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Abstract The HP model for protein structure prediction abstracts the fact that hydrophobicity is a dominant force
in the protein folding process. This challenging combinatorial optimization problem has been widely addressed through
metaheuristics. The evaluation function is a key component for the success of metaheuristics; the poor discrimination of the
conventional evaluation function of the HP model has motivated the proposal of alternative formulations for this component.
This comparative analysis inquires into the effectiveness of seven different evaluation functions for the HP model. The degree
of discrimination provided by each of the studied functions, their capability to preserve a rank ordering among potential
solutions which is consistent with the original objective of the HP model, as well as their effect on the performance of local
search methods are analyzed. The obtained results indicate that studying alternative evaluation schemes for the HP model
represents a highly valuable direction which merits more attention.
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1 Introduction

Proteins play a very important role in performing
most essential biological and chemical functions in a cell
associated with life. They are necessary for carrying
out structural, enzymatic, transport, and regulatory
functions. It is widely accepted that protein functions
are strictly determined by their three-dimensional (3D)
conformation. Therefore, to fully understand the bio-
logical roles of a protein, it is imperative to first deter-
mine its structure. However, given the limitations of
the experimental methods, computational approaches
to determining the structure of proteins have become
increasingly necessary for the understanding of such
important biological macromolecules.

The protein structure prediction (PSP) problem is
concerned with finding the native conformation of pro-
teins. Such a structure is assumed to be encoded in
the amino acid sequence forming the protein and corre-
sponds to the thermodynamically most stable state[1].
Nevertheless, exploring the huge conformational space
to find the native structure of a protein represents a
very computationally-intensive task, which makes stud-
ies at atomic resolution prohibitive even for relatively

small proteins. Thus, simplified protein models have
been proposed in the literature as valuable tools for
studying the most general and essential principles
governing the protein folding process[2-6].

One of these simplified formulations of the PSP is
the Hydrophobic-Polar (HP) model[7-8]. This model
captures the fact that hydrophobicity is one of the main
driving forces determining the functional conformation
of proteins. Despite its apparent simplicity, the pre-
diction of protein structures based on the HP model
represents a hard combinatorial optimization problem.
This problem has been proved to be NP-complete[9-10],
which justifies the diversity of metaheuristic approaches
that have been adopted to address it (see Subsection
2.1).

The success (or failure) of these metaheuristic al-
gorithms depends heavily on a set of key components
that must be carefully designed. The evaluation func-
tion is a prominent example of these components. It
is responsible for assessing the quality of a candidate
solution with respect to the optimization objective in
order to orient the search towards promising regions
of the solutions space. A good evaluation function is
expected to be able to distinguish each potential solu-
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Nos. 105060 and 99276.
©2013 Springer Science +Business Media, LLC & Science Press, China



Mario Garza-Fabre et al.: Evaluation Functions for HP Model-Based PSP 869

tion from the others, and thus to effectively guide the
search method to make the most appropriate choice at
each of its iterations. On the contrary, an evaluation
function providing a poor discrimination may produce
large plateaus in the landscape[11-13], on which local
search strategies could fail to detect a promising search
direction[14]. Hence, the evaluation issue is expected
to seriously compromise the efficiency of metaheuristic
algorithms.

The conventional evaluation function of the HP
model features a very poor discrimination ability. As
a consequence, no preferences can be set among po-
tential conformations, leading the search process to be
driven almost at random. For this reason, there ex-
ist alternative evaluation functions for the HP model
that have been proposed to improve the performance of
search algorithms[14-19]. In most of the cases, however,
the proposal of these alternative evaluation approaches
was not supported, or it was only partially supported,
by solid experimental evidence.

This paper extends a preliminary work reported in
[20], which was the first intent to formally analyze and
compare different alternative evaluation schemes for the
HP model. It assessed the discrimination potential of
four alternative evaluation functions for the HP model
with respect to the conventional one. Comparisons were
carried out employing the studied evaluation functions
within a basic memetic algorithm over a reduced sub-
set of HP benchmark sequences for the two-dimensional
(2D) square lattice. This preliminary study presented
some weaknesses, including: the lack of understand-
ing concerning the impact of the analyzed functions on
the metaheuristics efficiency when solving sequences for
the 3D cubic lattice, the absence of a statistical valida-
tion of the experimental results, and the question of
whether the conclusions drawn with the basic memetic
algorithm could be generalized to other metaheuristics.

The present work extends significantly the study re-
ported in [20]. The main extensions can be summarized
as follows: 1) A total of seven different formulations of
the evaluation function for the HP model are consi-
dered. 2) An in-depth investigation of the discrimi-
nation potential for each of the studied functions is
performed. 3) A new property to evaluate the alterna-
tive evaluation functions capacity to preserve the con-
ventional rank ordering among potential protein con-
formations is introduced. This property is called HP-
compatibility, and measures the consistency of an alter-
native evaluation scheme with respect to the original
objective of the HP model. An extensive analysis re-
garding the HP-compatibility of the studied evaluation
functions is carried out. 4) An assessment of the prac-

tical usefulness of these evaluation approaches within
two different metaheuristic algorithms, best improve-
ment local search and iterated local search, is presented.
5) All the experiments consider a full test-suite com-
posed of 30 well-known benchmark sequences for the
HP model (including 2D and 3D lattices). And 6) a
rigorous statistical significance analysis of the experi-
mental results is conducted.

The remainder of this article is organized into five
other sections. Section 2 formally introduces the pro-
tein structure prediction problem and the HP model,
analyzes some characteristics of the conventional eva-
luation function and highlights its potential drawbacks.
The six considered alternative evaluation functions for
the HP model are described in Section 3. Section 4
details the adopted test cases and the performance as-
sessment methodology. Section 5 is devoted to pre-
senting our experimental results related with a careful
examination of two important properties of the studied
evaluation functions, the degree of discrimination and
the HP-compatibility. The effectiveness of these ap-
proaches to guiding the search process is also evaluated
within two different metaheuristics. Finally, Section 6
provides our conclusions as well as some possible direc-
tions for future research.

2 Protein Structure Prediction

Anfinsen’s theory of protein folding states that the
3D structure of a protein is determined by the physico-
chemical properties of its amino acid sequence, and that
such a native conformation corresponds to the one that
minimizes the overall free energy, i.e., the thermody-
namically most stable state of the molecule. This is
the so-called thermodynamic hypothesis [1]. Anfinsen’s
theory laid the foundation of one of the most active
and challenging areas in bioinformatics: protein struc-
ture prediction.

The protein structure prediction (PSP) problem can
be defined as the problem of finding the functional con-
formation for a protein given as the only input data its
amino acid sequence. In PSP, one considers a fixed
energy model E : C → R, where C is the set of
all possible conformations of the protein, and the na-
tive conformation is assumed to be the one with the
lowest energy value according to the adopted energy
model. That is, the conformation c∗ ∈ C such that
E(c∗) = min{E(c) | c ∈ C}①.

Thus, we could simply enumerate and evaluate all
possible conformations to identify the one with mini-
mal energy. Nevertheless, proteins are very flexible
and, consequently, the space of potential conformations

① Hereafter the terms energy function and evaluation function are used indistinctly.
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is huge. This makes studies at atomic resolution pro-
hibitive to some extent even for relatively small pro-
teins. In this context, simplified models have emerged
as important tools for theoretical studies of protein
structure, dynamics and thermodynamics. These mod-
els provide a valuable insight to advance the under-
standing of the most general and essential principles
governing the protein folding process[2-6]. This study
focuses on one of such simplified protein models: the
so-called HP model[7-8], which is described next.

2.1 Hydrophobic-Polar Model

Amino acids can be classified on the basis of their
affinity for water. Hydrophilic or polar amino acids
(P ) are usually found at the outer surface of proteins.
By interacting with the aqueous environment, these
amino acids contribute to the solubility of the molecule.
In contrast, hydrophobic or nonpolar amino acids (H)
tend to pack on the inside of proteins, where they in-
teract with one another to form a water-insoluble core.
This phenomenon is usually referred to as hydropho-
bic collapse. The hydrophobicity of the amino acids
represents, therefore, one of the major driving forces
responsible for the final 3D conformation of proteins.

Following these observations Dill[7] proposed the
Hydrophobic-Polar (HP) model, where proteins are ab-
stracted as chains of H- and P -type beads. Protein
sequences, which are originally defined over a 20-letter
alphabet, are thus of the form S = (s1, s2, . . . , sL),
where si ∈ {H, P} denotes the i-th amino acid and
L the length of the sequence. The number of H and P
amino acids in S are here referred to as LH and LP , re-
spectively. A feasible protein conformation is modeled
as a self-avoiding walk on a given lattice, that is, as
an embedding of the protein chain on the lattice such
that the following two properties are satisfied: 1) self-
avoidance, two different amino acids cannot be mapped
to the same lattice position; and 2) connectivity, con-
secutive amino acids in S are to be also adjacent in the
lattice. In this paper, we focus our attention on both,
the 2D square lattice and the 3D cubic lattice[8].

With the aim of emulating the so-called hydrophobic
collapse, in the HP model the goal is to maximize the
interaction among H amino acids in the lattice. Such
interactions are to be referred to as topological con-
tacts. Two H amino acids si and sj are said to form
a topological contact if they are nonconsecutive in S
(i.e., |j − i| > 2) but adjacent in the lattice. The ob-
jective is thus to find a feasible protein conformation
where the number of H-H topological contacts (HHtc)
is maximized. Adhering to the notation of the field, an

energy function, to be minimized, is defined as the nega-
tive of HHtc; maximizing HHtc is equivalent to mini-
mize such an energy function.

Formally, PSP under the HP model is defined as
the problem of finding c∗ ∈ CF such that ED85(c∗) =
min{ED85(c) | c ∈ CF}, where CF is the set of all fea-
sible protein conformations and CF ( C. The energy
function is denoted by ED85 : C → R and maps protein
conformations to energy values. ED85(c), the energy of
a conformation c ∈ C, is defined as follows②:

ED85(c) =
∑
si,sj

e(si, sj), (1)

where

e(si, sj) =





−1, if si and sj are both H and

form a topological contact,

0, otherwise.

As an example, the optimal conformation for a pro-
tein sequence of length L = 20 on the 2D square lat-
tice is presented in Fig.1. This example corresponds
to sequence 2d4, one of the HP benchmark sequences
adopted for this study, see Section 4.

Fig.1. Optimal conformation for sequence 2d4 of length L = 20

on the 2D square lattice. Black and white balls denote H and P

residues, respectively. H-H topological contacts have been num-

bered. The energy of this conformation is ED85(c) = −9, since

HHtc = 9.

In spite of its apparent conceptual simplicity, the
task of finding the optimal structure of a protein in
the HP model represents a hard combinatorial opti-
mization problem which has been proved to be NP-
complete[9-10]. Such a complexity has motivated the
use of a variety of metaheuristics to address this prob-
lem, including genetic algorithms[14-16,21-24], memetic
and hybrid algorithms[17,19,25-29], tabu search[30-31],
ant colony optimization[32-35], immune-based
algorithms[36-39], particle swarm optimization[40-41],
differential evolution[42-45] and estimation of distribu-
tion algorithms[46-47].

②The acronym D85 is used to distinguish this conventional function from the other evaluation approaches considered in this study.
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2.1.1 Protein Structure Representation

In the literature, most of the reported metaheuristic
algorithms for the HP model are based on an inter-
nal coordinates representation. Using internal coordi-
nates, a protein conformation is encoded as a sequence
of moves specifying the lattice position for each amino
acid with respect to the preceding one; the position
of the first amino acid is fixed. Two alternative en-
coding schemes can be adopted: the absolute moves
encoding[48] and the relative moves encoding[49].

In this study, the absolute moves encoding is im-
plemented. Given a global reference system defined by
the lattice, the absolute encoding represents 3D confor-
mations as sequences in {F, B, L,R, U,D}L−1, to de-
note the forward, backward, left, right, up and down
moves from one amino acid to the next; only moves
{F, B, L,R} are allowed in the 2D case. An example of
the absolute moves encoding is provided in Fig.2.

Fig.2. (a) Encoding scheme. (b) Example conformation encoded

as FLLFRFRB.

2.2 Analyzing the Conventional Evaluation
Function

It is well-known that metaheuristics rely on an effec-
tive evaluation scheme in order to guide the search pro-
cess towards promising regions in the solutions space.
However, as mentioned before the conventional evalu-
ation function of the HP model, originally defined in
(1), induces a very poor discrimination among poten-
tial conformations. That is, there could be many dif-
ferent conformations for a given protein sequence with
the same energy value, see Fig.3.

Fig.3. Four different structures for sequence HHPHPHP on the

2D square lattice. All of them with the same energy value,

ED85(c) = 0.

More precisely, given a protein sequence S, with
length L and optimal energy value E∗

D85, there can be

at most |E∗
D85| + 1 available energy levels to classify

a search space of size③ |C| = 4L−1. As an example,
consider sequence 2d1, the smallest of the test cases
adopted for this study (see Section 4). In this case,
L = 18 and E∗

D85 = −4, so that there are only five
different energy levels which can be used to discrimi-
nate among a total of 417 = 17 179 869 184 potential
conformations. Nevertheless, some equally ranked con-
formations could present better chances than others to
be further improved.

The low discrimination provided by the conventional
energy function of the HP model is translated into the
existence of large plateaus in the search landscape. In
such plateaus, metaheuristics (mainly trajectory/local
search-based methods) could fail to detect a promis-
ing direction, leading the search process to be oriented
almost at random.

In the literature, different alternative energy func-
tions for the HP model have been proposed[14-19]. The
aim of these alternative formulations of the energy func-
tion is to provide a more fine-grained discrimination, as
a means of guiding metaheuristics in a more effective
manner during the process of finding potential solutions
to the original problem. In Section 3, the main details
of these alternative energy functions are analyzed.

3 Alternative Energy Functions for the HP
Model

This section describes several alternative formula-
tions of the HP model’s energy (evaluation) function
which have been proposed in the literature. A three-
letter acronym has been assigned to each of the studied
evaluation functions. The acronyms adopted are as fol-
lows: K99[14], C04[15], L06[16,50], B08[17], C08[18,51] and
I09[19,26,52]. Below, each one of these alternative energy
functions is defined.

3.1 Alternative Energy Function K99

In the conventional energy function of the HP model,
only H-H topological contacts contribute to the quality
assessment of conformations. Given two conformations
with the same number of H-H topological contacts, it
is possible, however, that one of them has better chara-
cteristics (more compact) than the other.

Based on this observation, Krasnogor et al.[14] pro-
posed the following distance-dependent energy func-
tion:

EK99(c) =
∑
si,sj

e(si, sj), (2)

where e(si, sj) = −1 if si and sj are both H

③The given size of the search space assumes the use of the absolute moves representation of the protein conformations on the 2D
square lattice, see Subsection 2.1.1.
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and they form a topological contact; e(si, sj) =
−1/(d(si, sj)kLH) if si and sj are both H but the
lattice distance between them is d(si, sj) > 1; and
e(si, sj) = 0, otherwise. Krasnogor et al.[14] suggested
to use the values k = 4 for the square lattice and k = 5
for the cubic and triangular lattices, respectively.

According to Krasnogor et al.[14], this alternative
formulation of the evaluation function preserves the
conventional rank ordering of the conformations, at the
same time it enables a finer level of distinction among
conformations with the same number of H-H topologi-
cal contacts. The behavior of this evaluation func-
tion was investigated using a genetic algorithm over
only five relatively short protein sequences (less than
50 amino acids). Experiments were performed for the
2D square and triangular lattices, as well as for the 3D
cubic lattice. No detailed results are provided; the au-
thors pointed out that no significant improvements in
performance were obtained by using this modified en-
ergy function. However, they suggested that the advan-
tages of using this function can become more evident for
larger protein sequences and when this approach is im-
plemented within local search strategies. The relevance
of using this proposal needs to be further investigated.

3.2 Alternative Energy Function C04

Given that the aim of the HP model is only to maxi-
mize interactions between H amino acids, the position-
ing of P amino acids is not directly optimized. This
may result in unnatural structures for sequences with
long P segments and, particularly, when such P seg-
ments are located at the ends of the chain[15]. An exa-
mple of this scenario is presented in Fig.4.

Fig.4. Two conformations with the same number of H-H

topological contacts (HHtc = 1). However, the structure of (a)

is more natural-like (globular) than the one of (b).

Custódio et al.[15] proposed a modified energy func-
tion based on the assumption that it may be prefer-
able for an H amino acid to have a P neighbor rather
than to be in contact with the aqueous solvent. In
the proposed function, the energy of a conformation is
computed as the weighted sum of the number of H-

H contacts (HHc), H-P contacts (HPc) and H-Solvent
contacts (HSc). A free lattice location (not assigned to
any amino acid) is said to be occupied by the solvent.
Formally, the energy of a conformation c is given by:

EC04(c) = ω1HHc + ω2HPc + ω3HSc, (3)

where ω1, ω2 and ω3 denote the relative importance of
HHc, HPc and HSc, respectively. Although not speci-
fied by the authors, these weighting coefficients were
set to ω1 = 0, ω2 = 10 and ω3 = 40 for the reported
experiments④. Thus, given these weights, the mini-
mization of (3) penalizes H-P and H-solvent contacts,
H-P contacts being favored over H-solvent contacts,
while H-H interactions are not penalized (H-H con-
tacts have no contribution to the energy value using
these weights).

Custódio et al.[15] evaluated the suitability of this
proposal by using a genetic algorithm. A total of 10 in-
stances for the 3D cubic lattice were considered. Seven
of the sequences have 27 amino acids and the remain-
ing 3 sequences are of length L = 64. The proposed
function allows to improve the performance of the im-
plemented algorithm for some of the adopted test cases.
The reported results also suggest that this function
presents a greater tendency to form more natural-like
conformations.

3.3 Alternative Energy Function L06

In [16, 50], an alternative energy function for the HP
model which is based on the concept of radius of gyra-
tion was proposed. The radius of gyration is a measure
of the compactness of conformations; the more com-
pact the conformation, the smaller the value for this
measure. The proposed function is defined in (4):

EL06(c) = HnLB × RadH × RadP . (4)

The HnLB term comprises the number of H-H
topological contacts in the conformation (HHtc) and
a penalty factor which takes into account the violation
of the self-avoiding constraint. Formally:

HnLB = HHtc − (NC × PW ), (5)

where NC is the number of collisions (i.e., lattice nodes
assigned to more than one amino acid) in the conforma-
tion and PW is the penalty weight. The value of PW
depends on the chain length, L, and it can be computed
as PW = (0.033× L) + 1.33[50]⑤.

Before defining the RadH and RadP terms, let us
define RH as the radius of gyration for H amino acids:

④This information was obtained through personal communication with the authors.
⑤In this study, only feasible protein structures are considered; the penalty factor in (5) is simply omitted.
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RH =

√√√√√
∑

s|s=H

(xs −XH)2 + (ys − YH)2

LH
, (6)

where xs and ys are the lattice coordinates of amino
acid s. XH and YH denote the arithmetic mean of the
coordinates for all H amino acids. Analogously, we can
compute RP , the radius of gyration for P amino acids,
by considering P rather than H amino acids in (6)⑥.

Once RH has been defined, the RadH term measures
how compact the hydrophobic core of the conformation
is. RadH is given by:

RadH = MaxRH −RH , (7)

where MaxRH denotes the radius of gyration for H
amino acids in a totally unfolded conformation, i.e., the
maximum possible RH value.

Finally, the RadP term aims to push P amino acids
away from the hydrophobic core. Given the previously
defined RH and RP measures, the RadP term is com-
puted as:

RadP =





1, if (RP −RH) > 0
1

1− (RP −RH)
, otherwise.

(8)

The RadP term will always lie in the range [0, 1]. A
value of (RP − RH) > 0 means that P amino acids
are more exposed than H amino acids. This is a con-
venient scenario, so the RadP term has no contribu-
tion to the final energy value (RadP = 1). Otherwise,
(RP − RH) < 0 suggests that H amino acids are more
spread than the P ones, so RadP is used to penalize the
energy value of the conformation. Note that (4) is to
be maximized⑦.

Lopes and Scapin[16,50] argued that the above de-
scribed function provides an adequate discrimination
among conformations with the same number of H-H
topological contacts. This function was implemented
within a genetic algorithm in order to solve several in-
stances on the 2D square lattice. However, no results
are provided on the advantages of using this alternative
function with regard to the conventional energy formu-
lation of the HP model.

3.4 Alternative Energy Function B08

Berenboym and Avigal[17] proposed an alternative
energy function called the global energy. In this func-

tion, each pair of nonconsecutive H amino acids con-
tributes to the energy value even if they are not
topological neighbors. The global energy for a given
conformation c is defined as:

EB08(c) =
∑
si,sj

e(si, sj), (9)

where e(si, sj) = −1
(xsi

−xsj
)2+(ysi

−ysj
)2 if si and sj are

both H and they are nonconsecutive in S (|j − i| > 2);
otherwise, e(si, sj) = 0⑧.

In [17], the effects of using a local search operator
within a genetic algorithm were analyzed for both the
conventional and the proposed energy functions. How-
ever, an explicit comparison to demonstrate the advan-
tages of using a particular energy function was not re-
ported. This issue needs to be further explored.

3.5 Alternative Energy Function C08

In [18, 51], an alternative energy formulation which
measures the deviation that each pair of H amino acids
presents with respect to the unit distance (i.e., topologi-
cal contact distance) was introduced.

Let d(si, sj)2 = (xsi
−xsj

)2+(ysi
−ysj

)2+(zsi
−zsj

)2

be the lattice distance between amino acids si and sj ,
and let dv(si, sj) = d(si, sj)2 − 1 denote its deviation
from the unit distance. The energy value of a confor-
mation c is given by:

EC08(c) =
∑

si,sj |si=sj=H

dv(si, sj)k, (10)

where k > 1 is a parameter of the function, whose
larger values give more weight to unit distances. We
adopt k = 2 for this study, since this value provides
the best behavior according to the results reported in
[18]. EC08(c∗) = 0 would refer to the ideal (potentially
unrealistic) scenario where all pairs of H amino acids
are at a unit distance in conformation c∗. In [18, 51],
no experimental results supporting the benefits of using
the proposed energy function were reported.

3.6 Alternative Energy Function I09

In [19, 26, 52], the authors reported a memetic al-
gorithm with a modified energy function which incor-
porates two additional measures: H-compliance (HC)
and P -compliance (PC).

H-compliance measures the proximity of H amino
acids to the center of a hypothetical rectangle (or

⑥Note that (6) has been defined for the 2D lattice, but this equation can be easily generalized to the 3D case.
⑦The negative of (4) can be used as an energy-minimization formulation of the problem which adheres to the notation commonly

used in this field.
⑧This definition assumes a 2D lattice, but it can be extended to the 3D case.
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cuboid in 3D space) enclosing all H amino acids, which
is denoted by the reference point (xr, yr). Formally,
this measure is given by:

HC =

∑

s|s=H

(xr − xs)2 + (yr − ys)2

LH
, (11)

where xs and ys denote the lattice coordinates of the s
amino acid.

P -compliance computes how close P amino acids are
to the boundaries of a hypothetical rectangle enclosing
all P amino acids. Such a cuboid is defined by xmin,
xmax, ymin and ymax. The P -compliance measure is
formally given by:

PC =

∑

s|s=P

min
{ |xmin − xs|, |xmax − xs|,
|ymin − ys|, |ymax − ys|

}

LP
. (12)

Finally, the energy of a given conformation c is de-
fined as:

EI09(c) = αED85 + HC + PC , (13)

where ED85 is the conventional energy function of the
HP model (as defined in (1), see Subsection 2.1) and
α is large enough to ensure this will be the dominant
term in (13).

In [19], the authors demonstrated the advantages of
using the proposed energy function using an 85-length
HP protein sequence on the 2D square lattice. However,
the influence of using this function should be further
explored for a larger set of test cases.

4 Experimental Setup

A total of 30 well-known benchmark sequences for
the HP model have been considered for the experi-
mentation of this research project. Out of them, 15
are for the 2D square lattice and the other 15 are
for the 3D cubic lattice. Tables 1 and 2 present the
full HP sequences, their length (L) and the optimal
or best-known energy value (E∗

D85) reported in the
literature[25,38,52-55].

Although alternative evaluation functions for the HP
model are considered in this study, it is important to re-
mark that the goal of the optimization process remains
to maximize the number of H-H topological contacts
(HHtc), which is the singular objective in the HP model
(see Subsection 2.1). Therefore, all the obtained experi-

Table 1. HP Instances for the 2D Square Lattice

Sequence L E∗D85

2d1 H2P5H2P3HP3HP 18 −4

2d2 HPHPH3P3H4P2H2 18 −8

2d3 PHP2HPH3PH2PH5 18 −9

2d4 HPHP2H2PHP2HPH2P2HPH 20 −9

2d5 H3P2HPHPHP2HPHPHP2H 20 −10

2d6 H2P2HP2HP2HP2HP2HP2HP2H2 24 −9

2d7 P2HP2H2P4H2P4H2P4H2 25 −8

2d8 P3H2P2H2P5H7P2H2P4H2P2HP2 36 −14

2d9 P2HP2H2P2H2P5H10P6H2P2H2P2H P2H5 48 −23

2d10 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 −21

2d11 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 −36

2d12 H12PHPH(P2H2P2H2P2H)3PHPH12 64 −42

2d13 H4P4H12P6(H12P3)3HP2H2P2H2P2HPH 85 −53

2d14 P6HPH2P5H3PH5PH2P4H2P2H2PH5PH10

PH2PH7P11H7P2HPH3P6HPH2

100 −48

2d15 P3H2P2H4P2H3PH2PH2PH4P8H6P2H6P9

HPH2PH11P2H3PH2PHP2HPH3P6H3

100 −50

Table 2. HP Instances for the 3D Cubic Lattice

Sequence L E∗D85

3d1 HPHP2H2PHP2HPH2P2HPH 20 −11

3d2 H2P2HP2HP2HP2HP2HP2HP2H2 24 −13

3d3 P2HP2H2P4H2P4H2P4H2 25 −9

3d4 P3H2P2H2P5H7P2H2P4H2P2HP2 36 −18

3d5 P2H3PH3P3HPH2PH2P2HPH4PHP2H5PH
PH2P2H2P

46 −35

3d6 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 −31

3d7 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 −34

3d8 PH(PH3)2P(PH2PH)2H(HP)3(H2P2H)2
PHP4(H(P2H)2)2

58 −44

3d9 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 −55

3d10 H12PHPH(P2H2P2H2P2H)3PHPH12 64 −59

3d11 P(HPH2PH2PHP2H3P3)3(HPH)3P2H3P 67 −56

3d12 P(HPH)3P2H2(P2H)6H(P2H3)4P2(HPH)3
P2HP(PHP2H2P2HP)2

88 −72

3d13 P2H2P5H2P2H2PHP2HP7HP3H2PH2P6H
P2HPHP2HP5H3P4H2PH2P5H2P4H4PH
P8H5P2HP2

103 −58

3d14 P3H3PHP4HP5H2P4H2P2H2(P4H)2P2H
P2H2P3H2PHPH3P4H3P6H2P2HP2HPH
P2HP7HP2H3P4HP3H5P4H2(PH)4

124 −75

3d15 HP5HP4HPH2PH2P4HPH3P4HPHPH4P11

HP2HP3HPH2P3H2P2HP2HPHPHP8HP3

H6P3H2P2H3P3H2PH5P9HP4HPHP4

136 −83

mental results are evaluated in terms of the conven-
tional energy function of the HP model⑨.

Additionally, the overall average performance (OAP)
measure is adopted in order to assess the overall be-
havior of the studied approaches. OAP is defined as
the average ratio of the obtained mean values to the
optimum (E∗

D85). Formally:

OAP =
100%
|T |

( ∑

t∈T

mean(t)
E∗

D85(t)

)
, (14)

⑨The same criterion used in the literature to evaluate the performance of the algorithms employed for solving the PSP problem
under the HP model.
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where mean(t) denotes the arithmetic mean of the en-
ergy values obtained when solving a particular test in-
stance t, computed over multiple executions of the ex-
periment, and T is the set of all test cases. Thus, OAP
expresses the performance of the evaluated approaches
in a 0% to 100% scale, being OAP(t) = 100% the pre-
ferred value for this measure. OAP(t) = 100% suggests
the ideal situation where the optimal conformation for
each instance is reached during all the performed exe-
cutions.

Finally, in the experiments presented in this pa-
per, the statistical significance analysis is conducted as
follows. First, D’Agostino-Pearson omnibus K2 test
is used to evaluate the normality of data distribu-
tions. For normally distributed data, either ANOVA
or the Welch’s t parametric tests are used depending
on whether the variances across the samples are ho-
mogeneous (homoskedasticity) or not. This is investi-
gated using the Bartlett’s test. For non-normal data,
the nonparametric Kruskal-Wallis test is adopted. A
significance level of α = 0.05 has been considered.

The algorithms used for the experiments of this
study are coded in C language and compiled with gcc
using the optimization flag -O3. All of them are run se-
quentially into a CPU Xeon X5650 at 2.66 GHz, 2 GB
of RAM with Linux operating system.

5 Results

In this section, seven different formulations of the
energy function for the HP model are evaluated and
compared: the conventional energy function of the HP
model, D85[7-8], and the six alternative formulations
described in Section 3. Important properties of the stu-
died energy functions are first examined in Subsections
5.1 and 5.2. Then, the effectiveness of these approaches
to guide the search process is evaluated in Subsections
5.3 and 5.4. For all the experiments reported in this
chapter, protein conformations are encoded using an
internal coordinates representation based on absolute
moves. Moreover, only solutions encoding feasible pro-
tein conformations have been considered (see Subsec-
tion 2.1).

5.1 Degree of Discrimination

The discrimination potential is an important pro-
perty of the evaluation scheme which impacts directly
on the behavior of metaheuristics. That is, if it is not
possible to set preferences among candidate solutions,
then the progress in the search could become practically
dominated by random decisions.

In this subsection, the degree of discrimination pro-
vided by the studied energy functions is investigated.
This is done by analyzing the distribution of ranks that

these approaches induce on a set of protein conforma-
tions. A ranking expresses the relationship among a set
of items according to a given property. In the context
of this study, protein conformations are to be ranked
and the property to set such a relationship corresponds
to the energy value. Given a set of protein conforma-
tions, the first ranking position is assigned to the con-
formation with the best energy value, the next ranking
position to the one with the second best energy value,
and so on. If two or more conformations present the
same energy, then they will share the same rank.

The relative entropy (RE) measure proposed in [56]
is adopted. Given a set of n ranked conformations
(there are at most n ranks, and at least 1), the rela-
tive entropy of the distribution of ranks D is defined
as:

RE(D) =

∑
r

D(r)
n

log
(D(r)

n

)

log(1/n)
, (15)

where D(r) denotes the number of conformations with
rank r. RE (D) tends to be 1 as approaching to the
ideal situation where each conformation has a different
rank (i.e., the maximum discrimination). On the other
hand, when all the conformations share the same rank-
ing position (i.e., the poorest discrimination), RE (D)
takes a value of zero.

In this experiment, 1 000 different feasible confor-
mations are generated at random. For each of the stu-
died energy functions, these solutions are evaluated and
ranked to finally compute the RE measure. A total of
100 repetitions of this experiment are performed for all
the adopted test instances. The overall statistics of this
experiment are presented in Fig.5. Instance-specific re-
sults are provided in Figs. 6 and 7, where bars represent
the RE values obtained by the different analyzed func-
tions.

From Fig.5, it can be seen that some of the stu-
died functions discriminate more strongly than others.
The obtained results are quite similar for both the 2D
and the 3D lattices. In all the test cases, the conven-
tional energy function of the HP model, D85, achieves
the lowest RE values. This confirms the poor discrim-
ination capabilities of this function, which has been
the main factor motivating the exploration of alterna-
tive approaches. Among the alternative functions, C04
presents the worst performance in terms of discrimina-
tion. Function L06 reaches high RE values most of the
time. However, this function presents a moderate dis-
crimination for the shortest test sequences (see Figs. 6
and 7). Regarding I09, it is possible to note that the
RE values obtained by this function are almost always
above 0.9, which indicates a strong discrimination. Fi-
nally, it is important to remark the high degree of discri-
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Fig.5. Relative entropy (RE) of the distribution of ranks obtained

using the different energy functions analyzed. Overall statistics

for all (a) 2D and (b) 3D test cases.

mination provided by functions K99, B08 and C08.
Functions K99 and B08 are the most discriminative
functions according to the obtained results, followed
by C08 which suffers slight decreases on some of the
instances.

The above results can be better understood by ana-
lyzing the histograms with the distribution of ranks
achieved by each of the studied energy functions. Fig.8
presents such histograms for a single repetition of this
experiment regarding sequence 2d4 on the 2D square
lattice (similar results are obtained for other test in-
stances).

From Fig.8, it is possible to note how poor the dis-
tribution of ranks achieved by function D85 is. Only
seven different ranking positions are induced to classify
the 1 000 generated conformations. It can be seen that
there are almost 400 conformations sharing the sixth
rank. As stated in Subsection 2.2, using function D85
there can be only |E∗

D85|+ 1 different energy levels.
Therefore, no matter the amount of generated con-

formations, the maximum number of ranks which can
be assigned through function D85 is 10, since E∗

D85 =
−9 for this benchmark sequence (2d4). The second
worst scenario is presented by function C04, where
only 40 different ranking positions are produced, out
of which one is assigned to more than 100 conforma-
tions.

Fig.6. Relative entropy (RE) of the distribution of ranks obtained by using the different energy functions analyzed. Average of 100

independent executions. 2D test cases.

Fig.7. Relative entropy (RE) of the distribution of ranks obtained by using the different energy functions analyzed. Average of 100

independent executions. 3D test cases.
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Fig.8. Density of the distribution of ranks achieved by the stu-

died energy functions. Results for a single repetition over se-

quence 2d4 (2D square lattice). (a) Function D85. (b) Function

K99. (c) Function C04. (d) Function L06. (e) Function B08. (f)

Function C08. (g) Function I09.

Functions L06 and I09 enable a more fine-grained
discrimination, since about 730 and 680 different rank-
ing positions are occupied to classify the totality of con-
formations, respectively. In the case of function I09, a
maximum of seven conformations are assigned to the
same rank. On the other hand, the histogram for func-
tion L06 presents a high peak indicating that there are
about 250 equally ranked conformations. Function L06
is defined as the product of three terms, out of which
one corresponds to the number of H-H topological con-
tacts, HHtc (see Subsection 3.3). Thus, all conforma-
tions for which HHtc = 0 will share the same energy
value, EL06 = 0. This can be seen as a drawback;
function L06 will not be able to discriminate among

these conformations even if some of them present bet-
ter characteristics than the others.

Finally, the histograms for K99, B08 and C08 con-
firm the high degree of discrimination that these func-
tions provide. Function C08 allows roughly 930 dif-
ferent ranking positions to be assigned. K99 and B08
exhibit the strongest discrimination among all the stu-
died energy functions. The corresponding histograms
for these functions reveal that almost every conforma-
tion is mapped to a different ranking position. Only a
few ranks are assigned to at most two conformations.

5.2 HP-Compatibility

Alternative energy functions for the HP model are
used in order to perform a more effective exploration
through the space of potential protein conformations.
Nevertheless, they should remain consistent with the
original objective of the HP model of the PSP prob-
lem, which consists in minimizing the conventional en-
ergy function D85 (by maximizing the number of H-H
topological contacts, HHtc). Therefore, an important
issue to be investigated is whether or not these alter-
native energy formulations are consistent with such an
original objective.

The alternative energy functions should not con-
tradict the conventional function D85 at the time of
discriminating among potential conformations. Other-
wise, the search process could be oriented towards so-
lutions which differ from the original optima in the HP
model (false optima can potentially be introduced). In
this study, functions that meet this requirement (not
contradicting function D85) are said to feature the HP-
compatibility property or, in other words, they are HP-
compatible. Thus, HP-compatibility can be defined as
the capability of an alternative energy function to pre-
serve the conventional rank ordering among potential
protein conformations. More formally⑩:

Definition 1. An alternative energy function
E : CF → R is said to be HP-compatible if and only
if E(c1) < E(c2) ⇒ ED85(c1) 6 ED85(c2) for every pair
of conformations c1, c2 ∈ CF . Otherwise, if there exists
at least a pair of conformations c1, c2 ∈ CF such that
ED85(c1) < ED85(c2) but E(c1) > E(c2), then function
E is not HP-compatible.

Note, however, that the case where ED85(c1) =
ED85(c2) but E(c1) 6= E(c2) is not considered as a con-
tradiction. This is a convenient scenario, since the aim
of using the alternative function E is to enable a more
fine-grained discrimination.

In this subsection, the HP-compatibility property is
explored for all the alternative energy functions consi-

⑩By convention, this definition assumes that lower energy values correspond to higher quality conformations.
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dered in this study. An experiment is conducted where
1 000 different feasible structures are generated at ran-
dom and all pairwise comparisons among them are per-
formed. The percentage of such comparisons where the
alternative energy function agrees with (does not con-
tradict) the conventional one is computed. The result-
ing value is to be referred to as relative compatibility
(RC). Although a value of RC = 100% does not guaran-
tee the HP-compatibility property for a given function,
RC < 100% is enough to disprove it. To some extent,
the RC value allows us to inquire into the severity of
the cases where the HP-compatibility property is not
satisfied. For all the selected test instances, 100 repe-
titions of this experiment are performed. The average
RC obtained for each of the instances is depicted in
Figs. 10 and 11, while Fig.9 provides the overall statis-
tics produced in this experiment.

Fig.9. Relative compatibility (RC) obtained by each of the alter-

native energy functions analyzed. Overall statistics for all (a) 2D

and (b) 3D test cases.

From Figs. 9 to 11, it is possible to note that func-
tions K99 and I09 show 100% of agreement with the
conventional HP energy function for all the instances
of this experiment. These results suggest that func-
tions K99 and I09 are HP-compatible. On the other
hand, the obtained results reveal that functions C04,
L06, B08 and C08 do not present the HP-compatibility
property, which becomes more evident with the increas-
ing of problem size.

Fig.10. Relative compatibility (RC) obtained by each of the al-

ternative energy functions analyzed. Average results for all the

2D test cases.

Fig.11. Relative compatibility (RC) obtained by each of the al-

ternative energy functions analyzed. Average results for all the

3D test cases.

Function L06 scores very competitive results for the
shortest 2D and 3D test sequences. However, its per-
formance declines for the largest test cases, especially
when facing sequences 2d12 and 3d10. The average RC
values obtained by L06 are almost always above 95%.
The performance of function C04 gradually decreases
as the problem size increases. The RC values achieved
by this approach range from 90% to 95% most of the
time. Function B08 presents the second worst overall
behavior in this experiment. In the 2D instances, the
performance of B08 is above RC = 90% for the shortest
sequences but at around 85% for the largest ones. Re-
garding the 3D instances, B08 obtains RC values below
85% in most of the cases.

Finally, we want to highlight the poor performance
exhibited by function C08. This approach achieves the
lowest RC values for all the adopted test cases. The
average RC obtained by function C08 is roughly 75%
for 2D benchmarks, while it is about 70% for the 3D
cases. Fig.12 presents an example scenario where func-
tion C08 contradicts the conventional function D85.

In this example, a couple of 2D conformations c1

and c2 for sequence 2d4 are compared with respect to
each other by using functions D85 and C08. As a result,
the conventional energy function D85 prefers conforma-
tion c1 (with HHtc = 7) to c2 (with HHtc = 0), while
function C08 induces the opposite order of preferences
between them.
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Fig.12. Two conformations c1 and c2 for sequence 2d4 on the

2D square lattice. This is an example where function C08 con-

tradicts function D85: ED85(c1) = −7 < ED85(c2) = 0 but

EC08(c1) = 5548 > EC08(c2) = 5308. (a) c1. (b) c2.

The low RC values obtained by some functions, par-
ticularly C08, suggest serious implications. The lower
the RC value, the more likely that the global opti-
mum induced by the alternative function differs from
the global optimum of the original problem. Therefore,
alternative functions which are not HP-compatible can-
not be expected to steer the search process in an effec-
tive manner.

5.3 Search Performance Using a Basic Local
Search Algorithm

A best improvement local search (BILS) algorithm
was implemented in order to evaluate the effectiveness
of the studied energy functions at guiding the search
process (see Algorithm 1). BILS starts with a randomly
generated conformation, denoted by c. Iteratively, c is
replaced by the best among all the improving confor-
mations defined in the neighborhood of c, N (c). The
search process stops when given the current conforma-
tion c and the adopted neighborhood structure it is not
possible to achieve an improvement, i.e., c is locally
optimal.

Algorithm 1. Best Improvement Local Search (BILS)

Algorithm

1: Choose c ∈ C uniformly at random

2: repeat

3: c ← Best Improvement(N (c))

4: until no improvement is possible

As stated at the beginning of Section 5, only so-
lutions encoding feasible conformations are considered
in this study. Hence, the initial solutions for the BILS
algorithm were generated using the backtracking proce-
dure proposed in [22]. The implemented neighborhood
structure N (c) is defined by all conformations which
can be reached through single 1-variable perturbations

of c, i.e., N (c) = {c′ ∈ CF | h(c, c′) = 1}, where h(c, c′)
denotes the Hamming distance between c and c′. Given
a protein sequence of length L, the size of such a neigh-
borhood is |N (c)| = 3(L − 1) in the 2D square lattice
and |N (c)| = 5(L− 1) for the 3D case.

The motivation for using such a simple BILS algo-
rithm is as follows. On the one hand, BILS seems to
be a suitable algorithm for evaluating the impact of
varying the evaluation scheme. Once the neighborhood
structure has been defined, the behavior and perfor-
mance of the algorithm will be mainly determined by
the discrimination capabilities of the different energy
functions. “A local search is effective if it is able to
find good local minima”[57]. BILS stops at a local op-
timum, and the effectiveness of the discrimination will
depend on the characteristics of such a local optimum.
Moreover, due to the low degree of discrimination pro-
vided by some of the functions, the search process can
be expected to stop early (after a reduced number of
iterations). On the other hand, no additional parame-
ters of the algorithm have to be adjusted, which avoids
affecting (neither negatively nor positively) the behav-
ior induced by the studied energy functions through
parameter settings.

The behavior of the BILS algorithm is evaluated
when using each of the studied energy functions. A to-
tal of 100 independent executions are performed. Fig.13
presents the results obtained for all the 2D instances,
while Fig.14 details the results for the 3D case. Plots in
these figures show the average number of H-H topologi-
cal contacts (HHtc) achieved by the algorithm as the
search progressed (at each iteration), for each consi-
dered test case.

From Figs. 13 and 14, it is possible to derive some
general conclusions. As expected, the conventional en-
ergy function D85 presents a limited performance for
this experiment. For all the test instances (except for
sequence 3d9), the algorithm reaches the lowest number
of iterations due to the poor discrimination that func-
tion D85 provides (see Subsection 5.1). In most cases,
however, the poorest performance of the algorithm is
obtained when using function C08. Although functions
B08 and C04 behave better than function D85 in most
of the 2D instances, these functions report a poorer
search performance than D85 for some of the 3D test
cases. Function L06 obtains very competitive results
most of the time. L06 allows the algorithm to score the
highest HHtc values for some of the test cases (e.g., 2d3,
2d5, 2d10, 3d2), while showing a slight inferior perfor-
mance for some other instances (e.g., 2d1, 2d7, 3d10).
Finally, it is possible to highlight the promising behav-
ior that functions I09 and K99 consistently exhibit for
all the considered test cases.
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Fig.13. Results of the BILS on the 2D instances. Number of H-H topological contacts (HHtc) obtained at each iteration. Average of

100 independent executions. (a) 2d1. (b) 2d2. (c) 2d3. (d) 2d4. (e) 2d5. (f) 2d6. (g) 2d7. (h) 2d8. (i) 2d9. (j) 2d10. (k) 2d11. (l)

2d12. (m) 2d13. (n) 2d14. (o) 2d15.



Mario Garza-Fabre et al.: Evaluation Functions for HP Model-Based PSP 881

Fig.14. Results of the BILS on the 3D instances. Number of H-H topological contacts (HHtc) obtained at each iteration. Average of

100 independent executions. (a) 3d1. (b) 3d2. (c) 3d3. (d) 3d4. (e) 3d5. (f) 3d6. (g) 3d7. (h) 3d8. (i) 3d9. (j) 3d10. (k) 3d11. (l)

3d12. (m) 3d13. (n) 3d14. (o) 3d15.
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A more detailed comparison and the results of the
statistical significance analysis are provided in Tables 3
and 4. For the different analyzed energy functions and
all the adopted test cases, these tables detail the best
obtained energy value (Best), the number of BILS exe-
cutions where this solution quality is reached (freq), and
the arithmetic mean (Mean). The obtained OAP values
are presented at the bottom of the tables. Each time
that a significant performance difference exists with re-
spect to the conventional function D85, the mean en-
ergy of the corresponding alternative function is either
marked + or marked − depending on whether such
a difference favors the alternative function or not. In
addition, the lowest average energy for each of the in-
stances appears shaded in the tables.

Tables 3 and 4 confirm the superiority that functions
K99, I09 and L06 have shown in this experiment. In
the vast majority of the instances, it can be seen from
the tables that functions K99, I09 and L06 significantly
improve the performance of the BILS algorithm with
respect to the conventional function D85. There are no
significant differences between functions D85 and C04
except for sequences 3d3 and 3d4, in both cases favor-
ing C04. Function B08 scores significantly better re-
sults than function D85 in 9 out of the 15 2D instances.
Note, however, that this function is significantly out-
performed by function D85 in five of the largest 3D
test cases. Finally, it can also be confirmed the poor
performance presented by function C08. Function C08
performs significantly worse than function D85 for the
largest 2D instances and for all but one of the 3D cases.

5.4 Search Performance Using the Iterated
Local Search Algorithm

In Subsection 5.3, a basic local search algorithm was
employed as a first step in analyzing the effectiveness
of the studied energy functions at guiding the search
process. Through local search it is possible to con-
verge towards local optima. However, the performance
of these algorithms is usually unsatisfactory in terms
of finding global optimum solutions[57-58]. Therefore,
it is required to implement additional strategies to fos-
ter exploration and to allow the search process escap-
ing from local optima. One possible strategy consists
in iteratively applying local search each time starting
from a different initial solution, such as it is done in the
iterated local search (ILS) algorithm[59-61].

In this subsection, a basic ILS algorithm is used
for inquiring into the suitability of the studied energy
functions (outlined in Algorithm 2). The ILS algo-
rithm starts with a feasible conformation generated at
random 11O, denoted as c. Then, a local search strategy

(embedded heuristic) is applied to c until a local opti-
mum c∗ is found. A perturbation c′ of the current local
optimum c∗ is obtained and used as a starting point of
another round of local search. After each local search
the new local optimum solution found c′∗ may be ac-
cepted as the new incumbent solution c∗, based on a
given acceptance criterion. This iterative procedure is
repeated until a given stop condition is met.

Algorithm 2. Iterated Local Search (ILS) Algorithm

1: choose c ∈ C uniformly at random

2: c∗ ← LocalSearch(c)

3: repeat

4: c′ ← Perturbation(c∗)
5: c′∗ ← LocalSearch(c′)
6: c∗ ← AcceptanceCriterion(c∗, c′∗)
7: until 〈stop condition〉

In order to implement the ILS algorithm, three basic
components have to be defined: the local search stra-
tegy, the perturbation strength, and the acceptance cri-
terion. In this study, these components are defined as
follows:
• Local Search. The best improvement local search

(BILS) algorithm described in Subsection 5.3 is adopted
as the embedded heuristic.
• Perturbation Strength. Six different values for the

perturbation strength are considered: {2, 3, 4, 6, 8, 10}.
The perturbation strength refers to the number of en-
coding positions of the conformation which are to be
affected by the perturbation.
• Acceptance Criterion. Three different acceptance

criteria are explored:
– IMP: the new local optimum c′∗ is accepted if it

has a better energy value than the incumbent solution
c∗.

– IEQ: the new local optimum c′∗ is accepted if it is
at least as good as the incumbent solution c∗.

– ALL: the new local optimum c′∗ is always accepted.
The three different acceptance criteria, together with

the six considered values for the perturbation strength,
lead to a total of 18 parameter configurations of the
ILS algorithm. All these parameter configurations are
evaluated in order to identify the most appropriate con-
ditions for the compared approaches. In all the cases,
the algorithm is allowed to run until a maximum num-
ber of 5 × 105 solution evaluations is reached, and 50
independent executions are performed. Figs. 15 and 16
present (2D and 3D instances, respectively) the overall
average performance (OAP) measure obtained by each
of the studied energy functions for the different para-
meter settings of the ILS algorithm. Higher OAP values
are preferred, see Section 4.

11OIt is generated using the backtracking algorithm proposed in [22].
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Among the alternative energy functions, Fig.15 and
Fig.16 show that K99, L06 and I09 consistently present
the best performance for the different parameter con-
figurations of the ILS. In the 2D instances, the perfor-
mance of function B08 is competitive for most of the
ILS configurations. In contrast, this function exhibits
a low performance in all cases when facing the 3D in-
stances. Function C08 obtains the lowest OAP values
in most of the cases, followed by function C04. Func-
tions C08 and C04 are thus the worst performers of this
experiment. Regarding the conventional energy func-
tion D85, an interesting behavior can be observed when
comparing the results obtained using the different ac-
ceptance criteria. While the ranking among the alterna-
tive energy functions remains consistent in most of the
cases from one acceptance criterion to another, there
is a significant increase in the performance of function
D85 when using the IEQ acceptance criterion. That is,
the IEQ acceptance criterion allows the algorithm to
exploit the low discrimination associated with function
D85 as a means of escaping from local optima.

Fig.15. Overall average performance (OAP) obtained for all pa-

rameter configurations of the ILS algorithm. 2D test cases.

Fig.16. Overall average performance (OAP) obtained for all pa-

rameter configurations of the ILS algorithm. 3D test cases.

In order to provide a more detailed analysis, the pa-
rameters adjustment which allows each of the studied
energy functions to reach the highest OAP value has
been selected. Table 5 summarizes the selected ILS
configurations for the next experiment.

Tables 6 and 7 detail the obtained results for all 2D
and 3D test cases, respectively. For each instance, these
tables show the best obtained energy value, the num-
ber of times that this solution is found and the arith-
metic mean achieved using the different energy func-
tions. Also, the OAP measure is presented at the bot-

Table 5. Selected Parameter Settings for the ILS Algorithm

2D Benchmarks 3D Benchmarks

Acceptance Perturbation Acceptance Perturbation

Criterion Strength Criterion Strength

D85 ALL 2 IEQ 4

K99 ALL 2 IEQ 4

C04 ALL 2 IEQ 6

L06 ALL 2 IEQ 4

B08 ALL 2 IEQ 4

C08 ALL 2 IEQ 4

I09 ALL 2 IEQ 4

tom of the tables. In these tables, values marked with
+ highlight a statistically significant increase in per-
formance achieved by the alternative energy function
with regard to the conventional function D85. Con-
versely, values marked with − indicate that a statisti-
cally significant performance decrease is obtained as a
consequence of using the alternative formulation. Addi-
tionally, the best average performance (the lowest aver-
age energy) for each test case has been shaded in these
tables.

From Table 6, it is possible to observe that func-
tion I09 reaches the lowest average energy on 73.33%
of the studied 2D instances (11 out of 15), obtaining
the highest OAP value. In five of the instances, the
improvements obtained by function I09 are statistically
significant with respect to the conventional energy func-
tion D85. The second best performer is function K99,
which shows the best average performance for seven
of the instances and significantly improves the results
of function D85 in three other cases. Function L06
achieves significantly better results than function D85
for five of the instances; note, however, that there is a
significant difference against function L06 in four of the
largest test cases. Slightly similar results are obtained
by function B08. Although the conventional function
D85 does not present a remarkable performance, the
results of this function are still considered competitive.
Finally, the poorest performances are obtained by func-
tions C04 and C08, whose results are significantly worse
than those of the conventional function D85 in most of
the cases.

A quite different scenario can be observed regarding
the 3D test cases. It can be seen from Table 7 that the
conventional energy function D85 scores the best aver-
age performance for all the considered test cases. The
statistical analysis indicates that function D85 signifi-
cantly outperforms all the alternative energy functions
in the vast majority of the cases. Among the alterna-
tive functions, the best results are obtained by K99,
followed by functions I09 and L06. Finally, the worst
overall behavior is presented by functions B08, C04 and
particularly C08.
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The obtained results confirm that an effective eval-
uation scheme is essential in order to guide the search
process towards high quality conformations. For dif-
ferent parameter configurations of the ILS algorithm,
the best results are obtained using alternative energy
functions which provide a fine-grained discrimination.
Nevertheless, a particular acceptance criterion (IEQ,
in this case) increases the performance of the ILS al-
gorithm when using the conventional energy function,
D85. Using such an acceptance criterion, the results of
function D85 are statistically superior compared with
those obtained by the different alternative functions.
This suggests that it is possible to take advantage of
the low degree of discrimination provided by the con-
ventional energy formulation of the HP model.

6 Conclusions and Future Work

The conventional energy function of the HP model is
known to provide a very poor discrimination among po-
tential conformations. Nevertheless, an effective evalu-
ation scheme is an essential component of metaheuris-
tics, being the responsible for steering the search pro-
cess towards promising regions of the solutions space.
Therefore, alternative formulations of the energy func-
tion have been proposed in the literature to cope
with this issue. This paper presented the results of
a comparative study where seven different evaluation
functions for the HP model were considered.

The first step in this study was concerned with the
analysis of the degree of discrimination that each of the
considered energy functions provides. Through such an
analysis it is possible to confirm the poor discrimina-
tion capabilities of the conventional energy function of
the HP model, D85, which has been the main motiva-
tion for exploring alternative energy formulations. All
the alternative functions were found to provide a more
fine-grained discrimination. From the obtained results,
the most discriminative functions are K99 and B08, fol-
lowed by C08 and I09.

The HP-compatibility property was defined and in-
vestigated for each alternative energy function. This
important property refers to the capability of an al-
ternative energy function to preserve a rank ordering
among potential conformations which is consistent with
the original objective of the HP model. The obtained
results suggest that functions K99 and I09 feature this
property. Very competitive results were also obtained
by function L06. However, this was not the case for
functions C04, B08 and particularly C08, which ob-
tained the worst results in the experiment. Alternative
energy functions which are not HP-compatible may not
be able to guide the search process properly since they
can potentially introduce a false optimum.

The effectiveness of the studied energy functions to
guide the search process was examined using a best
improvement local search (BILS) algorithm. The con-
ventional energy function D85 exhibited a low perfor-
mance for this experiment. In most of the adopted test
cases, however, the worst performance of the algorithm
was obtained when using the alternative function C08.
Also, functions B08 and C04 showed a poor search per-
formance for most of the instances. In contrast, the
alternative functions I09, L06 and K99 consistently pre-
sented a very promising behavior.

In order to further explore the suitability of the stu-
died energy functions, a more sophisticated metaheuris-
tic was implemented: iterated local search (ILS). In
most of the cases, the results of the ILS were similar
to those obtained in the previous experiment using the
BILS algorithm. Among the alternative energy func-
tions, K99, I09 and L06 consistently exposed a promis-
ing behavior, while functions B08, C04 and particularly
C08 presented the worst overall performance in this
test. On the other side, the results obtained for the
conventional function D85 suggest that, using a proper
acceptance criterion, it is possible to exploit the neutra-
lity of the search landscape[13,62] induced by the low
discrimination of this function.

From this study, it is possible to derive some gen-
eral conclusions. First, intensity of discrimination does
not necessarily imply effectiveness at guiding the search
process. Even when functions K99, B08, C08 and I09
were all identified to provide a strong discrimination,
only K99 and I09 presented a promising search behav-
ior. In contrast, functions B08 and C08 showed a poor
search performance in most of the cases. Such a poor
performance can be explained by the fact that functions
B08 and C08 are not HP-compatible. Function C04 is
also not HP-compatible; the low discrimination capa-
bilities of C04 gives further explanation to the reduced
search performance obtained when using this function.
Finally, function L06 obtained very competitive results
in terms of both the degree of discrimination and HP-
compatibility. As a consequence, function L06 consis-
tently competed at the top of the ranking regarding
search performance together with functions K99 and
I09. Therefore, the degree of discrimination and the
HP-compatibility property were found to be useful in
explaining the success or failure of the studied energy
functions at guiding the search process.

The conventional energy function D85 presented a
limited search performance for the BILS algorithm and
most parameter configurations of the ILS. This sup-
ports the relevance of exploring alternative evaluation
schemes for the HP model. There exists evidence in the
literature, however, which suggests that the neutrality
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property of a fitness landscape can be exploited for
designing more efficient search algorithms[62-68]. The
performance of function D85 for some parameter con-
figurations of the ILS provides additional clues in this
regard. Therefore, future work may focus on investigat-
ing how to benefit from a fine-grained discrimination,
at the same time that the inherent neutrality of the
HP model can be exploited. Finally, an interesting re-
search direction involves the evaluation of how some
characteristics of the fitness landscape (e.g., neutra-
lity, ruggedness[13,62,69]) change when using the differ-
ent evaluation functions. Such an analysis would cer-
tainly be helpful to further support the findings of the
study presented in this paper.
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Tamulipas, México. He maintains an

active interest in the design of multi-objective evolutionary
algorithms. His further research interest includes many-
objective optimization, dynamic multi-objective optimiza-
tion, and bioinformatics.


