourse,
then the integration of these coverings forms a covering-
based multigranulation space. Formally, a covering-
based multigranulation space is denoted by K(C ) where

K(C ) = {Bi : Bi ∈ C }. (20)

5.1 Definitions of Three Hierarchical
Structures

Definition 11 (First Hierarchical Structure of
CBMS). Let U be the universe of discourse, C1 and C2

are two families of the coverings on U , if ∀NBj
(x)(Bj ∈

C2), there must be NBk
(x)(Bk ∈ C1) such that

NBk
(x) ⊆ NBj

(x), then we say that K(C1) is finer
than K(C2) or K(C2) is coarser than K(C1), which
is denoted by K(C1) ¹1 K(C2) or K(C2) º1 K(C1);
if K(C1) ¹1 K(C2) and K(C1) 6= K(C2), then we say
that K(C1) is strictly finer than K(C2), which is de-
noted by K(C1) ≺1 K(C2).

Definition 12 (Second Hierarchical Structure of
CBMS). Let U be the universe of discourse, C1 and C2

are two families of the coverings on U , if ∀NBk
(x)(Bk ∈

C1), there must be NBj
(x)(Bj ∈ C2) such that

NBk
(x) ⊆ NBj

(x), then we say that K(C1) is finer
than K(C2) or K(C2) is coarser than K(C1), which
is denoted by K(C1) ¹2 K(C2) or K(C2) º2 K(C1);
if K(C1) ¹2 K(C2) and K(C1) 6= K(C2), then we say
that K(C1) is strictly finer than K(C2), which is de-
noted by K(C1) ≺2 K(C2).

The explanations of above two hierarchical struc-
tures are similar to those on PBMSs.

Example 6. Suppose that U = {x1, x2, x3, x4, x5, x6,
x7, x8} is the universe, three families of the cov-
erings are given by C1 = {B1, B2}, C2 = {B3,
B4} and C3 = {B5, B6} such that B1 = {{x1, x2,
x3, x4}, {x3, x4, x6}, {x5, x6, x7}, {x7, x8}}, B2 = {{x1,
x2, x4, x5, x6}, {x2, x3, x4, x6}, {x5, x6, x7, x8}}, B3 =
{{x1, x2, x3, x4, x5, x6}, {x5, x6, x7, x8}}, B4 = {{x1,
x2, x3, x4}, {x7, x8}, {x3, x4, x5, x6}, {x5, x6, x7, x8}},
B5 = {{x1, x2, x3, x4, x5, x6, x7, x8}, {x5, x6, x7, x8}},
B6 = {{x1, x2, x3}, {x4, x7, x8}, {x4, x6}, {x5}}.

By Definition 11, we can see that K(C1) ¹1 K(C2)
holds obviously. However, K(C1) ¹2 K(C2) does
not hold since NB1(x5) 6⊆ NB3(x5) and NB1(x5) 6⊆
NB4(x5).

By Definition 12, we can see that K(C1) ¹2 K(C3)
holds obviously. However, K(C1) ¹1 K(C3) does
not hold since NB1(x1) 6⊆ NB6(x1) and NB2(x1) 6⊆
NB6(x1).

Example 6 tells us that there is not a necessary
causality from the fist hierarchical structure to the sec-
ond hierarchical structure; conversely, there is also not a
necessary causality from the second hierarchical struc-
ture to the first hierarchical structure. These results
are same with the partition case.

Theorem 17. Let U be the universe of discourse,
¹1 is reflexive and transitive.

Proof. The proof of Theorem 17 is similar to the
proof of Theorem 3. ¤

Theorem 18. Let U be the universe of discourse,
¹2 is reflexive and transitive.

Proof. The proof of Theorem 18 is similar to the
proof of Theorem 3. ¤

Example 7. Suppose that U = {x1, x2, x3, x4, x5, x6,
x7, x8} is the universe, three families of the cove-
rings are given by C1 = {B1, B2}, C2 = {B3,
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B4} and C3 = {B5, B6} such that B1 = {{x1, x2,
x3, x4, x5}, {x4, x5, x6}, {x4, x5, x6, x7, x8}}, B2 =
{{x1}, {x2, x3}, {x4, x5}, {x6}, {x7, x8}}, B3 = {{x1,
x2, x3, x4, x5}, {x4, x5}, {x4, x5, x6}, {x7, x8}}, B4 =
{{x1}, {x1, x2, x3}, {x2, x3, x4, x5}, {x6}, {x6, x7, x8},
{x7, x8}}, B5 = {{x1}, {x2}, {x3}, {x4, x5}, {x6}, {x4,
x5, x6, x7, x8}}, B6 = {{x1, x2, x3, x4, x5}, {x4, x5, x6},
{x7, x8}}.

By Definition 11, we can see that K(C1) ¹1 K(C2)
and K(C2) ¹1 K(C1). However, K(C1) 6= K(C2), from
which we can see that ¹1 is a binary relation without
the condition of the antisymmetric.

By Definition 12, we can see that K(C1) ¹2 K(C3)
and K(C3) ¹2 K(C1). However, K(C1) 6= K(C3), from
which we can see that ¹2 is also a binary relation with-
out the condition of the antisymmetric.

Example 7 shows that the first and the second hier-
archical structures on CBMSs are also antisymmetric.

Similar to the partition case, we may define the third
hierarchical structure on CBMS as Definition 13 shows.

Definition 13 (Third Hierarchical Structure of
CBMS). Let U be the universe of discourse, C1 and C2

are two families of the coverings on U , if ∀NBj
(x)(Bj ∈

C2) and ∀NBk
(x)(Bk ∈ C1), we have NBk

(x) ⊆
NBj

(x), then we say that K(C1) is finer than K(C2)
or K(C2) is coarser than K(C1), which is denoted by
K(C1) ¹3 K(C2) or K(C2) º3 K(C1); if K(C1) ¹3

K(C2) and K(C1) 6= K(C2), then we say that K(C1) is
strictly finer than K(C2), which is denoted by K(C1) ≺3

K(C2).
Theorem 19. Let U be the universe of discourse,

¹3 is antisymmetric and transitive.
Proof. The proof of Theorem 19 is similar to the

proof of Theorem 5. ¤
Theorem 20. Let U be the universe of discourse,

C1 and C2 are two families of the coverings on U ,
if K(C1) ¹3 K(C2), then K(C1) ¹1 K(C2) and
K(C1) ¹2 K(C2).

Proof. By the definitions of the above three hierar-
chical structures, it is a trivial to prove this theorem.

¤
The following example will show that the inverse of

Theorem 20 does not hold.
Example 8. Suppose that U = {x1, x2, x3, x4, x5, x6,

x7, x8} is the universe, two families of the coverings are
given by C1 = {B1, B2} and C2 = {B3, B4} such that
B1 = {{x1, x2, x3}, {x2, x3, x4, x5, x6}, {x7, x8}}, B2 =
{{x1}, {x1, x2, x3}, {x4, x5, x6}, {x6}, {x7, x8}}, B3 =
{{x1, x2, x3, x4, x5, x6, x7, x8}}, B4 = {{x1}, {x2, x3},
{x2, x3, x4, x5, x6}, {x2, x3, x7, x8}}.

By Definition 11 and Definition 12, K(C1) ¹1

K(C2) and K(C1) ¹2 K(C2) hold obviously. How-
ever, K(C1) ¹3 K(C2) does not hold since NB2(x2) 6⊆

NB4(x2).
Example 8 tells us that in CBMSs, there is not a

necessary causality from the integration of the first and
second hierarchical structures to the third hierarchical
structure.

From discussions above, we may also obtain the re-
lationships among the three hierarchical structures on
CBMSs (see Fig.2), which are same to the partition
case.

Fig.2. Relationships among three hierarchical structures on

covering-based multigranulation spaces.

5.2 Relationships between Hierarchical
Structures and Multicovering Rough Sets

Theorem 21. Let U be the universe of discourse,
C1 and C2 are two families of the coverings on U , if
K(C1) ¹1 K(C2), then C1

OPT(X) ⊇ C2
OPT(X) for

each X ⊆ U .
Proof. The proof of Theorem 21 is similar to the

proof of Theorem 7. ¤
Theorem 21 tells us that using the first hierarchi-

cal structure, if the CBMS is finer, then the greater
optimistic multicovering lower approximation will be
obtained.

Theorem 22. Let U be the universe of discourse,
C1 and C2 are two families of the coverings on U , if
K(C1) ¹1 K(C2), then C1

OPT
(X) ⊆ C2

OPT
(X) for

each X ⊆ U .
Proof. The proof of Theorem 21 is similar to the

proof of Theorem 7. ¤
Theorem 22 tells us that using the first hierarchi-

cal structure, if the CBMS is finer, then the smaller
optimistic multicovering upper approximation will be
obtained.

Theorem 23. Let U be the universe of discourse,
C1 and C2 are two families of the coverings on U ,
if C1

OPT(X) ⊇ C2
OPT(X) for each X ⊆ U , then

K(C1) ¹1 K(C2).
Proof. The proof of Theorem 23 is similar to the

proof of Theorem 9. ¤
Theorem 23 is the inverse of Theorem 21, i.e., if
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the optimistic multicovering lower approximation is
greater, then the multigranulation space is finer in
terms of the first hierarchical structure.

Theorem 24. Let U be the universe of discourse,
C1 and C2 are two families of the coverings on U ,
if C1

OPT
(X) ⊆ C2

OPT
(X) for each X ⊆ U , then

K(C1) ¹1 K(C2).
Proof. The proof of Theorem 24 is similar to the

proof of Theorem 9. ¤
Theorem 24 is the inverse of Theorem 22, i.e., if

the optimistic multicovering upper approximation is
smaller, then the multigranulation space is finer in
terms of the first hierarchical structure.

Example 9. Let us consider an incomplete decision
system for students’ evaluations, which is shown in Ta-
ble 2. Similar to Table 1, in Table 2, 15 students are
evaluated by four attributes: a1 ⇒ level in mathema-
tics (condition attribute), a2 ⇒ level in physics (con-
dition attribute), a3 ⇒ level of literature (condition
attribute), d ⇒ global evaluation (decision attribute).

Table 2. Example of Incomplete Students’ Evaluations

U a1 a2 a3 d

x1 Medium Medium Bad Bbad

x2 Good Medium Bad Medium

x3 Bad Good * Bad

x4 Medium Good Bad Medium

x5 * Good Bad Medium

x6 Bad Bad Medium Bad

x7 Good Bad Medium Bad

x8 Medium * Medium Medium

x9 Good Medium Medium Good

x10 Medium Good Medium Good

x11 Good Bad Good Bad

x12 * Medium * Medium

x13 Good Medium Good Good

x14 Bad Good Good Bad

x15 Medium Good Good Good

Since ∗ is used to denote unknown value in incom-
plete information system, then by the maximal consis-
tent block technique, which was proposed in [31], we
can obtain the following coverings:

1) set of maximal consistent blocks in terms of
set of attributes {a1, a2, a3}: B1 = {{x1, x12}, {x2,
x12}, {x9, x12}, {x15, x12}, {x13, x12}, {x8, x10}, {x8, x12},
{x3, x14}, {x3, x5}, {x4, x5}, {x6}, {x7}, {x11}};

2) set of maximal consistent blocks in terms of at-
tribute a1: B2 = {{x1, x4, x5, x8, x10, x12, x15}, {x2, x5,
x7, x9, x11, x12, x13}, {x3, x5, x6, x12, x14}};

3) set of maximal consistent blocks in terms of at-
tribute a2: B3 = {{x1, x2, x8, x9, x12, x13}, {x3, x4, x5,
x8, x10, x14, x15}, {x6, x7, x8, x11}};

4) set of maximal consistent blocks in terms of at-
tribute a3: B4 = {{x1, x2, x3, x4, x5, x12}, {x3, x6, x7, x8,

x9, x10, x12}, {x3, x11, x12, x13, x14, x15}}.
Suppose that K(C1) = {B1}, K(C2) = {B2, B3,

B4}, then K(C1) ¹1 K(C2) holds. Since d parti-
tions the universe into subsets such that U/IND
({d}) = {Bad,Medium,Good} = {{x1, x3, x6, x7, x11,
x14}, {x2, x4, x5, x8, x12}, {x9, x10, x13, x15}}, then it is
not difficult to compute the optimistic multicovering
rough sets in terms of K(C1) and K(C2) as following:

C1
OPT(Bad) = {x3, x6, x7, x11, x14},

C1
OPT(Medium) = {x2, x4, x5, x8, x12},

C1
OPT(Good) = ∅;

C2
OPT(Bad) = ∅,

C2
OPT(Medium) = {x5, x8, x12},

C2
OPT(Good) = ∅;

C1
OPT

(Bad) = {x1, x3, x6, x7, x11, x14},
C1

OPT
(Medium) = {x1, x2, x4, x5, x8, x9, x10, x12,

x13, x15},
C1

OPT
(Good) = {x9, x10, x13, x15};

C2
OPT

(Bad) = {x1, x2, x3, x4, x6, x7, x9, x10, x11, x13,

x14, x15},
C2

OPT
(Medium) = U,

C2
OPT

(Good) = {x9, x10, x13, x15}.

By the above results, we can see that C1
OPT(X) ⊇

C2
OPT(X) and C1

OPT
(X) ⊆ C2

OPT
(X), in which X is

the decision class in U/IND({d}). In other words, this
example shows the relationships between the first hie-
rarchical structure and optimistic multicovering rough
set in detail.

Theorem 25. Let U be the universe of discourse,
C1 and C2 are two families of the coverings on U , if
K(C1) ¹2 K(C2), then C1

PES(X) ⊇ C2
PES(X) for each

X ⊆ U .
Proof. The proof of Theorem 25 is similar to the

proof of Theorem 11. ¤
Theorem 25 tells us that by using the second hierar-

chical structure, if the CBMS is finer, then the greater
pessimistic multicovering lower approximation will be
obtained.

Theorem 26. Let U be the universe of discourse,
C1 and C2 are two families of the coverings on U , if
K(C1) ¹2 K(C2), then C1

PES
(X) ⊆ C2

PES
(X) for each

X ⊆ U .
Proof. The proof of Theorem 26 is similar to the

proof of Theorem 11. ¤
Theorem 26 tells us that by using the second hierar-

chical structure, if the CBMS is finer, then the smaller
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pessimistic multicovering upper approximation will be
obtained.

Theorem 27. Let U be the universe of discourse,
C1 and C2 are two families of the coverings on U ,
if C1

PES(X) ⊇ C2
PES(X) for each X ⊆ U , then

K(C1) ¹2 K(C2).
Proof. The proof of Theorem 27 is similar to the

proof of Theorem 13. ¤
Theorem 27 is the inverse of Theorem 25, i.e., if

the pessimistic multicovering lower approximation is
greater, then the multigranulation space is finer in
terms of the second hierarchical structure.

Theorem 28. Let U be the universe of discourse,
C1 and C2 are two families of the coverings on U ,
if C1

PES
(X) ⊆ C2

PES
(X) for each X ⊆ U , then

K(C1) ¹2 K(C2).
Proof. The proof of Theorem 28 is similar to the

proof of Theorem 13. ¤
Theorem 28 is the inverse of Theorem 26, i.e., if

the pessimistic multicovering upper approximation is
smaller, then the multigranulation space is finer in
terms of the second hierarchical structure.

Example 10. Take for instance the table used in
Example 9, by Definition 12, we know that K(C1) ¹2

K(C2) holds. Therefore, it is not difficult to obtain the
following pessimistic multicovering rough sets:

C1
PES(Bad) = {x3, x6, x7, x11, x14},

C1
PES(Medium) = {x2, x4, x5, x8, x12},

C1
PES(Good) = ∅;

C2
PES(Bad) = ∅,

C2
PES(Medium) = ∅,

C2
PES(Good) = ∅;

C1
PES

(Bad) = {x1, x3, x6, x7, x11, x14},
C1

PES
(Medium) = {x1, x2, x4, x5, x8, x9, x10, x12,

x13, x15},
C1

PES
(Good) = {x9, x10, x13, x15};

C2
PES

(Bad) = U,

C2
PES

(Medium) = U,

C2
PES

(Good) = U.

By the above results, we can see that C1
PES(X) ⊇

C2
PES(X) and C1

PES
(X) ⊆ C2

PES
(X), in which X is

the decision class in U/IND({d}). In other words,
this example shows the relationships between the sec-
ond hierarchical structure and pessimistic multicover-
ing rough set in detail.

Since the third hierarchical structure can generate

the first and the second hierarchical structures (see
Fig.2), then by the above theorems, it is not difficult to
obtain the following corollaries.

Corollary 5. Let U be the universe of discourse,
C1 and C2 are two families of the coverings on U , if
K(C1) ¹3 K(C2), then C1

OPT(X) ⊇ C2
OPT(X) for

each X ⊆ U .
Corollary 6. Let U be the universe of discourse,

C1 and C2 are two families of the coverings on U , if
K(C1) ¹3 K(C2), then C1

OPT
(X) ⊆ C2

OPT
(X) for

each X ⊆ U .
Corollary 7. Let U be the universe of discourse,

C1 and C2 are two families of the coverings on U , if
K(C1) ¹3 K(C2), then C1

PES(X) ⊇ C2
PES(X) for each

X ⊆ U .
Corollary 8. Let U be the universe of discourse,

C1 and C2 are two families of the coverings on U , if
K(C1) ¹3 K(C2), then C1

PES
(X) ⊆ C2

PES
(X) for each

X ⊆ U .
The above four corollaries tell us that if the CBMS

is finer, then the optimistic and pessimistic multicove-
ring lower approximations are greater and the opti-
mistic and pessimistic multicovering upper approxima-
tions are smaller.

6 Conclusions

In this paper, two different multigranulation spaces,
partition-based multigranulation space and covering-
based multigranulation space have been deeply inves-
tigated. Different from single granulation space, multi-
granulation space is derived from a family of the binary
relations or a family of the coverings. Moreover, three
different hierarchical structures are proposed on such
two multigranulation spaces, respectively. These hier-
archical structures can be used to explore the finer or
coarser relationships between different multigranulation
spaces.

It is proven that the third hierarchical structure can
induce the first and the second hierarchical structures,
the first hierarchical structure is corresponding to the
monotonic varieties of the optimistic lower and upper
approximations, and the second hierarchical structure
is corresponding to the monotonic varieties of the pes-
simistic lower and upper approximations. These results
show that the hierarchical structures proposed in this
paper may be better for characterizing the essence of
multigranulation rough sets, which will be very help-
ful for establishing a uniform framework for granular
computing.

The present study is the first step to the development
of multigranulation space and multigranulation rough
sets. The following are challenges for further research:

1) The uncertainty measurements are interesting
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issues to be addressed in multigranulation spaces, and
the relationships between the uncertainty measure-
ments and the proposed hierarchical structures can also
be examined.

2) In our paper, the multicovering rough set is gene-
ralized by one type of the single granulation covering
rough set; since many different types of covering rough
sets have been proposed, and then how to generalize
these covering rough sets into multigranulation frame-
work and compare the relationships among different
multicovering rough sets remain problems for future in-
vestigation.

3) Optimism and pessimism are two special ap-
proaches for the constructing of multigranulation rough
sets, and new models for knowledge acquisition under
multigranulation framework is a challenge for further
analysis.
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