
He JZ, Chen WG, Chen GR et al. OpenMDSP: Extending OpenMP to program multi-core DSPs. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 29(2): 316–331 Mar. 2014. DOI 10.1007/s11390-014-1433-x

OpenMDSP: Extending OpenMP to Program Multi-Core DSPs

Jiang-Zhou He1 (何江舟), Student Member, CCF, Wen-Guang Chen1 (陈文光), Member, CCF, ACM, IEEE
Guang-Ri Chen2 (陈光日), Wei-Min Zheng1 (郑纬民), Fellow, CCF, Member, ACM, IEEE
Zhi-Zhong Tang1 (汤志忠), Member, CCF, and Han-Dong Ye2 (叶寒栋)

1Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
2Huawei Technologies Co. Ltd., Shenzhen 518129, China

E-mail: hejz07@mails.tsinghua.edu.cn; cwg@tsinghua.edu.cn; chenguangri@huawei.com;

{zwm-dcs, tzz-dcs}@tsinghua.edu.cn; hye@huawei.com

Received March 26, 2013; revised November 29, 2013.

Abstract Multi-core digital signal processors (DSPs) are widely used in wireless telecommunication, core network
transcoding, industrial control, and audio/video processing technologies, among others. In comparison with general-purpose
multi-processors, multi-core DSPs normally have a more complex memory hierarchy, such as on-chip core-local memory
and non-cache-coherent shared memory. As a result, efficient multi-core DSP applications are very difficult to write. The
current approach used to program multi-core DSPs is based on proprietary vendor software development kits (SDKs), which
only provide low-level, non-portable primitives. While it is acceptable to write coarse-grained task-level parallel code with
these SDKs, writing fine-grained data parallel code with SDKs is a very tedious and error-prone approach. We believe
that it is desirable to possess a high-level and portable parallel programming model for multi-core DSPs. In this paper,
we propose OpenMDSP, an extension of OpenMP designed for multi-core DSPs. The goal of OpenMDSP is to fill the gap
between the OpenMP memory model and the memory hierarchy of multi-core DSPs. We propose three classes of directives
in OpenMDSP, including 1) data placement directives that allow programmers to control the placement of global variables
conveniently, 2) distributed array directives that divide a whole array into sections and promote the sections into core-local
memory to improve performance, and 3) stream access directives that promote big arrays into core-local memory section by
section during parallel loop processing while hiding the latency of data movement by the direct memory access (DMA) of a
DSP. We implement the compiler and runtime system for OpenMDSP on FreeScale MSC8156. The benchmarking results
show that seven of nine benchmarks achieve a speedup of more than a factor of 5 when using six threads.

Keywords OpenMP, multi-core digital signal processor, data parallelism, Long Term Evolution

1 Introduction

1.1 Importance of Data Parallelism for
Multi-Core DSPs

Multi-core digital signal processors (DSPs) are
widely used in wireless telecommunication, core net-
work transcoding, industrial control, and audio/video
processing technologies, among others. In compari-
son with general-purpose multi-processors, multi-core
DSPs usually have a more complex memory hierar-
chy, such as on-chip core-local memory and non-cache-
coherent shared memory[1]. On-chip core-local mem-
ory can usually be addressed with different address
spaces and cannot be accessed directly by other cores.
Non-cache-coherent shared memory also significantly
enhances the complexity of memory management for
shared data access since programmers are required to

maintain the coherence of data manually. As a result,
it is very challenging to write efficient multi-core DSP
applications.

The state-of-the-art approach used to program
multi-core DSPs is based on proprietary vendor soft-
ware development kits (SDKs), which only provide low-
level, non-portable primitives. It is common practice
to use these SDKs to provide coarse-grained task-level
parallelism for applications. For example, the next gen-
eration of wireless telecommunication protocol, Long
Term Evolution (LTE)[2], is a very important applica-
tion of multi-core DSPs. Currently, developers paral-
lelize LTE base station applications at the task-level.
Fig.1 is a partial task graph of an LTE base station
physical layer uplink. The input of each fast Fourier
transform (FFT) task is the carrier waveform received
from each antenna port. The waveforms of different
carriers are fed into FFT tasks one after another. Deve-

Regular Paper
This work was supported by the National High Technology Research and Development 863 Program of China under Grant No.

2012AA010901 and the National Natural Science Foundation of China under Grant No. 61103021.
©2014 Springer Science +Business Media, LLC & Science Press, China

Jiang-Zhou He et al.: OpenMDSP: OpenMP for Multi-Core DSPs 317

Fig.1. Partial task graph of an LTE base station physical layer uplink.

lopers map the tasks for a waveform from different an-
tennas to different cores to exploit task parallelism, or
map the tasks of different stages to different cores to
exploit pipeline parallelism between adjacent carriers,
or both.

Although task parallelism and pipeline parallelism
appear to work well, both are insufficient to leverage
fine-grain parallelism inside tasks. The emergence of
low-power multi-core DSPs demands programmers to
exploit data parallelism as well. For example, the Pic-
oChip PC205[1] has 248 cores and works at a frequency
of 280MHz. While the low frequency gives the chip a big
power efficiency boost over traditional multi-core DSPs,
it also imposes additional challenges to programmers.
Without employing data parallelism in applications, it
is very difficult for this chip to meet the latency require-
ment of LTE signal processing. Thus, we believe it is
critical to support data parallelism in addition to task
parallelism and pipeline parallelism for future multi-
core DSP platforms.

1.2 Problems of Currently Available
Programming Models for Multi-Core DSPs

In modern industry, the common practice of pro-
gramming multi-core DSPs is based on the use of low-
level, proprietary vendor SDKs. While such SDKs pro-
vide reasonable abstraction for task parallelism and
pipeline parallelism, they are usually too low-level when
used for the expression of data parallelism. An example
of data parallel code written with the SDK of FreeScale
MSC8156 is shown in Fig.2.

From the example, it can be seen that programmers
must manually write the code used for barrier, loop
dividing and scheduling, data reduction, data sharing
and synchronization, making programming very tedious
and error-prone. The other issue is portability. The
language extension defined in these proprietary SDKs
is not portable to the DSPs of other vendors.

Researchers have proposed various programming
models to solve these problems. SoC-C[3] is a program-

1 __attribute__((section(".m3_shared"))) int a[1024];

2 __attribute__((section(".m3_shared"))) int sum = 0;

3 __attribute__((section(".m3_shared"))) spinlock l1;

4 void barrier(int count) { ... }

5 void sum_a() {

6 int thread_id = get_core_id() - 2;

7 int num_threads = 4;

8 int local_sum = 0;

9 int lower = 1024 * thread_id / num_threads;

10 int upper = 1024 * (thread_id + 1) / num_threads;

11 if (thread_id == 0) sum = 0;

12 barrier(num_threads);

13 for (i = lower; i < upper; i++)

14 local_sum += a[i];

15 acquire_spinlock(&l1);

16 sum += local_sum;

17 release_spinlock(&l1);

18 barrier(num_threads);

19 }

Fig.2. Data parallelized code to add up an array, based on the

SDK of FreeScale MSC8156. sum a() is intended to run on core

#2 to core #5. The contents of barrier() are omitted.

ming model that was developed for heterogeneous
multi-core systems. It has support for task parallelism
and pipeline parallelism but lacks support for data
parallelism. StreamIt[4] is another influential program-
ming model used for stream applications. It defines an
elegant dataflow programming model for the exploita-
tion of data parallelism, task parallelism and pipeline
parallelism. However, the problems with StreamIt are
twofold: 1) It is difficult to incrementally change exis-
ting code to StreamIt. As a result, a significant portion
of the legacy code requires rewriting. 2) StreamIt is
based on the static data-flow model. In DSP applica-
tions, there are scenarios that require a dynamic level
of parallelism and task binding.

1.3 Extend OpenMP to Support Multi-Core
DSP Programming

The purpose of this research is to provide a parallel
programming model for multi-core DSPs that has the

318 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

following features: 1) It must allow incremental change
to support data parallelism on existing task/pipeline
parallel code written with SDKs. 2) High level abstrac-
tions must be available to avoid tedious loop bound
calculation and synchronization for data parallel code.
3) It must be portable among different DSP platforms.

We propose to extend OpenMP to support multi-
core DSP programming. OpenMP① is a widely
adopted industrial standard. Extension based on
OpenMP provides a good chance for portability.
OpenMP is powerful for the expression of data para-
llelism. Additionally, OpenMP provides high-level ab-
stractions, which can prevent programmers from te-
dious work, such as calculating parallel loop bounds
for each thread. With OpenMP, programmers can add
a few annotations to sequential code for incremental
parallelization, which matches our goal of incremental
parallelization very well.

Standard OpenMP only supports cache-coherent
shared memory systems. In multi-core DSPs, core-
local memory and non-cache coherent shared memory
both exist, imposing two key challenges to OpenMP on
multi-core DSPs.
• Core-Local Memory. On general-purpose multi-

core CPU systems, shared variables with automatic
storage duration residing in the stack of master thread
can easily be accessed by other worker threads because
of a unified address space. However, on most multi-
core DSPs, the core-local memory has different memory
spaces with different memory hierarchies. The stack re-
sides on core-local memory and cannot be accessed from
other cores. If we must place shared variables with au-
tomatic storage duration in the stack, we require a way
to make the stack accessible to other threads.
• Non-Cache Coherent Shared Memory. On general-

purpose multi-core CPU systems, the shared memory
is cache coherent which can boost the speed of shared
data accessing when the data are not really shared du-
ring a given period of time; accordingly, the accesses
will be cache hit without accessing the main memory.
However, the shared memory of multi-core DSPs is not
cache coherent; as a result, each access to the variables
in shared memory should be a slow shared memory ac-
cess if there is no opportunity to place some data within
the fast core-local memory. We must address this issue
in the design of our extension.

In this paper, we present OpenMDSP, an extension
of OpenMP 2.5 for multi-core DSPs. We also have im-
plemented an OpenMDSP compiler and runtime sys-
tem, OMDPFS, for FreeScale MSC8156, which is a DSP
processor with six cores. Our paper provides three main
contributions:

1) We develop an approach for standard OpenMP
2.5 programs to run correctly on multi-core DSPs with-
out modification. We design and implement compiler
transformation and runtime mechanism so that all stan-
dard OpenMP 2.5 directives and APIs retain the same
semantics on multi-core DSPs. This work allows us to
annotate the current sequential code of different tasks
to support data parallelism.

2) To improve the performance of the OpenMP
code, we propose OpenMDSP, which is an extension
of OpenMP 2.5, to allow for the optimized usage of the
complex memory hierarchy of multi-core DSP systems.
In particular, we support core-local memory and non-
cache coherent shared memory with three new classes
of directives of OpenMDSP, including:
• data placement directives that allow programmers

to control conveniently the placement of global varia-
bles;
• distributed array directives that divide the whole

array into sections and promote the sections into core-
local memory to improve performance, and
• stream access directives that promote a big array

into core-local memory section by section during para-
llel loop processing.

3) We implement the compiler and runtime system
for OpenMDSP on FreeScale MSC8156 efficiently. Nine
benchmarks are used to evaluate the performance of
OpenMDSP. Seven out of nine benchmarks achieve a
speedup of more than a factor of 5 with 6 threads.

The rest of the paper is organized as follows. Section
2 defines the OpenMDSP language extensions. Section
3 states the design and implementation of OMDPFS.
We evaluate its implementation in Section 4, and we
discuss the limitations in Section 5. In Section 6, we
review related work, and Section 7 concludes the paper.

2 OpenMDSP Language Extensions

2.1 Overview of OpenMDSP Extensions

OpenMDSP is designed based on OpenMP 2.5 and
inherits the execution model, memory model, directives
and API functions defined in the OpenMP 2.5 specifi-
cation. As stated in Section 1, to expose the memory
hierarchy for programmers, we have extended OpenMP
by a few new directives as shown in Fig.3.

Data placement directives (alloc-directive and
defaultalloc-directive) provide a unified way for pro-
grammers to control the placement of certain variables.
Besides placing variables on a specified memory hierar-
chy during their full life cycle, another common pattern
of DSP applications is the temporary loading of shared
variables into core-local memory for faster processing.

①The OpenMP API specification for parallel programming. http://www.spec.org, Nov. 2013.

Jiang-Zhou He et al.: OpenMDSP: OpenMP for Multi-Core DSPs 319

alloc-directive ::=

#pragma domp alloc(place, var-list) NL

place ::= corelocal | chipshare | offshare

var-list ::= variable | variable, var-list

defaultalloc-directive ::=

#pragma domp defaultalloc defalloc-placedef+ NL

defalloc-placedef ::= normal(place) | threadprivate(place)

distribute-directive ::=

#pragma domp distribute(var-list) dist-clause∗ NL

statement

dist-clause ::= size(expression) | peek(expression,

expression)

| copyin | copyout | bulk(expression) | nowait

for-respect-directive ::=

#pragma domp for respect(variable) forres-clause∗ NL

for-statement

forres-clause ::= private(var-list) | firstprivate(var-list)

| lastprivate(var-list) | reduction(operator:var-list)

| nowait

omp-parallel-for-directive [Redefine] =

#pragma omp parallel for omp-parallel-for-clause∗ NL

stream-directive∗

for-statement

omp-for-directive [Redefine] =

#pragma omp for omp-for-clause∗ NL

stream-directive∗

for-statement

stream-directive ::=

#pragma domp stream(var-list) stream-clause∗ NL

stream-clause ::= size(expression) | rate(expression)

| peek(expression, expression) | copyin | copyout

| nowait

Fig.3. OpenMDSP syntax extensions. omp-parallel-for-directive

and omp-for-directive are redefinitions for omp for directive de-

fined in the OpenMP specification, while others are definitions

for new directives.

As shown in Table 1, several features of OpenMDSP
allow programmers to easily cache shared data by core-
local memory. Some features aim to load the entire
shared dataset into core-local memory within one step,
while others load data window by window, during the
processing of the cached data, to deal with the situ-
ations in which the specified data is too large to fit
into the core-local memory entirely. Meanwhile, the
features also can be categorized by whether they di-
vide the specified data for different cores. Therefore,
four kinds of language features are available in Open-
MDSP for caching shared data by core-local mem-
ory. The private, firstprivate, lastprivate and
copyprivate clauses already defined in the OpenMP
specification create a private copy of the shared data.
In OpenMDSP, thread-private data are held in the core-
local memory by default; as a result, these clauses natu-
rally cache the shared data by core-local memory. The

distribute directive and stream directive, which will
be covered in Subsection 2.3 and Subsection 2.4 respec-
tively, feature data caching ability in other manners.

Table 1. OpenMDSP Features Used to Load Shared

Variables into Core-Local Temporarily

How to How to Cache Data

Access Data Cache Entire Data Cache Data

Window by Window

Access data by private, firstprivate, stream with

one core lastprivate, copyprivate sequential loop

Access data by distribute stream with

different cores parallel loop

2.2 Extension for Data Placement

With OpenMP directives, programmers cannot spe-
cify mapping between variables and memory levels.
In OpenMDSP, by default, shared variables with a
static storage duration are placed in on-chip shared
memory, while thread-private variables are placed in
core-local memory. However, sometimes programmers
must change the default placement. For example, the
core-local memory may lack sufficient space to carry
all thread-private variables; as a result, some of the
thread-private variables must reside in either the on-
chip shared memory or the off-chip shared memory.

We introduce the alloc directive for data place-
ment. place can be corelocal, chipshare or offshare
to indicate core-local memory, on-chip shared memory
or off-chip shared memory, respectively.

We introduce another directive, named
defaultalloc, to specify the default data placement
location. The defaultalloc directive takes effect for
all variables with a static storage duration, defined after
that directive until the next defaultalloc directive,
which overrides the setting.

2.3 Extension for Distributed Array

Shared data is stored in either the on-chip shared
memory or the off-chip shared memory, which has a
significant latency. We have observed that in a class
of parallel algorithms, such as matrix operations, each
thread only need to access a portion of an array. We
have defined the distribute directive for such situa-
tion.

The distribute directive is used to create dis-
tributed duplications for a shared array in the core-local
memory during the execution of its following statement.
Any access to such an array in the following statement
is performed by private duplication, which improves the
performance. As shown in Fig.4, the whole array is di-
vided into n contiguous sections, one for each thread,

320 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

where n is the number of threads. For each thread, we
call the corresponding section the main section for this
thread. In the statement followed by the distribute
directive each thread is only allowed to access its main
section of an array unless a peek clause is present.

Fig.4. distribute directive creates distributed duplications for

a shared array in the core-local memory.

Each variable placed in the distribute clause is the
name of a shared array or a pointer to the first element
of a shared array. If a pointer is placed here, the size
clause is required to specify the size of the array to
which it points. size clause is not needed for a static
array.

The peek clause allows one thread to read some
elements before and after the main section. The two
expressions should specify the number of elements al-
lowed that are to be read before and after. This clause
is designed for algorithms in which the access ranges
for an array in adjacent iterations intersect.

The copyin clause copies the data in the shared
data into private memory before the execution of state-
ment. Without copyin, the initial value of the private
duplication is undefined. The copyout clause copies
the data back to the shared memory; the original val-
ues in the shared memory do not change when copyout
is not specified. copyout only takes effect for the main
section, while copyin also takes effect based on the
amount of elements as specified in peek clause.

The bulk clause is used to specify the minimal grain
for the array range division. The size of each main
section is guaranteed to be a multiple of the value of
the specified expression except the last section. The
default minimal grain is 1.

Like the parallel, for and single directives de-
fined in OpenMP, nowait is used to remove the implicit
barrier after execution of statement.

OpenMDSP provides another directive, for
respect, which allows programmers to write code to
iterate conveniently through the main section of a dis-
tributed array. The effect of the domp for respect
directive is similar to the omp for directive, which
parallelizes the following for-statement. Like omp
for directive, private, firstprivate, lastprivate,
reduction and nowait clauses are applicable. The
distinct feature of domp for is that it divides the loop
range consistent with the distribution of the array speci-

fied inside the braces after “respect”. More precisely,
the loop range in each thread is guaranteed to be the
intersection of the main section of this thread for the
specified array and the whole loop range. Fig.5 presents
an example of the distribute and for respect direc-
tives.

1 double a[M][N];

2 double b[N][P];

3 double c[M][P];

4 void compute_c() {

5 int i, j, k;

6 double s;

7 #pragma omp parallel firstprivate(b)

8 #pragma domp distribute(a) copyin

9 #pragma domp distribute(c) copyout

10 #pragma domp for respect(a)

11 for (i = 0; i < M; i++) {

12 for (j = 0; j < P; j++) {

13 s = 0;

14 for (k = 0; k < N; k++)

15 s += a[i][k] * b[k][j];

16 c[i][j] = s;

17 }

18 }

19 }

Fig.5. Matrix multiplication, an example of distribute and for

respect.

2.4 Extension for Stream Access

Although the extension of the distributed array is
helpful for reducing the access latency for shared array,
it cannot work if the main section is too large to reside
in the core-local memory. However, we observed that
for access patterns applicable to distribute and for
respect, large shared arrays also can be fetched in the
core-local memory or written back piecewise as needed.
This is the purpose of the stream directive.

The stream directive can either appear before any
sequential for statement or can live together with the
omp parallel for or omp for directive. It helps to
map arrays accessed linearly in a specified loop to the
core-local memory during the execution of the loop. In-
stead of mapping the whole array, the stream directive
maps the shared array by windows. A window is a set of
continuous array elements that are mapped to the core-
local memory on the same core at the same time. In the
first case, the loop consumes each window in sequence,
as shown in Fig.6(a). For the second case, we extend
the omp parallel for and omp for directives defined
in the OpenMP specification to allow the stream direc-
tives as their suffix. OpenMDSP defines each window
by array elements consumed in one chunk of the parallel
loop. Correspondingly, OpenMDSP changes semantics
of chunk size in OpenMP specification. The default
chunk size is not a certain value but is determined at
runtime as needed. OpenMDSP implementation should

Jiang-Zhou He et al.: OpenMDSP: OpenMP for Multi-Core DSPs 321

always guarantee that the core-local memory is able to
carry each window. If the chunk size is specified in the
schedule clause but the corresponding window is too
large to reside in the core-local memory, the chunk size
specified by the user will be ignored. Fig.6(b) illus-
trates how the stream directive maps shared array to
core-local memory window by window during the exe-
cution of a parallel loop.

Fig.6. stream directive duplicates a large shared array window

by window during the execution of a loop. (a) stream for a se-

quential loop. (b) stream for a parallel loop.

The syntax of the stream directive is similar to that
of the distribute directive. Variables specified after
stream should be arrays or pointers to array elements.
These arrays must be accessed in a stream pattern du-
ring the following loop, and OpenMDSP will map the
arrays to the core-local memory window by window.
Programmers can use the rate clause to specify the
number of elements accessed in a given iteration. The
copyin and copyout clauses have the same semantics
as those in the distribute directive, except that the
copying-in or copying-out operations are performed be-
fore or after processing each window.

Fig.7 gives an example of the stream directive.
Although distribute and stream for parallel loops

act in similar ways, their design goals differ. stream is
useful for boosting the performance for arrays that are
too big to distribute into the core-local memory. If an
array is accessed in several parallel loops, distribute
is a better choice.

Another advantage of the stream directive is the as-
sociated possibility for runtime to invoke the DMA con-
troller for data transfer between the core-local memory
and shared memory to hide latency, because most mu-

1 void complex_mul(int n, float* r, const float* a,

2 const float* b) {

3 int i;

4 #pragma omp parallel for

5 #pragma domp stream(a, b) rate(2) copyin

6 #pragma domp stream(r) rate(2) copyout

7 for (i = 0; i < n; i++) {

8 r[i*2] = a[i*2]*b[i*2] - a[i*2+1]*b[i*2+1];

9 r[i*2+1] = a[i*2]*b[i*2+1] + a[i*2+1]*b[i*2];

10 }

11 }

Fig.7. Complex vector multiplication, given as an example of

stream directive.

lti-core DSPs have DMA controllers, which copy data
without any effort required of the DSP cores. For
the stream directive, the OpenMDSP runtime should
process each window by three steps, i.e., transferring
the data to the core-local memory when copyin ap-
pears, processing the computation by the loop body,
and copying the data out from the core-local memory
when copyout appears. The OpenMDSP runtime can
invoke the DMA controller for the first and last steps,
i.e., when performing the first step in parallel with the
computation of the previous window assigned to the
current thread and when performing the last step in
parallel with the computation of the next window.

2.5 Discussion of the Design Decisions of the
Extension

Most OpenMP directives are used for partitioning
jobs into parallelizable portions and then synchroniz-
ing them. The feature used to control the storage and
migration of data is simple, which can be summarized
as data is either private to a thread or shared, and
firstprivate, lastprivate and copyprivate can be
used to migrate the whole portion of a shared varia-
ble from or to its private copy. This is sufficient for
a general-purpose CPU, at least for a CPU with uni-
form memory access, because each bit in the memory,
regardless of whether it is private or shared logically,
is ultimately stored in the memory with the same la-
tency to access, and the cache is managed by hard-
ware with a cache-coherence protocol. However, for
typical multi-core DSPs, the situation becomes signifi-
cantly more difficult. Fast core-local memory must be
treated as software-managed cache to achieve reason-
able performance. The existing OpenMP directives are
too simple to fulfill such requirements, so the extensions
are necessary.

We extend OpenMP by introducing new directives
with the domp prefix rather than by reusing several exis-
ting directives or using the omp prefix, because this
approach results in good compatibility with standard

322 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

OpenMP compilers. OpenMDSP programs can be com-
piled by OpenMP compilers for general-purpose CPUs
because domp pragmas are ignored. This design de-
cision respects the same principle as OpenMP, which
makes its programs compatible with C/C++ compilers
without OpenMP support. Ultimately, it is not our
goal to propose a revision for the OpenMP specifica-
tion, because the extension is not suitable for general-
purpose CPUs, which remains the target platform of
most OpenMP programs. As a result, using a differ-
ent directive prefix for extended directives is the most
logical choice.

Another major decision exists concerning the choice
of the OpenMP version. OpenMP 3.0 Specification was
released in May 2008. The major new feature intro-
duced in OpenMP 3.0 is the task construct. However,
we chose to design OpenMDSP based on OpenMP 2.5
based on the following considerations.

1) Our underlying applications benefit little from
task construct. The task construct benefits for paral-
lelizable algorithms of irregular data structures. How-
ever, the data processed by our target application are
either signal series or matrices, which are naturally or-
ganized by regular arrays.

2) The task construct suffers from more overhead
on a multi-core DSP. Tasks created by task constructs
can be scheduled to run on any idle thread. How-
ever, on a multi-core DSP, different threads are running
on different cores. Because the stack resides in core-
local memory, then to support task migration between
threads, the runtime library must dump the task’s stack
to shared memory after creating or suspending a task,
suffering high latency in the process by accessing the
shared memory and making task no longer a light-
weight construct.

3 Design and Implementation

3.1 Overview of FreeScale MSC8156

We have implemented OpenMDSP for FreeScale
MSC8156, which is a typical high performance DSP
with six cores. One chip of FreeScale MSC8156 con-
sists of six DSP cores. The memory hierarchy consists
of four levels:
•L1 ICache and L1 DCache are the first-level in-

struction cache and data cache and are private to each
core. They are transparent to the software. Each is of
32KB in size.
• L2 Cache and M2 Memory are the second level

memory with a total size of 512KB and are private to
each core. This aspect of the system can be config-
ured for division into the L2 cache and M2 memory. L2
is transparent to the software while M2 is addressable
core-local memory.

• M3 Memory is on-chip shared memory with a size
of 1 056 KB. The latency is larger than L1, L2 and M2.
• Main Memory is off-chip shared memory and is

accessed by two DDR controllers; this access always
occurs with the largest latency.

Programmers can decide whether the cache is en-
abled or disabled for specific linking sections. More-
over, like other typical DSPs, FreeScale MSC8156 does
not provide hardware managed cache coherence among
different cores.

FreeScale MSC8156 is equipped with a DMA con-
troller with 16 high-speed bidirectional channels. It can
transfer blocks of data to and from the M2 memory, the
M3 memory, and the DDR controllers.

3.2 Overview of Compilation Process

Fig.8 shows the compilation process of an Open-
MDSP application in OMDPFS. For an OpenMDSP
source file named a.c, the driver of our OpenMDSP
compiler first feeds the file into the C preprocessor
(CPP). The output of CPP is the input of OMDPC,
which is the source-to-source OpenMDSP compiler of
OMDPFS. OMDPC transforms OpenMDSP directives
into bare C code, and then the C code is fed into the
Starcore C compiler (SCC) and the assembler (AS).
SCC and AS are tools in FreeScale MSC8156 SDK. The
output of AS is the relocatable object file a.o.

Fig.8. Compilation process of an OpenMDSP application in

OMDPFS.

Additionally, OMDPC generates another file, a.p,
which contains summary information of a.c. OMD-
PLD synthesizes these summary files and generates

Jiang-Zhou He et al.: OpenMDSP: OpenMP for Multi-Core DSPs 323

_global.c, the global data file. We discuss the con-
tent of the global data file in Subsection 3.4.

The driver calls the linker to link all object files to-
gether with the LIBOMDP and UniDSP library, finally
generating the executable image. LIBOMDP is the run-
time library of OMDPFS, which is based on UniDSP.
At runtime, each core loads the same executable im-
age for execution, as a result of the SPMD nature of
OpenMP.

UniDSP is a DSP operating system developed and
internally used by Huawei Technologies Co. Ltd. with
the goal to provide a uniform platform for high-level ap-
plications on different underlying hardwares. UniDSP
takes over issues such as task management, memory
management, synchronization, interrupt handling.

OMDPC and LIBOMDP are primary parts of
OMDPFS; the header file omp.h, OMDPLD and the
link control file also are provided by OMDPFS.

3.3 Overall Design

3.3.1 Implementing the Execution Model

In UniDSP, a task is the basic scheduling unit. A
UniDSP task can only run on the core that creates it
and never migrate to other cores. In OMDPFS, we map
OpenMDSP threads to tasks on different cores.

For each core that loads the OpenMDSP image, we
create one task to perform the job of one OpenMDSP
thread. The entry of this task is a function in LI-
BOMDP. Because all cores execute the same image,
LIBOMDP decides what to do based on the ID of the
current core. The task running on the core with the
least ID is treated as the master thread. In this task,
the transformed entry function of the application is ex-
ecuted at startup. Tasks running on other cores pend
on a semaphore until the master thread encounters a
parallel region and post the semaphore to notify them.

3.3.2 Implementing the Memory Model

As stated before, OpenMDSP inherits the mem-
ory model of OpenMP, which is a relaxed-consistency,
shared memory model. In general-purpose CPUs, be-
cause the cache coherence protocols guarantee sequen-
tial consistency for memory operations, which is a
stricter design than relaxed-consistency, it is trivial to
fulfill the OpenMP memory model.

FreeScale MSC8156 does not maintain cache cohe-
rence among the L1 and L2 cache of different cores.
Instead, it provides instructions to invalidate the speci-
fied data in the cache. One intuitional method used to
fulfill the relaxed-consistency model is the invalidation
of data at each flush operation. However, the com-
piler cannot always analyze accurately what must be

invalidated. Using a conservative analysis result usua-
lly causes the invalidation of all shared data, which is
a time consuming operation.

Because of the considerations stated above, we dis-
able the cache for shared sections to fulfill the mem-
ory model of OpenMP. Certainly, this action causes a
decrease of the performance. Extensions of the dis-
tributed array and stream access can reduce the usage
of shared memory, which makes the performance ac-
ceptable under most situations. In Section 4 we pro-
vide a measurement of the performance as affected by
the cache.

3.4 Transformation Strategy

The OpenMP implementation method is well develo-
ped for the CPU[5]. Our transformation strategy in-
herits from the implementation on the CPU in many
aspects, such as parallel region outlining, the transfor-
mation of work-sharing constructs, the synchronization
constructs. In this subsection, we focus only on the
differences and tricky points.

3.4.1 Transformation of Shared Data

As stated in Section 1, one critical problem is how
shared variables with automatic storage duration are
handled. In C language, by default, variables with au-
tomatic storage duration are placed on the stack, which
resides in the core-local memory. To solve the problem,
we create a shared stack on M3. OMDPFS places two
kinds of variables with automatic storage duration on
the shared stack, including:
• variables shared by at least one parallel region.

OMDPFS puts these variables on a shared stack during
its full life cycle. We call these variables the permanent
shared variables.
• variables that are not shared by any parallel region,

but are read or written by worker threads, for exam-
ple, variables listed in firstprivate and reduction
clauses. OMDPFS places these variables on the stack
in the core-local memory initially, and copies its value
to the shared stack before entering the parallel region
(for firstprivate and reduction) or copies the value
back to the private stack after exiting the parallel region
(for reduction). We call these variables the temporary
shared variables.

Fig.9 shows example code and illustrates the lay-
out of private stacks and a shared stack. a is a private
variable and only resides on private stacks. b appears in
the firstprivate clause; as a result, it is a temporary
shared variable and resides initially in the private stack
of the master thread. Then OMDPFS copies its value
to a temporary shared frame before the parallel region.
Worker threads use its value to initialize its private ver-

324 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

sion. c is a permanent shared variable that only resides
on the shared stack. In the master thread, shared varia-
bles are accessed by the pointer to the current frame in
the shared stack. The frame pointer of the shared stack
is passed to worker threads during the execution of a
parallel region, allowing the worker threads to access
the variables shared by that pointer.

1 void foo() {

2 int a = 1, b = 2, c = 3;

3 ...

4 #pragma omp parallel private(a) firstprivate(b)

5 bar(&a, &b, &c);

6 }

(a)

1 typedef struct {

2 int b;

3 union {

4 struct {

5 int c;

6 } tmp1;

7 }

8 } __foo_shared_t;

9 void __foo_reg1(__foo_shared_t* __shared) {

10 int a;

11 int b = __shared->tmp1.b;

12 bar(&a, &b, &(__shared->c));

13 }

14 void foo() {

15 int a = 1, b = 2;

16 __foo_shared_t* __shared = (__foo_shared_t*)

17 __omdp_reg_share(sizeof(__foo_shared_t);

18 __shared->c = 3;

19 ...

20 {

21 __shared->tmp1.c = c;

22 __omdp_fork(&__foo_reg1, __shared);

23 }

24 }

(b)

Fig.9. Sample provided to show the transformation strategy of

shared variables with automatic storage duration. (a) Source

code. (b) Code after transformation. (c) Illustration of the shared

data transformation.

3.4.2 Transformation of distribute and stream

Directives

For each array or pointer specified in the distribute
directive, a corresponding local pointer is crea-
ted and initialized by an LIBOMDP function,
__omdp_distribute(). All references of the original
array or pointer inside the statement followed by the
distribute directive are replaced by the local pointer.

__omdp_distribute() allocates the M2 memory for
the local duplication of a given array. The value as-
signed to the local pointer is not the first address of
the local duplication but the address that pretends to
be the first element of the whole array in M2. As il-
lustrated in Fig.10, arr[] is an array with 12 elements,
and the main section for one thread of arr[] consists of
arr[6] and arr[7]. The replacing pointer local_arr
is assigned by the 6th element before the allocated main
section, so elements in the main section can be accessed
by its original index.

Fig.10. Illustration of the transformation for the distributed ar-

ray.

The arrays and pointers specified in stream direc-
tives are handled in similar way. The runtime library
determines the window size based on the available ca-
pacity of the M2 memory. Before executing each chunk
of the parallel loop, the runtime library resets the lo-
cal pointer to ensure references to elements based on
subscripts within the current window falling into the
right address in the M2 memory. The runtime library
also copies elements in the current window from the
shared memory to M2 before executing each chunk of
the parallel loop, or the runtime library copies the ele-
ments back afterward, when either copyin or copyout
clauses are present.

3.4.3 Transformation of Data Placement Directives

FreeScale MSC8156 SDK provides a “section” at-
tribute, which is a kind of C extension, to map varia-
bles to the specified section. In OMDPFS, we prede-
fine three sections in our link control file, which are
placed in M2, M3 and DDR respectively. OMDPC
deals with shared variables on M3 or DDR and thread-

Jiang-Zhou He et al.: OpenMDSP: OpenMP for Multi-Core DSPs 325

private variables on M2 by inserting corresponding at-
tributes. For the threadprivate variables on M3 or
DDR, OMDPC replaces those variables with pointers
on M2 which point to their original type. These point-
ers are initialized by the global data file.

3.4.4 Contents of Global Data File

The global data file contains the function
__omdp_global_initialize(), which is called by LI-
BOMDP during initialization.

LIBOMDP provides a function for the allocation of
memory on M3 and DDR for threadprivate variables
and initializes these pointers. OMDPLD generates code
in __omdp_global_initializes() to call this function
to initialize these threadprivate variables.

OMDPC assigns one critical handle for each name of
the critical region and generates code to call LIBOMDP
functions for the critical directive with its critical
handle. All critical handles are defined in the global
data file, and __omdp_global_initialize() contains
code to initialize these critical handles.

3.5 Runtime Library

Based on the transformation strategy discussed in
Subsection 3.4, the implementation of LIBOMDP is
an ordinary process. We write LIBOMDP in the
C language with an extension provided by FreeScale
MSC8156 SDK. LIBOMDP depends on UniDSP for low
level operations.

LIBOMDP is responsible for managing the shared
stack. The shared stack is implemented as a linked
list of memory blocks. Memory blocks are allocated
from the heap on M3. When pushing a new frame into
the stack, LIBOMDP tries to allocate space in the last
node. If the available space is insufficient, a new mem-
ory block is created and appended in the linked list.
When a frame popping operation empties a block, the
memory block is not freed immediately. LIBOMDP
merges several empty blocks into a bigger block when
any empty block is to be used again. After a few opera-
tions, the linked list tends to be stable and with little
fragmentation, and pushing and popping operations be-
come very efficient.

During a loop with the stream directive, LIBOMDP
invokes the DMA controller to copy data between the
core-local memory and shared memory. By default, LI-
BOMDP uses two different channels for each core to
copy the data in and out respectively; as a result, up to
12 of the 16 DMA channels are reserved for LIBOMDP.
LIBOMDP can also be configured to use only one chan-
nel for each thread or to disable the DMA for stream
directives, in case these resources must be reserved for
another purpose.

3.6 Source-to-Source Compiler

We adopt Cetus[6], a source-to-source compila-
tion framework written in Java as our infrastructure.
OMDPC is built based on the C parser and interme-
diate representation (IR) provided by Cetus. The C
parser in Cetus is based on ANTLR[7], an LL(k) parser
generator. Additionally, Cetus provides an OpenMP
parser that is written from scratch. The OpenMP
parser uses a String to String HashMap to represent
the clause names and values of OpenMP directives.
However, it is difficult to analyze the semantics of a
general expression represented as a String. For exam-
ple, any of the if clauses in a parallel directive, the
schedule clause in a for directive, and the size, peek
and bulk clause in a domp distribute directive con-
tain a general expression. A general solution requires
ANTLR to parse the expressions inside the OpenMDSP
clauses. Therefore, our compiler does not use the origi-
nal OpenMP parser.

We provide a brief introduction for the construction
of our source-to-source compiler.

3.6.1 IR of OpenMDSP Directives

We have extended the IR class hierarchy to intro-
duce new kinds of IR node to represent OpenMDSP
directives and clauses. We have created two abstract
classes, OmpDirective and OmpClause, as the father
classes of OpenMDSP directives and clauses. We have
created one class for each kind of OpenMDSP direc-
tive by inheriting OmpDirective. For each group of
OpenMP clauses with similar form, we have created one
class for the group by inheriting OmpClause, for exam-
ple, private, firstprivate and lastprivate clauses
are represented by the class OmpcVariableList, and
ordered, nowait, copyin and copyout are represented
by the class OmpcTag. The expressions inside Open-
MDSP clauses are represented by the subclasses of
Expression, which is provided by Cetus to abstract
any expression in plain C code. Representation by
Expression makes the expressions inside OpenMDSP
clauses easier to analyze.

3.6.2 Parser

We have extended the ANTLR grammar file of Ce-
tus, added rules for OpenMDSP directives and created
corresponding IR nodes.

3.6.3 Transformation Phases

The transformation of the OpenMDSP program con-
sists of several phases.
• OpenMDSP Normalization. This phase transforms

combined parallel work-sharing constructs into separate

326 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

parallel constructs and work-sharing constructs. For
example, parallel for directives are transformed into
a parallel directive enclosing a for directive. Addi-
tionally, this phase transforms the sections directives
to for directives with a switch statement. This phase
simplifies the jobs of the remaining phases because seve-
ral kinds of OpenMDSP directives are eliminated.
• Task Creation Function Replacement. This phase

replaces the call sites of the task creation function of
UniDSP by __omdp_task_create().
• Parallel Region Outlining. This phase outlines

parallel regions to separate functions. Data sharing at-
tributes are fulfilled by this phase as shown in Fig.9.
• Threadprivate Transformation. This phase trans-

forms the variable declarations of threadprivate varia-
bles on M3 and DDR. Because the data type changes,
this phase also traverses the whole IR to transform the
reference points of these variables to pointer form.
• Transformation of Other Directives. This phase

transforms all other directives. All directives remain-
ing in this phase can be transformed in place. The
OmpDirective class has an abstract method to obtain
its IR in bare C form. This phase invokes this method
for each OpenMDSP directive IR and then replaces it.

3.6.4 Framework for Data Type Analysis

The transformation of several directives requires the
data types of some variables to be queried. Unfortu-
nately, Cetus does not provide a unified representation
of data type. The type of variable given can be only
reasoned by analyzing the IR tree of the declaration,
which is complex and messy. For example, it is subtle
to reason the element type of a given array only by the
IR of its declaration, because the element type may be
a scalar type, array type, data pointer, function pointer

or any combination of these types. What is worse, any
data type may be defined by typedef, and querying a
type may refer to several typedef declarations.

To solve such problem, we extend Cetus by intro-
ducing a unified representation of data type, as well as
by constructing a conversion utility between data types
and the IR of their declaration. The data type is rep-
resented as a tree in our framework, which is trivial for
identifying the element type of an array, the target type
of a pointer, each field type of a structure, etc. A type
table is created for each source file.

4 Experimental Results

4.1 Benchmarks

Seven benchmarks, as shown in Table 2, are chosen
to evaluate OMDPFS. Among the benchmarks, FFT,
CE, MED and DQAM are kernels in the critical stages
of the LTE base station uplink, as stated in Subsection
1.1. A normal LTE data size is chosen for the input
and output datasets, both of which can be fitted into
the M3 memory.

CVDP, MP and FIR are other kernels widely used in
DSP. The input is designed to fit into the M3 memory.
MPL and FIRL are similar to MP and FIR, respec-
tively, but require memory capabilities beyond that of
M3, thus DDR is used to hold most of the data.

All benchmarks are parallelized based on legacy se-
quential code. For each benchmark, no more than 10
OpenMDSP directives have been used. FIR and MP
utilize the extended distribute and for respect di-
rectives. For benchmarks with large datasets, FIRL
and MPL utilize the stream directive to improve the
performance.

All benchmarks are compiled by OMDPFS and are
optimized at the O2 level using SCC.

Table 2. List of Selected Benchmarks

ID Application Name Data Size Lines of Code

SEQ OMDP MANU

FFT Fast Fourier Transform Signal length: 1 024 265 271 302

CE Channel Estimation Signal length: 1 024 113 119 147

MED MIMO Equalizer & Decoder Signal length: 1 024 147 157 190

DQAM Demodulation of 64 Quadrature Amplitude Modulation Signal length: 1 024 95 97 120

MP Matrix Production 64× 64× 64 66 71 94

FIR Finite Impulse Response Filter Signal length: 2 048 71 76 101

response order: 256

MPL Matrix Production (large dataset) 512× 512× 512 66 72 104

FIRL Finite Impulse Response Filter (large dataset) Signal length: 1 048 576 71 76 111

response order: 256

CVDP Complex Vector Dot Production Vector size: 4 096 68 72 98

Note: the number of source code lines is listed here. SEQ: sequential code, OMDP: OpenMDSP code, MANU: manually parallelized

code.

Jiang-Zhou He et al.: OpenMDSP: OpenMP for Multi-Core DSPs 327

4.2 Speedup

Fig.11 shows the speedup curves derived using 1 to
6 parallel threads, normalized with the run time of the
serial versions with the cache enabled.

Fig.11. Speedup of each benchmark, normalized to the perfor-

mance of a serial version with the cache enabled.

With one thread, the average speedup is 0.999, and
the worse case speedup is 0.874. The two benchmarks
that use the stream directive, identified as FIRL and
MPL, get speedup more than one over the sequential
version, because DMA hides the latency to access the
data in DDR. In the sequential version, although the
cache is enabled, it still suffers latency when loading
data from the DDR to the cache. With 6 threads, 7
of 9 benchmarks have achieved a speedup of 5+. The
other two, FFT and CE, have achieved speedup of 4.34
and 3.89, respectively.

The poor speedup of FFT is due to the irregular
memory access pattern, which prevents the FFT algo-
rithm from utilizing the distributed array. CE is consti-
tuted with several small loops, each of which consumes
a small portion of the total run time. The overhead of
management becomes dominant when more threads are
used, leading to its relatively flat speedup curve.

Additionally, we manually parallelized all of these
benchmarks and carefully tuned the performance to ex-
plore the potential of the parallelized code. The perfor-
mance comparison between the two versions is shown
in Fig.12. Using OMDPFS to compile, CE and CVDP
suffer from the significant overhead incurred by the run-
time library, which results in a 20% performance gap
relative to the manual version. FFT also loses by 10%
because it has a parallel inner loop, which produces no-
ticeable loop management overhead. For some bench-
marks (FIR and MP), OMDPFS wins the performance
against its manual counterparts. This is caused by some
subtle fluctuations that originate from the compiler and

the underlying hardware. For example, OMDPFS out-
lines parallel regions, which can affect register alloca-
tion.

Fig.12. Comparison of OpenMDSP performance with a manua-

lly parallelized and optimized program running with 6 threads.

The running time is normalized to the running time of manually

parallelized programs of each benchmark.

We also have implemented the same benchmarks for
a general-purpose CPU and measured their speedup for
comparison. We tested their performance on a 4-way
Quad-Core AMD OpteronTM Processor 8347 server
working at 1.9 GHz and built the benchmarks with an
Intel C Compiler (ICC) version 11.1 with optimization
level O2. As shown in Fig.13, the speedup of DQAM,
FIRL, FIR, MPL and MP is not far behind the linear
situations, but the speedup of the other four bench-
marks does not perform well with respect to scalabil-
ity. We have observed that all of these four benchmarks
with poor performance have parallel constructs that are
too fine grained. Their poor performance is due to the
high cost in OpenMP runtime management related to
the cost in real computation.

Fig.13. Speedup of each benchmark on a general-purpose CPU,

normalized to the performance of a serial version with the cache

enabled.

328 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

To study that quantitatively, we measured the run-
ning time of each application’s serial version; addition-
ally, we counted the number of OpenMP scheduling
events, such as parallel regions, parallel loops and barri-
ers. We obtained the frequency of OpenMP scheduling
events by dividing the overall number of events by the
running time. As shown in Table 3, the benchmarks
with poor scalability actually have a significantly higher
frequency of OpenMP scheduling events, which con-
firms the fact that a granularity of parallel constructs
that is too fine does harm to the scalability on a general-
purpose CPU. Although their OpenMDSP implemen-
tations also suffer from fine granularity, these benchma-

Table 3. Occurrence of OpenMP Scheduling

Events per Second

omp parallel omp for Barrier

FFT 651 621.0 651 621.0 651 621.0

CE 774 398.0 2 323 195.0 774 398.0

MED 409 858.0 409 858.0 409 858.0

DQAM 20 357.0 20 357.0 20 357.0

FIR 9 279.0 9 279.0 9 279.0

FIRL 1.7 1.7 1.7

MP 37 447.0 37 447.0 37 447.0

MPL 0.5 0.5 0.5

CVDP 559 475.0 559 475.0 559 475.0

Note: omp parallel for construct is considered as an omp

for construct nested in an omp parallel construct. All im-
plicit barriers in OpenMP constructs are counted in the last
column.

rks behave significantly better than the general-purpose
CPU in terms of scalability. The result shows that our
OpenMDSP implementation for the multi-core DSP has
significantly less overhead than ICC’s OpenMP imple-
mentation for the general-purpose CPU. In other words,
it is more practical to exploit fine grain parallelism on
the multi-core DSP using our OpenMDSP implementa-
tion.

4.3 Effect of Extended Directives

In our benchmarks, several can use distribute, for
respect, and stream directives when writing parallel
code. Fig.14 compares the performance with and with-
out these directives. Among all of the benchmarks, FIR
and MP benefit the most from the distributed array
because they can achieve excessive reuses of the array
elements. In MED, each element of the distributed ar-
ray is only used twice, thus MED benefits less from
the distribute and for respect directives. The dis-
tributed array harms the performance of CVDP be-
cause there is no reuse for each element. The stream
directive brings significant performance improvements
for FIRL and MPL; this improvement also can be credi-
ted to the array element reuses.

For FIRL and MPL, we also compared the perfor-
mance between enabling and disabling the DMA for the
stream directive, and the results indicate that the use
of DMA to hide the latency of data transfer is a signifi-

Fig.14. Comparison of the running time based on varying the usage of the distributed array or stream. The running time is normalized

to one thread without the use of any extension. (a) MED. (b) FIR. (c) MP. (d) CVDP. (e) FIRL. (f) MPL.

Jiang-Zhou He et al.: OpenMDSP: OpenMP for Multi-Core DSPs 329

cant benefit. When the number of threads is low, the
performance gained by enabling DMA is more pro-
nounced. This can be explained by the fact that when
more threads are running, the memory access by the
additional DMA channels approaches the bandwidth of
the DDR; as a result, some channels are more frequently
obligated to wait for others before accessing the data in
the DDR, and sometimes the latency of data transfer
cannot be hidden thoroughly.

Overall, the extended distribute, for respect,
and stream directives are beneficial for applications
with reusable arrays, and stream works better by en-
abling DMA for the transfer of data between the core-
local memory and DDR. However, with little or no data
reuse, the opposite effects also can occur.

5 Limitation and Discussion

In this paper, we use OpenMDSP to express data
parallelism, which is both intra-task and low-level.
However, OpenMDSP is not applicable for inter-task
high-level parallelism, such as task parallelism and
pipeline parallelism. Currently, we are still using ven-
dor SDK to support task or pipeline parallelism, which
is tedious, error-prone, and unportable.

Because intra-task parallelism and inter-task para-
llelism exist at different levels in the system, the prob-
lem of intra-task and inter-task parallelism are or-
thometric in some sense. We believe that it is a
poor choice to use OpenMP for inter-task parallelism,
because OpenMP does not provide any support for
pipeline parallelism; moreover, compared with inter-
task algorithms, it is significantly less possible for inter-
task workflows to reuse the OpenMP code written for
a general-purpose CPU. In our future work, it is our
goal to support inter-task parallelism in an easy and
portable way, using OpenMDSP procedures as basic
building blocks.

6 Related Work

OpenMP is an industry standard parallel pro-
gramming model. During the last decade, it has
been implemented in most mainstream compilers
for general-purpose CPUs such as GCC②, Intel C
Compiler[8], Open64[5], and Microsoft Visual C++. Re-
searchers also investigated techniques for the optimiza-
tion of OpenMP implementation on general-purpose
CPUs[8-11]. OpenMP implementation technology is
well developed for general-purpose CPUs.

OpenMP also has been implemented on some ar-
chitectures other than general-purpose CPUs. There
are several OpenMP implementations for Cell[12-13],

GPGPUs[14-15] and Software Scalable System on
Chip(3SoC)[16-17] architectures. OpenMP is extended
in these researches to support both complex memory
hierarchies and system heterogeneity. With respect to
the memory hierarchy directives, the data placement di-
rective in OpenMDSP shares some common ideas with
the data mapping clause in [15], but the distributed ar-
ray and stream access directives are unique in compar-
ison with these researches.

OpenMP 4.0 specification, which has just been re-
leased, introduces a new class of constructs, i.e., device
constructs. With device constructs, OpenMP programs
running on CPU can offload code and data to other
computing devices such as GPGPU and Xeon Phis. It
gives a standard way to coordinate different kinds of
processors and corresponding memory, but does not
address the problem of utilizing complicated memory
hierarchies for the same processor.

Many other programming models also have been in-
vestigated for DSP and other Multi-Processor Systems-
On-Chip (MPSoC) architectures, such as StreamIt[4],
SoC-C[3], OSCAR[18-19] and the MPSoC Application
Programming Studio (MAPS)[20]. We discussed the
strengths and weaknesses of StreamIt in Subsection
1.2 so we skip additional discussion of StreamIt here.
SoC-C[3], OSCAR and MAPS[20] are all good at
task/pipeline parallelism support but lack high-level
abstractions for data parallelism. We think Open-
MDSP is complementary to these researches with re-
spect to the expression of data parallelism inside a task.

Regarding the portability of a programming model,
researchers also have proposed a retargetable parallel
programming framework for MPSoC[21]. Researchers
have designed a common intermediate code (CIC) and
developed a framework to map task codes to CIC. Inves-
tigators have used XML file to describe the relations be-
tween tasks, and both Message Passing Interface (MPI)
and OpenMP can be used in a task. Currently, the
framework translates OpenMP to MPI code.

The effort made by OpenMDSP to distribute data
into the core-local memory looks similar to High Per-
formance Fortran (HPF)[22] and Partitioned Global Ad-
dress Space (PGAS) programming models such as UPC
(Unified Parallel C)[23] and Co-Array Fortran[24], which
also deal with the problem of distributed memory, al-
though these approaches possess some fundamental dif-
ferences. The memory of target platforms of HPF and
PGAS is composed of chunks of local memory. In other
words, the sum of all local memories is the whole mem-
ory. As a result, any data ultimately resides on local
memory, and HPF and PGAS provide some way to ex-
press how the data are permanently distributed among

②GOMP: An OpenMP implementation for GCC. http://gcc.gnu.org/projects/gomp, Nov. 2013.

330 J. Comput. Sci. & Technol., Mar. 2014, Vol.29, No.2

the different chunks of local memory. However, the
memory of a multi-core DSP is composed of several
levels, and the sum of the core-local memory is only a
small portion of the whole memory. Most data must
ultimately reside on the large shared memory. Local
memory can only cache these data temporarily for bet-
ter performance, which is the purpose of the distributed
array and stream access extensions of OpenMDSP.

7 Conclusions

Programming multi-core DSP systems is important
yet challenging. The key problem we addressed in
this paper is dealing with core-local memory and non-
cache coherent shared memory with high-level direc-
tives. Our design and implementation show that these
memory hierarchies can be managed effectively with a
few extensions to the OpenMP 2.5 standard. Open-
MDSP performs well at parallel programming inside
tasks, forming a solid foundation for our future work on
inter-task parallel programming. We expect that this
work will motivate more investigations on programming
these memory hierarchies which is critical to the success
of future multi/many-core systems.

Acknowledgments We thank De-Hao Chen, Ji-
Dong Zhai, and Tian-Wei Sheng for their insightful
comments. Finally, we would thank Zi-Ang Hu, Qian
Tan, and Li-Bin Sun for their help on experiments. We
also thank the anonymous reviewers for their construc-
tive suggestions.

References

[1] Karam L, AlKamal I, Gatherer A, Frantz G, Anderson D,
Evans B. Trends in multicore DSP platforms. Signal Process-
ing Magazine, IEEE, 2009, 26(6): 38-49.

[2] Zyren J. Overview of the 3GPP long term evolution physical
layer, 2007. http://www.freescale.com/files/wireless comm/
doc/white paper/3GPPEVOLUTIONWP.pdf, Nov. 2013.

[3] Reid A D, Flautner K, Grimley-Evans E, Lin Y. SoC-C: Ef-
ficient programming abstractions for heterogeneous multicore
systems on chip. In Proc. the 2008 CASES, October 2008,
pp.95-104.

[4] Thies W, Karczmarek M, Amarasinghe S. StreamIt: A lan-
guage for streaming applications. In Proc. Int. Conf. Com-
piler Construction, April 2002, pp.179-196.

[5] Liao C, Hernandez O, Chapman B, Chen W, Zheng W.
OpenUH: An optimizing, portable OpenMP compiler: Re-
search Articles. Concurrency and Computation: Practice &
Experience, 2007, 19(18): 2317-2332.

[6] Dave C, Bae H, Min S, Lee S, Eigenmann R, Midkiff S. Ce-
tus: A source-to-source compiler infrastructure for multicores.
Computer, 2009, 42(11): 36-42.

[7] Parr T, Quong R. ANTLR: A predicated-LL(k) parser gene-
rator. Software – Practice & Experience, 1995, 25(7): 789-
810.

[8] Tian X, Girkar M, Shah S et al. Compiler and runtime
support for running OpenMP programs on Pentium- and
Itanium-architectures. In Proc. the 17th Parallel and Dis-
tributed Processing Symposium, April 2003, pp.9-18.

[9] Müller M S. Some simple OpenMP optimization techniques.
In Lecture Notes in Computer Science 2104, Eigenmann R,
Voss M, (eds.), Springer, 2001, pp.31-39.

[10] Tian X, Girkar M, Bik A, Saito H. Practical compiler tech-
niques on efficient multithreaded code generation for OpenMP
programs. Computer Journal, 2005, 48(5): 588-601.

[11] Chapman B M, Huang L. Enhancing OpenMP and its im-
plementation for programming multicore systems. In Proc.
Parallel Computing: Architectures, Algorithms and Applica-
tions, September 2007, pp.3-18.

[12] O’Brien K, O’Brien K M, Sura Z et al. Supporting OpenMP
on cell. Int. J. Parallel Programming, 2008, 36(3): 289-311.

[13] Wei H, Yu J. Loading OpenMP to Cell: An effective compiler
framework for heterogeneous multi-core chip. In Proc. the 3rd
International Workshop on OpenMP, June 2007, pp.129-133.

[14] Lee S, Min S, Eigenmann R. OpenMP to GPGPU: A com-
piler framework for automatic translation and optimization.
In Proc. the 14th ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming, Feb. 2009, pp.101-110.

[15] Lee S, Eigenmann R. OpenMPC: Extended OpenMP pro-
gramming and tuning for GPUs. In Proc. the 2010 Conf.
High Performance Computing Networking, Storage and Anal-
ysis, Nov. 2010.

[16] Liu F, Chaudhary V. Extending OpenMP for heterogeneous
chip multiprocessors. In Proc. the 32nd International Con-
ference on Parallel Processing, October 2003, pp.161-168.

[17] Liu F, V. Chaudhary. A practical OpenMP compiler for sys-
tem on chips. In Lecture Notes in Computer Science 2716,
Voss M (ed.), Springer, 2003, pp.54-68.

[18] Kimura K, Mase M, Mikami H et al. OSCAR API for real-
time low-power multicores and its performance on multicores
and SMP servers. In Lecture Notes in Computer Science
5898, Gao G, Pollock L, Cavazos J, Li X (eds.), Springer,
2009, pp.188-202.

[19] Hayashi A, Wada Y, Watanabe T et al. Parallelizing compiler
framework and API for power reduction and software produc-
tivity of real-time heterogeneous multicores. In Lecture Notes
in Computer Science 6548, Cooper K, Mellor-Crummey J,
Sarkar V (eds.), Springer, 2010, pp.184-198.

[20] Leupers R, Castrillón J. MPSoC programming using the
MAPS compiler. In Proc. the 15th Asia and South Pacific
Design Automation Conference, January 2010, pp.897-902.

[21] Kwon S, Kim Y, Jeun W, Ha S, Paek Y. A retargetable
parallel-programming framework for MPSoC. ACM Trans.
Design Autom. Electr. Syst., 2008, 13(3): Article No.39.

[22] Kennedy K, Koelbel C, Zima H P. The rise and fall of High
Performance Fortran: An historical object lesson. In Proc.
the 3rd ACM SIGPLAN Conf. History of Programming Lan-
guages, June 2007, Article No. 7.

[23] El-Ghazawi T, Carlson W, Sterling T et al. UPC: Distributed
Shared Memory Programming. Wiley-Interscience, 2003.

[24] Numrich R W, Reid J. Co-array Fortran for parallel program-
ming. ACM Fortran Forum, 1998, 17(2): 1-31.

Jiang-Zhou He received the
B.S. degree in computer science from
Tsinghua University in 2007. Now
he is a Ph.D. candidate in com-
puter science and technology in Ts-
inghua University. His research inter-
ests include parallel and distributed
computing, compiler technology, and
programming models. He is a stu-
dent member of CCF.

Jiang-Zhou He et al.: OpenMDSP: OpenMP for Multi-Core DSPs 331

Wen-Guang Chen received the
B.S. and Ph.D. degrees in computer
science from Tsinghua University in
1995 and 2000 respectively. He was
the CTO of Opportunity Interna-
tional Inc. from 2000 to 2002. Since
January 2003, he joined Tsinghua
University. He is now a professor and
vice dean of the Department of Com-
puter Science and Technology, Ts-

inghua University. His research interests include parallel
and distributed computing, programming model, and mo-
bile cloud computing. He is a member of CCF, ACM and
IEEE.

Guang-Ri Chen received the
B.S. and M.S. degrees in computer
science from Xidian University in
1998 and 2003 respectively. He
worked in Potevio Institute of Tech-
nology Co. Ltd. from 2003 to 2008.
Since 2008 he works at Huawei Tech-
nologies Co. Ltd. His work focuses
on LTE base station technologies.

Wei-Min Zheng received the
master’s degree from Tsinghua Uni-
versity in 1982. He is now a pro-
fessor in the Department of Com-
puter Science and Technology at Ts-
inghua University. His research inter-
ests include parallel and distributed
computing, compiler technique, grid
computing, and network storage. He
is a fellow of CCF and a member of

ACM and IEEE.

Zhi-Zhong Tang received the
B.S. degree from Tsinghua Univer-
sity in 1970. He is now a profes-
sor in the Department of Computer
Science and Technology at Tsinghua
University. His research interests in-
clude compiler technique and CMP
cache optimization. He is a member
of CCF.

Han-Dong Ye is a research en-
gineer of compiler and SDK tools
in FutureWei, US R&D Center of
Huawei. He has more than 10 years
experience in compiler industry, and
his research interests include pro-
gramming language, compiler opti-
mization, parallelization and runtime
system.

