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Abstract Routing is one of the challenging tasks in Delay Tolerant Networks (DTNs), due to the lack of global knowledge
and sporadic contacts between nodes. Most existing studies take a greedy scheme in data forwarding process, i.e., only nodes
with higher utility values than current carriers can be selected as relays. They lack an in-depth investigation on the main
features of the optimal paths in Epidemic. These features are vital to any forwarding scheme that tends to make a trade-off
between packet delivery delay and cost. This is mainly because Epidemic provides an upper bound on cost and a lower bound
on delivery delay. Therefore, a deep understanding of these features is useful to make informed forwarding decisions. In this
paper, we try to explore these features by observing the roles of different social relationships in the optimal paths through a
set of real datasets. These datasets provide evidence that strangers have two sides in data forwarding process, and that the
importance of strangers shows a decreasing trend along the forwarding paths. Using this heuristic knowledge, we propose
STRON, a distributed and lightweight forwarding scheme. The distributed feature makes it very suitable for opportunistic
scenarios and the low communication and computation features make it easy to be integrated with state-of-the-art work.
The trace-driven simulations obviously confirm its effectiveness, especially in terms of packet delivery delay and cost.
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1 Introduction

One of the main characteristics of Delay Tolerant
Networks (DTNs) is that an end-to-end path between
the source and destination rarely (if ever) exists at
any moment, which makes routing very challenging in
DTNs[1-2]. In this work, we focus on the influence of
strangers on routing performance within a pure dark-
ness environment, where the mobility of nodes cannot
be acquired in advance and each node depends only on
itself to locally estimate the forwarding metric to des-
tination.

Obviously, the Epidemic scheme[3] is a potential so-
lution to deliver messages under the above scenario
because it tries to send each message over all possi-
ble paths (i.e., multiple copies) in the network. Thus,
the message will be successfully received so long as
one of the copies reaches the destination. Whereas,
the immoderate spraying will incur a high price of sys-

tem resources such as the splurge on energy and buffer
space and the rapid consumption of available band-
width. Considering the limited computation and stor-
age ability of mobile sensing devices, this scheme is ob-
viously not desirable for opportunistic scenarios.

These deficiencies of Epidemic have motivated re-
searchers to develop other novel routing algorithms.
For these algorithms, the main issue is which forward-
ing scheme can achieve the best trade-off between the
packet delivery delay and cost. Most of the proposed
algorithms that control message copies try to infer the
delivery probability of nodes to the destination by mak-
ing use of two kinds of contexts: physical contact in-
formation of nodes (e.g., the number of contacts[4],
contact frequency/locations[5-7]) and social metrics in
the network (e.g., community[8], centrality[9-10] and
similarity[11]). Such heuristic knowledge helps the algo-
rithms to make informed forwarding decisions on which
nodes to relay. However, few studies focus on the main
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features of the optimal paths in Epidemic. Note that
these features are vital to any forwarding scheme that
tends to make the trade-off. This is mainly because
Epidemic provides an upper bound on cost and a lower
bound on delivery delay. Therefore, a deep understand-
ing of these features is useful to make informed forward-
ing decisions.

To verify this, we classify nodes into four categories:
strangers, familiar strangers, friends, and community
partners. We observe their roles in Epidemic and
greedy schemes through a set of real datasets. These
datasets provide the following evidences. 1) Strangers
have two sides in data forwarding process. On the one
hand, there exist a lot of strangers in the shortest paths
of Epidemic. This means that strangers play a positive
role in data forwarding process. On the other hand, the
strangers have speeded up the dissemination process by
infecting many other nodes, which increases the rout-
ing cost as well. 2) The greedy scheme reduces the
cost by replacing part of strangers which were initially
present in the shortest paths of Epidemic with familiar
strangers or community partners (refer to Subsection
3.1). As a result, it increases the delivery delay. 3) The
importance of strangers shows a decreasing trend along
the forwarding paths.

Motivated by these observations, we try to improve
the performance of greedy scheme by employing a few
strangers. We propose a stranger-oriented forward-
ing algorithm, called STRON, to achieve this goal. It
mainly includes the following two features. 1) Dis-
tributed feature: STRON does not need any global
knowledge. Each node only records the number of con-
tacts and the intra-contact time between itself and any
other node. 2) Lightweight feature: STRON uses the
mean of the number of contacts and that of the intra-
contact time as thresholds to identify social relation-
ships. It does not need to store additional information
unlike the traditional community-detection mechanism
does[8,12]. This feature makes it easy to be integrated
with the state-of-the-art work. We summarize our main
contributions as follows:
• We explore the main features of the optimized

paths in Epidemic and try to integrate them into the
opportunistic forwarding scheme.
• We observe that strangers have two sides in data

forwarding process and the importance of strangers
shows a decreasing trend along the forwarding path.
Using these heuristic knowledge, we develop a dis-
tributed routing algorithm, called STRON, to improve
the data forwarding performance.
• We conduct extensive simulations to compare our

routing metric with the state-of-the-art work through
real DTNs traces. The simulation results show that our

algorithm largely improves the performance, especially
in terms of cost.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 shows the
preliminary work. We explore the main features of the
optimized path in Section 4. Section 5 discusses how to
integrate the main features into STRON, followed by a
performance evaluation in Section 6. Finally, we con-
clude our paper and discuss some future research areas
in Section 7.

2 Related Work

Routing messages through intermittently connected
network is challenging. In the past few years, re-
searchers have proposed several strategies to solve this
issue. According to the contexts they exploited, these
solutions can be classified into the following categories.

2.1 Routing with Extra Nodes

Several projects try to deliver messages by the help
of extra nodes which are called data MULEs or message
ferries[13-17].

The authors of [13] first utilized mobile MULEs to
collect data for sparse sensor networks. The MULEs
have large storage capacities and renewable power,
which make them have the ability to buffer data for
a relatively long time and thus can be used in a delay
tolerant environment. The data MULEs scheme pro-
vides opportunistic forwarding between static sensor
nodes and the mobile MULEs, whereas, they neglect
the influence of the mobility of MULEs on routing per-
formance. On the contrary, the message ferries scheme
(e.g., [14-16]) goes further in exploiting special mobile
nodes which are called ferries to deliver messages by
assuming control or influence over ferries movements.
For example, the authors of [14] proposed the idea of
exploiting controlled mobility of extra nodes to facili-
tate message transmission in disconnected mobile Ad
hoc networks. Zhao, Ammar, and Zegura[15] designed
two kinds of no-random movements to forward data
in DTNs. The first is node initiated mobility, where
ferries move around the deployed region according to
conventional routes. The second is ferry initiated mo-
bility, where a ferry will adjust its trajectory to meet
up the node when receiving a request from that node.
They also evaluated the trade-off between the incurred
cost of extra ferries and the improved performance in
[16]. Besides, the authors of [17] further relaxed the
assumptions used in [15] and [16]. The ferries can navi-
gate themselves intelligently only based on partial ob-
servations and statistical information of nodes mobility.
Recently, the authors of [7] employed the static nodes



576 J. Comput. Sci. & Technol., May 2013, Vol.28, No.3

placed in the system “hot region” to relay messages:
if the message enters the “hot region”, the static node
sprays one replica of the message to any other nodes
it encounters, otherwise, the message is sprayed in a
binary way[18].

2.2 Routing with Periodic Mobility of Nodes

In some particular scenarios (e.g., bus transporta-
tion system[19] and interplanetary internet[20]), the mo-
bility patterns of nodes have periodicity, which moti-
vates researchers to design periodic information based
routing scheme[21-23]. Most of them used a modified
Dijkstra algorithm to compute shortest paths between
sources and destinations. The routing table was de-
signed based on intermediate nodes along those paths.
That is, each node has a global view on network struc-
tures. For instance, Merugu et al.[21] delivered messages
over a space-time routing table, which was derived from
the mobility of nodes and carried by each node. Jain et
al.[22] computed the shortest paths between transceivers
by utilizing the periodicity of nodes movements. Be-
sides, the authors of [23] proposed a source routing in
DTNs. They exploited the expected minimum delay
(EMD) as forwarding metric and applied the Markov
decision process to derive the EMD of messages at par-
ticular moments.

2.3 Routing with Partial Observations

Sometimes, it is difficult or impractical to acquire
global information of the network. This is mainly be-
cause of the problems such as time-varying topology,
privacy protection or selfishness of nodes. In these sce-
narios, different local contexts can be exploited to im-
prove routing performance. Based on the contexts they
use, they can be further classified into two subclasses.

Physical Contact Metric. It mainly includes the
number of contacts, contact frequency and contact loca-
tion. For example, MaxProp[4] updates the utility val-
ues between two nodes by a method called incremental
ageing. When two nodes encounter, their utility val-
ues are incremented by 1 and then all other values are
re-normalized. Using this method, MaxProp shows a
better performance than protocols that have proactive
knowledge. CAR (context aware routing) was proposed
in [24], which exploits the context information such as
the changing rate of neighbors of a node and its cur-
rent energy level to estimate the delivery probability. In
addition, the authors of [25] proposed PER, a predic-
tion and relay algorithm for DTNs, which considers the
time of a contact. Similarly, Lindgren et al.[5] presented
PROPHET, in which the transitive property and an
aging constant are both considered to try to accurately
predict the probability of future encounters. Recent

work[26] proposed an optimized probabilistic method
(called OP in this paper) based on the brief contact.
Furthermore, Leguay et al.[6] presented MobySpace, a
high-dimensional Euclidean space constructed by the
past motion patters of nodes.

Social Metric. With the popularization of smart
hand-held devices, human mobility has been shown to
have a big impact on the network performance. Con-
sidering this fact, researchers have recently focused on
the social metrics underlying the network structure and
exploited them to make smart forwarding decisions.
For instance, the authors of [11] presented SimBet,
which exploits neighbor’s adjacency matrix to compute
the centrality and similarity of nodes and then utilizes
these social attributes to predict the best relay to the
final destination. The adjacency matrixes should be
swapped and updated each time two nodes have a con-
tact. Similarly, Bubble and PeopleRank[9-10] forward
messages to the popular nodes in the network.

3 Preliminaries

The goal of this paper is to develop a distributed
forwarding algorithm for opportunistic scenarios based
on the social relationships extracted from real human
traces. In this section, we briefly introduce the taxo-
nomy of social relationships and then present the greedy
scheme.

3.1 Social Relationships

Using the taxonomy proposed in [27], we classify
nodes into four categories:
• strangers: with short duration and low number of

contacts.
• familiar stranger: with short duration and high

number of contacts.
• friend: with long duration and low number of con-

tacts.
• community partners: with long duration and high

number of contacts.
According to [28], in this paper, we use the mean

as threshold to identify such social relationships, for
both the number of contacts and the intra-contact time.
Mathematically, let random variables Xi and Yi denote
the number of contacts and the intra-contact time be-
tween node i and other nodes, respectively. Let xi(j)
and yi(j) denote those between node i and any node
j. Let E(Xi) denote the mean of Xi and E(Yi) denote
the mean of Yi. Let N denote the set of nodes in the
network, we have

E(Xi) =

∑

i,k∈N,i 6=k

xi(k)

‖N‖ , (1)
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E(Yi) =

∑

i,k∈N,i 6=k

yi(k)

‖N‖ . (2)

We call node j is a stranger to node i if xi(j) is
smaller than E(Xi) and yi(j) is smaller than E(Yi).
The notations used in this paper are listed in Table 1.

Table 1. Notation Summary

Notation Explanation

N Set of nodes

‖N‖ Number of nodes

i, j Two randomly chosen nodes

xi(j) Number of contacts between node i and node j

yi(j) Intra-contact time between node i and node j

md Destination node of message m

Ds(i, j) Degree of strangeness between two nodes

pij Shortest path from i to j

Sij Number of strangers in pij

Rij Number of relays in pij

3.2 Greedy Scheme

In the past few years, researchers have proposed
a large number of routing metrics in DTNs. Al-
though they exploited different kinds of contexts
(e.g., similarity[11], intra-contact time[5], and virtual
community[8]), most of them take a greedy forwarding
mechanism. That is, when two nodes have a contact, a
node with a lower utility value to the destination will
forward messages to nodes with higher utility values
(for ease of presentation, we here use the term “ui(j)”
as a general representation for the utility function as
shown in Algorithm 1). When node i meets node j,
for any message m that i carries, if its destination md

is node j, node i delivers it to node j and removes it
from i’s buffer. Otherwise, if node j does not hold this
message, the two nodes swap their own utility value. If
ui(md) is smaller than uj(md), node i forwards m to
node j, where nodes i, j and md ∈ N .

Algorithm 1. Greedy Mechanism

1: Upon meeting up node j do

2: for any message m in i’s buffer do

3: if md == j then

4: deliverMsg(m), remove(m)

5: else if m /∈ j then

6: i ← uj(md)

7: if ui(md) < uj(md) then

8: forwardingMsg(m)

9: end if

10: end if

11: end if

12: end for

4 Exploring the Main Features of the Shortest
Paths in Epidemic and Greedy Scheme

This section explores the main features of the short-
est paths in Epidemic and greedy scheme through
two real datasets called KAIST[29-30] and PMTR[26].
Thirty-four volunteers carried the GPS devices (GPS
60CSx) from 2006-09-26 to 2007-10-03 and altogether
92 daily traces were gathered in KAIST. Each indivi-
dual trace consists of a sequence of three-tuples (times-
tamp, X-coordinate, Y -coordinate), where a tuple de-
notes a stay point recorded every 30 seconds. In PMTR,
44 people and 5 fixed positions were chosen and 11 895
contact events were reported in 19 days. Table 2 sum-
maries the main attributes of the two datasets.

Table 2. Dataset Statistics

KAIST PMTR

Radio range (m) 250 10

Number of nodes 34 49

Number of contacts in total 25 535 11 895

Radius (m) 18 650 3 500

Year 2006 2008

These datasets provide the following evidences.

4.1 Two Roles of Strangers in Data
Forwarding Process

In this subsection, we analyze the social relationships
between a relay and the final destination. We evaluate
their importance in data forwarding process by comput-
ing their occurrence frequencies in the optimized paths
and in the greedy paths, respectively.

Definition 1 (Optimized Path). We call a path an
optimized path if it is one of the shortest paths achieved
by Epidemic.

Definition 2 (Greedy Path). We call a path a
greedy path if it is one of the shortest paths achieved
by greedy scheme.

For each optimized path p (greedy path g), we count
the number of each kind of relays and then average the
results over all paths. For instance, let O denote the
set of optimized paths. Let pij denote the shortest path
from node i to node j (pij ∈ O), Sij denote the num-
ber of strangers which participate in pij and Rij denote
that of total relays. We use the ratioRs to estimate the
importance of the strangers along the optimal paths,
and we have

Rs =
∑

∀i∈N

∑

∀j∈N,j 6=i

Sij

Rij
. (3)

Fig.1 shows the roles of the relationships in the opti-
mal paths and greedy paths, respectively (where we use
the term “Greedy1” to denote the greedy scheme based
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on the number of contacts and the term “Greedy2” to
denote that with the intra-contact time). It is clear to
see that strangers play a big role in Epidemic, which
shows the power of crowd[31-32]. Interestingly, we also
observe that familiar strangers (FStrangers) and com-
munity partners (Community) dominate the greedy
paths. This phenomenon is in accordance with the na-
ture of the greedy scheme, where only nodes with higher
utility values to the destination can be selected as re-
lays. We conjecture that this phenomenon is also the
reason why the greedy scheme can make a better trade-
off between the cost and the packet delivery delay.

Fig.1. Roles of different social relationships in data forwarding

process. (a) KAIST. (b) PMTR.

We present the two performance metrics in Table 3
and Table 4 respectively. We notice that the greedy
scheme reduces the routing cost but increases the de-
livery delay at the same time. This is mainly because
that the greedy scheme replaces part of the strangers
which were initially present in the optimal paths with
part of familiar strangers and community partners. For
example, at KAIST, the ratio of strangers is over 50%
in the optimal paths, whereas, the ratio of strangers
almost decreases by 90% in the greedy paths. In the
meantime, the number of familiar strangers and that of
community partners increase by 20%.

Table 3. Statistics About Infected Ratio (Cost)

Epidemic (%) Greedy1 (%) Greedy2 (%)

KAIST 97 27 31

PMTR 70 25 28

Table 4. Statistics About Mean Delivery Delay

Epidemic Greedy1 Greedy2

KAIST (s) 310.0 1 550.0 1 493.0

PMTR (h) 89.5 97.4 107.9

For Epidemic, it achieves the optimal delivery delay
by infecting most of the nodes. We think the reason is
that strangers bring messages to different parts of the
network, which on the one hand increases the proba-
bility to meet the destination. On the other hand, it
infects the nodes located in these regions. Hence, we
should control the number of strangers to refrain the
infection process. We next analyze the changes of the
social relationship along the optimal paths.

4.2 Importance of Strangers’ Decreasing
Trend Along the Optimal Paths

This subsection explores the changes of social rela-
tionships at each step along the optimal paths as shown
in Fig.2. When moving toward the final destination, the

Fig.2. Changes of social relationships along the optimal paths.

(a) KAIST. (b) PMTR.
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relays become more and more familiar with the desti-
nation. In general, the importance of strangers shows a
decreasing trend along the optimal paths, though there
exist differences between different scenarios. For exa-
mple, at PMTR, the ratio of strangers is still over 50%
at the last hop, while the number of strangers almost
reduces to 0 at KAIST.

5 Implementing Main Features of Stranger
into STRON

In this section, we discuss how to design STRON.
It mainly includes two components : 1) the degree
of strangeness of nodes; 2) adjusting the number of
strangers.

5.1 Degree of Strangeness of Nodes

Motivated by above observations, we integrate the
degree of strangeness between two nodes into STRON.
Note that the degree of strangeness and similarity be-
tween two nodes are complementary. Mathematically,
let Sim(i, j) denote the similarity between node i and
node j, Ds(i, j) denote the degree of strangeness be-
tween them, we have Ds(i, j) = 1 − Sim(i, j). Fig.3

Fig.3. Degree of strangeness under different contact times. (a)

KAIST (node-pair(1, 77)). (b) PMTR (node-pair(1, 11)).

portrays the behavior of Ds(i, j) at different contact
times when using (4), where two nodes are randomly
chosen as partners.

In general, we use the min-max function to measure
the similarity between two nodes. Take xi(j) as a sam-
ple, we hold

Sim(i, j) =
xi(j)−min(Xi)

max(Xi)−min(Xi)
, ∀i ∈ N. (4)

By taking both Sim(i, j) and Ds(i, j) into account,
we give the following new forwarding metric.

U(i, j) = αDs(i, j) + (1− α)Sim(i, j). (5)

Based on the claim of Subsection 4.2, we empirically
set α = H−C , where H is the current number of
hops of the message and C is a system parameter
(0 6 C 6 1, in Section 6, we show how the system para-
meter C impacts the performance of STRON through
trace-driven emulations). By using this novel metric,
STRON can conveniently help nodes to make smart
forwarding decisions. For example, when node i meets
node j, the message m is forwarded to the node j if
U(i,md) < U(j, md), and vice versa.

5.2 Adjusting the Number of Strangers

To further improve the networking performance,
when strangers or friends meet familiar strangers or
community partners of the destination, the former
needs to forward messages to the latter. This is mainly
because the relays become more and more familiar with
the destination along the forwarding paths (please re-
fer to the above section). In this situation, we have
a chance to adjust the number of strangers. After a
stranger forwards messages to a community partner of
the destination, it deletes the messages from its buffer
with a probability H−C , based on the claim that the
importance of strangers shows a decreasing trend when
moving toward the destination. Though this mecha-
nism is very simple, our trace-driven simulation results
show that it significantly improves the routing perfor-
mance. Algorithm 2 summarizes the above process.

5.3 Possible Issues

In this paper, though we take the min-max function
as a solution to evaluate the similarity between nodes,
STRON can conveniently incorporate other methodolo-
gies, such as the cosine angle separation, Euclidean
distance, and Pearson correlation measures[33]. We
think all of them should be esteemed, whereas, since
we mainly focus on the roles of social relationships in
the data forwarding process[34], we here do not discuss
them.
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Algorithm 2. STRON

1: Upon meeting up node j do

2: for any message m in i’s buffer do

3: if md == j then

4: deliverMsg(m), remove(m)

5: else if m /∈ j then

6: if Ui(md) < Uj(md)) or (a stranger or fri-

end meets a familiar stranger or co-

mmunity partner of the destination)

then

7: forwardingMsg(m)

8: end if

9: if a stranger meets a community partner

of the destination then

10: remove(m) with a probability H−C

11: end if

12: end if

13: end if

14: end for

6 Performance Evaluation and Analysis

This section illustrates the performance gain of
STRON by comparing with the state-of-the-art algo-
rithms based on the two real datasets. We compare five
forwarding schemes: 1) Epidemic. Epidemic achieves
a lower bound on mean delivery delay and an upper
bound on routing cost, hence, we use it as a baseline to
compare other algorithms; 2) Greedy scheme based on
the number of contacts (Greedy1); 3) Greedy scheme
with the intra-contact time (Greedy2); 4) OP[26]: the
optimal probabilistic method. The optimization means
that each node knows the exact forwarding probability
when meeting another node and the forwarding proba-
bility is acquired by an off-line method in advance; 5)
STRON: our newly proposed algorithm.

In each scenario, each source sends one message to a
randomly chosen destination and altogether 1 200 mes-
sages are generated. The communication range of nodes
under KAIST is set to 250m, a typical value of WiFi.
The simulation results are the average over 20 runs for
C = 0.4 in KAIST and C = 0.8 in PMTR. The eva-
luation metrics include 1) the relative delivery delay:
the delivery delay achieved by each algorithm over that
achieved by Epidemic; 2) routing cost: the ratio of the
number of nodes infected by a message over the total
number of nodes in the network.

Fig.4 demonstrates our results. The first observa-
tion indicates that STRON shows a competitive result
on delivery delay as shown in Fig.4(a). Compared with
the second best algorithm (OP), there does not exist
noticeable difference between STRON and OP. On ave-
rage, STRON only increases the delay by 4% at KAIST.

Compared with the two greedy schemes, STRON re-
duces the delay almost by 50%. Note that it seems
that different scenarios have different impacts on deliv-
ery delay. For example, at PMTR, the five algorithms
almost achieve the same performance. We conjecture
that this is mainly because PMTR is a very sparse sce-
nario (please refer to Table 2, Section 4). Hence, the
long inter-contact time between nodes dominates the
delay.

Fig.4. Relative delivery delay and cost under KAIST and PMTR.

(a) Relative delivery delay. (b) Cost.

The second observation reveals that STRON
achieves the best performance metric in routing cost
as depicted in Fig.4(b). For instance, only 25% nodes
are infected by STRON during the forwarding process
in contrast with 65% of OP and the huge ratio 97%
of Epidemic. Thus, STRON helps considerably in re-
ducing up to 2.5× and 3.9× overhead in OP and Epi-
demic at KAIST. The similar situation also happens
at PMTR. On the other hand, though the two greedy
schemes have competitive performance in cost, they
however slow down the dissemination speed as shown
in Fig.4(a).

We now evaluate the influence of the system para-
meter C on the performance metrics of STRON. We
increase the value of C to observe its impact on the
delivery delay and routing cost. Fig.5 shows the re-
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sults. As we can see from it, we can alleviate the rout-
ing cost by increasing the value of C, while we achieve
these improvements at the cost of longer delivery delay,
though there is a negligible increase at PMTR scenario.
It seems to be better if we can define a more fine-grained
selection strategy for C. Whereas, since different hu-
man contact traces show different mobility patterns, a
general definition for C is impossible.

Fig.5. Performance metrics of STRON with different values of

system parameter C. (a) Relative delivery delay. (b) Cost.

In summary, STRON achieves a striking improve-
ment in routing cost while keeping mean delivery delay
sufficiently close to those by OP under different sce-
narios. These experimental results clearly verify the
effectiveness of STRON.

7 Conclusions

In this paper, we studied DTNs routing within a
more challenging scenario. We explored the influence
of strangers on routing performance. We observed the
roles of social relationships in Epidemic and greedy
scheme through two real datasets. We noticed that
strangers have two sides in data forwarding process,
and that the importance of strangers shows a decreas-
ing trend along the forwarding path. Based on these
observations, we developed STRON, a simple but effi-

cient forwarding scheme, to improve the routing perfor-
mance. The distributed feature makes it very suitable
for opportunistic scenarios and the low communication
and computation features make it easy to be integrated
with state-of-the-art work. The trace-driven simula-
tions obviously confirm its effectiveness, especially in
terms of packet delivery delay and cost.

The significant topics for future work include the
methods to compute the similarity between nodes and
the taxonomy to identify the social relationships.
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