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Abstract In recent years, to maximize the value of software testing and analysis, we have proposed the methodology of
cooperative software testing and analysis (in short as cooperative testing and analysis) to enable testing and analysis tools to
cooperate with their users (in the form of tool-human cooperation), and enable one tool to cooperate with another tool (in
the form of tool-tool cooperation). Such cooperations are motivated by the observation that a tool is typically not powerful
enough to address complications in testing or analysis of complex real-world software, and the tool user or another tool may
be able to help out some problems faced by the tool. To enable tool-human or tool-tool cooperation, effective mechanisms
need to be developed 1) for a tool to communicate problems faced by the tool to the tool user or another tool, and 2) for the
tool user or another tool to assist the tool to address the problems. Such methodology of cooperative testing and analysis
forms a new research frontier on synergistic cooperations between humans and tools along with cooperations between tools
and tools. This article presents recent example advances and challenges on cooperative testing and analysis.

Keywords software verification, testing and debugging, software quality

1 Introduction

Applying software testing and analysis tools is the
most widely used way for improving software quality
in practice. Typically, software testing[1-2] includes the
following four major tasks: 1) generating test inputs,
2) creating expected outputs (also referred to as test
oracles), 3) running test inputs, and 4) verifying actual
test outputs. Software analysis (also referred to as pro-
gram analysis) includes static analysis (i.e., statically
analyzing software without executing the software) and
dynamic analysis (i.e., dynamically analyzing software
by executing the software). Software testing is consi-
dered as a type of dynamic analysis while static analy-
sis is commonly used in static verification[3]: statically
analyzing software to detect software faults or prove
their absence, typically against given properties that
the software is expected to satisfy.

However, in practice, software testing and analy-
sis tools are typically not powerful enough to address
complications in testing or analysis of real-world soft-
ware, which is growing increasingly larger and more
complex over time. Although ongoing and future re-
search advances in tool automation can help improve
the capability of such tools, such real-world complica-
tions would be still difficult for the tools to tackle in the
foreseeable future. For example, our previous study[4]

showed that even state-of-the-art test-generation tools
may achieve no more than 65% code coverage, and re-
cent studies[5] conducted by others also show that static
analysis tools cannot prove various properties in com-
plex software. For some of these problems faced by the
tools, tool users, often being software engineers (e.g.,
developers and testers), may provide guidance to help
the tools tackle these problems. In addition, different
tools (along with their underlying analyses) have diffe-

Survey
This work is supported in part by the National Natural Science Foundation of China under Grant Nos. 61228203, 61225007,

and 61272157, the National Science Foundation of USA under Grant Nos. CCF-1349666, CNS-1434582, CCF-1434596, CCF-1434590,
CNS-1439481, and a Microsoft Research award.

A preliminary version of the paper was published as a keynote paper in the Proceedings of the 12th International Working
Conference on Source Code Analysis and Manipulation (SCAM 2012).

©2014 Springer Science +Business Media, LLC & Science Press, China



714 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

rent strengths and weaknesses, and thus they may com-
plement each other. In other words, problems faced by
a tool may be tackled by another tool.

To maximize the value of software testing and analy-
sis, in recent years, we have proposed the methodology
of cooperative software testing and analysis[6] (in short
as cooperative testing and analysis) to enable testing
and analysis tools to cooperate with their users (in the
form of tool-human cooperation), and enable one tool
to cooperate with another tool (in the form of tool-
tool cooperation). To enable such tool-human or tool-
tool cooperation, cooperative testing and analysis need
to provide effective mechanisms 1) for a tool to com-
municate problems faced by the tool to the tool user
or another tool, and 2) for the tool user or another
tool to assist the tool to address the problems. The
basic rationale of cooperative testing and analysis is
that tools and tool users typically have their respec-
tive strengths and weaknesses, and similarly different
tools typically have their respective strengths and weak-
nesses; enabling cooperation among these entities can
provide opportunities to enhance their strengths and
alleviate their weaknesses, respectively.

In particular, tool-human cooperation consists of
two sub-types, depending on who are on the “driver”
seat to conduct major work: human-assisted comput-
ing and human-centric computing. In human-assisted
computing, tools are on the “driver” seat and engineers
provide guidance to the tools so that the tools could
better carry out the work. In contrast, in human-centric
computing, engineers are on the “driver” seat and tools
provide guidance to the engineers so that the engineers
could better carry out the work. Tool-tool cooperation
is often in the form of tool or analysis integration. Note
that here we use the terms of human-assisted comput-
ing and human-centric computing to intuitively denote
the two sub-types of tool-human cooperation, instead
of denoting an existing model of computing or defining
a new model of computing.

Indeed, the topics of tool/analysis integration,
human-computer interactions, or human decision mak-
ing based on tool outputs have been long investigated
in the research community. However, complementing
with such existing efforts, our methodology of coope-
rative testing and analysis explicitly treats cooperation
as a first-order entity, and often realizes cooperation
via a feedback loop between the cooperating parties. In
this methodology, testing or analysis algorithms need to
address problems that emerge in such cooperation. For
example, how to design or improve the tool algorithm
to produce high-quality information (e.g., succinct yet
sufficient information for decision making) for the tool
user to consume and guide the tool?

Exploring effective mechanisms for tool-human
cooperation and tool-tool cooperation, our methodo-
logy of cooperative testing and analysis forms a new
research frontier on synergistic cooperations among hu-
mans and tools. This article presents recent exam-
ple advances and challenges on cooperative testing
and analysis. The rest of the paper illustrates exam-
ples of four types of cooperative testing and analy-
sis: human-assisted computing (human-tool coopera-
tion) (Section 2), human-centric computing (human-
tool cooperation) (Section 3), and tool/analysis inte-
gration (tool-tool/analysis-analysis cooperation) (Sec-
tion 4), as well as challenges in cooperative and analysis
(Section 5).

2 Human-Assisted Computing: Human-Tool
Cooperation

In human-assisted computing, tools are on the
“driver” seat and engineers provide guidance to the
tools so that the tools could better carry out the work.
Human-assisted computing in the context of software
testing and analysis consists of three phases: 1) setup
phase: engineers set up and apply tools to conduct ini-
tial testing and analysis; 2) feedback phase: the tools
provide feedback to the engineers; 3) action phase: the
engineers provide guidance to the tools based on the
feedback. The feedback phase and the action phase
form a feedback-action loop[7] that enables engineers
and tools to refine and accomplish specific goals of test-
ing and analysis. Note that in the action phase, some
tool support can be provided to facilitate the engineers
in providing guidance to the tools.

For example, producing high-covering test inputs is
an important goal of software testing, since high code
coverage can help identify the insufficiency of test in-
puts, e.g., showing which parts of the program under
test are not tested by the test inputs. To reduce the
manual burden of producing test inputs, engineers can
apply tools built based on automated test-generation
approaches to generate test inputs automatically, such
as Dynamic Symbolic Execution (DSE)[8]. DSE exe-
cutes the program under test symbolically with arbi-
trary or default inputs. Along the execution path, DSE
collects the constraints in the branch statements to
form a path condition and negates part of the path
condition to obtain a new path condition that leads to
a new path. The new path condition is then fed to a
constraint solver, which computes new test inputs for
exploring new paths.

Although these automated test-generation tools can
often achieve high code coverage on simple programs,
they face various problems to achieve high code cove-
rage on complex programs in practice. Based on recent
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studies[4], the top two major problems that prevent
these tools from achieving high code coverage of object-
oriented programs are 1) the object-creation problem
(OCP), where tools fail to generate sequences of method
calls to construct desired object states for covering
certain branches; 2) the external-method-call problem
(EMCP), where tools cannot deal with method calls
to external libraries, such as native system libraries or
pre-compiled third-party libraries. The main reason for
OCPs is that certain branches of the program under
test require desired object states that cannot be genera-
ted by the tools. The main reason for EMCPs is that
external-method calls cannot be precisely analyzed by
the tools or can throw exceptions to hinder the test
generation.

Since tools are imperfect in dealing with various
problems in achieving high code coverage, cooperative
testing identifies problems faced by tools during test
generation (with the focus on OCPs and EMCPs), en-
abling engineers and tools to generate test inputs coope-
ratively as follows. The engineers first apply the tools
to automatically generate test inputs until the tools
cannot achieve higher code coverage or run out of pre-
defined resources. Then the tools report the achieved
coverage and problems that prevent them from achiev-
ing higher coverage. By looking into the problems, the
engineers provide guidance to the tools, helping the
tools address these problems. As an example of pro-
viding guidance to the tools, the engineers can write
factory methods that encode sequences of method calls
to produce desired object states to deal with OCPs[9].
To deal with EMCPs, the engineers can instruct tools
to instrument and explore the external libraries or write
mock objects[10-12] to simulate the dependency. After
providing guidance to the tools based on the reported
problems, the engineers can reapply the tools to gene-
rate test inputs for achieving better coverage. Such
iterations of applying the tools and providing the guid-
ance can continue until satisfied coverage is achieved.

To achieve this cooperation between engineers and
tools, the tools need to precisely report problems for
reducing effort from the engineers. Straightforward ap-
proaches such as locating all non-primitive object types
and external method calls produce too many irrele-
vant problem candidates that do not prevent tools from
achieving higher code coverage. To address the needs of
precisely identifying problems, our Covana approach[4]

prunes the irrelevant problem candidates using the data
dependencies of partially-covered branch statements on
problem candidates. We next describe our Covana ap-
proach (Subsection 2.1) and then discuss how engineers
can help DSE-based tools to address loop problems, an-
other common type of problems faced by DSE-based
tools (Subsection 2.2).

Note that although the rest of this section presents
examples of cooperative testing and analysis only in
the domain of test generation, such cooperative testing
and analysis can be also seen in the domain of com-
piler optimization or static verification. For example,
St-Amour et al.[13] proposed an approach to report opti-
mizations that a compiler could perform on a program if
the compiler has additional information, enabling users
to provide further help for the compiler optimization
in the program. Dillig et al.[5] proposed an approach
to compute small and relevant queries that capture the
facts that the analysis is missing when automated static
analysis fails to verify a program. These queries are
presented to users who decide whether the answers to
queries are yes or no, and the answers are then used
to either verify the program or prove the existence of a
real fault. Dincklage and Diwan[14] proposed an analy-
sis language and built a system to produce reasons when
program analyses fail to produce desirable results. The
objective of their approach is to express arbitrary data
flow analyses using their analysis language and compute
reasons for the failures.

2.1 Precise Identification of Problems for
Structural Test Generation

To precisely identify problems faced by test-
generation tools, our approach, Covana[4], is built based
on the insight that partially-covered branch statements
have data dependency on real problem candidates.

Covana consists of three main steps: problem-
candidate identification, forward symbolic execution,
and data dependence analysis. Covana accepts as input
a program under test, and generates test inputs from
automated test-generation tools (such as a DSE-based
tool). Covana then treats the generated test inputs as
program inputs, and leverages the DSE engine to per-
form forward symbolic execution on the program (pro-
gram inputs are assigned with symbolic values). During
execution, Covana monitors runtime events triggered
by the DSE engine for identifying different types of
problem candidates. After identifying problem can-
didates, Covana assigns symbolic values to elements
of these problem candidates (such as return values of
external-method calls and fields of program inputs),
performs forward symbolic execution on these symbolic
values, and collects runtime information, such as sym-
bolic expressions and exceptions. Covana then uses the
collected structural coverage and runtime information
to compute the data dependencies of partially-covered
branch statements on problem candidates. In Covana,
symbolic execution is used to compute data dependen-
cies for pruning irrelevant problem candidates, and tar-
get states for solving problems.
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EMCP Identification. An external method call is
considered as an EMCP candidate if its arguments have
data dependencies on program inputs. The reason is
that those other external-method calls (whose argu-
ments have no data dependencies on program inputs)
usually print a constant string or put a thread to sleep
for some time. Such external-method calls typically do
not compromise coverage achieved by test-generation
tools and can be pruned. For each EMCP candidate,
Covana assigns symbolic values to the return value of
the identified external-method call for data dependence
analysis. Covana prunes EMCP candidates if none of
partially-covered branch statements have data depen-
dencies on the candidates for their return values.

Uncaught exceptions thrown by external-method
calls abort test executions, preventing structural test-
generation tools from exploring remaining parts of the
program under test. To identify such external-method
calls, Covana collects exceptions during test execu-
tions and analyzes the stack traces to extract external-
method calls. If the remaining parts of the program
after the call sites of the external-method calls are not
covered, Covana reports these external-method calls as
EMCPs.

OCP Identification. Since an OCP requires objects
of a non-primitive type as program inputs, Covana
considers as problem candidates only program inputs
whose type is a non-primitive type, such as a user-
defined type. Covana assigns symbolic values to such
program inputs and all their fields for computing data
dependencies. If a partially-covered branch statement
has data dependencies on only program inputs, Covana
directly reports the program inputs as OCPs. However,
if a partially-covered branch statement has data depen-
dencies on a field of a program input, Covana performs
further analysis to identify which field of the program
input is the cause to the OCP.

2.2 Loop Problems for Structural Test
Generation

Besides OCPs and EMCPs, DSE-based tools still
face another significant problem: how to handle loops.
As a special type of branches, loops can cause the
number of paths under exploration to grow exponen-
tially. Even worse, the number of paths becomes in-
finite due to the presence of input-dependent loops
(IDLs)①, causing DSE to run out of resources (e.g.,
the allocated time or number of explored paths) before
achieving satisfactory code coverage. For example, a
recent study[15] shows that DSE may keep unfolding an

IDL without achieving coverage of any new branches.
Recent research has tried to address this problem by us-
ing a bound to constrain loop unrolling[16], using search-
guiding heuristics to guide path exploration[9,17], or us-
ing loop summarization to summarize loops based on
inferred loop invariants[18-20] (referred to as loop sum-
marization).

Our previous work[21] provides two-phase characte-
ristic studies on loop problems for DSE-based tools.
Our proposed study methodology starts with conduct-
ing a literature-survey study to investigate how techni-
cal problems such as loop problems compromise auto-
mated test generation, and which existing techniques
are proposed to deal with such technical problems.
Then the study methodology continues with conduct-
ing an empirical study of applying the existing tech-
niques on real-world applications sampled based on the
literature-survey results and major open-source project
hostings. This empirical study investigates the perva-
siveness of the technical problems and how well existing
techniques can address such problems among real-world
applications.

Based on the literature survey of 159 published ar-
ticles on symbolic execution, our study finds that loop
problems are one of the major problems for software
testing via symbolic execution, and bounded iteration
and search-guiding heuristics are two most widely used
techniques for dealing with loops. We then conducted
an empirical study of applying these two techniques
on 16 open-source applications, and results show that
bounded iteration and search-guiding heuristics can ad-
dress 65% of unbounded loops whose side effects may
compromise coverage of subsequent branches.

For remaining unbounded loops that cannot be han-
dled by bounded iteration and search-guiding heuristics,
we provide three guidelines with the last one engag-
ing human guidance in the form of cooperative testing:
1) data validation: for applications that impose heavy
validation on input values, a separate data generator
that generates valid objects may be employed and only
the constraints that lead to valid objects should be col-
lected; 2) weighted heuristics: search-guiding heuristics
should assign lower probabilities on loop guards than
other branches, and branches collected in later itera-
tions should be given lower probabilities than branches
collected in earlier iterations; 3) cooperative analy-
sis: for complex IDLs that interleave nested loops
and branches, a test-generation tool may identify such
loops and report to developers; developers can provide
manually specified loop invariants or summaries to as-
sist the tool in addressing the loop problems.

①Input-dependent loops are loops whose iteration numbers depend on some unbounded input.
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3 Human-Centric Computing: Human-Tool
Cooperation

In human-centric computing, engineers are on the
“driver” seat and tools provide guidance to the engi-
neers so that the engineers could better carry out the
work. Human-centric computing in the context of soft-
ware testing and analysis consists of three phases in
order to assist engineers to accomplish a goal (which
can be beyond a typical goal of testing and analysis)
such as debugging or fixing code. These three phases
are as below: 1) setup phase: engineers set up and
apply tools to conduct initial testing and analysis; 2)
action phase: the engineers act on the results of the ini-
tial testing and analysis towards the goal; 3) feedback
phase: the tools provide feedback to the engineers. The
feedback phase and the action phase form a feedback-
action loop that enables engineers and tools to refine
and accomplish the goal. Although these three phases
are similar to the ones in human-assisted computing, in
human-centric computing, engineers are the ones who
are mainly responsible for leading the efforts for accom-
plishing the goal while tools just provide assistance to
the engineers.

For example, our previous work[22-24] has proposed
the game type of coding duels for a web-based se-
rious gaming platform, called Pex for Fun (in short
as Pex4Fun) (http://www.pexforfun.com/). In a cod-
ing duel, the goal of the game player (which can be
a software engineer or new learner of programming) is
to modify the given working implementation (initially
empty or wrong) to match the behavior of the secret
implementation. In the setup phase, the game player
initially requests to apply a DSE-based tool to generate
test inputs to show the different behaviors of the work-
ing and secret implementations (along with their same
behaviors). In the action phase, based on the feedback
given by the DSE-based tool, the game player modifies
the working implementation, attempting to accomplish
the goal by making the reported different behaviors dis-
appear while retaining the reported same behaviors. In
the feedback phase, the game player requests the DSE-
based tool to give further feedback on the revised work-
ing implementation, and then moves to the action phase
again.

As another example, our previous work[25-26] has
proposed an interactive testing-based fault localization
approach (whose tool is named VIDA). By using the
VIDA tool, the goal of a developer is to identify the
faulty statements in the program under debugging. In
the setup phase, the developer initially runs VIDA to
identify a set of suspicious statements based on the sta-
tistical analysis of test cases. In the action phase, from
the reported set of suspicious statements, the developer

selects one of these suspicious statements, checks the
correctness of the selected statement and the status of
the program after executing the selected statement: if
the selected statement is faulty according to the develo-
per’s check, the fault-localization process ends; other-
wise, based on the status of the program after execut-
ing the selected statement, VIDA further reduces the
scope of suspicious statements, and then focuses on
the no-innocent scope. In the feedback phase, based
on the developer’s check, VIDA modifies its analysis
of test cases to recommend another set of suspicious
statements, and then move to the action phase again.

We next give more details on Pex4Fun and its ex-
tension Code Hunt (Subsection 3.1) and interactive de-
bugging (Subsection 3.2) as two concrete examples of
human-assisted computing.

3.1 Pex4Fun and Code Hunt

In recent years, educational software engineering[27]

(i.e., software engineering for education) has emerged as
a research subarea of software engineering, for broaden-
ing the impact of software engineering research to the
education domain. In this subarea, researchers develop
software engineering technologies (e.g., software testing
and analysis, software analytics) for general educational
tasks, including but not limited to software engineering
education or computer science education. This sub-
section illustrates an example of educational software
engineering that leverages cooperative testing and ana-
lysis, especially human-centric computing, for teaching
and learning programming and software engineering.

Teaching and learning programming and software
engineering have received a lot of attention from re-
searchers and educators. There exist various program-
ming environments[28-29] for instilling fun into students’
programming-learning experiences, especially for begin-
ner learners. Although these programming environ-
ments help teach and learn programming concepts for
beginner learners, these environments typically target
at some specialized programming languages other than
mainstream programming languages. In addition, these
environments primarily target at teaching and learning
programming without focusing on software engineering.

To address such issues, in collaboration with Mi-
crosoft Research, our previous work[22-24] has proposed
the game type of coding duels for a web-based se-
rious gaming platform, called Pex for Fun (in short
as Pex4Fun) (http://www.pexforfun.com/). Any one
around the world can create coding duels for others to
play besides playing existing coding duels themselves.
In a coding duel, the player is given a working imple-
mentation, being an empty or faulty implementation of
a method (with optional comments to give the player
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hints on reducing the difficulty level of gaming). Then
the player is asked to modify the working implementa-
tion to make its behavior (in terms of the method inputs
and return) to be the same as the secret (golden) imple-
mentation (which is supplied by the game creator but is
not visible to the player). Over the game-playing pro-
cess, the player has the opportunity to request the gam-
ing platform to provide the following feedback to the
player (by clicking the “Ask Pex!” button on the user
interface): 1) under what method input(s) the working
implementation and the secret implementation have dif-
ferent method returns; 2) under what method input(s)
the working implementation and the secret implemen-
tation have the same method return. The gaming plat-
form leverages a DSE engine called Pex[9] to provide
such feedback.

Pex4Fun has been increasingly gaining popularity
in the community. Since it was released to the pub-
lic in 2010 summer, the number of clicks of the “Ask
Pex!” button (indicating the attempts made by play-
ers to solve games at Pex4Fun) has reached more than
1 479 000 as of early April 2014. In May 2011, Microsoft
Research hosted a contest on solving coding duels at
the 2011 International Conference on Software Engi-
neering (ICSE 2011). The ICSE 2011 contest received
7 000 Pex4Fun attempts, 450 duels completed, and 28
participants (though likely more, since some did not ac-
tually enter the official contest portal to play the coding
duels designed for the contest).

In early 2014, Microsoft Research released Code
Hunt[30-31] (http://www.codehunt.com/), a dramatic
evolution of the Pex4Fun web platform. In Code Hunt,
the game consists of a series of worlds and levels, which
get increasingly challenging. In each level, the player
has to discover a secret code fragment and write code
for it. The game has sounds and a leaderboard to keep
the player engaged. The game works in any modern
browser, and currently supports C# or Java programs.
Both Pex4Fun and Code Hunt are representative exam-
ples of educational software engineering[27] (i.e., soft-
ware engineering for education), which develops soft-
ware engineering technologies (e.g., software testing
and analysis) for general educational tasks, going be-
yond educational tasks for software engineering.

3.2 Interactive Debugging

Software debugging consists of fault localization and
fault fixing: the former aims to localize faulty state-
ments in the program whereas the latter aims to cor-
rect the program by replacing the faulty statements.
Without identifying the faulty statements correctly, it
is hard to fix faults. To reduce the manual burden of

localizing faulty statements, various automatic fault-
localization approaches have been proposed to reduce
the scope of suspicious statements, which may be faulty
statements. However, in software development, fault lo-
calization is an intelligent work of developers filled with
developers’ development experience and understanding
of the program under debugging. Without such knowle-
dge, such automatic fault-localization approaches can
hardly identify faulty statements correctly. Further-
more, as these automatic approaches cannot precisely
point out where the faulty statements are, these ap-
proaches are rarely used in practice.

To address this issue, our previous work[25-26] has
proposed an interactive testing-based fault localization
approach (whose tool is named as VIDA), which com-
bines developers’ debugging experience and statistical
analysis on the execution information of the program
under test. With VIDA, developers may identify the
faulty statements as follows. First, VIDA identifies a
set of suspicious statements based on the statistical ana-
lysis of test cases. Second, VIDA asks developers to
select one of these suspicious statements, and to check
the correctness of the selected statement and the status
of the program after executing the selected statement.
If the selected statement is faulty according to develo-
pers’ check, the fault-localization process ends. Other-
wise, based on the status of the program after executing
the selected statement, VIDA further reduces the scope
of suspicious statements, and then focuses on the not-
innocent scope. Based on the developers’ check, VIDA
modifies its analysis of test cases so as to recommend
another set of suspicious statements. Repeating the
preceding process, VIDA can aid developers to identify
where the faulty statements are correctly.

Different from existing automated fault-localization
approaches, VIDA combines developers’ feedback to
improve the efficiency of fault-localization. Based on
the execution information, existing approaches recom-
mend a list of suspicious statements, which are ranked
based on their probability of containing faults, but the
statement with the largest suspicion may not contain
faults at all. To help find out where the fault is, VIDA
improves the existing approaches by modifying the sus-
picions of statements following developers’ check. In
particular, if the status of the program after execut-
ing the selected statement is correct, the fault typically
would lie in the statements executed after the selected
statements; otherwise, the fault would lie in the state-
ments executed before the selected statements. In other
words, based on developers’ check on such a status, the
set of suspicious statements are reduced.

Furthermore, VIDA improves the efficiency of fault
localization by following developers’ debugging habit.
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As existing approaches usually recommend a list of sus-
picious statements for developers, developers have to
manually check one by one although these statements
may spread around anywhere in the program. Develo-
pers’ check on one statement cannot be used to aid their
check on other statements. To fully leverage developers’
feedback, VIDA combines existing fault-localization ap-
proaches with developers’ debugging habit. Moreover,
as VIDA follows developers’ debugging habit, VIDA
may be more applicable than existing fault-localization
approaches.

4 Tool/Analysis Integration: Tool-Tool/
Analysis-Analysis Cooperation

Integration of analyses or tools has been pursued
by various researchers[32]. Our previous work has in-
tegrated static analysis and dynamic analysis[33], inte-
grated dynamic analysis and dynamic analysis[34], in-
tegrated dynamic analysis and static analysis[35], inte-
grated dynamic analysis, static analysis, and dynamic
analysis[36-37]. We next discuss how tool assessment
needs to be adjusted when integrating the use of mul-
tiple tools on the program under analysis (Subsection
4.1) and then present a concrete example of integrating
static and dynamic analyses (Subsection 4.2).

4.1 Tool-Tool Integration

When integrating stand-alone tools to be used in
combination (either tools within the same integrated
environment or tools from different integrated environ-
ments) instead of choosing only one of them to be used,
assessing these tools needs to take into account of the
complementary effect of multiple tools. For example,
for test-generation tools that aim to achieve high code
coverage such as branch coverage, comparing just the
percentages of branch coverage achieved by each tool
is an existing common way of assessing and compar-
ing the effectiveness of the tools. Such assessment and
comparison would be desirable when only one of the
tools under comparison is selected to be used but un-
desirable when multiple tools are selected to be used in
combination.

To address this issue, our previous work[38] has pro-
posed branch ranking to characterize which branches
are more difficult to be covered by n tools under con-
sideration for being selected to be used in combination.
In particular, we rank all the branches in the code under
test based on the number of tools that can cover them.
A rank-1 branch is covered by only one of the n tools
while a rank-2 branch is covered by only two of the n
tools, and so on. If a tool can cover more top-ranked
(e.g., rank 1 or 2) branches, this tool demonstrates bet-
ter effectiveness in covering branches that are difficult

to be covered by other tools. Then such a tool is more
desirable to be selected when multiple tools are selected
to be used in combination.

4.2 Analysis-Analysis Integration

Program analysis has been approached in two dif-
ferent directions. One is static analysis, where some
properties about a program are analyzed by conside-
ring all possible inputs. The other one is dynamic ana-
lysis, where a program is executed with a specific input,
and the properties are examined along the execution of
this input. The result of static analysis is generic to
all inputs, but is not always a deterministic result. For
example, given a property P , a static analysis usually
reports three kinds of results for a program: P holds,
P does not hold, and P may hold. On the other hand,
the result of a dynamic analysis is specific to one input,
but is always deterministic, i.e., informing whether P
holds or does not hold for a specific input. Further-
more, the result of a dynamic analysis is also companied
with a specific input, enabling further analysis. In other
words, we not only know that P holds, but also know
on which specific input P holds.

Since static and dynamic analyses are complemen-
tary to each other, a new trend in program analysis is
to mix static and dynamic analyses, forming a hybrid
analysis. An example of this mixture can be seen in the
area of PHP program maintenance. A common task in
web application development is to change the presen-
tation style of a web page. For static HTML pages,
this task can be done easily in visual editors. However,
for HTML pages generated from PHP programs, we
have to directly modify the PHP source, and this task
is not easy for two main reasons. First, the developer
has to be familiar with the structure of the PHP code,
which is usually different from that of the HTML page.
In addition, the developer writing the PHP code and
the developer changing the presentation style are of-
ten not the same person. Second, the developer needs
to ensure that the presentation changes are correctly
propagated back without any unexpected behavior. It
is very common that different parts of the generated
web pages depend on one location in the PHP source,
and the developer has to be very careful to ensure that
the change affects only the desired locations.

To address such issues, our previous work[35] pro-
poses an approach, named as collaborative hybrid ana-
lysis, that automatically propagates the changes on the
generated HTML pages back to their PHP sources. In
this way, the developer needs to change only the genera-
ted web page, in visual editors or any other ways, and
the changes can be automatically propagated back to
the source code, and our approach ensures that the
source code generates exactly the same HTML page.
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This approach is based on the idea of SyncATL[39].
Given a model transformation program in ALT, Syn-
cATL uses dynamic analysis to propagate the changes
on the output model back to the input model. First,
SyncATL runs the transformation in a special virtual
machine, which does not only generate the output, but
also builds precise links between the input and the
output. When an element on the output is changed,
SynATL finds the corresponding element in the source
model, and changes the source element accordingly.
SyncATL also checks whether multiple locations de-
pend on the source element to ensure that no unex-
pected change is introduced.

SyncATL propagates the changes only from the out-
put to the input. However, if we include the transforma-
tion program also in the links, it can also propagate the
changes to the transformation program. A PHP pro-
gram is essentially a transformation from some source
data such as a database to an HTML page. As a re-
sult, the same approach can be used to propagate the
changes on HTML pages to PHP programs.

However, there is a key difference: while a transfor-
mation input is specific to one execution of the trans-
formation, a PHP code snippet may be shared in the
generation of many web pages. As a result, when we
propagate changes to a transformation program, using
only dynamic analysis may result in unexpected results
when the program is used in the generation of a differ-
ent web page. As a result, our approach uses a hybrid
analysis: after the changes are propagated back using
the dynamic analysis, we further perform a static ana-
lysis to determine if the changes are safe in all possible
executions.

The safety of a change is defined by its effect on the
executions of the program. If a change affects only the
statement in the execution that generates the modi-
fied HTML page, then the effect of this change has al-
ready been seen on the modified output, and thus the
change is safe. Inversely, a change is potentially unsafe
if a change may affect some code that is not included
in the execution generating the modified HTML page.
Our static analysis checks in all PHP source programs
whether there exists any code that is data-dependent or
control-dependent on the changed code, and is not in-
cluded in the execution trace. This check can be easily
performed by program slicing[40]. If such code is iden-
tified, we highlight the code and inform the program-
mers that the change cannot be directly performed to
the source code.

5 Challenges

Economic Analysis for Cooperative Testing. In
cooperative testing, to test complex programs, often

a long list of problems can be presented to developers,
and developers have limited time to solve all the prob-
lems. Thus, it is desirable to enable developers to maxi-
mize their testing goals within the given time of solving
problems, such as achieving as high branch coverage
as possible or covering critical target branches (e.g.,
assertion-violating branches) by solving as few prob-
lems as possible. To enable such economical coopera-
tion of developers and tools, there is a strong need of
economic analysis that estimates the benefit of solving
a problem and the cost of covering a branch. With
such analysis, we can answer questions such as “what if
developers solve a specific problem, what benefits can
such solving induce?” (i.e., the benefit of solving a
problem), “how many problems need to be solved in
order to cover a specific branch?” (i.e., the cost of cove-
ring a branch).

Visualization to Improve User Understanding of
Problems. In cooperative testing, by looking at the
problems faced by test-generation tools, developers pro-
vide guidance to help DSE-based tools address the
problems and help the tools achieve higher code cove-
rage. Although Covana[4] identifies problems faced
by test-generation tools, the problems are shown to
developers in the format of textual output. Such tex-
tual output is not readily understandable, and provides
limited assistance to developers in investigating prob-
lems. Given an identified problem in the textual format,
developers still need to locate the problem in the pro-
gram and investigate the program to decide how to pro-
vide guidance. To help developers understand problems
faced by DSE-based tools and improve the usability of
DSE-based tools, there is a strong need of a visualiza-
tion approach that visualizes the coverage achieved by
DSE-based tools and the problem-analysis results for
the not-covered areas, allowing developers to effectively
and efficiently investigate the problems related to the
not-covered areas.

Tool Support for Human Guidance. Even if develo-
pers understand what problems are faced by the tools,
developers may have difficulties in implementing their
guidance from scratch, and it could be quite time-
consuming if they are not familiar with the program
under test. There is a strong need of program synthe-
sis techniques to generate a partial solution to better
assist developers in providing guidance. For example,
to provide a factory method, such techniques can syn-
thesize a factory method that produces an object state
that is close to the target state based on the generated
object states, and can suggest methods for developers
to modify the object state towards the target state.

Interactive Debugging for Fault Fixing. Existing in-
teractive debugging approaches[25-26,41] typically focus
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on fault localization rather than fault fixing. Although
automatic fault fixing[42] has been pursued, there is an
open challenge on how to conduct interactive fault fix-
ing by combining developers’ experience with existing
automatic techniques. As fault fixing is also a human-
centric task, there is a strong need of future research of
improving the efficiency of fault fixing in an interactive
way.

Integration of Program Analyses. While more and
more approaches are proposed by integrating different
kinds of analyses, there still exists no systematic mecha-
nism that guides the integration of analyses. There is a
strong need of a theoretical foundation to explain when
and how different analyses can be integrated, and how
to ensure or, for the least, to determine the safety of
the integrated analyses.

6 Conclusions

In this article, we have summarized recent advances
and challenges in cooperative testing and analysis, a
new research frontier on synergistic cooperations be-
tween humans and tools along with cooperations be-
tween tools and tools. Such cooperations are motivated
by the observation that a tool is typically not powerful
enough to address complications in testing or analysis
of complex real-world software, and the tool user or
another tool may be able to help out some problems
faced by the tool. In cooperative testing analysis, tool-
human cooperation consists of two sub-types, depend-
ing on who are on the “driver” seat to conduct major
work: human-assisted computing and human-centric
computing. In human-assisted computing, tools are on
the “driver” seat and engineers provide guidance to the
tools so that the tools could better carry out the work.
An example approach of human-assisted computing is
Covana[4], an approach that precisely identifies prob-
lems faced by test-generation tools to reduce human ef-
forts in providing guidance to the tools. In contrast, in
human-centric computing, engineers are on the “driver”
seat and tools provide guidance to the engineers so
that the engineers could better carry out the work.
An example approach of human-centric computing is
Pex4Fun[22-24], a web-based serious gaming platform
for teaching and learning programming and software
engineering. Tool-tool or analysis-analysis cooperation
is often in the form of tool or analysis integration. An
example approach of analysis-analysis cooperation is
collaborative hybrid analysis[35] that automates presen-
tation changes in dynamic web applications.
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