
Luo W, Gallagher M, Wiles J. Parameter-free search of time-series discord. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 28(2): 300–310 Mar. 2013. DOI 10.1007/s11390-013-1330-8

Parameter-Free Search of Time-Series Discord

Wei Luo1, Marcus Gallagher2, Member, IEEE, and Janet Wiles2, Member, IEEE

1School of Information Technology, Deakin University, Geelong, VIC 3220, Australia
2School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD 4072, Australia

E-mail: wei.luo@deakin.edu.au; {marcusg, wiles}@itee.uq.edu.au

Received February 15, 2012; revised November 14, 2012.

Abstract Time-series discord is widely used in data mining applications to characterize anomalous subsequences in time
series. Compared to some other discord search algorithms, the direct search algorithm based on the recurrence plot shows
the advantage of being fast and parameter free. The direct search algorithm, however, relies on quasi-periodicity in input
time series, an assumption that limits the algorithm’s applicability. In this paper, we eliminate the periodicity assumption
from the direct search algorithm by proposing a reference function for subsequences and a new sampling strategy based on
the reference function. These measures result in a new algorithm with improved efficiency and robustness, as evidenced by
our empirical evaluation.

Keywords time series anomaly detection, recurrence structure, direct discord search, parameter-free algorithm

1 Introduction

Anomaly detection in time series has a broad range
of applications (see for example [1-4]). Diverse applica-
tions have led to various characterizations of anomalies
and consequently a large number of detection methods
(see for example [2, 5-8]). In the data mining commu-
nity, a popular definition of time series anomalies is the
time series discord [9]. Intuitively, the discord of a time
series is the subsequence most different from all other
non-overlapping subsequences. The definition, despite
its simplicity, captures an important class of anomalies,
the relevance of which has been shown in several data
mining applications[9-12]. For example, Fig.1 shows
an electrocardiography (ECG) recording used to detect
premature ventricular contraction arrhythmia[13]. The
presence of arrhythmia is reflected in the time series
discord shown in the circle.

The discord of a time series can be found by com-
puting the pair-wise distances among all subsequences.
That means O(m2) comparisons for a time series of
length m. With the emergence of affordable sensor

technologies and the prevalence of automatic data col-
lection mechanisms, long time series are being created
every day. For such long time series, O(m2) compari-
sons are still computationally prohibitive. For example
in a typical epilepsy application with 256 Hz electroen-
cephalography (EEG, e.g., [14]), 24 hours of recording
would produce a time series of more than 22 million
values and more than 200 trillion pairs of subsequences.
For faster discord search, various algorithms have been
proposed. These algorithms can be classified into two
groups: index-based search and direct search.

1.1 Index-Based Discord Search

Index-based search was first proposed by Keogh and
co-authors in [9]. In index-based search, all real val-
ued subsequences are first encoded as character strings.
In [9], this was done through discretizing the time se-
ries. Then the strings are indexed so that similar subse-
quences have similar index keys (this is similar to how
character strings in a database are indexed for faster
data retrieval). Finally, pair-wise comparisons of subse-
quences are carried out with embedded for-loops, with

Fig.1. ECG segment for a patient with premature ventricular contraction arrhythmia. The anomalous subsequence circled indicates

the presence of the arrhythmia.

Regular Paper
Support by Australian Research Council Linkage Grant No. LP 0776417.
©2013 Springer Science +Business Media, LLC & Science Press, China

Wei Luo et al.: Parameter-Free Search of Time-Series Discord 301

pruning of the subspace determined by the index.
These steps are explained with more details in Sub-
section 2.2.

The efficiency of an index-based search algorithm
is determined by how subsequences are encoded as
strings and how the for-loops are ordered. To im-
prove the discretization in [9], Pham[15] proposed a
way to select break points based on k-means cluster-
ing. Instead of simple discretization, coefficients re-
sulted from wavelet transformations were used to en-
code subsequences[11,16]. A multi-resolution extension
of [9] has also been proposed (see [17]). To realize early
exit of the for-loops, a heuristic based on symbol fre-
quency was recently proposed[18].

Index-based algorithms rely on a set of tuning pa-
rameters for efficient encoding of subsequences. For
example, HOT SAX[9] requires parameters alphabet size
and word size to be set; WAT[11] uses an adaptive word
size, yet alphabet size is still required. These parame-
ters often have no natural correspondence in the appli-
cation domain and few guidelines have been provided
on selecting optimal index parameters. The difficulty
of finding the optimal tuning parameters was discussed
by Yankov and Keogh in [12].

1.2 Direct Discord Search

To eliminate the tuning parameters in index-based
search, direct discord search was proposed in [19]. A
direct search algorithm looks for a discord by directly
sampling the pair-wise distances among subsequences.
In [19], a sampling strategy was developed based on the
quasi-periodicity present in many time series. The al-
gorithm runs significantly faster on quasi-periodic time
series than the typical index-based algorithms. More
details of the algorithm can be found in Subsection 2.3.

In this paper we propose a generalization that elimi-
nates the quasi-periodicity assumption in direct search.
Like the original algorithm described in [19], the new
algorithm exploits a time series’ recurrence structure,
but replaces the periodicity assumption with a reference
function. The reference function leads to a new sam-
pling strategy that makes the search algorithm more
efficient and robust.

Direct discord search can be regarded as a novel
application of the recurrence plots. Recurrence plots
were first introduced by Eckmann[20] as a diagnostic
and visualization tool for time series originating from
the study of dynamic systems. A recurrence plot for
a time series T is a 2-D plot whose value at location
(i, j) is a function of ‖T [i] − T [j]‖. The function val-
ues are usually converted into binary values by taking
a threshold, but in this paper we shall use the unthres-
holded version[21-23]. Recurrence quantification analy-

sis (RQA, see [24]) is an excellent technique to quantify
features in a recurrence plot. However, RQA produces
global characterizations that cannot be directly used
for discord search. The direct discord search algorithm
bridges the gap by exploiting both global and local fea-
tures of a recurrence plot.

1.3 Paper Outline

This paper is organized as follows. Section 2 intro-
duces the formal definition of time series discords and
reviews existing discord search algorithms. In partic-
ular, direct discord search is reformulated to allow for
further generalisation. Section 3 presents the general
direct-search algorithm based on a reference function
and a new sampling strategy. Section 4 evaluates the
efficiency of the new algorithm. Section 5 discusses the
results and their implications in time series anomaly
detection and feature extraction.

2 Time Series Discords

This section reviews the definition of time-series dis-
cords and the two major types of discord search algo-
rithms: index-based search and direct search.

2.1 Definition of Discords

This paper considers only discrete time series with
equal time intervals (as in [25]). We use T to denote
a time series (t1, t2, . . . , tm) of length m, where each
ti ∈ R; we use T [p;n] to denote the length-n subse-
quence of T starting at the p-th position. Following the
convention set by Keogh and co-authors[9], we assume
a fixed length n for all subsequences of T ; hence we also
write T [p] for T [p;n]. Also following the convention in
[9], we standardize each subsequence:

T [p] ← T [p]−mean(T [p])
sd(T [p])

,

where mean(T [p]) is the mean of values in T [p] and
sd(T [p]) the standard deviation of the values in T [p].
The discord of T is defined over the set of all standardi-
zed subsequences {T [p] : 1 6 p 6 m − n + 1}. The
distance between two subsequences T [p] and T [q] is de-
noted as dist(p, q). As in [9], by default dist(p, q) is the
Euclidean distance between T [p] and T [q] when they
are considered points in vector space Rn. Nevertheless,
the results in this paper also apply to other common
distance definitions. For convenience, we write M for
m−n+1, the starting location of the right-most length-
n subsequence in the whole series.

The distance matrix D for length-n subsequences of
a time series T is an M × M matrix with D[p, q] ,
dist(p, q). Fig.2 visualizes the distance matrix for the

302 J. Comput. Sci. & Technol., Mar. 2013, Vol.28, No.2

time series shown in Fig.1 when the subsequence length
n = 360. Such a plot is called an unthresholded recur-
rence plot[21], a global recurrence plot[22], or simply a
distance plot[23]. The plot is widely used in dynamical
system analysis with time series data.

Fig.2. Distance plot showing the values of a distance matrix. The

time series contains 5 400 values, part of which is shown in Fig.1.

The subsequence length n is 360. Legend on the right shows the

color encoding for distance.

The repeating diagonal pattern evident in Fig.2
shows that 1) at regularly spaced intervals there are
locations p and q with relative small distance values,
and 2) the small distance values exist along lines where
p and q are changing at the same rate. This is an indi-
cator of strong periodicity in the time series from Fig.1.

We define a distance query to be a function call to
evaluate an element of D; it clearly has time complexity
O(n). It is a convention to measure the efficiency of a
discord search algorithm with the number of distance
queries made by the algorithm[9].

For convenience of exposition, we define the follow-
ing constructs. Given a distance matrix D, a distance
vector, denoted by d, is a length-M vector with the
p-th element d[p] , minq:|p−q|>n D[p, q]. A distance
vector stores for each subsequence the distance to its
nearest nonoverlapping neighbor. It is conventional[9]

to consider only pairs of subsequences with no over-
lap (i.e., |p − q| > n). Fig.3 shows the distance vector
derived from the distance matrix in Fig.2. The dis-
tance profile of position p, denoted D[p, ·], is the vector
(D[p, 1], D[p, 2], . . . , D[p,M]).

With the above notation, we can now reformulate
the time series discord originally proposed in [9].

Definition 1 (Time Series Discord). Let T be a
time series of length m and consider only length-n
subsequences of T . A subsequence T [p∗] is a length-
n discord of T if d[p∗] = maxp d[p] (or equivalently
minq:|p∗−q|>n D[p∗, q] = maxp minq:|p−q|>n D[p, q]).
The position p∗ is a discord location for T .

Fig.3. Distance vector values derived from the distance matrix

in Fig.2.

Intuitively, a length-n discord is the most “isolated”
length-n subsequence (when each subsequence is re-
garded as a point in the metric space 〈Rn, dist(·, ·)〉, as
illustrated in Fig.4). Theoretically there can be more
than one position p that maximizes d[p], and hence
more than one discord. In practice for a continuous-
value time series (i.e., ti ∈ R), the likelihood of having
two discords is negligible.

Fig.4. Location of a discord in the space spanned by the top 3

principal components for all 5 041 subsequences of the time se-

ries T in Fig.1. Each point in the plot represents a length-360

subsequence of T . The red point represents a discord for T .

On the surface, discord has a formulation simi-
lar to the minimax optimization problem, with
maxp minq:|p−q|>n D[p, q] 6 minp maxq:|p−q|>n D[p, q].
But unfortunately for most time series, the distance
matrix D does not have a single saddle point for a lo-
cal search of discord to work (see Fig.2). On the other
hand, a discord can always be located through full eva-
luation of the distance matrix D, which requires O(M2)
distance queries. For a reasonable length of M = 20 000,
it amounts to as many as 100 million distance queries.
Fortunately more efficient discord search is often possi-
ble by making fewer distance queries to reach a “good-
enough” partial evaluation D̂. In general, there are two
strategies for reducing the number of distance queries:
index-based search and direct search.

Wei Luo et al.: Parameter-Free Search of Time-Series Discord 303

2.2 Index-Based Discord Search

In index-based search, all subsequences are indexed
with a small number of index keys so that similar
subsequences share the same index key. Let K be
a set of index keys, an index I : Rn 7→ K puts all
subsequences into |K| bins of equal diameter ∆ ,
maxs1,s2∈I−1(k) dist(s1, s2), where k is a key in K. In
other words, two subsequences T [p] and T [q] are in the
same bins (i.e., I(T [p]) = I(T [q])) only if dist(p, q) 6 ∆.

For an ideal index, a discord T [p∗] will be mapped
to a key shared by no other subsequence, and any other
subsequence T [p] will share a key with at least one non-
overlapping subsequence T [q]. In other words, the bins
produced by the index have a diameter ∆ such that

max
p6=p∗

d[p] < ∆ < min
p:p6=p∗

D[p∗, p]. (1)

With such an index, search is done iteratively following
the logic outlined in Fig.5.

1: Set d∗ to an extremely small positive number.
{Initialization}

2: for all locations p ordered by the number of subse-
quences sharing the index key do {Outer loop}

3: d̂[p] ←∞
4: for all locations q ordered by the similarity of its

index key to that of p do {Inner loop}
5: if |p− q| > n then

6: Compute D[p, q].

7: if D[p, q] < d∗ then

8: Next p in the outer loop.

9: end if

10: d̂[p] ← min(d̂[p], D[p, q]).

11: end if

12: end for

13: if d̂[p] > d∗ then

14: d∗ ← d̂[p] and p∗ ← p.

15: end if

16: end for

17: return p∗ as the discord location.

Fig.5. Outline of index-based discord search algorithms.

The efficiency of index-based discord search depends
on the orders in the outer and inner loops, which in turn
rely on a good index with the right bin size. In prac-
tice, an index satisfying (1) is often difficult to find, as
shown in Fig.6.

In general, an index with a diameter ∆ should be
found such that {p : D[p∗, p] < ∆ and p 6= p∗} is a
set smaller than {q : D[p, q] < ∆ and p 6= q} for each
p 6= p∗. This will let the index key for p∗ be identified
and evaluated first in the outer loop. The following
proposition gives a lower bound on the search efficiency
of an index-based algorithm.

Fig.6. Illustration of the narrow gap between maxp 6=p∗ d[p] and

minp:p 6=p∗ D[p∗, p] for the time series in Fig.1. The solid line

shows D[p∗, p] and the dashed line shows d. The horizontal grey

line shows maxp 6=p∗ d[p].

Proposition 1. Let σ be the ordering in the outer
loop for sequence (1, 2, . . . , M) such that location σ(i)
will be evaluated before σ(i + 1). An index-based al-
gorithm without caching of distance queries requires at
least

M + k × (M − 2n) (2)

distance queries to locate a discord of length n, where

k = |{d[σ(i)] > max
j<i

d[σ(j)] : 1 6 i 6 M}|.

Proof. Suppose d[σ(i)] > maxj<i d[σ(j)]. Before
the execution of the outer loop on i, we have d∗ =
maxj<i d[σ(j)]. As d[σ(i)] = min|σ(i)−q|>n D[σ(i), q],
line 8 in Fig.5 will not run and the inner loop will be
completed with all distance queries, and there are at
least M − 2n + 1 such queries. Since there are k such
i, the algorithm requires at least k× (M − 2n + 1) dis-
tance queries. For each of the remaining M − k runs of
the outer loop, at least one distance query is needed for
line 6. This entails additional M − k distance queries.
Therefore at least M + k × (M − 2n) distance queries
are needed in total. ¤

Assuming that {p : D[p∗, p] < ∆ and p 6= p∗} is a
set smaller than {q : D[p, q] < ∆ and p 6= q} for each
p 6= p∗ and positions in the same bin are indistinguish-
able, we see that E[k] (the expected value of k) equals

1
2
× |{p : D[p∗, p] < ∆ and p 6= p∗}|, (3)

half of the number of subsequences overlapped with the
discord. For example in Fig.6, letting ∆ be 17.75 would
result in a T [p∗] that does not share an index key with
a nonoverlapping sequence T [p], but T [p∗] still shares
an index key with 26 overlapping sequences. Therefore
E[k] = 13 by (3). As the time series has M = 5 041 sub-
sequences of length n = 360, on average 61 000 or more
distance queries are needed by (2) in Proposition 1.

304 J. Comput. Sci. & Technol., Mar. 2013, Vol.28, No.2

In practice, a good index is realized by tuning pa-
rameters so that (1) is maximally realized. But few
guidelines exist for selecting the tuning parameters.

2.3 Direct Discord Search

In direct discord search exemplified by [19], no in-
dex is built and hence no index parameters are needed.
Instead, a distance matrix D (as shown in Fig.2) is di-
rectly sampled to generate a sparse estimate D̂, where
each element D̂[p, q] equals either D[p, q] or NA (mean-
ing unevaluated). Consequently an estimate d̂ for d can
be derived by d̂[p] , minq:|p−q|>n and D̂[p,q]!=NA D[p, q];

we call such an estimate d̂ a natural estimate of d.
A natural estimate has a property useful for discord
search.

Definition 2 (Over Estimate). An estimate d̂ is an
over estimate of d, denoted by d̂ º d, if d̂[p] > d[p] for
each p. An estimate d̂ is a proper over estimate of d,
denoted by d̂ Â d, if d̂ º d and d̂ 6= d.

Lemma 1. A natural estimate d̂ of d is also an
over estimate of d.

Proof. This is because for each p
minq:|p−q|>n and D̂[p,q]!=NA D[p, q] is greater than or
equal to minq:|p−q|>n D[p, q]. ¤

Therefore, an estimated distance vector resulting
from a partial evaluation of D is always above the true
distance vector (see Fig.7). The following proposition
gives a sufficient condition for discord to be identified
from d̂.

Fig.7. Illustration of the sufficient condition for discord identifi-

cation. The solid line represents a natural estimate d̂ for d. The

dashed line represents the distance vector d in Fig.3. Although

d̂ is a rough estimate of d, the two vectors have the same maxi-

mum at the same position. Hence d̂ is sufficient for identifying

the discord location.

Proposition 2. Let d̂ be a natural estimate of d.
If there exists a location p∗ such that d[p∗] > d̂[p] for
each location p, then d[p∗] > d[p] is also true for each
p (i.e., p∗ is a discord location).

Proof. Since d̂ is a natural estimate of d, by
Lemma 1 d̂[p] > d[p] for each p. Thus d[p∗] > maxp d̂[p]
implies d[p∗] > maxp d[p]. ¤

Proposition 2 shows that a natural estimate d̂ does
not have to be close to d at every position p to reveal
the discord location p∗; it suffices that d̂[p] 6 max (d)
for every p. This is illustrated in Fig.7.

In direct search, two sampling strategies are used
in combination to generate a good estimate d̂ with a
small number of distance queries to D.

1) Differentiating aims to obtain a small d̂[p] with
minimum number of queries to the distance profile
D[p, ·]. This is similar to the inner loop of the index-
based search (see Fig.5). To minimize the number of
distance queries, a reference function is used. Define
a reference function f : {1, 2, . . . , M} 7→ Y where f(p)
depends on the subsequence T [p] and D[p, q] is likely
to be small when f(p) ' f(q). The idea is that for a
p, it is easier to find a q with f(p) ' f(q) than to find
a q with T [p] ' T [q], and the gap between f(p) and
f(q) serves as an estimate for D[p, q]. When Y = R,
distances in {D[p, q] : q ∈ (1, 2, . . . , M)} can be queried
in the order of increasing |f(p)− f(q)| value (see Sub-
section 3.2). Differentiating is not limited to only direct
discord search. For example in index-based search, an
index I : Rn 7→ K can be regarded as a reference func-
tion f such that f(p) = I(T [p]). Differentiating then
means querying those D[p, q] with I(T [p]) = I(T [q]).

2) Traversing aims to exploit the diagonal lines in a
recurrence plot to improve a segment of d̂. In the phase
space of a time series, a segment of trajectory may run
parallel to another segment (see Fig.4), thus creating
diagonal line segment (D[p + i, q + i] : 1 6 i 6 s) ' 0
(see Fig.8 and also [23, Subsection 3.2.3]). Therefore if
d̂[p] is small, then a sequence of small d̂[p′] values could
be found around p. Let d̂ be the existing estimate for
d and suppose d̂[p] = D[p, q] is small. Then we should
query D[p−1, q−1] (Traversing left) and D[p+1, q+1]

Fig.8. Recurrence plot for the ECG time series shown in Fig.1.

The threshold distance ε is set to 17.75. That is only points (p, q)

with D[p, q] < 17.75 are shown.

Wei Luo et al.: Parameter-Free Search of Time-Series Discord 305

(Traversing right) as these distances are likely to be
small as well (see Fig.2). Traversing can be continued
to the left (or the right) as long as D[p− i, q− i] < d̂[p]
(or D[p + i, q + i] < d̂[p] respectively).

With the two sampling strategies Differentiating and
Traversing, direct discord search iteratively refines D̂
(and hence d̂) until the sufficient condition in Proposi-
tion 2 is satisfied. Fig.9 shows the structure of direct
discord search.

1: Initialize D̂ with Differentiating and Traversing.
{Initialization}

2: while true do

3: Let p∗ ← arg maxp{d̂[p]} and Q ← {q : D̂[p∗, q] = NA

and |p∗ − q| > n}.
4: while Q 6= ∅ do {Verification}
5: Let q ← a Differentiating sample from Q and

update Q ← Q \ {q}.
6: if D[p∗, q] < d̂[p∗] (i.e., the current d̂[p∗] is not

small enough) then

7: Break to find another p∗.
8: end if

9: end while

10: if Q = ∅ (i.e., d̂[p∗] = d[p∗]) then

11: return p∗ as the discord location.

12: end if

13: Refine D̂ with Traversing. {Refinement}
14: end while

Fig.9. Structure of direct discord search.

Direct discord search will always stop because D
has only finite elements. When it stops, it returns a
true discord location by Proposition 2. Also note that
direct discord search contains no intrinsic random com-
ponents. If we fix the starting point and the way to
update Q, two runs of direct search would sample the
same positions in the distance matrix.

In direct discord search, the search efficiency (mea-
sured by the number of distance queries) is deter-
mined by how the initialization, verification, and re-
finement steps in Fig.9 are implemented, which in turn
depends on the Differentiating operation. In [19], the
Differentiating operation is designed to exploit quasi-
periodicity present in many time series.

2.3.1 Periodicity-Based Direct Search

When a time series is quasi-periodic, the periodicity
entails information redundancy in the distance matrix
D. Hence direct search can be designed to take advan-
tage of the periodicity in time series. One such algo-
rithm was previously proposed in [19]; it will be called
Periodicity-Based Direct Search (PBDS) in this paper.

Suppose T is a time series with a period l. Then
D[p, q] ' 0 whenever p and q are multiple periods away
(p − q = k × l, where k ∈ Z). Although the PBDS

algorithm does not have an explicit reference function,
we could consider that f is defined as f(p) = (p mod
l). Hence f(p) = f(q) if p and q are multiple periods
apart. In the initialization step of PBDS, a distance
D[p, p + k× l] is queried for every p to generate an ini-
tial estimate d̂. The verification step of PBDS is essen-
tially brute-force computation of D[p, ·]. Fig.10 shows
the positions sampled by the PBDS algorithm. First,
the vertical line on the left shows the exhaustive query
on D[1, ·] to estimate the period of the time series at the
initialization step. Second, the scattered points multi-
ple periods off the center diagonal line show the trace of
Differentiating sampling at the verification step. Next,
the diagonal segments result from the Traversing sam-
pling at the refinement step. Finally, the vertical line
at the discord location 3 927 shows a complete run of
the while loop to verify the discord (lines 4∼9 in Fig.9).

Fig.10. Positions of the distance matrix in Fig.2 sampled by the

PBDS algorithm. In total 23 183 positions have been sampled.

Empirical evaluation in [19] shows that for a quasi-
periodic time series, PBDS is more efficient than index-
based algorithms. The PBDS algorithm, however, as-
sumes the existence of a period l in the time series.
When a time series is not quasi-periodic, the efficiency
of PBDS will be compromised. In the following sec-
tion, we propose a more general discord search algo-
rithm. With a more flexible reference function, the al-
gorithm achieves better efficiency for all periodic and
non-periodic time series.

3 General Direct Search of Discord

In this section, we introduce a direct discord search
algorithm that eliminates the quasi-periodic assump-
tion on the time series. We call the algorithm General
Direct Search (GDS). At the center of GDS is a new
reference function.

306 J. Comput. Sci. & Technol., Mar. 2013, Vol.28, No.2

3.1 New Reference Function for Direct Search

Consider the discord search problem with the subse-
quence length n setting to 1. In other words, each sub-
sequence T [p] has one value and D[p, q] = |T [p]−T [q]|.
Let π be a sorting permutation such that T [π(1)] 6
T [π(2)] 6 · · · 6 T [π(i)] 6 · · · 6 T [π(M)]. Then a dis-
cord is a point with the greatest distance to its left and
right neighbors in the sorted list. For each p, the value
d[p] can be computed in constant time as

min
i∈{1,−1}

(T [p]− T [π(π−1(p) + i)]), (4)

where π−1(·) is defined to be the inverse permutation
for π. Therefore by sorting subsequences before the
search, the length-1 discord can be found in time O(M)
instead of O(M2). In GDS, we realise a similar reduc-
tion in distance queries by sorting on a one-dimensional
transformation of subsequences.

We define a profile reference function f to be the
distance profile D[p0, ·] for some fixed p0. Fig.11 shows
a profile reference function when p0 = 1. A profile refe-
rence function f has the following property: D[p, q] is
small only if f(p) ' f(q).

Fig.11. Distance profile D[1, ·] for the time series in Fig.1.

Lemma 2. Let f be a profile reference function
for GDS; that is, f(p) = D[p0, p] for each p. Then
|f(p) − f(q)| 6 D[p, q] 6 f(p) + f(q) for every pair of
positions p and q. In other words, D[p, q] has an lower
bound |f(p)− f(q)| and an upper bound f(p) + f(q).

Proof. It follows directly from the triangle inequality
and the reverse triangle inequality of a normed vector
space. ¤

3.2 Differentiating with the New Reference
Function

A profile reference function f is real-valued; that
is f maps (1, 2, . . . , M) to R. Hence given a posi-
tion p, a gap function gp can be defined such that
gp(q) = |f(p)− f(q)|. As gp(q) provides a lower bound
for D[p, q], it can be sorted in increasing order to guide
the queries of the profile D[p, ·]. This will likely gene-

rate a tight d̂[p] with a small number of queries to
D[p, ·]. Suppose we have a sorting permutation π
such that gp(π(1)) 6 gp(π(2)) 6 . . . 6 gp(π(i)) 6
gp(π(i + 1)) 6 . . . 6 gp(π(M)). If d̂[p] < gp(π(i)),
then d̂[p] < gp(π(j)) < D[p, π(j)] for every j > i. Then
d̂[p] = d[p] can be verified with only i distance queries.

Sorting all gap functions entails O(M2 log(M)) com-
putational complexity, and hence has to be avoided.
In GDS, we sort only the values for f(p) and use two
pointers for each p to find the next f(q) closest to
f(p). Let σ be a permutation for (1, 2, . . . , M) such
that f(σ(i)) < f(σ(i + 1)) for every i < M . Let
F = (f(σ(1)), f(σ(2)), . . . , f(σ(M))) be the sorted se-
quence. Then f(p) will be in the σ−1(p)-th place in
F . For each p, a left pointer blp and a right pointer brp

are defined; they initially point to f(σ(σ−1(p)−1)) and
f(σ(σ−1(p)+ 1)) (see Fig.12). To simulate the order of
the gap function gp, the two pointers blp and brp move
to left and right respectively until blp 6 1 or brp > M .
With the pointers, Differentiating for all p locations can
be done with a sorted list shared by the locations.

f(σ(σ−1(p)− 1)) f(p) f(σ(σ−1(p) + 1)) f(σ(σ−1(p) + 2))

σ−1(p)− 1 σ−1(p) σ−1(p) + 1 σ−1(p) + 2

↑ ↑
blp brp

Fig.12. Illustration of pointers used in Differentiating. The func-

tion f is sorted in increasing order. Here because |f(σ(σ−1(p) +

1)) − f(σ(σ−1(p)))| 6 |f(σ(σ−1(p) − 1)) − f(σ(σ−1(p)))|, the

right pointer has moved to the right and the left pointer stays in

its initial position.

3.3 Initialization and Refinement in GDS

In GDS, the reference function f can be used as an
initial estimation d̂, by defining

d̂[p] =
{

f(p), if |p− p0| > n,

infinity, otherwise.
(5)

Our experiments show that the choice of p0 rarely
matters in the search. In this paper, we assume that
p0 = 1, the first location of the time series.

The refinement step can be implemented using
Traversing. Fig.13 shows how the Traversing opera-
tion can be repeatedly applied to improve d̂. Note that
the location arg minq D̂[p, q] is retrieved from cache, not
being computed every time.

For the time series in Fig.1, Fig.14 shows the results
of repeated Traversing on the initial d̂ = D[p0, ·]. As
shown in the figure, repeated Traversing is very effec-
tive in exploiting a small number of small d̂[p] values to
generate continuous blocks of relatively tight distance
estimates.

Wei Luo et al.: Parameter-Free Search of Time-Series Discord 307

1: For each p, let to.traverse[p] ← true.

2: while P ← {p : to.traverse[p] = true} is nonempty do

3: p ← arg minp∈P
ˆd[p].

4: Traverse to right from location (p, arg minq D̂[p, q])

until D[p+ i, arg minq D̂[p, q]+ i] > d̂[p+ i] at step i.

5: Traverse to left from location (p, arg minq D̂[p, q]) un-

til D[p− i, arg minq D̂[p, q]− i] > d̂[p− i] at step i.

6: Let to.traverse[p′] ← false for all p′ traversed.

7: end while

Fig.13. Repeated Traversing in GDS.

Fig.14. Estimate d̂ resulted from the initialization step. The

dashed line shows the true distance vector d.

Fig.15 shows the positions sampled by the GDS al-
gorithm. In contrast to Fig.10, the figure shows that
Traversing is more heavily used than Differentiating in
GDS.

Fig.15. Positions of the distance matrix in Fig.2 sampled by the

GDS algorithm. In total 20 531 positions have been sampled.

3.4 Performance Analysis

The initialization step of GDS needs M distance
queries for generating the distance profile at p0. The
verification step needs M additional distance queries to
compute the exact value of d[p∗] (unless p0 is a discord
location). Therefore GDS needs at least 2M distance

queries. In the best case, p0 is a discord location and
M further queries in the refinement step verify that
maxp d̂[p] = d[p0]. In this case, the discord location p0

can be found with only 2M distance queries.
Clearly

(
M
2

)
is an upper bound on the number of dis-

tance queries for GDS. As shown in the next section,
in practice GDS often needs fewer than 10M distance
queries.

4 Empirical Evaluation

In this section, a collection of time series is used
to compare the efficiency of two direct discord search
methods: the PBDS algorithm in [19] and the GDS
algorithm in this paper. Following the convention in
discord search, the number of distance queries is used
to measure the efficiency of the algorithms. Two sets of
experiments are performed. In the first set, the discord
length n is fixed and the time series length m varies. In
the second set, a set of time series is used with varying
discord length n. Fig.16 shows a sample of the time
series used in the two sets of experiments.

Fig.16. Time series used in empirical evaluation. Only the first

1 000 values of each time series are plotted.

In the first set of experiments, time series of varying
lengths are randomly generated from a long time series
qtdbsel102 (as in [26]). For each time series length m,
100 random excerpts of qtdbsel102 are created. The
discord length n is fixed to 128. The same time series
are analyzed using both PBGS and GDS.

As shown in Table 1, GDS uses fewer distance
queries than PBGS and the end-to-end running time
is shorter. Moreover GDS scales better with increasing
m. Finally, GDS has stable performance over random
excerpts of time series; compared to PBDS, GDS has a
smaller variance in the number of distance queries and
running time.

For the complete time series qtdbsel102, the result-
ing discord of length 128 is shown in Fig.17. Note that

308 J. Comput. Sci. & Technol., Mar. 2013, Vol.28, No.2

Table 1. Comparison Results for Discord Search on Random Excerpts of Different Length m from Time Series qtdbsel102

Time Number of Distance Queries End-to-End Running Time

Series (Standard Error)∗ in Seconds (Standard Error)∗,∗∗

Length PBDS GDS PBDS GDS

1 000 4 020 (1 441) 3 311 (531) 0.5 (0.2) 0.4 (0.1)

2 000 11 159 (4 641) 8 071 (1 178) 1.7 (0.9) 1.2 (0.2)

4 000 30 938 (12 473) 18 293 (3 707) 7.5 (6.1) 3.4 (0.7)

8 000 77 381 (33 064) 38 900 (7 270) 37.4 (39.1) 9.9 (2.2)

16 000 168 277 (70 071) 79 086 (14 634) 198.9 (108.2) 36.5 (6.6)

32 000 365 900 (184 540) 159 486 (32 532) 556.0 (157.6) 131.7 (62.1)

Note: ∗The standard error of a sample is defined to be s√
n

, where s is the sample standard deviation and n is the sample size.
∗∗Experiments ran on a desktop PC with 3.40 GHz CPU and the program was implemented with the interpreted language R.

Fig.17. Length-128 discords of time series in Fig.16. For com-

parison, the initial segment of length 128 for each complete time

series is also displayed.

the correctness of the algorithm is guaranteed by
Proposition 2.

In the second set of experiments, a collec-
tion of time series from both [26] and [27] is
used: 2h radioactivity, chfdchf15, nprs43, nprs44,
power data. (For nprs43 and nprs44, the leading
and trailing segments display rapid changes most likely
introduced during data collection. Therefore, we re-
move 20 points at the beginning and the end from both
time series.) For large m, we also generate three ran-
dom walk time series random walk 1, random walk 2,
and random walk 3 using the model T [p] =

∑p
i=1 Zi,

where each Zi is an independent random variable with
the standard normal distribution (with mean 0 and
variance 1). For each time series, discords of lengths
n = 64, 128, and 256 are searched for using both PBDS

and GDS. The resulting discords for length 128 are dis-
played in Fig.17.

As shown in Table 2, PBDS’s efficiency degrades as
the discord length n is reduced. This problem is most
severe when the time series is non-periodic, as for the
three random walk series. In contrast, GDS’s efficiency
is not affected by the change in n — GDS displays con-
sistent performance advantage over PBDS. With ran-
dom walk time series and a high m/n ratio, GDS often
makes only 5% of the distance queries needed by PBDS.

Table 2. Comparison on the Number of Distance

Queries for Varying Discord Length n

Number of Distance Queries

(GDS/PBDS)

Time Series Length n = 64 n = 128 n = 256

2h radioactivity 4 370 32 425 34 326 46 702

/226 729 /149 098 /87 560

chfdbchf15 15 000 54 166 58 546 63 922

/87 890 /83 318 /68 338

nprs43 18 012 80 937 86 966 92 581

/301 084 /309 147 /235 725

nprs44 24 085 108 152 152 097 129 892

/475 035 /599 344 /269 660

power data 35 000 218 388 226 500 176 907

/2 407 453 /1 074 393 /239 122

random walk 1 64 000 281 388 436 323 1 000 761

/13 077 385 /8 500 259 /1 318 399

random walk 2 128 000 910 864 868 648 1 021 691

/61 675 743 /24 527 477 /10 949 911

random walk 3 256 000 2 088 612 1 269 231 2 030 416

/40 867 969 /66 813 625 /44 377 293

5 Conclusions

We have proposed a general discord search (GDS)
algorithm that is free of parameters. Empirical eva-
luation shows that the GDS algorithm finds the same
discords with considerably fewer distance queries than
the existing direct search algorithm PBDS. As shown
in [19], direct discord search is faster than index-based
discord search. The GDS algorithm demonstrates even

Wei Luo et al.: Parameter-Free Search of Time-Series Discord 309

greater search efficiency. Finally, the GDS algorithm
has stable performance across a wide range of time se-
ries lengths and discord lengths. This robustness is an-
other benefit of eliminating tuning parameters.

We believe that the simplicity and speed advantage
of the GDS algorithm will further the adoption of time
series anomaly mining in a broader range of applica-
tions, as they allow quick search of anomalous subse-
quences and evaluation of their relevance. For example
in many pattern recognition applications involving time
series (such as seizure detection with epilepsy data[14]),
anomalous subsequences are important features for the
prediction systems. As the GDS algorithm provides
a robust way to quickly extract discords of different
lengths, it can be a new feature extraction tool for pat-
tern recognition practitioners.

The structure of the GDS algorithm suggests a con-
nection between discord search and other dimensiona-
lity reduction techniques such as PCA. In particular,
the reference function can potentially be replaced by
other low dimensional representations of subsequences
(e.g., the first principal scores). We are currently exa-
mining the connection and its use in discord-search al-
gorithm design.

References

[1] Shoeb A, Edwards H, Connolly J et al. Patient-specific
seizure onset detection. Epilepsy & Behavior, 2004, 5(4): 483-
498.

[2] Febrero M, Galeano P, González-Manteiga W. A functional
analysis of NOx levels: Location and scale estimation and
outlier detection. Computational Statistics, 2007, 22(3): 411-
427.

[3] van Wijk J, Van Selow E. Cluster and calendar based visual-
ization of time series data. In Proc. the 1999 IEEE Sympo-
sium on Information Visualization, Oct. 1999, pp.4-9.

[4] Rebbapragada U, Protopapas P, Brodley C, Alcock C. Find-
ing anomalous periodic time series. Machine learning, 2009,
74(3): 281-313.

[5] Rousseeuw P, Leroy A. Robust Regression and Outlier Detec-
tion. Wiley Online Library, 1987.

[6] Dasgupta D, Forrest S. Novelty detection in time series data
using ideas from immunology. In Proc. the International
Conference on Intelligent Systems, Dec. 1996, pp.82-87.

[7] Hyndman R, Ullah S. Robust forecasting of mortality and
fertility rates: A functional data approach. Computational
Statistics & Data Analysis, 2007, 51(10): 4942-4956.

[8] Febrero M, Galeano P, González-Manteiga W. Outlier detec-
tion in functional data by depth measures, with application to
identify abnormal NOX levels. Environmetrics, 2008, 19(4):
331-345.

[9] Keogh E, Lin J, Fu A. HOT SAX: Efficiently finding the most
unusual time series subsequence. In Proc. the 5th IEEE In-
ternational Conference on Data Mining, Nov. 2005, pp.226-
233.

[10] Lin J, Keogh E, Fu A, Van Herle H. Approximations to magic:
Finding unusual medical time series. In Proc. the 18th IEEE
Symposium on Computer-Based Medical Systems, Jun. 2005,
pp.329-334.

[11] Bu Y, Leung T, Fu A, Keogh E, Pei J, Meshkin S. WAT:

Finding top-K discords in time series database. In Proc. the
7th SIAM International Conference on Data Mining, Apr.
2007.

[12] Yankov D, Keogh E, Rebbapragada U. Disk aware discord dis-
covery: Finding unusual time series in terabyte sized datasets.
Knowledge and Information Systems, 2008, 17(2): 241-262.

[13] Goldberger A, Amaral L, Glass L et al. Physiobank, phys-
iotoolkit, and physionet: Components of a new research re-
source for complex physiologic signals. Circulation, 2000,
101(23): e215-e220.

[14] Shoeb A, Guttag J. Application of machine learning to epilep-
tic seizure detection. In Proc. the 27th International Confer-
ence on Machine Learning, Jun. 2010, pp.975-982.

[15] Pham N, Le Q, Dang T. HOT aSAX: A novel adaptive sym-
bolic representation for time series discords discovery. In
Proc. the 2nd Intelligent Information and Database Systems,
Mar. 2010, pp.113-121.

[16] Fu A, Leung O, Keogh E, Lin J. Finding time series discords
based on Haar transform. In Proc. the 2nd Advanced Data
Mining and Applications, Aug. 2006, pp.31-41.

[17] Shieh J, Keogh E. iSAX: Indexing and mining terabyte sized
time series. In Proc. the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Aug.
2008, pp.623-631.

[18] Son M, Anh D. EWAT+: Finding time series discords based
on new discord measure functions. In Proc. IEEE Inter-
national Conference on Computing & Communication Tech-
nologies, Research, Innovation, and Vision for the Future,
Nov. 2010, pp.1-4.

[19] Luo W, Gallagher M. Faster and parameter-free discord
search in quasi-periodic time series. In Proc. PAKDD, May
2011, pp.135-148.

[20] Eckmann J, Kamphorst S, Ruelle D. Recurrence plots of dy-
namical systems. Europhysics Letters, 1987, 4(9): 973-977.

[21] Iwanski J, Bradley E. Recurrence plots of experimental data:
To embed or not to embed? Chaos: An Interdisciplinary
Journal of Nonlinear Science, 1998, 8(4): 861-871.

[22] Webber Jr C, Zbilut J. Recurrence quantification analysis
of nonlinear dynamical systems. Tutorials in Contemporary
Nonlinear Methods for the Behavioral Sciences, 2005, pp.26-
94.

[23] Marwan N, Carmen Romano M C, Thiel M, Kurths J. Re-
currence plots for the analysis of complex systems. Physics
Reports, 2007, 438(5/6): 237-329.

[24] Marwan N. A historical review of recurrence plots. The Eu-
ropean Physical Journal-Special Topics, 2008, 164(1): 3-12.

[25] Chatfield C. The Analysis of Time Series: An Introduction,
(6th edition). Chapman & Hall/CRC, 2004.

[26] Keogh E, Lin J, Fu A. The UCR time series discords.
http://www.cs.ucr.edu/∼eamonn/discords/, April 2010.

[27] Hyndman R. Time series data library. http://data.is/TSDLde-
mo, April 2010.

Wei Luo holds a Ph.D. degree
in computing science from Simon
Fraser University and is currently a
research fellow in Centre for Pattern
Recognition and Data Analytics at
Deakin University. He has years of
experience in health care data min-
ing, having completed a number of
projects in patient flow optimization
and harm reduction. His research

interests include temporal data mining, machine learning,
data quality, and visual analytics.

310 J. Comput. Sci. & Technol., Mar. 2013, Vol.28, No.2

Marcus Gallagher received the
B.Comp.Sc. and Grad.Dip.Sc. de-
grees from the University of New
England, Armidale, Australia, in
1994 and 1995, respectively, and the
Ph.D. degree in computer science
from the University of Queensland,
Brisbane, Australia, in 2000. He is
a senior lecturer in the Complex and
Intelligent Systems Research Group

at the School of Information Technology and Electrical En-
gineering, University of Queensland. His main research in-
terests are metaheuristic optimization and machine learn-
ing algorithms, in particular techniques based on statistical
modeling. He is also interested in biologically inspired algo-
rithms, methodology for empirical evaluation of algorithms,
and the visualization of high-dimensional data.

Janet Wiles holds a Ph.D. de-
gree in computer science from the
University of Sydney, and is a pro-
fessor of complex and intelligent sys-
tems at the University of Queens-
land. She recently completed a
five-year project leading the Think-
ing Systems Project, supervising a
cross-disciplinary team studying fun-
damental issues in how information is

transmitted, received, processed and understood in biolog-
ical and artificial systems. Her research interests include
complex systems biology, computational neuroscience, com-
putational modeling methods, artificial intelligence and ar-
tificial life, language and cognition.

