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Abstract Web of Things (WoT) makes it possible to connect tremendous embedded devices to web in Representational
State Transfer (REST) style. Some lightweight RESTful protocols have been proposed for the WoT to replace the HTTP
protocol running on embedded devices. However, they keep the principal characteristic of the REST style. In particular, they
support one-to-one requests in the client-server mode by four standard RESTful methods (GET, PUT, POST, and DELETE).
This characteristic is however inconsistent with the practical networks of embedded devices, which typically perform a group
operation. In order to meet the requirement of group communication in the WoT, we propose a resource-oriented protocol
called SeaHttp to extend the REST style by introducing two new methods, namely BRANCH and COMBINE respectively.
SeaHttp supports parallel processing of group requests by means of splitting and merging them. In addition SeaHttp adds
spatiotemporal attributes to the standard URI for naming a dynamic request group of physical resource. Experimental
results show that SeaHttp can reduce average energy consumption of group communication in the WoT by 18.5%, compared
with the Constrained Application Protocol (CoAP).
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1 Introduction

Internet of Things (IoT) consists of an enormously
growing number of smart devices. It is estimated that
over 50 billion of smart devices will be connected to the
Internet by 2020[1]. The main interest in connecting
these devices is to allow them to interact with each
other using the existing web technology. It is expected
that every device in the sensor and actuator network
has a URI and can be queried for its readings. Be-
sides that, the devices are abstracted as resources of
the WoT, which can be reused in different applications.
This new approach leads the IoT to a new developing
period, named Web of Things (WoT)[2].

At present Representational State Transfer
(REST)[3] architectural style is widely used for con-
structing web services in the Internet. An early work
considering the application of REST principles in WoT

system is called Constrained Application Protocol
(CoAP)[4]. It seeks to apply the REST architectural
styles and basic features of HTTP to constrained net-
works. At the same time, Embedded Binary HTTP
(EBHTTP)① was proposed for developing embedded
applications in REST architectural styles. These two
RESTful protocols inherit the principal characteristic
of HTTP, which is supporting one-to-one requests in
client-server model.

However, in practical physically embedded devices
typically operate in groups. For example, in an auto-
mated building all lights in a given room need to be
turned on/off as a group. The group communication
feature is extremely helpful to execute one request on a
subset of multiple devices. Fig.1 illustrates the different
communication costs for two protocols, one of which
supports group communication while the other does
not. We can see that group communication can lead to
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fewer hops. So we need a protocol which not only sup-
ports one-to-one communication but also one-to-many
communication for practical use of the WoT. However
none of the current RESTful protocols supports group
communication efficiently.

Fig.1. When the sending node produces separate requests to all

destination nodes marked with solid circles (a), it causes more

hops than utilizing an efficient group communication protocol

(b).

Another problem in the WoT is how to identify
physical resources, which are different from virtual re-
sources. In the WoT, there are a large number of physi-
cal resources. Generally, physical resources have more
constraints than virtual resources. They are located in
a position, which may be changed with time, and they
cannot be replicated. Consequently physical resources
are usually defined by spatiotemporal attributes.

Based on the analysis of the abovementioned require-
ments and the problems, this paper proposes a protocol
to extend the REST style by adding group communica-
tion for the WoT. The proposed protocol called SeaHttp
focuses on supporting optimized communication with a
group of resources across multiple embedded devices.

The contributions of this paper are as follows.
Firstly as an extended RESTful protocol, the pro-

posed SeaHttp adds two original methods: BRANCH
and COMBINE for group communication. These two
new methods support group communication in the WoT
while inheriting the merits of the REST principles. The
function of the two new methods is to implement para-
llel processing of group requests in the network via split-
ting and merging. As a result, SeaHttp reduces the
transmission of redundant data and saves energy.

Secondly, to name a group of physical resources in
the WoT, SeaHttp adopts an improved URI mechanism
by adding spatiotemporal attributes to the standard
URI for naming a dynamic request group of physical
resources. Its key feature is combining spatiotempo-
ral attributes with the well-known URI to produce a
dynamic address to name a group.

Finally we conduct a series of experiments to demon-
strate the feasibility and performance of this protocol.

The rest of the paper is organized as follows. Sec-
tion 2 introduces fundamentals and related work about
group communication protocol in the WoT. Section 3

describes the main idea of the SeaHttp protocol. De-
sign detail of the protocol is introduced in Section 4.
Experimental scenarios and evaluation results are pre-
sented in Section 5. Section 6 concludes the paper.

2 Fundamentals and Related Work

In this section, we first summarize the important
fundamentals of the WoT. The WoT stack is as Fig.2
shows. Second, we summarize related work on realizing
group communication protocol in resource-constrained
environments for the WoT.

Fig.2. Web of Things stack (the element in the black is the con-

tribution of this paper).

Initial researches have been carried out in order to
offer IPv6 connectivity to smart objects based on IEEE
802.15.4. These researches are presented mainly under
the 6LoWPAN[5][-6], GLoWBAL IPv6[7], and 6man②

work.
Once, it has been enabled for smart objects to con-

duct end-to-end communication through Internet. It
was considered necessary to define a horizontal access
to the application layer in embedded devices. Analyz-
ing the current developing status of the Internet, we see
that web is the most widely used services medium. For
that reason, some researchers have proposed to extend
the web technology to the smart objects, which is re-
ferred to as the Web of Things[2]. Then, it is natural
to extend HTTP to embedded devices, so that a bi-
nary version of HTTP called Embedded Binary HTTP
(EBHTTP) was proposed for constructing RESTful
web services of things. An application of EBHTTP
for building RESTful web services has been considered
in [8]. EBHTTP is a compressed version of the stan-
dard HTTP protocol, which is featured by binary-
formatted and stateless encoding. It is used for re-
source constrained WSNs. The design of this protocol
focuses on reducing the overhead of HTTP while main-
taining the same HTTP semantics and communication
paradigm. Though EBHTTP is a lightweight REST-
ful application-layer protocol, it does not take group

②Transmission of IPv6 over MS/TP networks, http://tools.ietf.org/html/draft-ietf-6man-6lobac-01, December 2013.
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communication in the WoT into consideration. Even if
we use EBHTTP to implement group communication
it will induce extra energy consumption in resource-
constrained devices due to redundant transmission.

Another related work on resource-oriented protocol
is the Constrained Application Protocol (CoAP), which
was proposed for building an efficient RESTful web ap-
plication in resource constrained environments. CoAP
provides a compact transfer capability on top of User
Datagram Protocol (UDP), and realizes exactly a sub-
set of HTTP methods, namely GET, PUT, POST and
DELETE, which is necessary to offer RESTful web ser-
vices in wireless sensor networks. The presenters of
CoAP found the requirement of group communication
in the WoT and drew up a draft③ to extend CoAP to
support group communication in embedded devices on
top of IP multicast. However, the group communica-
tion is different from the IP multicast. Firstly multicast
deals with the same request for multiple devices while
group communication handles both the same and the
distinct request. Secondly group communication can
support some computing operations such as sum, maxi-
mum, minimum and average of group while multicast
cannot do that. Thus CoAP cannot solve the problem
of group communication completely.

Based on CoAP Isam Ishaq et al. proposed an en-
tity manager[9] to implement group communication in
constrained environments. This work puts a group of
resources together, which is called an entity. The en-
tity manager is located in a smart gateway. The entity
manager breaks down the request of entity and sends
the individual requests to the respective objects using
several unicast CoAP messages. Thus the work still
has reluctant transmission and energy inefficiency in
resource-constrained networks.

On the other hand, as multicast is very similar to
group communication, there are some previous stu-
dies which propose several multicast protocols in wire-
less sensor networks. In [10] a protocol named BAM
(Branch Aggregation Multicast) is presented. It sup-
ports single-hop link-layer multicast and multi-hop
multicast in a way of doing branch aggregation. VLM2
(Very Lightweight Mobile Multicast)[11] is another mul-
ticast protocol for sensor nodes, which supports node
mobility. VLM2 provides multicast from a base station
to sensor nodes and unicast from sensor nodes to a base
station. In [12] the authors propose an effective all-in-
one solution for unicasting, anycasting, and multicast-
ing in wireless sensor and mesh networks. RBMulticast
in [13] is a stateless, receiving node based multicast
protocol, which uses the geographic locations of nodes
to reduce the cost of state maintenance. Furthermore,

there are several multicast solutions for WSNs based
on the geographical position of the sensor nodes[14-16].
Next the authors of [17] analyzed IP Multicast and
showed that it is possible to use it in WSNs. An over-
lay multicast protocol[18] for wireless sensor networks
presented by Gerald Wagenknecht, Markus Anwander,
and Torsten Braun in 2012 is to design a protocol that
supports multicast in WSNs in an efficient and energy-
saving way. They used UDP as the transport protocol.
It does not support any reliability since it is stateless,
but it benefits from low complexity. All of these pro-
tocols do not support the Web of Things or the REST
architectural style. Each of these protocols is only used
in specific network and is not directly connected to the
Web. Thus all of them are lack of interoperation, which
is the advantage of the WoT.

3 Overview of SeaHttp

As mentioned above, a key challenge is to realize
group communication for extending the REST style to
embedded devices in the WoT. Thus this paper pro-
poses a novel resource-oriented protocol, SeaHttp, for
group communication using BRANCH and COMBINE
methods in the WoT. In this section we introduce our
assumptions and main idea of SeaHttp.

In this paper we make the following assumptions in
SeaHttp design: 1) embedded devices maintain their
own attribute information, including location, time on
demand; 2) there is a unicast IP route protocol for end-
to-end communication in the networking layer.

Resource-constrained networks of the WoT are dif-
ferent from the Internet and Web and RESTful prin-
ciples are hardly applied to the WoT directly. Thus
EBHTTP was proposed as a binary version of HTTP
and CoAP was presented which provides protocol
header compression, asynchronous transfer mode, and
resource discovery mechanism for the WoT. EBHTTP
and CoAP are RESTful protocols with four basic met-
hods of GET, PUT, POST, and DELETE, which can
cover the majority requirements of Web users on In-
ternet. The four basic methods follow the principle
of one-to-one request. However, resource-constrained
devices in the WoT typically operate in groups. For
example, in an environment monitoring system, ob-
servers usually request average temperature from a
group of thermometers or need to control lights in a
given room simultanously. The traditional RESTful
protocols, EBHTTP and CoAP, cannot support such
group communication directly. Even though Web users
can write a program to implement group communica-
tion using CoAP API, there could be redundant trans-
mission in resource-constrained devices. Thus we pro-

③Group communication for CoAP, http://tools.ietf.org/html/draft-ietf-core-groupcomm-18, December 2013.
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pose two methods of COMBINE and BRANCH, which
implement parallel group requests sent to multiple de-
vices with a reduction of energy consumption.

The two new methods, BRANCH and COMBINE,
are designed to merge and split requests in resource-
constrained networks. To design the two methods,
the first significant problem is to define node type in
SeaHttp. There are four kinds of nodes, including
source node, forwarding node, branching node, and re-
ceiving node. Branching nodes take part in the group
communication to merge and split requests, forward re-
quests, and maintain state information about receiving
nodes and other branching nodes. Forwarding nodes
have no information about the group communication
state and just forward the data from one neighbor to
the next one. An example of the network topology in
SeaHttp is shown in Fig.3. Thus the branching nodes
build up an application-layer overlay network upon the
transport layer.

Fig.3. Roles of the nodes in a group communication scenario.

Another important problem which should be taken
into consideration is how to name a group of resources
across multiple devices dynamically. For naming a
group of physical resources we propose an improved
URI mechanism with a combination between the stan-
dard URI and the attributes information of physical
resources. The attributes include space and time at-
tribute labels, to define various requirements of Web
users. Thus in our work, URI identifies not just virtual
resources, but also real-world objects like sensors and
actuators. With such improved URI SeaHttp achieves
interoperability among the independent WoT systems.

4 Protocol Design

4.1 Packet Format

Fig.4 offers the SeaHttp packet format. The first
2-byte version ID (ver) is for packet switching in the
protocol stack. ToS (type of service) indicates four
kinds of packets in SeaHttp, which are “data”, “join”,
“leave”, and “update” packets. The update packets

are used in group management and periodic group
list update. TTL (time to live) provides a maximum
time, in hop number, that a packet should last in
the network. “Method” indicates GET, PUT, POST,
DELET, BRANCH or COMBINE. “Operator” can be
SUM, AVEG (average), MAX, MIN, COMP (com-
pare). “Message ID” is similar to message ID in CoAP.
It is 16-bit unsigned integer in network byte order,
which is used to match messages of type Acknowledge-
ment/Reset, and for the detection of message duplica-
tion. The attribute label will be introduced in Subsec-
tion 4.2. The destination list maintains the destination
nodes’ addresses. The maximum number of nodes in-
cluded in the destination list allowed in SeaHttp is de-
fined by the packet size. For example the maximum
packet size is 128 bytes in the 802.15.4 standard. Thus
the maximum number of nodes in the destination list
is less than 50 when the data payload is not taken into
consideration. Moreover SeaHttp uses sensor ID in-
stead of IP address because the node IP of a group has
the same prefix such as “fec0::”. As a result it could
increase the maximum number of nodes in a group and
decrease the overhead introduced by the destination
list.

Fig.4. Packet header of the SeaHttp protocol.

4.2 Improved URI

This subsection introduces the improved URI design.
The improved URI consists of a compact sequence of
characters to identify physical resources. The struc-
ture of the improved URI has little difference with the
standard URI. The improved URI is also organized hi-
erarchically, with components listed in the order of de-
creasing significance from left to right. The detailed
definition of the improved URI is shown in Fig.5.

SeaHttp-URI=“SeaHttp:”“//” host [“:”port]pathabempty
[“?” query] [“〈“location”〉” “〈“time”〉”]

Fig.5. Definition of the improved URI.

The SeaHttp URI is improved from CoAP URI. It
uses the ”seahttp” URI schemes for identifying and lo-
cating the physical resources. The next part is the host
name and its port number. “path-abempty” refers to
the path of resources. Then the key part is the spa-
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tiotemporal attribute label, which is different from the
CoAP URI. It identifies physical resources by their at-
tribute information. Two examples of the improved
URI are listed in Fig.6.

SeaHttp://www/homeautomation.com:5678/temperature/
〈RoomA〉 〈Current〉/
SeaHttp://www/homeautomation.com:5678/light?state=
off/〈RoomB〉 〈22:00PM〉/

Fig.6. Examples of improved URI.

The next step is to parse the spatiotemporal at-
tribute label in the smart gateway. The gateway main-
tains the attribute information of all nodes of the net-
work with a resource table. The resource table is crea-
ted by the resource discovery which will be introduced
in the next subsection. Thus the spatiotemporal at-
tribute labels are transferred to a list of destination
nodes.

In summary, the improved URI provides several
benefits. It makes use of the feature of physical re-
sources. Thus users do not need to specify one or
several nodes to get information. Moreover the im-
proved URI can reduce the coding complexity for sys-
tem developers. They can use an improved URI instead
of writing a long program to implement requirements.
Finally the improved URI can produce group requests
dynamically.

4.3 BRANCH and COMBINE

In order to illustrate the two new proposed met-
hods, we implement resource discovery with BRANCH
and COMBINE separately. Then SeaHttp supports re-
source discovery to manage resource information of all
nodes in the gateway.

Firstly we give an example of BRANCH in the pro-
cess of resource discovery. The discovery procedure is
shown in Fig.7. Initially the sending node S creates a
join message which includes all nodes in the network.
Next, the sending node broadcasts the join message to
its next hop neighbor. If all receiving nodes can be
reached through one next hop neighbor, the next hop
becomes a forwarding node F . Otherwise if the receiv-
ing nodes are reached by different next hop neighbors,
it becomes a branching node B. The receiving node list
is split accordingly and transmitted to the next respec-
tive hop neighbors. Then the branching node adds its
address into the ID field of the join message. When a
join message reaches a receiving node R it confirms the
join by transmitting a join ACK message back to the
last branching node, written in the branch ID of the
join message and resource information such as location

and resource type. The branching node takes following
operations in sequence. First, it waits for the join ACK
messages of all subordinate receiving nodes (R1 and
R2). Then it combines these messages into one, and
puts its own address as a branching node into the mes-
sage and transmits it back to the sending node (or to
the next branching node upstream on the path towards
the sending node). The sending node knows all branch-
ing nodes and can later establish an overlay connection
to them. Generally the sending node is gateway. Thus
the gateway has resource information of all nodes in the
network.

Fig.7. Resource discovery with BRANCH.

The discovery procedure with the COMBINE
method is shown in Fig.8. Nodes can report their re-
source information actively. Each receiving node trans-
mits a join message, which includes resource informa-
tion, to the next upstream neighbor into the direction
towards the sending node according to the routing ta-
ble. The neighbor node collects all incoming join mes-
sages and becomes a branching node or a forwarding
node. If the node is a branching node, it adds its own
identity to the appropriate field in the join message to
inform the sending node about its role as a branching
node. Afterwards, the node transmits the message fur-
ther to the sending node. The sending node collects all
join messages and creates a join ACK message, which
includes the receiving node list, the collected branch ID,
and its own ID. The join ACK message is transmitted
towards the receiving nodes. The branching node splits
the join ACK message and transmits the messages to
the according receiving nodes.

Fig.8. Resource discovery with COMBINE.

5 Performance Evaluation

We evaluate the performance of SeaHttp through a
real implementation using TelosB④ motes. TelosB is

④Crossbow Technology Inc., TelosB datasheet. http://www.willow.co.uk/TelosB Datasheet.pdf, December 2013.
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a typical example of a low-cost wireless sensor used in
constrained sensor networks. It features 16-bit RISC
MCU at 8 MHz and 16 registers. The platform offers
10KB of RAM, 48KB of flash memory and 16KB of
EEPROM. It provides a CC2420 radio chip for wire-
less communication. One TelosB mote implements the
6LoWPAN border router connected to an embedded
gateway running Linux. The gateway is an ARM11
board named Tiny6410⑤ using Samsung S3C6410A
and 256M RAM.

To compare the performance of SeaHttp and CoAP,
we use the implementation of CoAP in TinyOS[19],
which is called CoapBlip⑥. Both SeaHttp and CoAP
are built on top of the 6LoWPAN. We use Blip⑦ as an
implementation of 6LoWPAN in TinyOS.

The paper evaluates the performance of SeaHttp
from six aspects, including memory occupation, trans-
mitted data size, latency, number of transmitted hops,
energy consumption and user development code size.

5.1 Memory Occupation

Table 1 shows the amount of RAM and ROM mem-
ory allocated at compile time for SeaHttp and CoAP
implementation. The occupation of ROM memory
shows the complexity and weight of the code of each
implementation. A code with a small memory footprint
would allow adding further functionality or enrich pro-
tocol with more capabilities.

Table 1. Memory Occupation

Protocol RAM (Byte) ROM (Byte)

CoAP 7 112 43 454

SeaHttp 8 024 36 274

The experimental results show that CoapBlip has
higher ROM memory footprint than the implementa-
tion of SeaHttp. The main reason is whether the code
is optimized. CoapBlip is a C library, which is installed
in the node along with the TinyOS component. The
use of C libraries is normally too heavy for the mem-
ory in resource-constrained devices. SeaHttp reduces
the ROM footprint to avoid the use of C libraries, and
consists only of a code written in the TinyOS nesC lan-
guage and optimized for this environment.

5.2 Transmitted Data Size

This subsection focuses on theoretical and experi-
mental analysis of total transmitted data size in the
network. Radio communication is a dominant factor

determining the sensor energy consumption and the
consumption is proportional to the amount of trans-
mission. Generally we have to consider the energy for
packet reception because the energy consumption to re-
ceive packet is nearly the same as that of to send. How-
ever, the number of receiving node changes according
to the network topology. Therefore we just compare
the effect only by the amount of packets to send.

First of all we give a theoretical analysis of trans-
mitted data size. In this analysis, we do not consider
the packet loss caused by link deterioration. The pa-
per takes two boundaries of merging. At one extreme,
network links to receiving nodes all merge at a single
node (hereafter called the Max Merge case) through a
single multi-hop link. To simplify the problem there is
one sending node, n − 1 forward nodes, one branching
node and m receiving nodes as shown in Fig.9. At the
other extreme, they do not merge in any node (hereafter
called the Min Merge case) through different multi-hop
links as Fig.10 shows. There are one sending node,
n×m forwarding nodes and m receiving nodes in Fig.10.

Fig.9. Topology of the Max Merge case.

Fig.10. Topology of the Min Merge case.

Additionally the paper calculates the packet size of
CoAP and SeaHttp. They take RPL as the underly-
ing routing protocol. Hence, the SeaHttp packet size
(SeaHttpPkt)is calculated as follows:

SeaHttpPkt =SeaHttpHeader + UdpHeader+

SicsHeader + Payload , (1)

⑤http://www.friendlyarm.net/products/tiny6410, December 2013.
⑥http://tinyos.stanford.edu/tinyos-wiki/index.php/CoAP, December 2013.
⑦http://tinyos.stanford.edu/tinyos-wiki/index.php/BLIP 2.0 Tutorial, December 2013.
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where SeaHttpHeadert means the header length of
SeaHttp packet, UdpHeader means the header length of
UDP packet in TinyOS, SicsHeader means the header
length of the 6LoWPAN packet in TinyOS, and Pay-
load means the length of the data included in both the
SeaHTTP and the CoAP packet.

Then CoAP packet size (CoAPPkt) is calculated as
follows:

CoAPPkt =CoAPHeader + UdpHeader+

SicsHeader + Payload , (2)

where CoAPHeader means the header length of the
CoAP packet.

Next the paper assumes that the ACK packet size
is the same as the sending packet size of SeaHttp and
CoAP. Thus the acknowledge packet size (AckPkt) is
calculated as follows:

AckPkt = CoAPPkt or AckPkt = SeaHttpPkt . (3)

For the Max Merge case SeaHttp aggregates the mul-
tiple paths indicated in Fig.9 into one. Redundant ra-
dio communication occurs between the branching nodes
and the receiving nodes. The source and n intermediate
forwarding nodes send the SeaHttp packet and the re-
ceiving nodes return the acknowledge packet. The send-
ing nodes send the normal packets to m receiving nodes
and the m sinks return acknowledge packets. The total
amount of transmission packets (Total) for SeaHttp is
given by

Total =(n + m)× (SeaHttpPkt + AckPkt)+

SeaHttpPkt + AckPkt . (4)

In contrast CoAP should send all requests one by
one to m receiving nodes. Thus the total amount of
transmission packets for CoAP is given by

Total =m× (n + 1)× (CoAPPkt + AckPkt)+

m× (CoAPPkt + AckPkt). (5)

For the Min Merge case SeaHttp and CoAP almost
work in the same way. Because there is no any branch-
ing node in the network, they do not aggregate the
multiple paths. The only difference is that the send-
ing node transmits m requests to m receiving nodes in
CoAP while the sending node transmits only one re-
quest to m receiving nodes in SeaHttp. Thus the total
amount of transmission packets for SeaHttp is given by

Total =m× (n + 1)× (SeaHttpPkt + AckPkt)+

SeaHttpPkt + AckPkt . (6)

The total amount of transmission packets for CoAP
is given by

Total =m× (n + 1)× (CoAPPkt + AckPkt)+

m× (CoAPPkt + AckPkt). (7)

We set (SeaHttpPkt, CoAPPkt, AckPkt) as (100, 70,
70) bytes referring to a real implementation on TelosB.
The number of hops of disjoint paths, n, changes from
1 to 10. The number of receiving nodes, m, changes
from 2 to 10. Fig.11 and Fig.12 show the results of the
qualitative evaluation. Through the figures, we make
two pairs of comparison. One is between SeaHttp model
and CoAP model, and the other is between SeaHttp
and CoAP. The former pair means the analytical results
based on (6) and (7), while the latter pair means the
experimental results of these two protocols. The gains
of using SeaHttp are illustrated in Fig.11 for the Max
Merge case, leading to a maximum reduction of 78%
and a minimum reduction of 9% in total transmitted

Fig.11. Comparison of total transmitted data size in the Max

Merge case between CoAP and SeaHttp.

Fig.12. Comparison of total transmitted data size in the Min

Merge case between CoAP and SeaHttp.
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data size forwarded by intermediate nodes when com-
pared with CoAP. The reduction is growing as the num-
ber of network nodes and hops grow. The Max Merge
case has one shared data link to all receiving nodes,
so CoAP has a large number of redundant transmit-
ted data when it implements group communication.
CoAP should send multiple requests to multiple receiv-
ing nodes one by one while SeaHttp can send one para-
llel request to multiple receiving nodes by splitting the
request in branching nodes. Thus SeaHttp reduces re-
dundant transmission compared with CoAP as Fig.11
shows.

The total transmitted data size of SeaHttp does not
reduce obviously when compared with the total trans-
mitted data size of CoAP in Fig.12 for the Min Merge
case. In some test cases the total transmitted data size
of SeaHttp is larger than that of CoAP because of the
random number of retransmission packets. The main
reason is that there is no any branching node in the net-
work and no any shared transmission link to multiple
receiving nodes. Thus there is no redundant transmit-
ted data in both CoAP and SeaHttp and they achieve
similar performance.

Moreover Fig.11 and Fig.12 show that the total
transmitted data size in implementation is larger than
calculated by the model. Because we do not consider
the packet loss caused by link deterioration when we
do theoretical analysis, the total data size is increasing
in retransmission for reliable transmission when we do
experiments.

5.3 Latency

The latency experienced by a sending node on send-
ing a request to get a response from a receiving node is

one of the most significant parameters used to evaluate
the goodness of the protocol design. Low latency values
can enhance user experience and benefit those real-time
applications. We define the latency as the time elapsed
from the moment the sender sends a request until the
moment it receives the response.

Fig.13 shows the latency under different hop num-
bers. Each point on the graph represents the average
latency value of 100 successful request/response trans-
actions. As expected, the result shows that SeaHttp
has better performance than CoAP.

Fig.13. Latency.

5.4 Hop Count

In this subsection we design five experimental sce-
narios with different number of nodes and depths of
tree, as shown in Fig.14. Each experimental scenario
has two parameters. One is the number of nodes in the

Fig.14. Topology of experimental scenarios.
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whole network and the other is the tree depth in the
network.

Since communication consumes more energy than
calculation for a node, it is important to reduce the
number of communication events between sensor nodes.
Therefore, the protocol is better to route the packets di-
rectly and only to the nodes that really need to receive
those packets. Such method can be achieved by using
group communication. The gains of using group com-
munication in the reduction of hop numbers are illus-
trated in Fig.15: an average reduction of 70.5% in the
number of total hops forwarded by intermediate nodes
when compared with CoAP.

Fig.15. Total number of hops for transmission.

5.5 Energy Consumption

Fig.16 and Fig.17 show the energy consumption
comparison between CoAP and SeaHttp. The paper
evaluates the energy consumption of a node from four
aspects, including CPU power (full power CPU time),
LPM power (reduced power CPU time), LISTEN power
(radio receive time), TRANSMIT power (radio trans-

Fig.16. Energy consumption of each single node in the network.

Fig.17. Total energy consumption of all nodes in the network.

mit time). We also use five experimental scenarios men-
tioned in Subsection 5.5 as Fig.14 shows to test the
energy consumption.

Firstly Fig.16 shows the energy consumption results
of each single node in the network. In Fig.16, No. 2,
3, 6, 7, 8, 9, 13 nodes are forwarding nodes and the
other nodes are receiving nodes. Therefore it can be
concluded that the difference of energy consumption
is determined by the role of node (forwarding node or
receiving node). The receiving nodes in SeaHttp and
CoAP have little difference in the number of sending
and receiving packets so their energy consumptions are
very close to each other. However, the energy con-
sumptions of the forwarding nodes are different with
different numbers of forwarding packets. In addition
CoAP should send multiple requests to multiple re-
ceiving nodes one by one while SeaHttp can send one
parallel request to multiple receiving nodes by splitting
the requests in branching nodes. SeaHttp reduces re-
dundant forwarding data compared with CoAP. So the
energy consumption of forwarding nodes in CoAP is
1.2∼2.1 times larger than that in SeaHttp in this exper-
iment. Secondly Fig.17 shows the energy consumption
results of all nodes in the network. The reduction of en-
ergy consumption is growing as the number of network
nodes and hops grows. SeaHttp leads to an average
reduction of 18.5% in the total energy consumption in
the network compared with CoAP in this experiment.
Because the energy consumption is proportional to the
amount of transmission, the experimental results are
in line with those of transmitted data experiments in
Subsection 5.2.

5.6 User Development Code Size

Another advantage of SeaHttp is to reduce the user
development code size for users’ application. As Table
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2 shows, the code size of SeaHttp is smaller than that
of CoAP in all experimental scenarios. Even in one hop
scenario, the code size of SeaHttp has a 30% reduction
compared with that of CoAP. Thus this test proves the
reduction of development cost using SeaHttp.

Table 2. User Development Code Size (Byte)

Protocol (Number of Nodes, Number of Hops)

(3, 1) (6, 3) (9, 3) (12, 4) (15, 5)

CoAP 305 354 360 412 459

SeaHttp 197 210 215 228 256

6 Conclusions

Group communication among resource-constrained
devices in the Web of Things is typical in practical ap-
plications. However, none of currently proposed proto-
cols provide efficient support for group communication.
This paper proposed a resource-oriented protocol called
SeaHttp to solve the problem. Compared with the cur-
rent RESTful protocols, SeaHttp is featured by two
new methods, namely COMBINE and BRANCH, and
the improved URI mechanism which adds spatiotem-
poral attributes to the standard URI. Through exten-
sive experiments, we verified that SeaHttp can reduce
the number of transmission hops and average transmis-
sion latency for each request. In addition experimental
results show that SeaHttp outperforms CoAP in the
case of group communication when multiple target leaf
nodes are located in the same branch of the tree topo-
logy.

In future we will focus on the problem of low re-
sponse rate induced by the low power mode of the
resource-constrained nodes in the embedded networks
of the WoT.
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