
Kim HI, Chang JW. k-nearest neighbor query processing algorithms for a query region in road networks. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 28(4): 585–596 July 2013. DOI 10.1007/s11390-013-1359-8

k-Nearest Neighbor Query Processing Algorithms for a Query Region

in Road Networks

Hyeong-Il Kim1 and Jae-Woo Chang1,2,∗

1Department of Computer Engineering, Chonbuk National University, Chonju 570-752, Korea
2Cloud Open R&D Center, Chonbuk National University, Chonju 570-752, Korea

E-mail: {melipion, jwchang}@jbnu.ac.kr

Received September 9, 2012; revised May 6, 2013.

Abstract Recent development of wireless communication technologies and the popularity of smart phones are making
location-based services (LBS) popular. However, requesting queries to LBS servers with users’ exact locations may threat
the privacy of users. Therefore, there have been many researches on generating a cloaked query region for user privacy
protection. Consequently, an efficient query processing algorithm for a query region is required. So, in this paper, we
propose k-nearest neighbor query (k-NN) processing algorithms for a query region in road networks. To efficiently retrieve
k-NN points of interest (POIs), we make use of the Island index. We also propose a method that generates an adaptive
Island index to improve the query processing performance and storage usage. Finally, we show by our performance analysis
that our k-NN query processing algorithms outperform the existing k-Range Nearest Neighbor (kRNN) algorithm in terms
of network expansion cost and query processing time.

Keywords island index, k-nearest neighbor query processing scheme, location-based service, road network

1 Introduction

Recently, many applications based on users’ location
information are rapidly diffused with the development
of wireless communication technologies and the popu-
larity of smart phones. Such applications are named
LBS (location-based services) since they provide ad-
ditional services based on the users’ exact locations
obtained by location positioning devices, e.g., GPS.
LBS applications include buddy search, location-based
tourist information, route guidance, and retrieval of
nearest POIs (points of interest) like restaurants and
gas stations, etc. However, a user’s private informa-
tion is in danger because the exact location of the user
should be sent to an LBS server to enjoy such applica-
tions. If an adversary or malicious LBS provider abuses
this information, it can speculate the user’s private in-
formation like lifestyle, disease and religion by knowing
when/where the user frequently visits. Actually, some
cases of the stalking or the leakage of personal informa-
tion have occurred[1-2] by using users’ location informa-
tion of LBS. Therefore, a mechanism for users’ privacy
protection is required for the safe use of LBS.

To protect a user’s location privacy, cloaking area

creation schemes[3-6] have been actively studied. They
guarantee the privacy protection by generating and
sending a cloaking area (or a query region) satisfy-
ing k-anonymity property to the LBS server, instead
of using the user’s exact location. The k-anonymity
property is simply defined as a mechanism where a
query region includes not only a user who requests a
query, but also the k − 1 other users nearby him/her.
By using the cloaking area creation schemes, the lo-
cation exposure probability of a query issuer can be
reduced by 1/k. This is because an adversary or a
malicious LBS provider cannot distinguish the query
issuer among other users inside the query region. How-
ever, in this case, as the LBS provider cannot know
the exact location of a query issuer, it should perform
query processing under a premise that a user can be
anywhere inside the query region. In other words, the
LBS provider should process the query over a query re-
gion, not an exact query location.

Therefore, we, in this paper, consider a k-nearest
neighbor (k-NN) query which returns k nearest POIs
from the location of a query issuer in road networks.
For example, a user can issue a query like “send me the
three nearest restaurants from my current location”

Regular Paper
This research was supported by the Korea Institute of Science and Technology Information (KISTI).
The preliminary version of the paper was published in the Proceedings of EDB2012.
∗Corresponding Author
©2013 Springer Science +Business Media, LLC & Science Press, China



586 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

with a query region (not an exact point). Then, an
LBS provider processes the query and returns a set of
restaurants that can be candidates for the any points
inside the query region. By doing this, the user’s loca-
tion privacy can be protected. There are two existing
schemes[7-8] that process k-NN query over a query re-
gion. However, both schemes suffer from the following
problems. First, they should be extended to road seg-
ments where POIs are actually located, thus leading to
the degradation of POI retrieval performance due to a
lot of network expansion. Secondly, they need to carry
out an additional calculation to obtain the distances
from a node to POIs being located on the adjacent road
segment of the node.

To solve the problems, we propose IB kRNN (Island-
Based k-Range Nearest Neighbor) query processing al-
gorithm and an adaptive IB kRNN (AIB kRNN) query
processing algorithm. To support fast query pro-
cessing, we first propose IB kRNN by expanding the
Island[9] scheme which pre-computes the distances be-
tween nodes and nearby POIs. In the Island scheme, ev-
ery node has an Island index which stores pre-computed
distances to POIs being located inside a given radius
from the node. By adapting the Island index, IB kRNN
rapidly processes a k-NN query over a query region.
Next, we propose AIB kRNN to improve IB kRNN. To
increase the efficiency of Island index, we generate an
adaptive Island index by applying different radiuses to
each node based on the POI density of each node.

The contributions of this paper are as follows. First,
we design two query processing algorithms (IB kRNN
and AIB kRNN) for a query region in road networks.
Because both algorithms make use of the Island in-
dex that can be loaded on the main memory, they
can rapidly process a k-NN query. Second, we devise
a method to adaptively generate the Island index in
AIB kRNN algorithm. By considering the POI density
of each node, we can manage a trade-off between the
size of the index and the number of POIs. Finally, we
provide experimental results showing that our schemes
outperform an existing scheme k-Range Nearest Neigh-
bor (kRNN)[8] in terms of the number of POIs retrieved
and query processing time.

The rest of the paper is organized as follows. Sec-
tion 2 introduces related work and Section 3 describes
the motivation and the problem setting of our work.
The proposed k-NN query processing algorithms over a
query region in road networks are presented in Sections
4 and 5. The extensive experimental evaluation of our
algorithms is presented in Section 6. Finally, Section 7
concludes the paper with further research.

2 Related Work

We first review cloaking area creation schemes both

in Euclidean space and in road networks, and then in-
troduce existing k-NN query processing algorithms over
a query region in road networks.

2.1 Cloaking Area Creation Schemes

Cloaking schemes which generate a cloaking area
satisfying k-anonymity property in Euclidean space
have been actively studied[3-6]. First, Mokbel et al.[3]

proposed the New Casper scheme which creates a cloak-
ing area by using a grid-based hierarchical pyramid data
structure. Thus, New Casper scheme generates cloak-
ing areas with different sizes, according to the density
of mobile users. Secondly, Ghinita et al.[4] proposed
the MobiHide scheme which transforms the locations of
mobile users into 1-dimensional coordinates by using a
Hilbert curve. Then, MobiHide makes up a distributed
hash table called Chord and creates a cloaking area.
Thirdly, Kim et al.[5] proposed a distributed scheme
where a query issuer generates a cloaking area in a
distributed manner by collaborating with other mobile
users. Finally, Lee et al.[6] proposed the GCC scheme
which creates a cloaking area by calculating the privacy
protection level of a cloaking area by using entropy.
Thus, it can reduce the location exposure probability of
a query issuer. However, because cloaking area creation
schemes in Euclidean space cannot reflect the road net-
work, inappropriate query results may be returned to
a query issuer. The reason is that the returned result
is apart from the location of a query issuer in case a
network distance is quite far from the location of the
query issuer.

To the best of our knowledge, the XStar scheme pro-
posed by Wang et al.[10] is the only work which creates
a cloaking area in road networks. XStar considers not
only k-anonymity property, but also l-diversity prop-
erty to guarantee the privacy protection of mobile users.
l-diversity property is defined as a mechanism where a
cloaking area includes not only road segment that a
query issuer is located on, but also the l − 1 other ad-
jacent or nearby road segments. By doing this, the ex-
posure probability of road segments can be reduced by
1/l. In other words, because a cloaking area created by
the XStar scheme includes not only more than k users
but also more than l road segments, XStar can hide the
identity of a query issuer and a road segment where the
query issuer is located. The XStar scheme first allocates
a query issuer into a nearby star node being connected
with more than three road segments. Then it checks
whether the number of users allocated to the star node
satisfies the required k-anonymity or not. Next it exa-
mines whether the number of road segments crossing
the selected star node satisfies the required l-diversity.
If both privacy requirements are satisfied, XStar crea-



Hyeong-Il Kim et al.: k-NN Query Processing Algorithms for a Query Region 587

tes a star node with its adjacent road segments as a
cloaking area.

2.2 k-NN Query Processing Algorithms over
Query Region

When a user requests a k-NN query by using a
cloaking area, an LBS provider should perform query
processing under a premise that the user can be any-
where inside the query region. This is because the LBS
provider cannot know the exact location of a query is-
suer inside the cloaking area. Some studies[11-14] on
a k-NN query processing algorithm for a query region
have been performed. First, Kalnis et al.[11] proposed
the CkNN (Circular Range k-NN) algorithm which con-
siders a circular query region. CkNN scheme uses the
R-tree to find POIs over the circular query region. Sec-
ondly, Chow et al.[12] proposed the ARNN (Approxi-
mate Range Nearest Neighbor) algorithm. ARNN finds
the nearest neighbor for a given cloaking region by
using a Voronoi diagram. Thirdly, Xu et al.[13] pro-
posed the kCRNN (Circular-Region-Based kNN) algo-
rithm. kCRNN applies a filtering method based on
distance measure to efficiently prune out POIs. Fi-
nally, Um et al.[14] proposed a query processing algo-
rithm which makes use of a Voronoi diagram for re-
trieving the nearest POIs efficiently. This algorithm
adopts 2D-coodinate scheme to prune POIs. However,
these schemes operate on the Euclidean space. Thus,
they are unable to provide the high quality of service to
the query issuer because they cannot consider the road
networks where the query issuer actually moves along.
For example, assume that a user requests a query on
the left side of the river. Then, POIs located on the
right side of the river can hardly be query results un-
less there exists a bridge nearby the user. Therefore, it
is necessary to process queries based on road networks
to provide good services to LBS users.

There exist two algorithms considering road net-
works. First, Ku et al.[7] proposed the PSNN (Privacy
Protected Spatial Network Nearest Neighbor Query)
algorithm. PSNN retrieves all POIs inside the given
cloaking area and finds POIs outside the cloaking area
through road network expansion. Secondly, Bao et al.[8]

proposed the kRNN (k-Range Nearest Neighbor) algo-
rithm. kRNN pre-computes the distances of every pair
of nodes to reduce the cost of network distance calcu-
lation. kRNN retrieves all POIs inside the given query
region and computes distances which are shared by ev-
ery pair of expansion border points where an expansion
border point is a boundary node of the cloaking area.
Then, kRNN repeatedly expands a network from one
of the expansion border points.

3 Problem Setting

In this section, we present the motivations of our re-
search, describe the system architecture for LBS, and
define notations used in this paper.

3.1 Motivations

The existing k-NN query processing algorithms over
a query region in road networks have some drawbacks.
PSNN[7] suffers from the duplicate expansion of a road
network, thus causing the degradation of the query pro-
cessing performance. kRNN[8] solves the problem of du-
plicate expansion and improves query processing perfor-
mance by pre-computing the distances between nodes
of a road network. But it still needs to be expanded
to deal with road segments where POIs are actually lo-
cated. kRNN also remains to be extended to carry out
an additional calculation to get distances from a node
to nearby POIs in the adjacent road segments of the
node. The problems cause the degradation of the re-
trieval performance of kRNN.

Therefore, in this paper, we propose both
IB kRNN (Island-Based k-Range Nearest Neighbor)
query processing algorithm and an adaptive IB kRNN
(AIB kRNN) query processing algorithm to tackle
these problems. First, IB kRNN rapidly processes k-
NN query over a query region because it adopts an Is-
land technique[9] which pre-computes the distances be-
tween a node and nearby POIs. Secondly, AIB kRNN
utilizes an adaptive Island index which is generated by
considering the POI density of each node. In other
word, AIB kRNN adaptively applies different radiuses
to each node. By doing this, the proposed schemes can
reduce the number of average network expansion. Be-
cause the Island index can be stored in the main mem-
ory in both schemes, our schemes guarantee fast query
response time for a query issuer.

3.2 System Architecture

There exist two types of system architectures in LBS:
centralized and distributed. The main difference be-
tween both architectures is who generates the cloaking
area. In a centralized system, an anonymizer genera-
tes a cloaking area, whereas a query issuer generates
a cloaking area by communicating with other mobile
users in a distributed system. Our query processing
schemes can be applied to both system architectures.
However, in this paper, we only consider the centralized
system architecture for the sake of a simple explanation.

Fig.1 shows a general centralized architecture for
LBS. The system mainly consists of mobile clients, an
anonymizer, and an LBS provider. Mobile clients are
users who request LBS queries. To enjoy a location-



588 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

based service, mobile users send to the anonymizer a
query with their exact location, the number of POIs
that users want to receive, k-anonymity, and l-diversity.
The anonymizer is a trusted third party who generates
a cloaking area, i.e., a query region, by considering k-
anonymity and l-diversity. Here, k-anonymity and l-
diversity means the number of users and the number of
road segments that the query issuer wants the cloak-
ing area to include, respectively. Then, the anonymizer
sends the cloaking area to the LBS provider. An LBS
server plays an important role in processing the query
over the query region to retrieve POIs. At this time,
the LBS provider returns the candidates including an
actual result back to the anonymizer because the LBS
provider does not know the exact location of the user
in the cloaking area. Finally, the anonymizer returns
to the query issuer the final result based on the exact
location of the query issuer. Among this procedure,
we focus on the LBS provider who performs query pro-
cessing over a query region in road networks. Therefore,
we design query processing algorithms to efficiently re-
spond to the query issuer.

Fig.1. General centralized system architecture for LBS.

3.3 Notations

We model the underlying road network as an undi-
rected weighted graph G = (V, E) where V is a set
of vertices and E is a set of edges which mean road
segments. A query is defined as Q = (R, k) where R
is a given query region and k is the number of POIs
that the query issuer wants to receive. A query region
R is defined as R = (seg1, seg2, . . . , segn) where segi

(1 6 i 6 n) are road segments that compose the query
region. In this paper, query processing is normally per-
formed over a query region R by considering a road net-
work. We manage three types of indices: node index,
road segment index, and Island index. These indices
are stored into the main memory so that the proposed
algorithms can rapidly process a query. First, we define
the node index as shown in Definition 1. The node in-
dex is used to support fast query processing when the
network expansion is performed for adjacent nodes.

Definition 1. Node index is defined as V =
(ID , x, y, adj node, adj edge, degree) where ID is an

identity of a node, x and y are the coordinates of the
node, adj node and adj edge are the list of adjacent
nodes and road segments, respectively, and degree is the
number of road segments being adjacent to the node.

Secondly, we define the road segment index as shown
in Definition 2. This index is helpful to rapidly find
POIs when retrieving road segments inside a query re-
gion.

Definition 2. Road segment index is defined as
E = (ID ,nodeS ,nodeE , dist , poicount ,POI ) where ID
is an identity of a road segment, nodeS and nodeE are
start and end nodes being connected by a road segment,
dist is the length of a road segment, and poicount and
POI are the number of POIs being located on a road
segment and a list of POIs, respectively.

Finally, we define Island index as shown in Defini-
tion 3. We generate an Island index for each node by
finding POIs within a given range from a node and pre-
computing the distances from the node to found POIs.
Here, POIs are stored with their network distances from
the node in increasing order. By accessing the Island
index, we do not need to expand a road segment that
POIs are actually located on. Therefore, the number of
network expansions can be reduced.

Definition 3. Island index is defined as I =
((P1, dist1), (P2, dist2), . . . , (Pp, distp)) where Pi (1 6
i 6 p) is the identity of a POI being within a given
range from a node, and disti is the corresponding net-
work distance from the node to each POI.

We assume that a query region is a set of road seg-
ments and there exists one or more nodes that are con-
nected with a road segment outside the query region.
From the nodes, we can expand a road network to re-
trieve POIs. We define the nodes as expansion border
points in Definition 4.

Definition 4. Expansion border point is a node
which is connected with a road segment outside a query
region. Each expansion border point (Bv) manages
DistToBorder and BorderResult where DistToBorder is
a table that stores the network distances to other ex-
pansion border points and BorderResult is a table that
stores a current k-NN query result for the expansion
border point.

To expand a road network, we need to find out nodes
that exist outside a query region but are adjacent to the
query region. We define the nodes as expansion candi-
dates in Definition 5.

Definition 5. Expansion candidates are nodes that
are outside a query region while are adjacent to the
query region. Expansion candidates are arranged in the
increasing order of network distances from the query re-
gion. Among all expansion candidates, the node with
the shortest distance to the query region is termed
Vselected.



Hyeong-Il Kim et al.: k-NN Query Processing Algorithms for a Query Region 589

4 Island Index Based Query Processing
Algorithm

In this section, we present our IB kRNN (Island-
Based k-Range Nearest Neighbor) algorithm that deals
with a k-NN query for a query region in road net-
works. First, IB kRNN generates an Island index for all
nodes in the road network. Then, IB kRNN retrieves
all POIs inside a query region and sets expansion bor-
der points. Secondly, it searches POIs outside the query
region by accessing the Island index. Thirdly, it finds
other POIs through network expansion from expansion
border points, in order to guarantee an accurate query
result. Finally, it returns the final result to a query
issuer.

4.1 Step 1: POI Retrieval Inside a Query
Region

An LBS provider cannot know the exact location of
a query issuer inside a query region being sent from
anonymizer. This is why the LBS provider has to pro-
cess the query under a premise that the query can be
anywhere inside the query region. This means that all
POIs inside the query region should be returned to the
query issuer. Therefore, in this step, we first retrieve
all POIs located on road segments that form the query
region. This can be easily done by utilizing a road seg-
ment index. Then, we determine a set of expansion bor-
der points, B = (BV 1, BV 2, . . . , BVm) where m is the
total number of expansion border points for the given
query region. Next, we calculate the distances among
all expansion border points and store them into their
DistToBorder tables. Finally, we store into BorderRe-
sult the current k-NN query results of all expansion
border points with their network distances.

Fig.2 gives an example of POI retrieval inside a
query region. Assume that a query region is given as a
set of road segments which are depicted as thick lines,
i.e., segAB , segBC , segBD , and segBE . At first, our
IB kRNN algorithm searches POIs located on the road
segments within the query region. Therefore, our algo-
rithm finds P1 on segBE and P2 on segBD by access-
ing the road segment index from these road segments.
Then, it regards nodes A, C, and E as expansion bor-
der points (BA, BC , and BE). Note that nodes B and
D are not expansion border points because they are not
connected with other road segments outside the query
region. Next, it calculates the distances among all ex-
pansion border points and stores them into their Dist-
ToBorder as shown in Table 1. In case of BA, the net-
work distance with BC is 8 whereas the distance with
BE is 10. Finally, all expansion border points maintain
their current k-NN query results with their network dis-

tances into BorderResult in Table 1. As two POIs, i.e.,
P1 and P2, are found, every expansion border point
stores them as the current 2-NN results.

Fig.2. Example of POI retrieval inside a query region.

Table 1. Expansion Border Points Information

Expansion DistToBorder BorderResult

Border Points BA BC BE k1 k2 k3

BA 0 8 10 (P1, 7) (P2, 12) ∞
BC 8 0 8 (P1, 5) (P2, 10) ∞
BE 10 8 0 (P1, 3) (P2, 12) ∞

4.2 Step 2: POI Retrieval from Island Index

Once a set of expansion border points, B = (BA, BC ,
BE), are found in step 1, our algorithm retrieves other
POIs by searching the Island index from expansion bor-
der points. This step can be categorized into two cases
according to whether or not an Island index contains
less POIs than k that a user requests. When an Island
index stores the same or more POIs than k, our algo-
rithm can obtain k closest POIs by accessing only the
Island index. Therefore, it is very important to deter-
mine how many POIs should be stored in the Island
index so that we can perform k-NN query processing in
an optimal way. For this, it is possible to obtain the
near optimal value as the number of POIs to be stored
in the Island index of a node. This can be done by
using the sampled POIs which are large in size enough
to calculate the optimal value and are generated from a
real road map (e.g., San Francisco map). The detailed
explanation is omitted here due to the space restric-
tion. Next, our algorithm updates the BorderResult of
all expansion border points and terminates the query
processing at the node. This is because the Island in-
dex of a node stores pre-computed distances to POIs
being located inside a given radius from the node in
an increasing order. To update distances stored in the
BorderResult of other expansion border points with the
found POIs, it is necessary to gain accesses to DistTo-
Border which contains the distances between other ex-
pansion border points and the distances from the found



590 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

POIs to the node, i.e., distp. If the summation of the
two values is smaller than the current result of each ex-
pansion border point, our algorithm updates the Bor-
derResult with this value. Once the query processing
at a node is finished, no more updates occur at this
node because the result for the node is guaranteed by
the pre-processed Island index.

For example, we start from an expansion border
point BA. Assume that a radius for generating the
Island index is 10, a user requests three POIs (k = 3),
and the Island indices are shown in Fig.2. Because the
Island index of BA stores three POIs which equals the k
value requested, our algorithm finds three closest POIs,
i.e., P4, P3, and P1. Among them, P4 and P3 with
shorter distance than the current result of BA are in-
serted into the BorderResult of BA. Next, it updates
the BorderResult of all expansion border points and
terminates the query processing at BA. The update at
each expansion border point is done as follows. The
distance from BC to P4 is calculated by summing 8 in
DistToBorder of Tables 1 and 3 in the Island index of
BA. Because the calculated distance 11 is smaller than
the current third closest result of BC (i.e., ∞), P4 is
inserted into the BorderResult of BC . Meanwhile, the
distances from BC to P3 and P1 are 12 and 15, respec-
tively. Because the distances are larger than the current
value of BC , they are not reflected into the BorderRe-
sult of BC . Similarly, P4 is inserted into the BorderRe-
sult of BE with the distance 13 (10+3). Table 2 shows
the result after retrieving the Island index of BA. The
newly updated values are highlighted in bold type. The
query processing at BC is performed in the same way
since BC stores three POIs. As a result, P5 is inserted
into the BorderResult of BC and the query processing
at BC is finished. The result of query processing at BC

is shown in Table 3.

Table 2. Result of Island Index Searching from Expansion

Border Points After Retrieving Island Index of BA

Expansion BorderResult

Border Points k1 k2 k3

BA (P 4, 3) (P 3, 4) (P 1, 7)

BC (P1, 5) (P2, 10) (P 4, 11)

BE (P1, 3) (P2, 12) (P 4, 13)

Table 3. Result of Island Index Searching from Expansion

Border Points After Retrieving Island Index of BC

Expansion BorderResult

Border Points k1 k2 k3

BA (P4, 3) (P3, 4) (P1, 7)

BC (P1, 5) (P 5, 9) (P 2, 10)

BE (P1, 3) (P2, 12) (P4, 13)

Meanwhile, when an Island index includes less POIs
than k, ou algorithm obtains all POIs by accessing the
Island index of a node. Then it updates the BorderRe-
sult of all expansion border points. If the node needs to
find more POIs to get the k closest POIs, an network
expansion outside the query region is required at this
node. Therefore, our algorithm finds expansion can-
didates that are adjacent to the node and outside the
query region, and then arranges them in the increasing
order of network distances from the node. The dis-
tances between POIs and expansion border points are
calculated in the same way as the first case. For exa-
mple, the Island index of BE contains only two POIs,
i.e., P5 and P1, whose number is less than k = 3 (in
Table 2). Therefore, our algorithm updates the Bor-
derResult of all expansion border points for P5 and P1.
However, only the BorderResult of BE is considered in
the example because the accurate POIs have already
been found for BA and BC . As a result, P5 is inserted
into the BorderResult of BE with its distance=1. To
expand from BE , our algorithm finds expansion can-
didates, i.e., node H and I, that are adjacent to BE

and outside the query region. Table 4 shows the result
after retrieving the Island index of BE . The query pro-
cessing through network expansions will be addressed
in step 3.

Table 4. Result of Island Index Searching from Expansion

Border Points After Retrieving Island Index of BE

Expansion BorderResult

Border Points k1 k2 k3

BA (P4, 3) (P3, 4) (P1, 7)

BC (P1, 5) (P5, 9) (P2, 10)

BE (P1, 3) (P 1, 3) (P 2, 12)

4.3 Step 3: POI Retrieval Through Network
Expansion

If an expansion border point has less POIs in its Is-
land index than the requested k value, it is necessary to
find more POIs through network expansion. This step
is performed as follows. First, we should check whether
or not its distance from a node (VSelected) which is the
closest to the expansion border point is shorter than
the distance of the k-th POI for the expansion border
point. If so, our algorithm should perform the net-
work expansion from the corresponding node and sets
exp dist as a distance between VSelected and the expan-
sion border point. Secondly, it searches POIs from the
Island index of VSelected and updates the BorderResult
of all expansion border points. Then it finds nodes that
are adjacent to VSelected and outside the query region,
and arranges them in the increasing order of network
distance from the expansion border point. At this time,



Hyeong-Il Kim et al.: k-NN Query Processing Algorithms for a Query Region 591

our algorithm calculates the distances of the found
POIs by adding exp dist and distp where distp is the
distances from the found POI to VSelected. The calcu-
lated values are used for distance bounds for the found
POIs. That is, if the shorter route to any POI is found
through further network expansion, the distance to the
POI is updated. This process is repeated until the dis-
tance to the closest node among expansion candidates
is not shorter than that of the k-th closest POI in Bor-
derResult. Finally, if there exists a node with shorter
distance than that of the k-th closest POI, our algo-
rithm terminates the query processing at this expan-
sion border point. Then, it merges all POIs stored in
the BorderResult being acquired through the step 1 to
step 3 and returns the final result to the anonymizer.

For example, we assume that there exists an expan-
sion border point BE whose expansion candidates are
nodes H and I. The Island indices of the nodes are
shown in Fig.2. Because H has the shortest distance, it
is selected for the network expansion and exp dist is set
as the distance from H to BE , i.e., 4. Because exp dist
is shorter than the distance of the third closest POI of
BE (i.e., 12) in Table 4, it can be expanded to node H.
Next, our algorithm searches the Island index of H and
calculates the distances between BE to POIs stored in
the Island index of H. The distances are the summa-
tion of exp dist and distp. That is, the distance to P5 is
4 + 3 and the distance to P6 is 4 + 7. Because the P1’s
new distance (i.e., 7) to BE is larger than that of the
BorderResult of BE , we do not need to update the dis-
tance. Meanwhile, P6 is inserted into the BorderResult
of BE because the P6’s new distance to BE (i.e., 11) is
shorter than that of the current third closest POI, i.e.,
P2. Table 5 shows the result after searching the Island
index of node H. Because the distance to node I (i.e.,
6) is shorter than that of the third closest POI (i.e.,
11), our algorithm performs network expansion to the
node I and exp dist is set as the distance from BE to
I, i.e., 6. Then, it searches the Island index of I and
calculates the distances between BE and POIs within
the Island radius of I. The distance to P5 is 6 + 7 and
the distance to P1 is 6 + 9. Because both distances are
larger than that of the current third closest POI of BE ,
there is no update. Finally, since there are no more
additional expansion candidates, the query processing
at BE is finished and the retrieved POIs are returned
to the anonymizer as the k-NN query result.

Table 5. Result of Network Expansion

Expansion BorderResult

Border Points k1 k2 k3

BA (P4, 3) (P3, 4) (P1, 7)

BC (P1, 5) (P5, 9) (P2, 10)

BE (P5, 1) (P1, 3) (P5, 11)

Now, we describe our IB kRNN algorithm as shown
in Fig.3. First, it loads the Island index created by pre-
processing into the main memory (line 1). Secondly, it
retrieves all POIs located on road segments that form
a query region R (lines 2∼4), and determines a set of
expansion border points (line 5). Thirdly, it retrieves
POIs by accessing the Island index of expansion bor-
der points (lines 6∼7). Fourthly, if the Island index
contains the same or more POIs than k, it obtains k
closest POIs by accessing the Island index. Then it up-
dates the BorderResult of all expansion border points
and terminates the query processing at the expansion
border point (lines 8∼10). Otherwise, it gets all POIs
by accessing the Island index. Then it updates the Bor-
derResult of all expansion border points. In addition,
it finds expansion candidates that are adjacent to the
expansion border point and outside the query region,
and calculates a distance (exp dist) from the expansion
border point (lines 11∼16). Fifthly, if a node with the
smallest exp dist is closer from the expansion border

Input: k//the number of POIs a user wants to find

R = {seg1, seg2, . . . , segn} //query region

Output: Result //a set of result POIs

Island Based k-Range Nearest Neighbor Algorithm

1. loadtoMemory(Island file);

2. For (each segment in R)

3. pois = InsideSearch(seg);

4. Result = PutResult (pois);

5. border = SetBorderPoints();

6. For (each border)

7. pois = IslandSearch(border);

8. if (num(pois) > k)

9. Result = PutResult(pois);

10. border.BorderResult = PutResult(pois);

11. else

12. border.BorderResult =PutResult(pois);

13. For (i 6 degree of border)

//degree:number of expansion candidates

14. if (border.adjnode[i] 6∈ nodes inside R)

15. Cand=InsertAdjNode(border.adjnode[i]);

16. Cand.Set exp dist (border.adjnode[i]);

17. while (Cand[0].exp dist

<Dist(border.BorderResult.poi[k − 1])

18. pois =IslandSearch(Cand [0]);

19. border.BorderResult =PutResult(pois);

20. For (i 6 degree of Cand[0])

21. if (Cand[0].adjnode[i] is not searched yet)

22. Cand=InsertAdjNode(Cand[0].adjnode[i]);

23. Cand.Set exp dist (Cand[0].adjnode[i]);

24. Cand[0] = Cand[0].nextNode;

25. for (each border that performed expansion)

26. Result =PutResult(border.BorderResult);

27. return Result;

End Algorithm

Fig.3. IB kRNN algorithm.



592 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

point than from the k-th POI, the network expansion
to the node is performed (line 17). Sixthly, it searches
POIs from the Island index of the node and updates all
BorderResult of expansion border points. Then it finds
other nodes that are adjacent to the node and outside
the query region (lines 18∼23). Seventhly, it selects the
next closest expansion candidate and repeats the pro-
cess until the algorithm cannot find other nodes (line
24). Finally, it inserts all POIs in the BorderResult into
a result set (lines 25∼26) and returns the result POIs
to the anonymizer (line 27).

5 Adaptive Island Index Based Query
Processing Algorithm

Our IB kRNN algorithm has the following advan-
tages. First, it reduces the number of network expan-
sions by pre-computing the distances between nodes
and their nearby POIs. Secondly, it can rapidly pro-
cess a k-NN query over a query region by using the
Island index residing in main memory. However, our
IB kRNN cannot consider POI density of each node
because it uses the same radius for all nodes when gene-
rating the Island index. The shorter radius can be used
for nodes with higher POI density. Based on the con-
cept, we propose an adaptive IB kRNN (AIB kRNN)
algorithm. Our AIB kRNN uses an adaptive Island in-
dex which is generated by considering the POI density
of each node. So, our AIB kRNN adaptively applies
different radius to each node and performs k-NN query
processing over a query region by using the adaptive
Island index. Our AIB kRNN has the following advan-
tages. In case of nodes with high POI density, the num-
ber of POIs stored in the adaptive Island index can be
reduced by using short radius, thus leading to good per-
formance on storage space usage. Meanwhile, in case
of nodes with low POI density, the number of POI in
the Island index can be increased by using long radius.
By doing this, the number of network expansions can
be decreased, resulting in good query processing per-
formance.

Our adaptive Island index is created as follows. At
first, our AIB kRNN algorithm calculates the POI den-
sity of each node. For this, we assume that MINk is the
number of POIs to be stored in the Island index of
each node. Our algorithm finds MINk POIs from each
node through a network expansion and sets the distance
between a node and its MINk-th POI as dist to K. In
addition, it sets the total and the average length of the
retrieved road segments as DIST total and DIST avg, re-
spectively. The average number of adjacent nodes for
the retrieved road segments is defined as Degree. Thus
the POI density for each node is calculated using (1).

Density = DIST total/MINk . (1)

When we assume that MAXk is the maximum POIs
that a user wants to obtain for a query, the length of
road segments to be retrieved for finding (MAXk −
MINk) additional POIs for each node, i.e., DIST add,
is calculated by using:

DIST add = Density × (MAXk −MINk).

To use DIST add for generating an adaptive Island
index, it is necessary to transform DIST add into a ra-
dius. For this, we assume a virtual road network where
the number of adjacent nodes is Degree and the length
of road segments is DISTavgwhen finding MINk POIs.
In case the degree of a node is 2, the total length of
road segments to be retrieved when expanding n hops
from a node, i.e., T , is calculated by (2) by following
an arithmetic progression. In case where the average
degree of a node is greater than 2, the total length of
road segments to be retrieved is calculated by (3) by
following a geometric progression. We do not need to
consider a node whose average degree is less than 2 be-
cause the node can be found only if it is atomic in road
networks. So we assume the minimum value of Degree
is 2.

T = 2×DIST avg × n, (2)

T =
Degree ×DIST avg × ((Degree − 1)n − 1)

(Degree − 1)− 1
.

(3)

Based on these formulas, it is possible to find out
the number of hops for the DISTadd length of road seg-
ments. Table 6 shows how to calculate the number of
the network expansions, i.e., hops, in both cases.

Table 6. Formulas for Calculating the Number of the

Required Network Expansion

Condition Number of Network Expansion (Hops) Required

Degree = 2 n =
DISTadd

2×Distavg

Degree > 3 n = log(Degree−1)

(
DISTadd × (Degree − 2)

Degree ×DISTavg
+ 1

)

Once the number of the network expansion required
for each node is computed, our algorithm calculates a
radius for each node to generate our adaptive Island
index. The radius is calculated by adding the length
of road segments for finding both MIMk POIs and the
additional MAXk − MINk POIs. Meanwhile, because
this is based on the virtual road network, we can adjust
the radius (radius) by inserting an error rate (i.e., α) as
shown in (4). Finally, we generate our adaptive Island
index for a node by using the calculated radius. Our
AIB kRNN algorithm is identical to our IB kRNN algo-
rithm, except using the adaptive Island index. Hence,



Hyeong-Il Kim et al.: k-NN Query Processing Algorithms for a Query Region 593

we skip the detailed explanation of our AIB kRNN al-
gorithm.

radius = dist to K + (1 + α)× (n×DIST avg). (4)

6 Performance Analysis

In this section, we first present the environment of
our performance analysis and then compare the perfor-
mances of our k-NN query processing algorithms with
that of an existing scheme, kRNN.

6.1 Experimental Environment Setting

We implement our k-NN query processing algo-
rithms under the environment setting as shown in Ta-
ble 7. We use the real road map of San Francisco
(600 km2) which consists of 223 200 road segments and
175 344 nodes. POI datasets are generated by using the
Network-Based generator[15] on the San Francisco map
data. We also use some variables for our experiments
as shown in Table 8. The POI density means the pro-
portion of the number of POIs used in the experiments
to the total number of road segments in the map data,
i.e., 22 026 POIs for the case of Density = 0.1. In addi-
tion, we adopt the XStar scheme[10] to generate query
regions. This is because to the best of our knowledge,
the XStar scheme is the only work that creates a cloak-
ing area in road networks. Each query region consists
of a set of the connected road segments and we generate
50 queries with different l-diversity for each experiment.

Table 7. Environment Setting

Item Capacity

CPU Intel Pentiumr Dual-Core E6600 3.06 GHz

Memory 2GB

OS Windows XP professional

Compiler Microsoft Visual Studio 2005

Table 8. Variables

Parameter Range Default

POI density 0.01, 0.02, 0.05, 0.1 0.1

Requested k 1, 5, 10, 15, 20 10.0

MINk − 5.0

We compare our algorithms against kRNN (k-Range
Nearest Neighbor)[7] because kRNN shows the best per-
formance among the existing algorithms to process over
a query region in road networks. We compare the per-
formances of our algorithms and that of kRNN, in terms
of the size of the generated index, the number of POIs
retrieved, and query processing time. Here, the number
of POIs indicates the summation of the number of POIs
retrieved in road segments inside a query region and the
number of POIs in our Island index. In addition, the

radius for generating our Island index in IB kRNN is
set as 1% of the overall map since it was shown that
the value provides the best performance[9].

6.2 Experimental Result

Fig.4 shows the size of our Island indices according
to the POI density in the map. Our AIB kRNN al-
gorithm generates the bigger Island index than that of
IB kRNN, except the case where the number of POIs
is the greatest in our experiments, i.e., POI density =
0.1. In case where the POI density is 0.1, nodes located
in a high density area stores lots of POIs in IB kRNN,
whereas AIB kRNN allows them to maintain less POIs
by using an adaptively calculated radius. Meanwhile,
in case where the POI density is ranged from 0.01 to
0.05, IB kRNN stores less POIs than AIB kRNN. The
reason is that AIB kRNN can enlarge the radius of the
nodes to store enough number of POIs by considering
the POI density of the region. Through our perfor-
mance analysis, it is shown that the nodes located in
a low density area for IB kRNN store just a few POIs
that are much less than the requested k. Because the
size of the pre-processed information about the short-
est paths for all nodes in kRNN is about 350 GB, which
is quite huge as compared with the size of our Island
indices, thus depicting only our Island indices for our
both algorithms.

Fig.4. Size of our Island indices.

Fig.5 shows the average number of POIs retrieved
when varying the required k in a logarithm way. All
algorithms require more POIs when the required k is
large. This is because the POIs have to be retrieved
till they are further from the query region with the
larger value of k. kRNN shows the worst performance
because it needs to perform the network expansion to
meet a road segment where the k-th POI is actually
located. Meanwhile, our algorithms show better per-
formance because they require network expand only to
meet a node that includes the k-th POI inside the radius



594 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

of the node by using our Island indices. It is noteworthy
that AIB kRNN shows a bit better performance than
IB kRNN. This is because AIB kRNN generates the
adaptive Island index by considering the POI density
of each node. That is, AIB kRNN reduces the num-
ber of POIs for a node being located in a high density
area, but stores more POIs for a node in a low density
area. Consequently, AIB kRNN can reduce the number
of network expansions, thus leading to the decrease of
the number of POIs retrieved.

Fig.5. Number of POIs retrieved with varying k.

Fig.6 shows the average query processing time by
varying the required k. All algorithms require more
query processing time when the required k is higher.
This is because the number of POIs retrieved is in-
creased as the required k increases (Fig.5). Our algo-
rithms outperform the kRNN algorithm because kRNN
needs a large number of network expansions which
causes high disk I/Os, whereas our algorithms make
use of in-memory Island indices.

Fig.6.Query processing time with varying k.

Fig.7 shows the average number of POIs retrieved
by varying the size of a query region. Here l-diversity
means the average number of road segments that con-
struct the query region. All algorithms need more POIs
retrieved as the size of query region grows. This is be-
cause the number of road segments inside the query re-
gion and the number of expansion border points outside
the query region are increased as the size of query region
increases. However, our algorithms outperform kRNN

because they use our efficient Island indices, whereas
kRNN needs to do network expansion to meet a road
segment where the k-th POI is actually located.

Fig.7. Number of POIs retrieved with varying the size of a query

region.

Fig.8 shows the average query processing time by
varying the size of a query region. Our algorithms out-
perform the existing kRNN algorithm in all cases. The
reason is that our algorithms need less POIs retrieved
as well as make use of our Island indices residing in the
main memory. Because kRNN causes a large number of
disk I/Os to gain accesses to a pre-computed index for
distances among nodes, it shows the worst performance.

Fig.8. Query processing time with varying size of a query region.

Fig.9 shows the average number of POIs retrieved
with varying POI density. All algorithms need more
POIs retrieved when the POI density is higher. This
is because there exist just a few POIs when the POI
density is low. Therefore, more network expansions
outside the query region are required to find the re-
quested k number of POIs. Our algorithms outperform
kRNN because they use our Island indices to find POIs
earlier; whereas kRNN needs to do network expansion
until meeting a road segment that the k-th POI is actu-
ally located on. Because our AIB kRNN constructs the
Island index in an adaptive way, it shows better perfor-
mance than IB kRNN. AIB kRNN is much better than
IB kRNN when the POI density is low.



Hyeong-Il Kim et al.: k-NN Query Processing Algorithms for a Query Region 595

Fig.9. Number of POI retrieved with varying POI density.

Fig.10 shows the average query processing time with
varying POI density. The query processing time of
all the algorithms is increased as the POI density de-
creases. This is because the number of POIs retrieved
is increased as the POI density decreases as shown in
Fig.7. Our algorithms outperform kRNN in all cases
because they need less POIs retrieved and use our Is-
land indices residing in the main memory. Because the
existing kRNN algorithm causes a large number of disk
I/Os to gain accesses to a pre-computed index for dis-
tances among nodes, it shows the worst performance.
Our algorithms outperform kRNN because they make
use of our Island indices to reduce the number of POIs
retrieved by avoiding disk I/O accesses.

Fig.10. Query processing time with varying POI density.

Although our algorithms show better performance
than kRNN, there is a gap between the query process-
ing performances of our two algorithms when the POI
density is low. Therefore, we can see that the number of
POIs retrieved has a great effect on the query process-
ing performance even though our algorithms perform
k-NN query processing by using our in-memory indices.
Therefore, it is more reasonable to use AIB kRNN be-
cause it can reduce the number of POIs retrieved by
using the adaptively constructed Island index.

7 Conclusions

Recently, many LBS applications have been rapidly
diffused with the development of wireless communica-

tion technologies and the popularity of smart phones.
However, a user’s private information is in danger be-
cause the exact location of the user has to be sent to
an LBS server to enjoy location-based services. Because
cloaking area creation schemes have been actively stud-
ied to protect the user’s location privacy, it is necessary
to perform k-NN query processing over a query region.

In this paper, we proposed two k-NN query process-
ing algorithms over a query region in road networks, i.e.,
IB kRNN and AIB kRNN. They make use of our Island
indices to reduce the number of POIs retrieved. We also
store our Island indices in a main memory to support
fast query processing. Because AIB kRNN adaptively
generates the Island index by considering the POI den-
sity of each node, it guarantees the efficient use of stor-
age and the reduction of the number of POIs retrieved.
We showed through our performance analysis that our
algorithms outperform the existing kRNN algorithm in
terms of the number of POI retrieved and the query
processing time.

As future work, we need to study on a continuous
query processing algorithm over a query region in road
networks, so as to support queries that a user continu-
ously requests.

References

[1] Warrior J, McHenry E, McGee K. They know where you are.
IEEE Spectrum, 2003, 40(7): 20-25.

[2] Voelcker J. Stalked by satellite: An alarming rise in GPS-
enabled harassment. IEEE Spectrum, 2006, 43(7): 15-16.

[3] Mokbel M F, Chow C, Aref W G. The new casper: Query pro-
cessing for location services without compromising privacy. In
Proc. the 32nd Int. Conf. Very Large Data Bases, Septem-
ber 2006, pp. 763-774.

[4] Ghinita G, Kalnis P, Skiadopoulos S. MOBIHIDE: A mobilea
peer-to-peer system for anonymous location-based queries. In
Proc. the 10th Int. Symposium on Advances in Spatial and
Temporal Databases, July 2007, pp. 221-238.

[5] Kim H, Shin Y, Chang J. A grid-based cloaking scheme for
continuous queries in distributed systems. In Proc. the 11th
Int. Computer and Information Technology, August 2011,
pp. 75-82.

[6] Lee H, Oh B, Kim H, Chang J. Grid-based cloaking area cre-
ation scheme supporting continuous location-based services.
In Proc. the 27th ACM Symposium on Applied Computing,
March 2012, pp. 537-543.

[7] Ku W, Chen Y, Zimmermann R. Privacy protected spatial
query processing for advanced location based services. Wire-
less Personal Communications, 2009, 51(1): 53-65.

[8] Bao J, Chow C, Mokbel M F, Ku W. Efficient evaluation of
k-range nearest neighbor queries in road networks. In Proc.
the 11th Int. Conf. Mobile Data Management, May 2010,
pp. 115-124.

[9] Huang X, Jensen C S, Šltenis S. The islands approach to
nearest neighbor querying in spatial networks. In Proc. the
9th Int. Symposium on Advances in Spatial and Temporal
Databases, August 2005, pp. 73-90.

[10] Wang T, Liu L. Privacy-aware mobile services over road net-
works. PVLDB, 2009, 2(1): 1042-1053.



596 J. Comput. Sci. & Technol., July 2013, Vol.28, No.4

[11] Kalnis P, Ghinita G, Mouratidis K, Papadias D. Prevent-
ing location-based identity inference in anonymous spatial
queries. IEEE Transactions on Knowledge and Data Engi-
neering, 2007, 19(12): 1719-1733.

[12] Chow C, Mokbel M F, Naps J, Nath S. Approximate evalua-
tion of range nearest neighbor queries with quality guarantee.
In Proc. the 11th Int. Symposium on Advances in Spatial
and Temporal Databases, July 2009, pp.283-301.

[13] Xu J, Tang X, Hu H, Du J. Privacy-conscious location-based
queries in mobile environments. IEEE Transactions on Par-
allel and Distributed Systems, 2010, 21(3): 313-326.

[14] Um J, Kim Y, Lee H, Jang M, Chang J. k-nearest neighbor
query processing algorithm for cloaking regions towards user
privacy protection in location-based services. Journal of Sys-
tems Architecture, 2012, 58(9): 354-371.

[15] Brinkhoff T. A framework for generating network-based mov-
ing objects. GeoInformatica, 2002, 6(2): 153-180.

Hyeong-Il Kim received the B.S
and M.S degrees in computer engi-
neering from Chonbuk National Uni-
versity, Korea, in 2009 and 2011 re-
spectively. He is currently in a Ph.D.
course in Chonbuk National Univer-
sity. His research interests include se-
curity and privacy of database, query
processing algorithm, and cloud com-
puting.

Jae-Woo Chang received the
B.S. degree in computer engineering
from Seoul National University, Ko-
rea, in 1984, the M.S. and Ph.D. de-
grees in computer engineering from
Korea Advanced Institute of Science
and Technology (KAIST), Daejeon,
in 1986 and 1991, respectively. Dur-
ing 1996∼1997, he stayed in Uni-
versity of Minnesota as a visiting

scholar. And during 2003∼2004, he worked for Pennsyl-
vania State University (PSU) as a visiting professor. He
joined the faculty of the Department of Computer Engineer-
ing at Chonbuk National University in 1991. Currently, he
is a program committee of the IEEE Mobile Services (MS),
Database Systems for Advanced Applications (DASFAA),
and Asia-Pacific Web Conference (APWeb). His research
interests include spatial network database, context aware-
ness and storage system.


