
Wang YX, Luo JZ, Song AB et al. Partition-based online aggregation with shared sampling in the cloud. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 28(6): 989–1011 Nov. 2013. DOI 10.1007/s11390-013-1393-6

Partition-Based Online Aggregation with Shared Sampling in the Cloud

Yu-Xiang Wang (王宇翔), Jun-Zhou Luo (罗军舟), Senior Member, CCF, Member, ACM, IEEE
Ai-Bo Song∗ (宋爱波), Member, CCF, ACM, and Fang Dong (东 方), Member, CCF, ACM

School of Computer Science and Engineering, Southeast University, Nanjing 211189, China

E-mail: {lsswyx, jluo, absong, fdong}@seu.edu.cn

Received December 1, 2012; revised May 7, 2013.

Abstract Online aggregation is an attractive sampling-based technology to response aggregation queries by an estimate
to the final result, with the confidence interval becoming tighter over time. It has been built into a MapReduce-based cloud
system for big data analytics, which allows users to monitor the query progress, and save money by killing the computation
early once sufficient accuracy has been obtained. However, there are several limitations that restrict the performance of
online aggregation generated from the gap between the current mechanism of MapReduce paradigm and the requirements
of online aggregation, such as: 1) the low sampling efficiency due to the lack of consideration of skewed data distribution for
online aggregation in MapReduce, and 2) the large redundant I/O cost of online aggregation caused by the independent job
execution mechanism of MapReduce. In this paper, we present OLACloud, a MapReduce-based cloud system to well support
online aggregation for different data distributions and large-scale concurrent query processing. We propose a content-aware
repartition method with a fair-allocation block placement strategy to increase the sampling efficiency and guarantee the
storage and computation load balancing simultaneously. We also develop a shared sampling method to share the sampling
opportunities among multiple queries to reduce redundant I/O cost. We also implement OLACloud in Hadoop, and conduct
an extensive experimental study on the TPC-H benchmark for skewed data distribution. Our results demonstrate the
efficiency and effectiveness of OLACloud.

Keywords cloud, MapReduce, partition, online aggregation, shared sampling

1 Introduction

Big data and big data analytics play an important
role in today’s fast-paced data-driven businesses[1]. The
common characteristic of real-life applications is that
they often have to deal with a tremendous amount of
data to derive useful information. Performing analytics
and delivering exact query results on such large volumes
of data can be computationally expensive (long time
for processing)[2] and resource intensive[3]. In general,
overloaded systems and high delays are incompatible
with a good user experience, and the early approxi-
mate answers that are accurate enough are often of
much greater value to users than tardy exact results[4].
One commonly-used technique to handle this problem
is online aggregation (OLA)[5], which aims to give re-
sponse to large-scale aggregation queries with a stati-

stically valid estimate to the final result early. The ba-
sic idea behind OLA is to compute an approximate re-
sult against the random samples and refine the result as
more samples are received. In this way, users can termi-
nate the running queries prematurely if an acceptable
answer can be arrived at quickly.

With the development of cloud computing, process-
ing OLA in some MapReduce-oriented[6] cloud systems
such as Hadoop①, Hyracks[7], etc. has become indis-
pensable due to the massive volumns of data involved
make the original cloud framework often take a long
time to return the final result, such as some prelimi-
nary work in [8-11]. Given the massive scale of data, the
MapReduce framework needs to horizontally partition
the original data into equal-size blocks and assign them
to data nodes in a random manner for storage. When
OLA is deployed for query processing, each query will

Regular Paper
This work is supported by the National Basic Research 973 Program of China under Grant No. 2010CB328104, the National

Natural Science Foundation of China under Grant Nos. 61070161, 61202449, 61320106007, the National High Technology Research
and Development 863 Program of China under Grant No. 2013AA013503, the Specialized Research Fund for the Doctoral Program
of Higher Education of China under Grant No. 20110092130002, the Jiangsu Provincial Key Laboratory of Network and Information
Security under Grant No. BM2003201, the Key Laboratory of Computer Network and Information Integration of Ministry of Education
of China under Grant No. 93K-9, and the Shanghai Key Laboratory of Scalable Computing and Systems of China under Grant No.
2010DS680095.

∗Corresponding Author
①http://hadoop.apache.org, Dec. 2012.
©2013 Springer Science +Business Media, LLC & Science Press, China

990 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

be executed as an independent MapReduce job, which
initializes a larger number of map and reduce tasks for
sample collection, statistical computation and accuracy
estimation, and continuously provides early results with
estimated confidence intervals that are progressively re-
fined as more samples are processed until the estimate
to the final result satisfies the user’s exception.

The main benefits of running OLA jobs in such
MapReduce-oriented cloud systems are: 1) it makes
the original platform much more flexible by providing
a fast and effective way to obtain approximate results
within the prescribed level of accuracy rather than the
accurate results generated from the completely process
model, which can significantly improve the analytic per-
formance against the massive size of the data; 2) it re-
duces the economic cost of users on typical pay-as-you-
go cloud systems, that is an user can save money by
monitoring the estimated result and killing the compu-
tation early once sufficient accuracy has been obtained;
3) it increases the overall throughput of the cluster since
the released resources of early terminated OLA jobs
can be delivered to the other running OLA jobs imme-
diately, which helps to increase the parallelism degree
and resource utilization.

OLA is very suitable for cloud environment; how-
ever, there are also several limitations that affect the
overall OLA performance due to the inefficiencies that
arise from MapReduce’s rigid execution model. We con-
clude such inefficiencies as follows. In general, MapRe-
duce job input data is loaded into the files in a dis-
tributed file system (DFS) wherein each file is divided
into smaller blocks, then all of blocks are re-organized
as the logic chunks called input splits. Each input split
corresponds to a map slot. Note that the MapReduce-
oriented system as Hadoop executes all jobs under the
assumption that all input splits must be processed for
producing the desired exact result[12]. According to this
assumption, the block size is the key factor that affects
the performance, since the completion time of a job is
determined by the last finished tasks (it is not unusual
that large blocks always take longer to process[8]). In
this way, the normally used size-aware partition man-
ner will be the better candidate for the implementation
of DFS, in which the block contains the same amount
of data, thus reducing possible skew of tasks when pro-
cessing in parallel and improving the performance.

However, this assumption is not always true for
OLA. This is because OLA is a sampling-based method
to obtain approximate results from a subset of data
rather than the exact one against the whole dataset, so
that the sampling efficiency becomes the major factor
that affects the performance especially when the data
distribution is skewed. Given a skewed dataset, it is

characterized by the presence of outlier tuples that are
significantly different from the rest in terms of their low
frequency. For the queries focusing on these outliers,
there may be a majority of blocks that do not contain
any tuples that satisfy the query predicate (called rele-
vant tuples) or contain a small amount of such tuples.
And the low sampling efficiency comes in several flavors:
1) for the blocks containing fewer relevant tuples, the
probability of drawing sufficient relevant tuples as sam-
ples may be relatively small so that there will be few or
no relevant tuples in the sample during the initial stage
of OLA, leading to large error for the accuracy estima-
tion, and 2) for the blocks without any relevant tuples,
they also need to be scanned to get the random samples
but contribute little to the accuracy estimation. Com-
pared with the needs, such tasks do more unpromising
work and consume excess resources, while the wasted
task slots could have served other jobs, improved their
sampling efficiency and helped them to finish earlier if
necessary.

Irrespective of the low sampling efficiency, the re-
dundant disk I/O cost is another factor affecting the
OLA performance. Note that, the MapReduce cluster
is usually built in a shared environment for different
applications, so that there are many concurrent queries
with the overlapped predicate that will be submitted by
different users. In the case of running OLA in the origi-
nal MapReduce framework, however, all of these over-
lapped queries are composed of many sub-tasks that
are responsible for sampling from the overlapped input
splits and calculating their own results independently
even though the collected samples can be reused for
other queries, which means a certain overlapped split
may be accessed repeatedly by different tasks for sam-
pling, leading to large redundant disk I/O cost and af-
fecting the performance of OLA significantly.

In light of the rapid movement to the big data an-
alytics, running OLA in cloud becomes increasingly
important. However, the above limitations indicate
the existing MapReduce framework cannot completely
stimulate the potential of OLA and illustrate several
optimization possibilities, so that an obvious question
emerges: If we set out from the start to build a parallel
processing model to serve as a target for running OLA
in the cloud, what should that model look like? In
this paper, we present the design and implementation
of OLACloud based on the original MapReduce frame-
work with some necessary extensions, which is our re-
sponse to the aforementioned question.

To address the problem arising out of the low sam-
pling efficiency especially for skewed data distribution,
we exploit a content-aware repartition method. The
original relation is divided into blocks according to at-

Yu-Xiang Wang et al.: Partition and Sharing-Based Online Aggregation 991

tributes. In this way, each query will conduct part of
map tasks for the blocks overlapped with the predicate
rather than all, increasing the sampling efficiency due
to the relatively higher probability of drawing the rele-
vant tuples, and the map slot for those blocks without
any relevant tuples can be delivered to other queries
which really need it.

In the case of content-aware repartition, however,
the default random block allocation strategy may not
obtain the desired allocation instance due to the follow-
ing reasons: 1) the block size is no longer equal, that
is some blocks may be very large and others may be
very small, and it very likely leads to unbalancing for
storage among data nodes if there is no special care
is taken during the allocation, and 2) the computation
load for blocks is related to their attribute intervals,
rather than size-aware manner in which the computa-
tion load for each block is equal and independent, so
that it may also lead to unbalancing for computation if
we over-emphasize on the storage-load balancing but ig-
nore the factor of attribute intervals. For the purpose of
dealing with this derivative problem to reduce the side
effects of random block allocation to our content-aware
repartition method, we propose a block placement stra-
tegy called fair-allocation by carefully coupling storage
and computation load to make a tradeoff between these
two issues.

For the problem of large redundant disk I/O cost
caused by the independent query processing model of
MapReduce framework, we propose the shared sam-
pling method that the samples collected by one-pass
scan can be delivered to other overlapped queries effi-
ciently, which can significantly reduce the redundancy
disk I/O cost.

Our Contributions. The main contributions of this
paper are summarized as follows:
• We propose an online aggregation system in the

cloud called OLACloud, which is tailored for MapRe-
duce framework, to improve the overall performance for
running OLA in cloud.
• We exploit a content-aware repartition method to

optimize the sampling efficiency, and present a fair-
allocation block placement strategy, which is suitable
for our content-aware repartition method, to guarantee
the storage and computation load balancing efficiently.
• We derive a probabilistic model of block allocation

to discuss the fault-tolerance property of OLACloud
and the original MapReduce framework, and demon-
strate the availability and effectiveness of our OLA-
Cloud.
• We present the query processing scheme with a

shared sampling strategy in OLACloud, which illus-
trates how the shared samples are collected for multi-
queries accuracy estimation, to reduce the redundant

disk I/O cost for overlapped queries.
• We implement OLACloud in the modified version

of Hadoop called HOP, and conduct extensive experi-
ments to demonstrate the efficiency and effectiveness of
our OLACloud.

The remainder of this paper is organized as follows.
In the next section, we give an overview of our OLA-
Cloud. In Section 3, we describe the content-aware
repartition method with the fair-allocation block place-
ment strategy, and discuss the fault-tolerance property
of our OLACloud. Section 4 presents the query pro-
cessing scheme with the shared sampling strategy and
describes the details of the statistical computation and
accuracy estimation. Section 5 describes the implemen-
tation of our OLACloud. In Section 6, we introduce
the experimental setup and report results of the experi-
mental evaluation. Finally, we review related work in
Section 7 and conclude the paper in Section 8.

2 Big Picture: Data Flow of OLACloud

In our implementation of OLACloud, we choose
Hadoop Online Prototype (HOP)[10] as a natural can-
didate for the underlying query processing engine. This
is because the fact that the batch-oriented original
MapReduce framework cannot keep pace with the re-
quirement of the interactive OLA processing model.
HOP is a modified version of the original MapReduce
framework, which is proposed to construct a pipeline
between Map and Reduce so that the reduce task could
start immediately as long as any Map output is genera-
ted. Such pipeline property can help to support OLA
by returning the early approximate result of the query,
and scaling up such result with the query progress.

In this section, we describe the overall architecture
of OLACloud. Fig.1 illustrates the data flow of OLA-
Cloud, which consists of two steps: 1) content-aware
repartition with fair-allocation strategy, and 2) OLA
query processing with shared sampling.

The first step can be seen as a pre-processing of
our OLACloud, which is implemented by two func-
tional components: content-aware repartition and fair-
allocation. This is motivated by the observation that
the performance of online aggregation is actually de-
termined by the data distribution rather than data
size[2,13]. Given an input file has already been loaded
into the HDFS (Hadoop Distributed File System), the
task of such pre-processing is to reorganize the original
file in the granularity of blocks according to the at-
tributes, that is the block boundaries are created such
that each block has the uniform intervals of partition-
ing columns. In this way, the outlier tuples within the
identical intervals can be gathered to the same blocks,
which increases the sampling efficiency due to the rela-
tively higher probability of drawing the relevant tuples.

992 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

Fig.1. Data flow of OLACloud.

And each query will only run against the blocks that
overlap with the query range instead of the whole
dataset, so that the unpromising map tasks can be
avoided and the occupied map slots can be delivered to
other queries, increasing the overall sampling efficiency
of all queries. For the content-aware partition, we pro-
pose a block placement strategy called fair-allocation,
which replaces the default random strategy, to guaran-
tee the storage and computation load balancing for our
content-aware repartition method (as described in Sub-
section 3.2).

On the other hand, the second step is implemented
by the component called shared sampling to support the
essential procedures of OLA such as sample collection,
statistic computation and accuracy estimation. The
multiple queries are decomposed into a series of map
tasks initially. And we can reuse the samples retrieved
by one task to evaluate a number of queries rather than
each query retrieves its own samples if there has poten-
tial dependency among these map tasks. As shown in
Fig.1, OLACloud collects a batch of query jobs and
analyzes the sharing opportunities among the queries
in the granularity of task and groups the shared tasks
together to form a new grouped map task, in which
the samples collected are reused for accuracy estima-
tion of each involved query. The reduce phase esti-
mates the approximate results for the query jobs once
the reducer receives a sufficient map output (a pipeline
model). If the accuracy obtained is unsatisfactory, the
above reduce process is repeated by taking the latest
map output which is aggregated with the previous ap-
proximate results to make a new estimate for higher
accuracy. The final result is returned when a desired
accuracy is reached and the users can stop the query
early before its completion.

3 Content-Aware Repartition with
Fair-Allocation Strategy

Now we are ready to discuss the solutions for the first
issue mentioned in the introduction. We first exploit a
content-aware repartition method to optimize the sam-
pling efficiency. Then we propose a fair-allocation stra-
tegy, instead of the default random block allocation
method, to make the content-aware repartition method
further efficient by guaranteeing both the computation
and storage load balancing. Moreover, we note that
the specific designed block allocation method will af-
fect the original fault-tolerance, so we finally derive a
probabilistic model of block allocation to discuss the
fault-tolerance property of our fair-allocation, verifying
its availability.

3.1 Content-Aware Repartition

Our content-aware repartition method can be im-
plemented quite efficiently by making an extra normal
MapReduce job called repartition job. The basic idea
behind the repartition job is to scramble the tuples in
the original input blocks and combine the appropriate
tuples together to form a set of new blocks according
to the attributes, that is the block boundaries are crea-
ted such that each new block has the uniform intervals
of partitioning columns. There are three major issues
need to be considered firstly: 1) how to determine the
partitioning columns, 2) how to determine the number
of intervals for each partitioning column, and 3) how
to execute the repartition job efficiently in MapReduce
framework.

Towards the first issue, a straightforward method is
to consider all columns in the relation as the partition-
ing columns. This method is scalable with regard to all

Yu-Xiang Wang et al.: Partition and Sharing-Based Online Aggregation 993

kinds of queries focusing on different columns, but suf-
fering from the curse of dimensionality (result in a
large number of blocks which increases the system over-
head for block management). An alternative approach,
which we adopt in this paper, is to determine the parti-
tioning columns based on the query workload. A query
training set can be collected as representative of the
workload. The idea of this scheme is to partition the
columns which are frequently accessed by the queries
in the workload and update the partitioning columns
periodically if the access characteristics of workload
change (the details of the update operation will be dis-
cussed in Subsection 3.2).

For the second issue, we introduce a parameter called
partition size to stand for the number of intervals for
each partitioning column. A possible method to de-
termine partition size is to customize the partition size
for each partitioning column based on its own skew-
ness couple with the underling cluster size. However,
this method requires the system to have some priori
understanding of the data distribution and the system
configuration. In this paper, to facilitate the implemen-
tation of OLACloud, we take the partition size as an
input parameter that is predefined by users according
to their experience, and the calculation of the theoreti-
cal optimal value will be discussed in our future work.

After the partitioning columns and partition size
are determined, we are now ready to introduce how
the repartition job executes efficiently in MapReduce
framework. Algorithm 1 shows the configuration of this
repartition job, in which there are two input parame-
ters: the value range of columns R and the partition
size of columns S, which are defined as follows.

Algorithm 1: Repartition Job

Input: ValueRange R, PartitionSize S
1 BlockSet B = getBlockSet (R, S);
2 JobConf repartition = new

JobConf(repartition.class);

3 //initialize the repartition job, including map

and reduce class and the in/output format, etc.

4 DefaultStringifier.store(repartition, B, “blockSet)”;

5 JobClient.runJob(repartition);

Definition 1 (Value Range of Columns R and Par-
tition Size of Columns S). Given a dataset with n parti-
tioning columns C = {C1, C2, . . . , Cn}, the value range
of columns is denoted by R = {R1, R2, . . . , Rn}, where
Ri represents the value range of Ci. And the parti-
tion size of columns is denoted by S = {S1, S2, . . . , Sn},
where Si represents the partition size of Ci (Ci will be
partitioned into Si intervals).

In our implementation, S is predefined by the user,

and the parameter R is available in the meta-data.
Based on the two parameters, we can obtain the block
set denoted by B (line 1), and store this variable in Job-
Conf to support the map logic (line 3). To simplify the
presentation, we define B as follows.

Definition 2 (Block Set B). Let each column Ci

be uniformly partitioned into Si intervals according to
the existing range of values in each Ci (e.g., for each
column Ci, we partition it into Si intervals with equal
size Ri

Si
), denoted by Ii = {I1

i , I2
i , · · · , ISi

i }. Thus,
B = I1 × I2 × · · · × In, where |B| =

∏n
i=1 Si. Each

block is identified by a certain Bi ∈ B.
The map and reduce logic are shown in Algorithm 2

and Algorithm 3 respectively. The map phase takes the
original HDFS file as input with the default InputFormat
type called TextInputFormat and evaluates the scanned
tuple on the partitioning columns to decide which is the
destination block it belongs to (line 3 of Algorithm 2).

Algorithm 2: Repartition: Map Logic

Input: LongWritable key, Text value

Output: OutputCollector〈LongPair, Text〉 outputKV

1 BlockSet B = DefaultStringifier.

load(repartition, “blockSet”, BlockSet.class);

2 for ∀〈ki, vi〉 in input do

3 blockID=getBlockID (value, B);

4 rank = random.nextLong();

5 outputKV.collect(〈blockID, rank〉, value);

6 end

Algorithm 3: Repartition: Reduce Logic

Input: LongPair key, Iterator〈Text〉 values

Output: OutputCollector〈Text, NullWritable〉 outputKV

1 while values.hasNext() do

2 outputKV.collect(values.next(), null);

3 end

In our implementation of repartition job, we hope
the output of each reducer has the great randomness
of tuples so that sequentially scanning the reparti-
tion block gives rise to a stream of random samples
with lower I/O cost rather than random sampling from
the repartition block. This is because the fact that
the sampling performs worse than simply scanning the
whole block[14] since completely random disk access
can be five orders of magnitude slower than sequen-
tial access[15]. Based on such motivation, each mapper
uses the block identifier combined with a random Long
integer rank to form a new structure called LongPair
as the output key, while the tuple as the output value
(lines 4∼5 of Algorithm 2). In the shuffle phase, we use
a customized hash function to make each reducer dedi-
cated for a unique block identifier. And we override
the compareTo method of LongPair, which is invoked

994 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

by each reducer automatically before the reduce opera-
tion, to realize the secondary sort according to rank,
leading to the great randomness of input pairs for each
reducer. Then, each reducer receives such input pairs
and collects them into the output file based on the de-
fault OutputFormat type called TextOutputFormat.

Moreover, there is another important issue needs
to be considered before the content-aware partition
manner exerts its effectiveness, that is how to deter-
mine the relevant blocks for a given query Q. In this
paper, we adopt the method proposed in [13] called
NRB-T (Nested Red-black Tree) to solve the problem
(interested readers may find the details of NRB-T in
[13]). Such NRB-T can be considered as an index of
blocks and the core idea behind NRB-T is to asso-
ciate each partition with its intervals in a hierarchi-
cal model. Each node of our NRB-T comprises four
annotations: Partitions, Interval〈low, High〉, Max and
Pointer. The Max annotation records the maximum
High value across both its subtrees. And the Interval
and Max values are used during the probe phase.

In our implementation, we deploy it as a component
of HDFS. And we parse the query conditions into a
set of probe intervals to lookup the overlapped blocks
from NRB-T. Given the matching results by probing
NRB-T, our OLACloud then checks BlockMaps to ob-
tain the corresponding metadata of each relevant block
to support the query processing.

3.2 Update Strategy

In our implementation of content-aware repartition
job, the partitioning columns are determined based on
a carefully collected query workload. And our method
cannot always guarantee the effectiveness if the current
workload changes a lot in the next moment, so we need
an efficient update strategy to adjust the repartition
instance if necessary. The update strategy of OLA-
Cloud is designed based on the fact that the updates
to the data warehouse system are usually performed in
a batch mode. We collect all the updates and commit
them periodically. During the update period, our sys-
tem will stop processing any queries and update the
data as follows:

Case 1: Incremental Update. If the current configu-
ration of repartition job, such as partitioning columns
and partition size, can afford to the new query work-
load, then we upload the update data into the same di-
rectory with original data, conduct the same repartition
job only for the update data and insert the correspond-
ing block identify into the Partition scope of existing
NRB-T node simultaneously.

Case 2: Repartition for All Data. If the new query
workload is different from the previous one, which

means the current configuration of repartition job can-
not keep pace with the changes of query requirement,
then we need an overall repartition for both the original
and the update data to satisfy the new query workload.
We firstly upload the update data into the same direc-
tory with original data, and then take the overall data
as the input of the repartition job to partition them ac-
cording to the new configuration. Finally we also need
to construct a new NRB-T for the overall repartition
job.

3.3 Fair-Allocation Strategy

After the content-aware repartition is completed,
OLACloud needs to allocate the blocks to the appro-
priate data nodes. The traditional MapReduce frame-
work adopts the random block allocation strategy for
the size-aware partition method, which can guarantee
the storage and computation load balancing to a certain
degree. And there are also several other well-known
placement strategies proposed in [16]. Suppose there
are N data nodes, then these placement strategies can
be represented as 1) round-robin method: iterate over
blocks in some order and assign them to each data node
in turn, 2) range method: split the blocks into N dis-
joint chunks and assign all blocks within a chunk to a
data node, or 3) chunk-cyclic method: split the blocks
into M regular chunks of N blocks each and iterate over
the blocks of a chunk in some predefined order and as-
sign them to each of the N data nodes in turn.

However, all of above strategies are not suitable for
our content-aware repartition manner, since they do not
fully consider the factors of block size and the correla-
tion between blocks, leading to the load unbalancing
for both storage and computation. For example, con-
sider a dataset partitioned by a content-aware method
which consists 16 blocks (with the block size in the cen-
ter) labeled 1 to 16 in the row major order, the assign-
ment instances of the above mentioned three methods
are shown in Fig.2, where the round-robin and range
methods have well storage balancing than chunk-cyclic
(lower variance of the block size) but with poorer com-
putation distribution (denoted by the blocks with dot-
ted lines) for the given two queries Q1 and Q2. The
problems resulted from such storage and computation
load unbalancing can be summarized as: 1) the waste
of storage resources, and 2) the reduction of query pro-
cessing parallelism, which impacts the performance of
OLACloud.

In this paper, we present a fair-allocation block
placement strategy, which suits for our content-aware
repartition method, to guarantee the storage and com-
putation balancing by carefully coupling block size and
correlation between blocks. The block size is the factor

Yu-Xiang Wang et al.: Partition and Sharing-Based Online Aggregation 995

Fig.2. Assignment instances of round-robion, range and chunk-cyclic methods.

considered for the storage balancing, and we use the
variance of storage consumption in each data node as
the metric to measure the storage balancing; while the
meaning of correlation between blocks is that some
blocks will be accessed together for a set of queries.
If we place these blocks in the same data node, then
more map tasks of the same queries will be processed in
this node, increasing the computation load of this node
and reducing the parallelism degree of these queries.
In order to quantify the correlation between blocks, we
introduce the concept of “block distance” (D) as the
metric to measure the computation balancing. And we
also introduce “correlated queries” (C) to simplify the
presentation. We take a 2-dimensional (2D) dataset as
an example to show the definitions of D and C as fol-
lows.

Definition 3 (Block Distance). Let Bi and Bj de-
note two blocks generated by our content-aware par-
tition manner. Then, we use the number of blocks
belong to the minimum bounding rectangle (MBR) of
Bi and Bj as the distance denoted by D(Bi, Bj) =
|MBR(Bi, Bj)|.

The MBR which is also known as bounding box or
envelope, is an expression of the maximum extents of a
2D object, which is typically used in the data structure
of R-tree to group and represent the nearby objects. A
simple example of MBR is shown in Fig.3. Given a set
of blocks generated from our repartition job, in which
the block distance of (B1, B6) and (B6, B15) is the num-
ber of blocks belongs to MBR(B1, B6) (red rectangle)
and MBR(B6, B15) (blue rectangle) respectively.

Fig.3. Example of block distance.

Definition 4 (Correlated Query). Consider two
blocks Bi and Bj, if the query range of a given query
overlaps with or fully contains all D(Bi, Bj) blocks, we
say this query is the correlated query for Bi and Bj.
And all correlated queries for Bi and Bj are denoted by
C(Bi, Bj).

Without loss of generality, we assume the queries
with different predicates have the same probability of
occurrence. And this assumption is reasonable in prac-
tice, e.g., the random queries are often used to eva-
luate the effectiveness of a given system. Consider
a special case that three blocks Bi, Bj and Bk in
the same row based on the row major order, where
i < j < k. Based on the above definitions, we have
D(Bj , Bk) < D(Bi, Bk) and |C(Bj , Bk)| > |C(Bi, Bk)|
since ∀Q ∈ C(Bi, Bk) also belongs to C(Bj , Bk), but
∃Q ∈ C(Bj , Bk) may not in C(Bi, Bk). Thus, we note
that the smaller D(Bj , Bk) indicates the higher cor-
relation between Bj and Bk, that is Bj and Bk may
be accessed together for the broader set of correlated
queries with higher probability since |C(Bj , Bk)| >
|C(Bi, Bk)|.

Therefore, a natural idea for the purpose of com-
putation balancing would be to place the blocks with
higher correlation into different data nodes, distribut-
ing the computation load among all data nodes. Given
a set of data nodes N∗ and two blocks Bi and Bj with
D(Bi, Bj) 6 |N∗|, an obvious way to obtain the better
parallelism of the queries in C(Bi, Bj) is to place all
blocks in MBR(Bi, Bj) to different nodes preferably,
which means the data node containing block Bj with
D(Bi, Bj) 6 |N∗| will have the lower priority for as-
signing Bi to it and we prefer to select the data node
containing the block Bj with D(Bi, Bj) > |N∗| as the
candidate node. However, the larger D(Bi, Bj) is not
always good for the final assignment. If two blocks
with the lower correlation are placed together, then the

996 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

probability of placing two blocks with higher correlation
together will be increased. As shown in Fig.4, the first
assignment is optimal, where B5 is assigned to n3. But
in the second assignment, if we assign B5 to n4, then
B6, B7 and B8 will be placed to n1, n2 and n3 respec-
tively, reducing the parallelism of the queries. There-
fore, the data node containing the block Bj with the
smaller D(Bi, Bj) > |N∗| will have the higher priority
for assignment.

Based on the above description we conclude the prin-
ciples for placing a given block Bi as follows, where
avgdis is a variable used to measure the correlation be-
tween Bi and a certain data node.

1) Data node Ni with avgdis(Bi, Ni) > |N∗| has
the higher priority than the ones with avgdis(Bi, Ni) 6
|N∗|.

2) For ∀Ni ∈ N∗ with avgdis(Bi, Ni) > |N∗|, the
smaller avgdis(Bi, Ni) presents the higher priority for
assignment.

3) For ∀Ni ∈ N∗ with avgdis(Bi, Ni) 6 |N∗|, the
larger avgdis(Bi, Ni) presents the higher priority for as-
signment.

We are now ready to discuss how avgdis is calcu-
lated, as shown in Algorithm 4. For each data node Ni,
we calculate the distance between Bi and ∀Bj ∈ B∗

ni

(line 4, where B∗
ni

indicates the set of blocks in data
node Ni), denoted by D = {D1, D2, . . . , D|B∗ni

|}. D
can be classified into three types: 1) D contains all
D > |N∗|, 2) D contains all D 6 |N∗|, and 3) D con-
tains some D 6 |N∗| and others D > |N∗|. In the
implementation of our fair-allocation, we adopt a sim-
ple greedy strategy to assign each Bi to the data node
Ni with the minimal side effects to ∀Bj ∈ B∗

ni
, so that

we only consider the blocks with D 6 |N∗| for avgdis
calculation in both type 2 and type 3. We use the varia-
bles large and less to record all D > |N∗| and the other
D 6 |N∗| respectively (lines 5∼8). For the first type
of D, we use the average value of large as avgdis (line
10). While we use the average value of less as avgdis
for type 2 and type 3 (line 11).

Algorithm 5 shows the idea of fair-allocation stra-
tegy by considering the factor of block size (storage var-
iance) and correlation between blocks (avgdis). Given
a node set N∗ and a block set B∗, we first calculate
the storage variance (var) of all possible placement in-

stances for ∀Bi ∈ B∗, then record the pair of (Ni, var)
in the variable sRank and sort the data nodes according
to the variance in an ascending order (lines 4∼5, 9).

Algorithm 4: AvgDistance

Input: Block Bi, Node Ni, int |N∗|
Output: double avgdis

1 large, less ← ∅;

2 B∗
ni

= getAllBlocks(Ni);

3 for ∀Bj ∈ B∗
ni

do

4 distance = MBR(Bi, Bj);

5 if distance > |N∗| then

6 large.add(distance);

7 end

8 else less.add(distance);

9 end

10 if less = ∅ then avgdis = large.getAverage();

11 else avgdis = less.getAverage();

12 return avgdis;

Algorithm 5: FairAllocation

Input: NodeSet N∗, BlockSet B∗, double ws, double

wc

Output: HashTable allocation

1 allocation, sRank, cRank, aRank ← ∅;

2 for ∀Bi ∈ B∗ do

3 for ∀Ni ∈ N∗ do

4 var = getStroageVar(Bi, Ni);

5 sRank.put(Ni, var);

6 avgdis = AvgDistance(Bi, Ni, |N∗|);
7 cRank.put(Ni, avgdis);

8 end

9 sRank.sort(var);

10 cRank.sort(avgdis, Comparator);

11 for ∀Ni ∈ N∗ do

12 sIndex = sRank.getIndex(Ni);

13 cIndex = cRank.getIndex(Ni);

14 fIndex = sIndex × ws + cIndex × wc;

15 fRank.put(Ni, fIndex);

16 end

17 fRank.sort(fIndex);

18 allocation.put(Bi, fRank.getFirst());

19 end

20 return allocation;

Fig.4. Example of placing the lowest correlation blocks together.

Yu-Xiang Wang et al.: Partition and Sharing-Based Online Aggregation 997

sRank indicates the priority of a data node is selected
as the candidate node for storage balancing, and the
smaller index of sRank represents the higher priority.
On the other hand, for each data node Ni, we calcu-
late avgdis between Bi and ∀Bj ∈ Ni, and then record
the pair of (Ni, avgdis) in variable cRank and sort the
data nodes according to avgdis by an overwritten com-
parator, which is implemented to satisfy the placement
principles mentioned above (lines 6∼7, 10). cRank in-
dicates the priority of a data node is selected as the can-
didate node for computation balancing, and the smaller
index of cRank represents the higher priority.

In fair-allocation, we use the index of sRank and
aRank denoted as sIndex and cIndex respectively as
the normalized parameters to measure the final prio-
rity of each node, denoted as fIndex (lines 11∼16), by
fully coupling the storage and computation factors as
the following formula.

fIndex = sIndex× ws + cIndex× wc,

where ws and wc are the weights assigned to sRank and
cRank and ws +wc = 1. Through the adjustment of ws

and wc, fair-allocation strategy can obtain much more
flexibility for different placement requirements.

Then, we record the pair of (Ni, fIndex) in fRank and
rank the data nodes according to fIndex in an ascending
order (line 17). Smaller fIndex represents higher prio-
rity of a data node Ni being selected as a candidate
node for Bi to allocate, and we use the variable alloca-
tion to record the destination data node for ∀Bi ∈ B∗

(line 18). After all Bi are processed, OLACloud then
allocates each block to the corresponding data node ac-
cording to allocation. Fig.5 shows the fair-allocation in-
stance (ws = wc = 0.5) of the example shown in Fig.2.
Compared with the other methods, our fair-allocation
strategy can guarantee the computation balancing with
an acceptable storage variance.

3.4 Fault-Tolerance of Fair-Allocation with
Replicas

Fault-tolerance is an important problem in cloud
environment, a straight way to handle it in original

MapReduce framework is to create replicas and allo-
cate them randomly, and then restart the failed tasks
with the replicas in other data nodes. A natural idea
for fair-allocation with replicas is to allocate all replicas
according to the variable fIndex, which can guarantee
the storage and computation load balancing in a strict
way. However, this method will result in a poor fault-
tolerance since the number of candidate data nodes for
each block is relatively smaller.

In order to gain the great benefit of fair-allocation
and guarantee an acceptable fault-tolerance, we calcu-
late fIndex only based on the first replica (also called
primary replica) of all blocks, and allocate the primary
replica based on such fIndex, while the other replicas do
not be considered in the calculation of fIndex and are
allocated in the random way as the original MapReduce
framework. In another word, only the primary replica
of blocks in a given data node is used for the calculation
of fIndex in our implementation. When OLACloud is
processing, we prefer to assign tasks to the data node
with primary replicas, which can maximize the perfor-
mance advantage of fair-allocation for computation load
balancing as much as possible (discussed in Section 5).

We derive a simple probabilistic model of block al-
location to compare the fault tolerance of our fair-
allocation strategy and the default random strategy in
original MapReduce framework. The model notations
are summarized in Table 1. Suppose that the cluster
consists of n data nodes for storage and computation.
And we store s blocks in these data nodes, that is Bi for
1 6 i 6 s. Let r be the desired number of replicas and
Iij an indicator for the event that data node j stores a

Table 1. Symbol Description

Symbol Definition

n Number of data nodes

f Number of failed data nodes

s Number of blocks

r Replication factor

Bi Block i, i ∈ {1, . . . , s}
Iij Indicator for the event that data node j stores a

replica of block Bi

P Probability of data loss for any block

Pi Probability of data loss for Bi

Fig.5. Result of fair-allocation.

998 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

replica of block Bi, where
∑

j Iij = r for all i. For
simplicity, we also assume that each node has sufficient
disk space to store all the blocks assigned to it. And
we take the probability of data loss as the metric to
analyze the fault-tolerance when f (f > r) data nodes
of the cluster fail.

Random Strategy. We are now ready to discuss the
fault-tolerance of random strategy. Note that, the vec-
tor Ii∗ = (Ii1, . . . , Iin) indicates for each node whether
it stores a replica of block Bi. By default, replicas are
randomly distributed to each set of r data nodes with
equal probability. Thus, Ii∗ has the distribution based
on the analysis in [17]:

Pr(Ii∗ = I) =

(
n
r

)−1
, if

∑

j

Ij = r,

0, otherwise,

where I ∈ {0, 1}n. Note that, Bi is lost only when all
r replicas are located on the set of failing data nodes,
that is

∑f
j=1 Iij = r. Therefore, we can calculate the

probability of data loss for each Bi as:

Pi = Pr

(f∑

j=1

Iij = r
)

=
(

f

r

)/(
n

r

)
.

Thus, P can be computed as follows:

P = 1−
s∏

i=1

(1− Pi) = 1−
[
1−

(
f

r

)
/

(
n

r

)]s

.

Fair-Allocation. The analysis for fair-allocation is
similar, but the exact distribution of Pr(Ii∗ = I) is dif-
ficult to compute since 1) the placement of each block
depends on the blocks which have been processed rather
than the completely independent placement of random
strategy, and 2) the value of fIndex for each node can-
not be calculated without the information of block size.
Therefore, we only consider the relaxation for the com-
putation of Pr(Ii∗ = I):
• The first block B1 has

(
n
r

)
opportunities to place

the r replicas such that each placement instance has
the same probability of

(
n
r

)−1 as the case of random
strategy.
• The primary replica of each Bi (i ∈ [2,min{n, s}])

is randomly placed into one of the n − i + 1 “empty
data nodes”. Such “empty” can be explained as these
n− i + 1 data nodes are not considered in the calcula-
tion of fIndex for Bi since they have not contained any
primary replicas yet. And the other r − 1 replicas are
placed into the rest n− 1 data nodes randomly (except
the node containing the primary replica of Bi). Each
block will have

(
n−i+1

1

) · (n−1
r−1

)
/r placement instances

after eliminating the replicative one.

• For the remaining blocks, only the data node with
the smallest fIndex can be selected as the candidate
for allocation. Without loss of generality, there may
be several data nodes that have the smallest fIndex si-
multaneously, however, the number of these data nodes
is hard to determine. This is because fIndex cannot be
calculated without the information of block size, so that
the number of placement instance cannot be computed
exactly. In the worst case, we suppose there is only one
data node has the smallest fIndex, which means the
primary replica can only be assigned to a certain data
node, and the rest r− 1 replicas have

(
n−1
r−1

)
opportuni-

ties for placement.
Thus, Ii∗ has approximate distribution as:

Pr(Ii∗ = I) =

(
n
r

)−1
, if i = 1,

[
(
n−i+1

1

) · (n−1
r−1

)
/r]−1, if 2 6 i 6 m,

(
n−1
r−1

)−1
, if m < i 6 s,

0, otherwise,

where m = min{n, s}. And the probability of data loss
P for fair-allocation can be calculated by the following
formula.

P =1−
[
1−

(
f

r

)/(
n

r

)]
×

m∏

i=2

[
1−

((
f
r

) · r(
n−i+1

1

)× (
n−1
r−1

)
)]

×
[
1−

(
f

r

)/(
n− 1
r − 1

)]s−m

.

Interpretation. We set n = 40, r = 3, s ∈ [20, 1000]
and f ∈ [4, 15]. Fig.6 shows that the probability of data
loss of our relaxation fair-allocation is slightly higher
than the random strategy when s = 20, and larger
s makes such weakness much more obvious. This is
because the placement of the random strategy is com-
pletely independent so that the number of candidate
data nodes for each block in fair-allocation is much less
than the random strategy, which increases the value of
Pr(Ii∗ = I) and leads to a higher P . In order to reduce
the data loss probability of fair-allocation, we increase
the number of replica. Fig.7 shows the example for
s = 20, s = 50, s = 100 and s = 1 000, which indicates
the worst case of fair-allocation for r = 4 can obtain the
acceptable data loss probability for r = 3. Overall, our
fair-allocation does not have a negative effect on data
loss when we set the replica factor to 4, which means it
trades storage for fault-tolerance, but can make OLA
much more efficient (significantly improve the perfor-
mance of OLA).

Yu-Xiang Wang et al.: Partition and Sharing-Based Online Aggregation 999

Fig.6. Comparison of fault-tolerance for r = 3.

4 Query Processing with Shared Sampling

4.1 Query Processing Scheme

In order to overcome the second limitation men-
tioned in Section 1, we propose a shared sampling stra-
tegy to retrieve unbiased samples, which can be reused
to support statistical calculation and accuracy estima-
tion for multiple queries. Our shared sampling strategy
has motivation similar to the work in [18], and extends
it by adding a customized sample management com-
ponent to satisfy the requirements of multiple OLA-
queries processing. The basic idea behind the shared
sampling strategy is to combine the appropriate queries
together and collect samples for them by one-pass disk
scan.

The query processing scheme with shared sampling
strategy can be split into two phases. In the first phase,
OLACloud does not execute the incoming query imme-

diately but collects the queries and analyzes the po-
tential shared opportunities. Then the set of incoming
queries are combined as a grouped dynamic MapReduce
job. The reason we call it dynamic is that each grouped
map task needs to be dynamically configured based on
such shared information to be responsible for shared
queries processing. In the second phase, the grouped
dynamic MapReduce job is initialized and submitted to
JobTracker for parallel processing. Each grouped map
task builds a public sample buffer (PSB) to manage the
random samples drawn from the input block, and col-
lects samples from PSB rather than disk for all shared
queries to compute the corresponding statistics, reduc-
ing the redundant disk I/O cost. And each reduce task
collects the statistics from the map phase to calculate
the approximate result and estimate the query accu-
racy.

Algorithm 6 illustrates the general idea of query pro-
cessing with shared sampling strategy. Given a set
of incoming queries Q, OLACloud collects a subset
of queries denoted by Qthd with the size of threshold
(line 2), and analyzes the potential sharing opportuni-
ties among the queries of Qthd , denoted as share (line
3). There are two major issues need to be considered
in the generation of share: 1) which queries need to be
combined for sharing, and 2) how many samples need to
be collected from a certain grouped map task for each
involved query.

Towards the first issue, we define the queries with
the overlapped predicates as the candidates for sharing.
Consider the query set Qthd = {Q1, Q2, . . . , Qn} with

Fig.7. Comparison of fault-tolerance for different s. (a) s = 20. (b) s = 50. (c) s = 100. (d) s = 1000.

1000 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

Algorithm 6: QueryProcess

Input: QuerySet Q
1 while Q.hasNextQuery() do

2 QuerySet Qthd = collect(Q, threshold);

3 ShareInfo share = new ShareInfo(Qthd);

4 EstimateInfo estimate = new EstimateInfo

(confidence, errRate, column, type);

5 JobConf OLAjob = new JobConf(OLA.class);

6 DefaultStringifier. store(OLAjob, share,

“share”);

7 DefaultStringifier.

store(OLAjob, estimate,“eInfo”);

8 JobClient.runJob(OLAjob);

9 end

the predicates P = {P1, P2, . . . , Pn}, and the input
file F with the block set B = {B1, B2, . . . , Bm}. The
overlapped queries for each Bi ∈ B can be obtained
by checking the predicate set P, denoted by Qi

olp =
{Qx ∈ Qthd |Bi ∈ (Px ∩ B)}. Based on the traditional
MapReduce framework, ∀Qx ∈ Qi

olp contains a map
task M i

x to process Bi; while in our OLACloud, all of
{M i

x|Qx ∈ Qi
olp} are combined to form a new grouped

map task M i
com .

For the second issue, we adopt the sampling method
which shares the similar motivation with the distributed
sampling proposed in [19] to decide the sample size for
each query involved in M i

com and guarantee the samples
collected for each query are unbiased, which means the
sample size collected from each block is proportional
to its cardinality. For example, we consider the query
Qx ∈ Qthd with predicate Px, then ∀Bi ∈ (Px∩B) pro-
vides kx

i samples for Qx, where kx
i = |Bi|∑|Px∩B|

i=1 |Bi|
× k,

k =
∑

i kx
i is the total required sample size in each itera-

tion of OLA, which is defined by the user. For ∀Bi ∈ B,
we record the queries of Qi

olp with their required sam-
ple size K = {kx

i |Qx ∈ Qi
olp} as a tuple in share, which

is stored as a parameter of JobConf (line 6).
Moreover, we also need to record the user defined

confidence, error rate, and the aggregate column and
type for ∀Qx ∈ Qthd as an item in the accuracy parame-
ter called eInfo to support the accuracy estimation (line
7).

4.2 MapReduce Implementation

4.2.1 Queries for Single Relation

We are now ready to discuss the Map logic for single
relation queries as shown in Algorithm 7. Given a block
Bi, the corresponding grouped map task M i

com loads
share from OLAjob, which can be implemented by over-
writing the configure function in MapReduceBase, and
extracts the item for Bi into the variable qInfo, which is

used to accomplish the sample collection and statistic
calculation, with the key Qx ∈ Qi

olp and values kx
i ∈ K

(lines 1∼2). Afterwards, M i
com adapts the shared sam-

pling strategy to build a PSB, then all the queries of
Qi

olp will collect samples from PSB rather than disk, re-
ducing the redundant disk I/O cost. Given a block Bi

and the overlapped query set Qi
olp , there are two major

issues need to be considered for shared sampling firstly,
that is 1) how to construct the PSB for all queries of
Qi

olp , and 2) how to efficiently update the PSB to suit
for the progress of ∀Qx ∈ Qi

olp .

Algorithm 7: Map Logic

Input: LongWritable key, Text value

Output: OutputCollector〈IntWritable, Text〉 outputKV

1 ShareInfo share = DefaultStringifier.

load(OLAjob, “share”, ShareInfo.class);

2 Hashtable qInfo = getQueryInfo(share);

3 PSB.init();

4 pointers.init();

5 for ∀〈ki, vi〉 in input do

6 PSB.update(〈ki, vi〉, pointers);

7 for ∀Qx ∈ qInfo.keys() do

8 if PSB.hasEnoughSample(Qx)

then

9 samples = getSamples(qInfo.get(Qx),

PSB);

10 stats = getStats(samples, Qx);

11 pointers.update();

12 outputKV.collect(Qx.qID, 〈stats,
this.taskID〉);

13 end

14 end

15 end

Consider the first issue, we initialize the PSB with
the control parameter pointers, which is used to rea-
lize the management of PSB, in lines 3∼4. In our
implementation, pointers includes the pointers to the
first and last samples that have been visited by all
queries of Qi

olp denoted as first and last respectively,
and the pointer to the next sample needed to be vis-
ited by a given Qx ∈ Qi

olp is denoted as cur(Qx)
(also called progress pointer). Note that, the set of
progress pointers {cur(Q1), cur(Q2), . . . , cur(Qn)} is
used to control the sampling procedure for all queries
of Qi

olp , and the interval [first, last] indicates the sam-
ples in PSB that need to be updated, where last =
min{cur(Q1), cur(Q2), . . . , cur(Qn)}.

For the second issue, the combined map task M i
com

adopts an aggressive method to update PSB for each
incoming input 〈ki, vi〉 (add sample to PSB if it is not
full and swap out the expired sample if last>first) (line

Yu-Xiang Wang et al.: Partition and Sharing-Based Online Aggregation 1001

6), and collect samples to calculate the statistics de-
noted as stats (the details of statistics calculation are
discussed in Subsection 4.3) for ∀Qx ∈ Qi

olp if PSB has
enough samples (kx

i) for Qx (lines 9∼10). And the cor-
responding progress pointers need to be updated along
with the sample consumption (line 11). Or alterna-
tively, we also can define an input buffer to collect a
set of input key/value pairs, then update the PSB and
collect samples to calculate statistics in a batch model
to reduce the number of operations. Finally, the out-
put collected with the key is the query ID of Qx and
the value is combined by stats and the task ID of M i

com

(line 12).
The reduce phase is responsible for collecting statis-

tics from map tasks and calculating the estimate of the
final query result. In our implementation, each reduce
task is only responsible for a certain Qx, and Algorithm
8 illustrates the logic of reduce phase. Given a certain
Qx, the reduce task Rx loads the accuracy parameter
eInfo from OLAjob and initializes a variable container
to classify the input values from all involved M i

com (lines
1∼4).

Algorithm 8: Reduce Logic

Input: IntWritable key, Iterator〈Text〉 values

Output: OutputCollector〈IntWritable, Text〉 outputKV

1 EstimateInfo eInfo = DefaultStringifier

load(OLAjob, “eInfo”, EstimateInfo.class);

2 Hashtable container = new Hashtable();

3 while values.hasNext() do

4 update (container, values.next());

5 if container.isAvailable() then

6 unistats = uniStats(container, unistats);

7 result = estimate(unistats);

8 if

isAccuracy(result, eInfo, unistats)

then

9 outputKV.collect(key, 〈result, “accept”〉);
10 else

11 outputKV.collect(key, result);

12 end

13 end

14 end

For each M i
com , there is a corresponding item in

container to record the statistics of Qx with the
key M i

com .taskID and value {stats1, . . . , statsn}, where
statsj indicates the statistics calculated in the j-th
iteration of OLA. Afterwards, Rx needs to check con-
tainer to make sure it is available for accuracy estima-
tion, which means container has contained the statistics
for all M i

com . Then Rx can calculate the unified statis-
tics (unistats) in an incremental way, that is unistats

of the j-th iteration can be computed by aggregating
all statsj in container with the previous unistats of the
(j − 1)-th iteration (line 6). And the approximate re-
sult can be computed by the function estimate based
on unistats (line 7). Afterwards, Rx invokes isAccu-
racy to conduct the accuracy estimation based on the
parameters in eInfo such as the aggregate column and
aggregate type, confidence and error rate. Based on the
result of isAccuracy, Rx collects the output as the pair
of (key, 〈result, “accept”〉) if result satisfies the users ex-
pectation, otherwise the output is constructed as (key,
result) (lines 8∼11).

4.2.2 Queries for Multi-Relations

For queries involving multi-relations, there are two
approaches that can be applied. We can precompute
the join result and store such result as a regular file
in HDFS, then adopt the method used in the single
relation queries to estimate the final result. Or alter-
natively, we can get samples from each relation and
calculate the estimates in the fly by one MapReduce
job. Note that, the first approach trades storage for
accuracy, while the second approach sacrifices some
accuracy (also satisfies the accuracy requirement) for
flexibility. In our OLACloud, we implement both ap-
proaches and configure the second one as the default
approach.

The map logic of the default approach is similar
to Algorithm 7, but it has some differences that: 1)
Such map logic does not need to calculate the statistics
of random samples from each mapper since the statis-
tics are related to the samples from both two relations.
And the task of this map logic is only to collect un-
biased samples and assign them to the corresponding
reducer for further processing. 2) Such map logic needs
to redesign the structure of output key/value pair as
(〈Qx.qID , rTag〉, samples) to satisfy the requirement of
shared sampling, where rTag indicates the relation that
samples are drawn from. Note that, the output with
the same qID would be delivered to the same reducer.
And we modify the default GroupingComparator class
to make sure that the input from both relations are in
the same group, which is convenient for the statistics
calculation in the reduce logic. Algorithm 9 shows the
reduce logic for multi-relations query.

There are several parameters defined in Algorithm
9, e.g., rPre and sPre indicates the samples have been
received from the relation R and S respectively, while
rCur and sCur from the relation R and S respectively
denotes as the incoming samples need to be processed.
Firstly, each reducer must classify the incoming sam-
ples into rCur and sCur (lines 4∼10). And then, the
partial statistics are computed as statsPP, statsPC,

1002 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

Algorithm 9: Reduce Logic for Multi-Relations Query

Input: LongPair key, Iterator〈Text〉 values

Output: OutputCollector〈IntWritable, DoubleTriple〉
outputKV

1 static Vector rPre, sPre

2 Vector rCur, sCur;

3 EstimateInfo eInfo = DefaultStringifier.load(OLAjob,

“eInfo”, EstimateInfo.class);

4 while values.hasNext() do

5 if values.next.getTag == “R” then

6 rCur.add(values.next);

7 else

8 sCur.add(values.next);

9 end

10 end

11 if

rPre.equals(null)&&sPre.equals(null)

then

12 statsPP = getStats(rPre, sPre);

13 else

14 statsPC = getStats(rPre, sCur);

15 statsCP = getStats(rCur, sPre);

16 statsCC = getStats(rCur, sCur);

17 end

18 stats = merge(statsPP, statsPC, statsCP, statsCC);

19 statsPP = stats;

20 rPre = rPre.addAll(rCur);

21 sPre = sPre.addall(sCur);

22 result = estimate(stats);

23 if isAccuracy(result, eInfo, stats) then

24 qID = key.getFirst();

25 outputKV.collect(qID, 〈result, “accept”〉);
26 else

27 outputKV.collect(qID, result);

28 end

statsCP and statsCC (lines 11∼17), where statsPP indi-
cates the statistics that calculated from rPre and sPre,
and the other partial statistics have similar definitions.
In order to calculate the partial estimate, we also need
to combine these partial statistics together to form a
final statistic denoted as stats, which is used to the ap-
proximate result calculation and accuracy estimation
(lines 18∼22). Finally, each reducer collects the out-
put as the pair of (qID, 〈result, “accept”〉) if the result
satisfies the users expectation.

4.3 Statistical Estimation

The goal of online aggregation is to provide efficient,
accurate estimates and their confidence intervals which
are updated regularly. Let ε′, c be the running error

bound and confidence respectively. ε′ and c give the
probabilistic estimate of approximate result v′ which
means exact result v lies in the interval [v′ − ε′, v′ + ε′]
with probability c. We can say the approximate result
achieves the user expectation, if ε′ 6 v′ × e (e is the
predefined error rate). Note that, the confidence c and
error rate e are the parameters of eInfo in Algorithm
6 and v′ is the approximate result calculated by the
function estimate in Algorithm 8 and Algorithm 9.

In this subsection, we take SUM, COUNT, AVG as
examples to show how estimates and confidence inter-
vals for the single relation query can be obtained in our
OLACloud. Consider a typical single relation query Qx

such as:

SELECT op(expression) FROM R WHERE predicate.

Given the block set B, S indicates the sample set
collected from the relevant block set {Px ∩ B} and
each Bi ∈ {Px ∩ B} provides |Si| samples, where∑|Px∩B|

i=1 |Si| = |S|. Each map task calculates stats ac-
cording to the aggregate column in eInfo, including the
sum and count of S′i that is sum(S′i) =

∑
sj∈S′i

sj and
count(S′i) = |S′i|, where S′i ⊆ Si indicates the sample
set that satisfies the query predicate. Then, the re-
duce task can calculate the value of

∑
si∈S expp(si) as

follows, which is part of the parameters in unistats.

∑

sj∈S

expp(sj) =

|Px∩B|∑

i=1

sum(S′i), if op = sum,

|Px∩B|∑

i=1

count(S′i), if op = count .

Then the estimated aggregate result can be calculated
in the reduce task as follows (processed by estimate
function in Algorithm 8).

v′s|c =
T

|S| ×
∑

sj∈S

expp(sj), v′a =
v′s
v′c

, (1)

where the variable T =
∑

Bi∈{Px∩B} |Bi| indicates the
total number of tuples in the relevant block set of Qx,
and expp(si) equals si for SUM and 1 for COUNT if si

satisfies the predicate, and 0 otherwise.
Besides the estimated aggregate results, the reduce

task also needs the corresponding variances of these re-
sults to calculate the error bound for accuracy estima-
tion. To simplify the computation of variance, we apply
the computational formula of variance.

σ2(X) = E(X2)− E(X)2.

Each grouped map task M i
x maintains the quadratic

sum of samples X2
i =

∑
sj∈S′i

s2
j in stats too, which is

used to calculate the variances. Reduce task collects

Yu-Xiang Wang et al.: Partition and Sharing-Based Online Aggregation 1003

all X2
i and calculates

∑|Px∩B|
i=1 X2

i , which is the other
parameter in unistats. In the function isAccuracy, the
input parameter of result and unistats are used to cal-
culate the variance firstly according to the aggregate
type in eInfo as follows.

σ2
a =

∑|Px∩B|
i=1 X2

i∑|Px∩B|
i=1 count(S′i)

− (v′a)2,

σ2
s =

∑|Px∩B|
i=1 X2

i

|S| × T 2 − (v′s)
2,

σ2
c =

∑|Px∩B|
i=1 count(S′i)

|S| × T 2 − (v′c)
2.

Afterwards, the function isAccuracy needs to compute
the error bound ε′ based on the variance above and
the input parameter of eInfo. Based on Central Limit

Theorem,
√
|S|×(v′−v)

σ is distributed approximately as
a standardized normal distribution when |S| is “large
enough”, where σ2

|S| is the variance of v′. Given a prede-
fined confidence c, ε′ can be computed by the following
formula:

P{|v′ − v| 6 ε′} ≈ 2Φ
(ε′

√
|S|

σ

)
− 1, (2)

where P{|v′−v| 6 ε′} is the predefined confidence c. If
ε′ 6 v′ × e, then we can say result is acceptable to the
user.

For the case of the multi-relations query such as:
SELECT op(expression) FROM R, S WHERE
predicate,
given the block sets Br, Bs for relation R and S re-
spectively, Sr = rPre (Ss = sPre) indicates the sample
set that has been collected from the relevant block set
{Px ∩ Br} ({Px ∩ Bs}). Each reduce task needs to cal-
culate the partial statistics such as statsCC. For exam-
ple, statsCC includes the sum and count of S′cc that is
sum(S′cc) =

∑
si∈S′cc

si and count(S′cc) = |S′cc|, where
S′cc ⊆ Scc indicates the sample set that satisfies the
query predicate and Scc = rCur × sCur . Then, the re-
duce task can calculate the value of

∑
si∈Sr×Ss

expp(si)
by adding these four partial statistics together, which
is part of the parameters in stats. Then the estimated
aggregate result can be calculated by (1) with T and |S|
being replaced by Tr × Ts and |Sr| × |Ss| respectively,
where Tr =

∑
Bi∈{Px∩Br} |Bi| and |Sjoin| = |Sr| × |Ss|.

Moreover, the partial statistics such as statsCC of
each reducer also maintains the quadratic sum of sam-
ples denoted as X2

cc =
∑

si∈S′cc
s2

i . Then the re-
ducer can calculate the value of X2

join by adding all
the quadratic sums from each of the partial statistics.
Therefore, the variance of samples for each relation can

be computed by (3)∼(5), and the variance of the joined
samples can be calculated by (6).

σ2
a(R) = σ2

a(S) =
X2

join

|S′join|
− (v′a)2, (3)

σ2
s(R) = σ2

s(S) =
X2

join

|Sr| × |Ss| × (Tr × Ts)2 − (v′s)
2,
(4)

σ2
c (R) = σ2

c (S) =
S′join

|Sr| × |Ss| × (Tr × Ts)2 − (v′c)
2,
(5)

σ2
join =

σ2(R)
|Sr| +

σ2(S)
|Ss| , (6)

where S′join indicates the sample set that satisfies the
query predicate and we have S′join = S′pp + S′pc + S′cp +
S′cc. The definitions of S′pp, S′pc, S′cp are similar to that
of S′cc, and Spp = rPre × sPre, Spc = rPre × sCur ,
Scp = rCur × sPre. Finally, each reducer invokes the
function isAccuracy to calculate the error bound ε′ by
(2) based on the variance above and the input parame-
ter of eInfo.

5 OLACloud Implementation in Hadoop-Hop

We have used Hadoop-hop-0.2, which is currently
based on Hadoop-0.19.2, to implement our OLACloud
prototype and run experiments on a virtual cluster with
31 nodes (2 VCPU + 10 GB of main memory + 100 GB
disks for each node) from SEUCloud (Southeast Univer-
sity Cloud Platform), which supports data processing
applications of the whole university, such as AMS (Al-
pha Magnetic Spectrometer) experiment. SEUCloud
consists of a compute system and a storage system,
each of these compute and storage nodes has a sepa-
rate 1Gb/s Ethernet and 40 Gb/s Infiniband link re-
spectively to different switches. The compute system
contains 252 IBM H22 blade servers, 8 IBM X3850 X5
4-Way SMP servers and 2 IBM X3850 X5 8-Way SMP
servers. While the storage is set up by 16 IBM X3650
M3 servers which attach an IBM DS5300 storage array
via 8Gpbs fiber channels.

Fig.8 illustrates the architecture of OLACloud. The
system consists of one master node and many slave
nodes. A client submits jobs to the master node, where
the JobTracker daemon is initialized to manage the life-
cycle of these jobs. For each submitted job, the master
node schedules a number of parallel tasks to run on
slave nodes by Task Scheduler. Every slave node has a
TaskTracker daemon process to communicate with the
master node and manage each task’s execution. In or-
der to accommodate the requirements of online aggre-
gation applications, we make several changes to the ba-
sic Hadoop MapReduce framework. First, OLACloud

1004 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

Fig.8. OLACloud framework.

assigns the blocks based on the fair-allocation strategy
which is implemented by modifying the Block Allocate
module. And we also build our NRB-T index in DataN-
ode to support the relevant block determination. Sec-
ond, OLACloud uses BlockMaps to maintain the map
from a block to its metadata, which is extended to in-
clude the data node that stores the primary replica.
Third, OLACloud adopts a modified version of the de-
lay scheduling[20], which prefers to schedule the task to
the data node with the primary replica, to improve the
performance of fair-allocation. Forth, OLACloud con-
tains a new module called Query Collector that collects
the incoming queries in a system buffer, then OLAjob
can combine threshold queries into a shared MapReduce
job for processing.

6 Experimental Evaluation

In this section, we conduct a set of experiments to
evaluate the effectiveness and study the performance
characteristics of our OLACloud under different degrees
of skew in the input data and under different data sizes.
A modified TPC-H toolkit[21] is employed to generate
skewed datasets with Zipf distribution, which is deter-
mined by the Zipf parameter z (z varies over 0, 1.2, 1.6,
where 0 represents the uniform distribution), derived
from LINEITEM and ORDER tables as our test data.
The scale factor is varied over 10, 20, 40, 100. Table 2
summarizes the properties of the generated datasets.

In our experiments, we generate queries based on the
Single Table Template (T1) and Multi-Table Template
(T2) as follows.

Table 2. Properties of Datasets

Scale Size (GB) Number of Rows (Million)

10 7.8 66

20 15.8 132

40 37.6 264

100 78.7 660

T1: SELECT sum(Ci)|count(Ci)|avg(Ci) FROM LINEI-

TEM

WHERE [l discount > x and l discount < x + y] |
[l quantity > x and l quantity < x + y] |
[l extendedprice > x and l extednedprice < x + y],

T2: SELECT sum(Ci)|count(Ci)|avg(Ci) FROM LINEI-

TEM L, ORDERS O

WHERE L.orderkey = O.orderkey &

[l discount > x and l discount < x + y] |
[l quantity > x and l quantity < x + y] |
[l extendedprice > x and l extednedprice < x + y]|
[o totalprice > x and o totalprice < x + y].

Note that, parameter x is some random value that be-
longs to the value range of Ci and parameter y varies
from 10% to 90% of the value range of Ci for each x.

The aggregate type (AVG, COUNT, SUM) for each
query is randomly selected during the query generation
process. Each experiment executes 100 queries for 5
times to remove any side effect. The default error rate
e and confidence c used for the accuracy estimation are
0.01 and 95% respectively; the default partition size
(ps) and query collection threshold (qct) are 4 and 20
respectively. The default parameters of fair-allocation

Yu-Xiang Wang et al.: Partition and Sharing-Based Online Aggregation 1005

are set as ws = wc = 0.5, which means the computation
and storage load balancing have equal importance.

For comparison purposes, we implemented six OLA
methods for different partition manners, block allo-
cation strategies and sampling methods. We adopt
four blocks placement strategies, that is random (RM),
round-robin (RR), range (RG) and fair-allocation (FA).
In the case of size-aware partition manner, we imple-
ment one method that allocates the blocks in the ran-
dom strategy and draws the samples without sharing,
called size-RM. For the content-aware partition man-
ner, we partition the LINEITEM and ORDER table
based on the columns in “WHERE” predicates (the
default partition size for each partitioning column is
4) and implement four methods for random, round-
robin, range and fair-allocation respectively, denoted
by content-RM, content-RR, content-RG and content-
FA. Moreover, content-FA-share denotes the fair assign-
ment strategy with shared sampling.

6.1 Effect of Data Size and Distribution

In this experiment, we vary the data size from 10 G
to 100 G and evaluate the performance of four basic

methods for different data distributions, which include
Hadoop-complete, size-RM, content-FA and content-
FA-share. Note that, Hadoop-Complete denotes a
method which returns the precise results. We set c,
e, ps and qct be the default values, and ws = wc = 0.5.

Figs. 9(a), 9(c), 9(e) represent the result of template
1, while Figs. 9(b), 9(d), 9(f) represent the result of
template 2. We note that both results show a similar
trend, but the joined one takes much more time to pro-
cess since there are more tasks to be initialized in the
map phase and the join operation in the reduce phase
takes extra more time. Figs. 9(a)∼9(f) indicate that
the performance of Hadoop-complete decreases with the
increase of data size, but the OLA-based methods are
scalable with regard to the data size. And the time cost
is much lower than Hadoop-complete. This is because
the OLA-based methods only need a small sample set to
calculate the approximate results rather than all of the
dataset. Among the OLA-based methods, content-FA
performs better than size-RM. This is expected as the
sampling efficiency is improved by our content-aware
repartition method, leading to the early acceptable re-
sults. And we also note that the performance of shared
method content-FA-share is better than the one with-

Fig.9. Effect of data size. (a) Uniform T1. (b) Uniform T2. (c) Zipf-1.2 T1. (d) Zipf-1.2 T2. (e) Zipf-1.6 T1. (f) Zipf-1.6 T2.

1006 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

out sharing due to the redundant disk I/O can be sig-
nificantly decreased by our shared sampling strategy.

On the other hand, in order to study the effect
of data distribution in detail, we compare the perfor-
mance of a 100 G dataset for different data distributions
in Fig.10. Note that, besides the Hadoop-complete
method, the content-aware methods are also scalable
with regard to the data distribution. While the perfor-
mance of size-RM is significantly decreased along with
the much more skewed data distribution.

6.2 Effect of Block Placement Strategies

In this experiment, we evaluate the performance of
content-aware online aggregation methods for different
block placement strategies, that are random, range,

round-robin and fair-allocation. All the parameters are
set to be the default values.

As shown in Figs. 11(a) and 11(b), content-FA out-
performs the content-RM, content-RG and content-RR
methods. This is because of the fair-allocation stra-
tegy can guarantee a good computation load balanc-
ing. But the performance improvement of template 2
is not so obviously since our fair-assignment strategy
does not consider the block correlation between differ-
ent relations. Figs. 11(c) and 11(d) illustrate the load
distribution in the storage and computation against the
Zipf-1.6 dataset for these content-aware methods, and
the result of other data distribution has the same trend
since the load balancing is actually determined by the
block placement strategy rather than data distribution.

Fig.10. Effect of data distribution. (a) 100G T1. (b) 100G T2.

Fig.11. Comparison of different partition manners and placement strategies. (a) Comparison for response time (T1). (b) Comparison

for response time (T2). (c) Comparison for load distribution (T1). (d) Comparison for load distribution (T2).

Yu-Xiang Wang et al.: Partition and Sharing-Based Online Aggregation 1007

We use the variance of storage consumption (storage
consumption in each data node is measured in GB),
and the variance of number of queries processed in each
node as the metrics. Note that, our content-FA strategy
can effectively balance both the storage and computa-
tion load among data nodes.

On the other hand, the parameters ws and wc are
used to adjust the preference between storage balancing
and computation balancing, so that we show the effect
of these two parameters in Figs. 12(a) and 12(b). Note
that, the larger wc indicates more computation load
balancing and the response time is decreased along with
the increase of wc. While larger ws indicates higher
storage load balancing but with poorer performance.
Therefore, we should choose appropriate ws and wc in
the actual configuration of OLACloud to guarantee the
storage and computation load balancing by fully con-
sidering the real system storage and computational ca-
pability.

Fig.12. Effect of ws and wc. (a) Result for T1. (b) Result for T2.

6.3 Effect of Partition Size

In this test, we show the effect of partition size for
content-FA. To facilitate the discussion, each column
has the same partition size (ps) which varies from 3
to 8.

Through Table 3 and Table 4, we note that the re-
sults for different data distributions show the similar

trend, that is the response time reduces with the in-
crease of ps at first when ps is relatively small, but
this performance improvement disappears and the re-
sponse time starts growing with the continued increase
of ps. This is expected as the sampling efficiency is
the major factor that affects the performance at first,
so that when we increase the value of ps, the query
can prune much more unneeded data due to the fine-
grained partition, improving the sampling efficiency.
However, larger ps indicates more blocks, which also
means that more query tasks will be initialized for pro-
cessing. Take a single partitioning column with the
range of [1, 100] as an example, the partitioning col-
umn is divided as {[1, 50], [51, 100]} for ps = 2 and
{[1, 25], [26, 50], [51, 75], [76, 100]} for ps = 4 respec-
tively, and given the query predicate is 23 6 attribute 6
85, then the number of query tasks for each ps is 2
and 4 respectively. More query tasks lead to more sys-
tem overhead such as the task initialization time, which
eliminates the positive effect of larger ps.

Table 3. Effect of Partition Size (T1)

Partition Size (ps) Response Time (s)

Uniform Zipf-1.2 Zipf-1.6

3 1 449.8 2 142.3 2 933.2

4 1 178.7 1 477.4 1 543.8

5 1 296.6 1 403.5 1 494.4

6 1 485.2 1 625.1 1 420.3

7 1 744.6 1 950.2 1 883.4

8 1 909.6 2 157.1 2 192.2

Table 4. Effect of Partition Size (T2)

Partition Size (ps) Response Time (s)

Uniform Zipf-1.2 Zipf-1.6

3 2 938.1 4 229.8 9 345.2

4 2 497.4 3 130.1 3 270.8

5 2 837.9 3 516.9 3 074.5

6 3 299.9 4 017.5 3 497.7

7 3 928.5 4 617.8 4 214.1

8 4 733.1 5 357.1 5 504.4

On the other hand, we note that the performance
turning point for different data distributions is differ-
ent. For Zipf-1.6 of template 1, the response time con-
tinues to reduce until ps equals 6, and the value for
Zipf-1.2 and uniform is 5 and 4 respectively. This can
be explained as that the effect of low sampling efficiency
is more crucial for much more skewed data distribu-
tion, and more skewed data distribution indicates that
we need larger ps to prune much more unneeded data.
Through this experiment, we find that much larger ps is
not always optimal, and we should choose appropriate
ps by taking account of the additional system overhead
caused by large ps.

1008 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

6.4 Effect of Query Collection Threshold

In this test, we study the effect of query collection
threshold (qct), which is an important parameter that
controls the degree of shared sampling and decides the
performance of content-FA-share. We vary qct from 10
to 100 and Fig.13 demonstrates the results of different
data distributions with the default parameters.

As shown in the figure, three curves have the simi-
lar trend that is the performance of content-FA-share is
improved at first until qct reaches a specific value, then
the performance is degraded along with the increase of
qct. This can be explained as our shared sampling stra-
tegy affects the overall performance from three aspects,
including two positive cases as well as one negative case,
that is: 1) reducing the redundant disk I/O cost, 2) re-
ducing the initialization time of the query tasks, and 3)
extending the execution time of each query task. For
the case of smaller qct, the performance improvement
caused by 1) and 2) is larger than the degradation re-
sults from 3), while this situation is reversed for the
case of larger qct.

On the other hand, the optimal qct for uniform case
is larger than the optimal value for skewed cases. Note
that, the block size in skewed case is relatively smaller
than the uniform one (since the high frequency tuples
often appear in the minority of blocks due to the chara-
cteristic of Zipf distribution), leading to a relatively
lower sampling cost. Therefore, the performance im-
provement of 1) for skewed data distribution is not so
obviously as the uniform case, resulting an early per-
formance degradation.

6.5 Effect of Error Rate and Confidence

Given a predefined confidence, smaller error rate in-
dicates more approximate result we can obtain. And
larger confidence gives higher probability that the ac-
curate result is bounded by the estimated error bound.

In this experiment, we vary the predefined error rate

and confidence respectively to examine the performance
of the three methods, that is content-FA-share, content-
FA and size-RM. The predefined error rate ranges from
0.01 to 0.05. Figs. 14(a) and 14(b) show all methods
have the similar trend that much more samples are
needed to gain the higher precision for smaller prede-
fined error rate, which leads to longer processing time.
On the other hand, the predefined confidence ranges
from 82% to 98% to show the effect of confidence.
Figs. 14(c) and 14(d) show that along with the increase
of confidence, much more samples are received to up-
date the estimators (explained by (13)), which leads to
a longer processing time. Moreover, we note that the
performance curve of our content-aware methods for
both templates in all figures are relatively smooth and
scalable with skewed data distribution.

6.6 Accuracy of Estimation

In this test, we only present the result of content-FA
for template 1 and zipf1.6 as the results of two tem-
plates for different data distributions show similar trend
due to the CLT is used in estimation. We use the ave-
rage real error rate of queries as the metric to show
the effect of error rate and confidence on the accuracy
of content-FA (real error rate is calculated as |v−v′|

v ,
and v is computed by Hadoop-complete). We vary the
predefined confidence from 82% to 98% and set the er-
ror rate to 0.01. The result depicted in Fig.15(a) shows
that the average real error rate is always lower than the
predefined error rate, which means most of queries have
gained a good approximate result. In addition, the ave-
rage real error rate also decreases with the increase of
confidence. This is expected as higher confidence leads
to more samples are received to gain a better estima-
tion. Moreover, we vary the predefined error rate from
0.01 to 0.05 and set the confidence to 95%. As shown in
Fig.15(b), the estimation is quite accurate because the
average error rate is always lower than the predefined
error rate (the real error rate is under the baseline).

Fig.13. Effect of query collection threshold. (a) Result for T1. (b) Result for T2.

Yu-Xiang Wang et al.: Partition and Sharing-Based Online Aggregation 1009

Fig.14. Effect of error rate and confidence. (a) Effect of error rate (T1). (b) Effect of error rate (T2). (c) Effect of confidence (T1). (d)

Effect of confidence (T2).

Fig.15. Accuracy of estimation. (a) Accuracy for different confidences. (b) Accuracy for different error rates.

7 Related Work

In many real applications, such as OLAP, aggrega-
tion queries are used widely and frequently. However,
calculating exact results for these queries incurs long
response time, and is not always required.

To response queries in a short processing time with
acceptable results, online aggregation was first pro-
posed in [5] to provide a time-accuracy tradeoff for
aggregation queries. The approximate answer within

a running confidence interval is produced during the
early stages of query processing and gradually refined
until it satisfies the users expectation. The running
confidence interval tells users the estimated proximity
of each running aggregation query to its final result. In
[22], Haas illustrated how the central limit theorems,
simple bounding arguments and the delta method can
be used to derive formulas for both large-sample and
deterministic confidence intervals. To support join ope-
ration for online aggregation, Hass and Hellerstein in-

1010 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

troduced a novel join methods called ripple joins in [23].
But the convergence of ripple joins may be slow when
memory overflows. To handle this problem, hash rip-
ple join algorithm was proposed in [24], which com-
bines parallelism with sampling to speed convergence
and also maintains good performance in the presence of
memory overflow. However, all researches in [5, 22-24]
are focused on single query processing rather than multi
query optimization. Therefore, Wu et al. proposed a
new online aggregation system called COSMOS to pro-
cess multiple aggregation queries efficiently[2]. COS-
MOS organizes queries into a dissemination graph to
exploit the dependencies across queries, and the par-
tial answers can be reused by the linked queries. In
addition, Wang et al. present a partition-based online
aggregation called POAS[13] to overcome the side ef-
fect of skewed data distribution and further improve
the query performance.

In fact, these centralized online aggregation meth-
ods or systems cannot be extended to distributed man-
ner easily; therefore the well designed distributed on-
line aggregation systems were proposed along with the
development of P2P and cloud computing[8−11,19]. Wu
et al. extended the online aggregation to a P2P con-
text where sites are maintained in a DHT network[19],
which maintains synopses that can be reused by differ-
ent queries. However, this P2P-based distributed online
aggregation will transfer all the samples among process-
ing nodes to guarantee the load balancing, generating
a lot of network traffic. In addition, [9-10] demonstrate
a modified version of Hadoop MapReduce framework
that supports online aggregation, but they only im-
plement the lightweight one, which returns the query
progress without any precision estimation. [8] proposes
a new online aggregation system that supports MapRe-
duce job based on the open source project Hyracks[7],
which discusses a Bayesian framework for producing es-
timates and confidence intervals for online aggregation.
Although this method can allow users to see how ac-
curacy of the result to the real final result, it uses a
complex estimation method, which is hard to be im-
plemented in the MapReduce framework, and the addi-
tional estimation module would add significant acciden-
tal complexity, restricting the overall performance. The
authors of [11] formulated a statistical foundation that
supports block-level sampling for single-table online ag-
gregation and develops a two-phase stratified sampling
method to support multi-table online aggregation.

However, there are several limitations that restrict
the performance of online aggregation due to the gap
between the current general mechanism of cloud frame-
work and the requirements of OLA, and none of the
above papers focuses on such problem to improve the

performance of OLA in the cloud that we have discussed
in this paper. In order to support the actual online ag-
gregation rather than the query progress and stimulate
the potential of OLA in the cloud to improve the esti-
mate performance without large accidental complexity,
we studied how to design and implement a parallel pro-
cessing model to serve as a target for running online
aggregation in cloud.

8 Conclusions

In this paper, we proposed a processing model called
OLACloud with a fine granularity interactive mecha-
nism, in which a content-aware partition manner is ex-
ploited to increase the computation resource utilization.
A fair-allocation block placement strategy was adopted
to guarantee the storage and computation load balanc-
ing and a share sampling method was used to reduce the
redundant disk I/O cost. Finally, we evaluated OLA-
Cloud on the TPC-H benchmark for skew data distri-
bution. The results demonstrate the efficiency and ef-
fectiveness of our approach. In our future work, we
plan to expand our shared sampling strategy to sup-
port the computation sharing, which is another sharing
opportunity to further improve the online aggregation
performance by reducing the redundant statistical com-
putation cost.

References

[1] Herodotou H, Lim H, Luo G et al. Starfish: A self-tuning
system for big data analytics. In Proc. the 15th CIDR, Apr.
2011, pp.261-272.

[2] Wu S, Ooi B C, Tan K L. Continuous sampling for online
aggregation over multiple queries. In Proc. the 2010 Interna-
tional Conference on Management of Data (SIGMOD), June
2010, pp.651-662.

[3] Chaudhuri S, Das G, Datar M et al. Overcoming limitations
of sampling for aggregation queries. In Proc. the 17th Int.
Conf. Data Engineering, Apr. 2001, pp.534-544.

[4] Laptev N, Zeng K, Zaniolo C. Early accurate results for ad-
vanced analytics on MapReduce. PVLDB, 2012, 5(10): 1028-
1039.

[5] Hellerstein J M, Haas P J, Wang H J. Online aggregation.
ACM SIGMOD Record., 1997, 26(2): 171-182.

[6] Dean J, Ghemawat S. MapReduce: Simplified data processing
on large clusters. Communications of the ACM, 2008, 51(1):
107-113.

[7] Borkar V, Carey M, Grover R et al. Hyracks: A flexible and
extensible foundation for data-intensive computing. In Proc.
the 27th International Conference on Data Engineering, Apr.
2011, pp.1151-1162.

[8] Pansare N, Borkar V R, Jermaine C et al. Online aggregation
for large MapReduce jobs. PVLDB, 2011, 4(11): 1135-1145.

[9] Böse J H, Andrzejak A, Högqvist M. Beyond online aggrega-
tion: Parallel and incremental data mining with online map-
reduce. In Proc. MDAC, Apr. 2010, Article No.3.

[10] Condie T, Conway N, Alvaro P et al. Online aggregation
and continuous query support in MapReduce. In Proc. the
2010 International Conference on Management of Data, June
2010, pp.1115-1118.

Yu-Xiang Wang et al.: Partition and Sharing-Based Online Aggregation 1011

[11] Shi Y, Meng X, Wang F et al. You can stop early with COLA:
Online processing of aggregate queries in the cloud. In Proc.
the 21st ACM International Conference on Information and
Knowledgy Management, Oct. 29-Nov. 2, 2012, pp.1223-1232.

[12] Grover R, Carey M J. Extending MapReduce for efficient
predicate-based sampling. In Proc. the 28th International
Conference on Data Engineering, Apr. 2012, pp.486-497.

[13] Wang Y, Luo J, Song A, Jin J H, Dong F. Improving on-
line aggregation performance for skewed data distribution.
In Proc. Database Systems for Advanced Applications, Apr.
2012, pp.18-32.

[14] Chaudhuri S, Das G, Srivastava U. Effective use of block-
level sampling in statistics estimation. In Proc. the 2004 In-
ternational Conference on Management of Data, June 2004,
pp.287-298.

[15] Jacobs A. The pathologies of big data. Communications of
the ACM, 2009, 52(8): 36-44.

[16] Soroush E, Balazinska M, Wang D. Arraystore: A storage
manager for complex parallel array processing. In Proc. the
2011 International Conference on Management of Data, June
2011, pp.253-264.

[17] Eltabakh M Y, Tian Y, Ozcan F et al. CoHadoop: Flexi-
ble data placement and its exploitation in Hadoop. PVLDB,
2011, 4(9): 575-585.

[18] Nykiel T, Potamias M, Mishra C et al. MRShare: Sharing
across multiple queries in MapReduce. PVLDB, 2010, 3(1/2):
494-505.

[19] Wu S, Jiang S, Ooi B C et al. Distributed online aggregations.
PVLDB, 2009, 2(1): 443-454.

[20] Zaharia M, Borthakur D, Sen Sarma J et al. Delay schedul-
ing: A simple technique for achieving locality and fairness in
cluster scheduling. In Proc. the 5th European Conference on
Computer System, Apr. 2010, pp.265-278.

[21] Chaudhuri S, Narasyrra V. Program for tpc-d data genera-
tion with skew. Technical Report, ftp://ftp.research.micro-
soft.com/pub/user./viveknar/tpcdskew, Dec. 2012.

[22] Haas P J. Large-sample and deterministic confidence intervals
for online aggregation. In Proc. the 9th International Con-
ference on Scientific and Statistical Database Management,
Aug. 1997, pp.51-62.

[23] Haas P J, Hellerstein J M. Ripple joins for online aggregation.
ACM SIGMOD Record, 1999, 28(2): 287-298.

[24] Luo G, Ellmann C J, Haas P J et al. A scalable hash ripple
join algorithm. In Proc. the 2002 International Conference
on Management of Data, June 2002, pp.252-262.

Yu-Xiang Wang received the
B.S. degree in software engineering
from Tianjin University, China, in
2008. He is currently a Ph.D. student
in the School of Computer Science
and Engineering, Southeast Univer-
sity, Nanjing. His current research
interests include cloud computing,
big data processing and query opti-
mization.

Jun-Zhou Luo received the M.S.
and Ph.D. degrees in computer sci-
ence from Southeast University, Nan-
jing, in 1992 and 2000, respectively.
He is currently a professor and the
dean of the School of Computer
Science and Engineering, Southeast
University. His current research in-
terests include next generation net-
work architecture, cloud computing,

network security, and wireless network.

Ai-Bo Song received the M.S.
degree from Shandong University of
Science and Technology, Qingdao,
the Ph.D. degree in computer ap-
plication technology from Southeast
University, Nanjing, in 1996 and
2003, respectively. He is currently
an associate professor in the School
of Computer Science and Engineer-
ing, Southeast University. His cur-

rent research interests include cloud computing, big data
processing, and grid computing.

Fang Dong received the B.S.
and M.S. degrees in computer sci-
ence from Nanjing University of Sci-
ence and Technology, China, in 2004
and 2006, respectively; and received
his Ph.D. degree in computer science
from Southeast University in 2011.
He is currently a lecturer in School of
Computer Science and Engineering,
Southeast University. His current re-

search interests include cloud computing, task scheduling,
and big data processing.

