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Abstract Pattern matching with wildcards (PMW) has great theoretical and practical significance in bioinformatics,
information retrieval, and pattern mining. Due to the uncertainty of wildcards, not only is the number of all matches
exponential with respect to the maximal gap flexibility and the pattern length, but the matching positions in PMW are also
hard to choose. The objective to count the maximal number of matches one by one is computationally infeasible. Therefore,
rather than solving the generic PMW problem, many research efforts have further defined new problems within PMW
according to different application backgrounds. To break through the limitations of either fixing the number or allowing an
unbounded number of wildcards, pattern matching with flexible wildcards (PMFW) allows the users to control the ranges
of wildcards. In this paper, we provide a survey on the state-of-the-art algorithms for PMFW, with detailed analyses and
comparisons, and discuss challenges and opportunities in PMFW research and applications.
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1 Introduction

In recent years, pattern matching with wildcards
has been widely used in various application fields, such
as bioinformatics[1], intrusion detection systems[2], and
pattern mining[3-6]. In bioinformatics, for example, the
DNA sequence TATA is a common promoter that of-
ten occurs after the sequence CAATCT within 30∼50
wildcards[7]. Pattern matching with wildcards (PMW)
has become especially crucial in exploring valuable in-
formation from DNA sequences. In intrusion detection
systems, various attacks can be detected by means of
some predefined rules where each rule is represented
by a regular expression that defines a set of strings.
It would be convenient and efficient to merge regular
expressions whose languages are similar to forming a
compact pattern with variable-length gaps.

In text mining[8], it is very natural to consider se-
quential patterns with wildcards where patterns are
composed of words that can capture semantic relations
between words. Table 1 shows an example to demon-
strate how textual patterns with wildcards outperform
general patterns in text mining. The text is from the
title and abstract of a paper published on the Know-

ledge and Information System in 2013[9]. We assume
that the issue is to extract keywords from the text
automatically[10]. The top frequent single words and
textual patterns with wildcards are also listed in Table
1 where the number after each colon indicates the fre-

Table 1. A Motivation Example

Text Frequent
Words

Frequent
Patterns with
Wildcards

Topic-aware social influence
propagation models · · · We
introduce novel topic-aware
influence-driven propagation
models that · · · In particu-
lar, we first propose simple
topic-aware extensions of
the well-known Independent
Cascade and Linear Threshold
models. However, these pro-
pagation models have a very
large number of parameters
which could lead to · · ·
Keywords: social influence;
topic modeling; topic-aware
propagation model; viral mar-
keting

Model: 11,
topic: 7,
propagation: 6,
influence: 6,
social: 4,
· · ·

Topic model: 7,
topic aware
propagation
model: 3,
social
influence: 3,
influence
driven propa-
gation: 3,
· · ·
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quency of a word or a pattern. It can be seen that al-
though the single words can capture the main topics
of the paper, they are different from the keywords pro-
vided by the authors. For the keyword “topic model”,
it occurs only once continuously in the abstract. But
the pattern “topic model” with wildcards occurs seven
times. Furthermore, all occurrences of the pattern
“topic aware propagation model” are not continuous.

Giving a pattern P and a text T , some classical
matching algorithms return the matching positions of
P in T . This matching can be exact, and can also
be approximate. However, if wildcards are added into
the process of matching, this PMW problem becomes
much complicated. There are three types of research
efforts on dealing with pattern matching with wild-
cards: 1) a fixed number of wildcards[11-15], 2) the num-
ber range of wildcards to be specified separately[16-21],
namely flexible wildcards, and 3) an unbounded number
of wildcards[5,22-24]. As the first two types have limited
flexibilities for the user’s queries, pattern matching with
flexible wildcards (PMFW) has drawn more attention.

Due to the uncertainty of wildcards, not only is the
number of all matches exponential with respect to the
maximal gap flexibility and the pattern length, but the
matching positions in PMW are also hard to choose.
In Example 1 below, although the length of the text is
5 and the maximal gap flexibility is just 2, the num-
ber of matches has already reached 6 and the matching
positions are even more complicated. Because of the
flexible wildcards, there can be more than one, actually
an exponential number of occurrences of a pattern at
the same element position. Thus counting the matching
positions of all matches one by one is computationally
infeasible.

Example 1. Given P = a[0, 2]c[0, 2]c and T = acccc,
where [0, 2] means there are 0 to 2 wildcards at each
of these places, the number of all matches is 6, and
the matching positions are {(1, 2, 3), (1, 2, 4), (1, 2, 5),
(1, 3, 4), (1, 3, 5), (1, 4, 5)} respectively.

To solve the above problems in PMW, this paper
reviews research efforts in PMFW from the following
three perspectives. First, the start position or the end
position of each matching occurrence of the pattern
in the text is reported[25-26] and this line of research
is referred to as the EPP (Ending Positions of Pat-
tern) problem. Second, only the number of all matches
of the pattern in the text[27-28] is computed, and this
is called the NAM (Number of All Matches) problem.
Third, to avoid a text letter being shared by more than
one matching occurrence, the one-off condition is in-
corporated into PMFW[29-30], called the OOC (One-off
Condition) problem. The one-off condition means that
every letter in T can be used at most once, namely, any

two occurrences of P cannot share the same position in
T .

The rest of the paper is organized as follows. We pro-
vide a brief review on pattern matching in Section 2.
In view of the above-mentioned three lines of research
within PMFW, we present recent studies in Sections
3∼5 respectively, along with an analysis and a com-
parison in each section. Meanwhile, the challenges and
future work are discussed in Section 6.

2 Overview of Pattern Matching

2.1 Classical Pattern Matching

Given a text t and a pattern p, the classical pat-
tern matching problem is to search for the appea-
rances of p in t. The classical pattern matching
is also called exact pattern matching. Lin et al.[31]

categorized the exact pattern matching algorithms
into four categories: automation-based[31-34], heuristic-
based[35-36], hashing-based[37-38], and bit-parallelism
based algorithms[39-40]. With the application prob-
lems extended, pattern matching has been generalized,
such as approximate pattern matching, multiple pat-
tern matching, and pattern matching with wildcards.

The approximate pattern matching focuses on the
problem of pattern matching that allows errors[41].
Given a text T , a pattern P and a pre-specified positive
integer k, the approximate pattern matching problem
is defined to find all substrings S’s in T such that the
distance between S and P is not larger than k. One of
the best studied distance functions is the edit distance,
which allows deleting, inserting and substituting cha-
racters in both strings.

Given a set of patterns P = {P1, P2, . . . , Pl} and a
text T , the multiple pattern matching is to find all oc-
currences of these patterns in T . One can solve this
problem by scanning T for each pattern separately, but
that requires scanning T as many times as the num-
ber of patterns. Therefore, some efficient algorithms
have been designed by scanning T only once for all
patterns[36,42]. The Wu-Manber algorithm[36] is based
on the Boyer-Moor algorithm[35] that uses the “bad
character” heuristic to skip over characters in the input
text. The authors of [42] proposed an efficient multi-
pattern matching algorithm based on a bit represen-
tation of patterns and text using a compact encoding
scheme.

2.2 Pattern Matching with Wildcards

Fischer and Paterson first generalized pattern
matching to consider “don’t care” letters, also called
wildcards or gaps in the literature[11]. A wildcard can
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match any letter in a given alphabet. The objective
was to find all locations of the occurrences of a pat-
tern P in a text T , where locations are matching po-
sitions of an occurrence in the text, and an occurrence
means a matching of P in T . The user can specify
a fixed number of wildcards between every two con-
secutive letters in P . The running time in [11] is
O(n log2 m log log m log |Σ|) where n is the text length,
m is the pattern length, and |Σ| is the alphabet size.
Muthukrishnan and Palem[12] proved the problem of
pattern matching with wildcards to be at least as hard
as the Boolean convolution problem. Indyk[13] and Cole
and Hariharan[15] improved the time efficiency of the
problem. The time complexities in [13] and [15] are
O(n log n) and O(n log m) respectively where n is the
text length and m is the pattern length. However, the
number of wildcards in [11-15] is a constant but not a
range, which limits flexibilities for the user’s queries.

The problem of pattern matching with flexible wild-
cards has been studied in [25] where the pattern con-
tains variable length gaps with a certain range. Rah-
man et al.[25] presented an O(n+m+α log g) algorithm
to report whether a pattern occurs in a text where n is
the text length, m is the pattern length, α is the total
number of occurrences of the substring in the text, and
g is the maximal gap length between any two consecu-
tive substrings. Bille et al.[26] gave an algorithm that
takes O(n log k+m+α) time to find all ending positions
of the substring in the text where n is the text length, k
is the number of substrings in the pattern, m is the pat-
tern length, and α is the total number of occurrences
of the substring in the text. Min et al.[27] and Zhu and
Wu[28] also studied the pattern matching problem with
flexible wildcards to count the number of occurrences of
a pattern in the text. The detailed algorithm analysis
and comparison will be given in Subsection 4.2.

Kucherov and Rusinowitch[22] and Zhang et al.[23]

studied the multi-pattern matching problem with un-
bounded wildcards, that is, the gap length between any
two consecutive substrings is arbitrarily large within
the text. A VLDC pattern is the sequence of keywords
p1@p2 · · ·@pm where pi (1 6 i 6 m) is a string over an

alphabet Σ called keyword and @ represents the varia-
ble length wildcards. Given a set of VLDC patterns
P and a text T , the multi-VLDC matching problem is
to determine whether one of the patterns of P matches
T . In [22], an algorithm is proposed to solve the prob-
lem in O((|t|+ |P |) log |P |) where |t| is the text length,
|P | is the total length of keywords in every pattern of
P . Zhang et al.[23] presented a faster and simpler algo-
rithm that takes O((|t| + ||P ||) log K/ log log K) where
|t| is the text length, ‖P‖ is the total number of key-
words in every pattern of P , and K is the number of
distinct keywords in P .

Another dimension of the pattern matching problem
with wildcards is studied in [29-30] where the occur-
rences of a pattern do not share the characters in the
text, called the one-off condition. The one-off condi-
tion has two advantages. On the one hand, it makes
the sequential pattern mining problem satisfy the Apr-
iori property[43] that can greatly improve the time ef-
ficiency of the pattern mining. On the other hand, it
also makes great sense in many practical applications.
For example, in text mining, the user is interested in
how frequently the words co-occur in the document that
captures the semantic relations between words. Obvi-
ously, it is more reasonable that each occurrence of a
word is counted only once in the occurrences of a pat-
tern.

Ding et al.[5] also studied the pattern matching prob-
lem with wildcards applied in sequential pattern min-
ing where the occurrences of a pattern satisfy the non-
overlapping condition that is very similar, but different
from the one-off condition. Let occ1 = (l1, . . . , lm) and
occ2 = (l′1, . . . , l

′
m) be two occurrences of a length-m

pattern. If li 6= l′i for every 1 6 i 6 m, occ1 and occ2

are non-overlapping. However, occ1 and occ2 satisfy the
one-off condition only if li 6= l′j for every 1 6 i, j 6 m.

In Table 2, some important features of different
types of pattern matching with wildcards are listed.

In the sections to follow, we focus on the problem
of pattern matching with flexible wildcards (PMFW),
based on our own research efforts since 2004. This
problem has also been extended to approximate matc-

Table 2. Different Types of Pattern Matching Problems with Wildcards

Algorithm Input Constraints Output

Literature [11-14] One text and one pattern Fixed wildcards Occurrences

Literature [16-20] One text and one pattern Flexible wildcards Ending positions of occurrences

Literature [22] One text and multi-patterns Unbounded wildcards Whether one of the patterns occurs in the text

Literature [27-28] One text and one pattern Flexible wildcards Number of occurrences

Literature [29-30] One text and one pattern Flexible wildcards Occurrences with the one-off condition

Literature [23] One text and one pattern Unbounded wildcards Occurrences with the non-overlapping condition

Literature [24] One text and one pattern Unbounded wildcards Occurrences with the one-off condition

Literature [21] One text and one pattern Unbounded wildcards, Ending positions of occurrences

flexible wildcards
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hing[44-45] and pattern mining[4,46], which are outside
the scope of this paper.

3 EPP: Ending Positions of Pattern

3.1 Problem Statement

Let P = p1[N1,M1]p2[N2,M2] · · · [Nk−1,Mk−1]pk be
a pattern with wildcards of k subpatterns and T =
t1t2 . . . tn be a text of length n, where subpattern pi

(1 6 i 6 k) is a letter or a string without any wild-
cards, [Ni−1,Mi−1] is a string that represents the local
length constraint over a finite alphabet Σ, and Ni−1

and Mi−1 are the number range of wildcards between
pi−1 and pi, s.t. 0 6 Ni−1 6 Mi−1.

Definition 1 (Occurrence). An occurrence C =
(c1, . . . , ci, . . . , ck) is a list of position indices of P in
T . If there exists a sequence of position indices C =
(c1, . . . , ci, . . . , ck) where 1 6 ci 6 n, 1 6 i 6 k−1 such
that

1) Tci
= pi,

2) Ni + |pi| 6 ci+1 − ci 6 Mi + |pi|,
where C is a match of P in T for all 1 6 i 6 k.

Definition 2 (EPP Problem). The objective of the
EPP problem is to return the end position indices of all
occurrences of P in T , namely all ck.

In Example 1, the result of the EPP problem is the
set of positions {3, 4, 5}.

3.2 Algorithms

3.2.1 Algorithm of Rahman et al.

Algorithm 1 outlines the steps of the algorithm of
Rahman et al.[25] This algorithm uses the famous Aho-
Corasick (AC) automaton[32] to report the occurrences
of the subpatterns {p1, . . . , pk}. For each subpattern
pi (2 6 i 6 k), the algorithm initializes a sort list Li.
Initially, when the j-th occurrence x of p1 is reported,
the range [(endpos(x) + N1 + 1), (endpos(x) + M1 + 1)]
is stored to L2, where endpos(x) is the end position of
x. Once an occurrence y of pi (i > 1) is reported, Li is
searched and if startpos(y) is not within Li, then it is

Algorithm 1.

1. Build the AC-automaton for the subpatterns
p1, p2, . . . , pk

2. Scan text T from t1 to tn, each time when an occurrence
x of pi is reported do

3. if i = 1 or startpos(x) is contained in the range in

Li then

4. if i < k then

Append the range R(x) = [endpos(x)+Ni +1,

endpos(x) + Mi + 1] to the end of Li+1.

5. if i = k then Report endpos(x);

discarded, where startpos(y) is the start position of y.
Otherwise, the new range is calculated and stored in
Li+1 when i is less than k, or the end position of y is
returned if i equals to k.

Example 2. Given T = acacgactgcagctat , P =
ac[0, 6]g[2, 5]ct .

As shown Fig.1, at position 2, AC automation re-
ports the occurrence of p1, and Algorithm 1 stores
the range (3, 9) to L2. When reporting the occur-
rence of p2 at position 5, the range (8, 11) is put into
L3, since L2 = {(3, 9), (5, 11)} contains 5. At posi-
tion 8, although AC automation reports the occurrence
of p3, the algorithm does not return an occurrence
of P , because 7 does not belong to L3 = {(8, 11)}.
When the occurrence x of p3 is at position 14, the al-
gorithm returns 14 since startpos(x) = 13 belongs to
L3 = {(8, 11), (12, 15), (15, 18)}.

Fig.1. Example for Algorithm 1.

The time complexity is O(n log k+m+α log w), and
the space complexity is O(m+α), where m =

∑k
i=1 |pi|

is the sum of the lengths of the strings, α is the total
number of occurrences of all subpatterns in the text,
and w = max16i6k(Mi−Ni) is the maximal gap length
in P .

3.2.2 Algorithm of Bille et al.

Bille et al.[26] studied on how to increase the effec-
tiveness.

In Example 2, let us look at the algorithm of Rah-
man et al. when the occurrence x of p2 at position 9
is reported. At this time, L2 = {(3, 9), (5, 11), (8, 14)},
and L3 = {(8, 11)}. Since L2 contains position 9, the
range (12, 15) is put into L3.

Bille et al. found that Li might contain useless and
overlapping ranges. Therefore in their algorithm, they
remove useless ranges, and merge some ranges if they
have overlaps. Using this algorithm, at position 9 of
Example 2, L2 = {(3, 14)} and L3 = {(8, 15)}, through
reducing the ranges in Li, the algorithm not only needs
less memory to store the ranges, but also enhances the
searching efficiency.

The algorithm of Bille et al. has a time comple-
xity of O(n log k + m + α) and a space complexity of
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O(m+A), where A =
∑k

i=1 |Ni| is the sum of the lower
local length constraints.

3.3 Comparison

Both algorithms perform on-line searching, and they
scan the given text only once. The algorithm of Rah-
man et al. may require a large space when it is used
for processing a large biological text, since α typically
increases with the length of the text, hence the space
complexity is likely to become a bottleneck. Conversely,
the algorithm of Bill et al. is not affected much by the
length of the text.

Both algorithms would perform poorly when most
subpatterns in the given pattern are single letters, be-
cause all these subpatterns would be used to build the
AC automaton. The AC automaton is a Trie structure
and its effectiveness is reduced with single letters. A
comparison is given in Table 3.

Table 3. Comparison of EPP Algorithms

Rahman et al. Bille et al.

Data structure AC automaton AC automaton

Space complexity O(n log k + m + α) O(n log k + m + α)

Time complexity O(m + α) O(m + A)

4 NAM: Number of All Matches

4.1 Problem Statement

Let P = p1[N1,M1]p2[N2,M2] · · · [Nm−1,Mm−1]pm

where every pi (1 6 i 6 m) is a single letter. If there
is no wildcard between two adjacent characters in p, [0,
0] will be used for all [Ni,Mi] (i = 1, . . . , m− 1).

Definition 3 (Global Length Constraint). The
global length constraints [GN , GM ] specify the length
range of each matching substring of T in which P oc-
curs. Each matching substring has to satisfy

∑k
i=1 |pi|+∑k

i=1 |Ni| 6 GN 6 GM 6
∑k

i=1 |pi|+
∑k

i=1 |Mi|.
Definition 4 (NAM Problem). The objective of the

NAM problem is to compute the number of all matches.
In Example 1, the result of NAM is 6. NAM does not
care about the specific positions of all matches.

4.2 Algorithms

We present PAIG[27] and GCS[47] using the following
example.

Example 3. T = agaagaggaagaa and P =
a[0, 2]g[1, 2]a[0, 3]a.

4.2.1 GCS

GCS[47] employs a searching table to calculate the
matching numbers of a pattern with wildcards. The

matching table H is an m × n matrix of integers,
where H[i][j] is the number of matches of pi ending
at tj . For example, H[3][10] = 2 indicates there are
two matches of P ending at position 10. Given a pat-
tern P = p1p2 . . . pm, and a text T = t1t2 . . . tn, the
searching process of GCS consists of three steps. First,
GCS scans the text from the left to the right. For any
position j (1 6 j 6 n), if tj = p1,H[1][j] is set to 1,
otherwise H[1][j] is set to 0. Second, for any position
j (1 6 j 6 n), if tj = pi (1 < i 6 m), then H[i][j] is
updated to

∑max(1,j−gi−1)
k=1 H[i− 1][k] where gi−1 is the

gap length between pi−1 and pi. Finally, the number of
times that P occurs in T is

∑n
j=1 H[m][j].

Table 4 is the matching table of GCS for Example
3. Firstly, the first row H[0] is initialized. Secondly,
all the cells (except the first row) are updated accord-
ing to the values of the previous row. For example,
H[2][5] = H[1][2] + H[1][3] + H[1][4] = 2. Finally, GCS
sums up the numbers of the last row and returns the
sum as the total of matches. Therefore, the number of
times is H[4][6] + H[4][10] + H[4][12] + H[4][13] = 13.

Table 4. Matching Table of GCS

T 1 2 3 4 5 6 7 8 9 10 11 12 13

a g a a g a g g a a g a a

1 a 1 0 1 1 0 1 0 0 1 1 0 1 1

2 g 0 1 0 0 2 0 2 1 0 0 2 0 0

3 a 0 0 0 1 0 0 0 0 2 3 0 0 2

4 a 0 0 0 0 0 1 0 0 0 2 0 5 5

The GCS algorithm can be easily extended to calcu-
late the support of a pattern according to the frequency
information of its prefix pattern for sequential pattern
mining. For this purpose, two maps, the rear map (RM)
and the head map (HM), are constructed. The rear
map records the number of occurrences and the end-
ing positions of a pattern. RM [x] indicates the number
of times that a pattern ends at x. The head map is
built to record locations and times of the length-2 pat-
tern’s starting position information. HM [x] indicates
the number of times that a pattern starts at x. Given
a pattern P = p1p2 . . . pl, and its rear map RM p1p2...pl

,
the length-2 pattern Q = plpl+1 and its head map
HM pl+1 , then the support of pattern L = p1p2 . . . plpl+1

is calculated by the following equation:

Sup(p0p1 . . . plpl+1) =
∑n

x=1
RM [x]HM [x].

For Example 3, the rear map of P =
a[0, 2]g[1, 2]a[0, 3]a, the head map of length-2 pat-
tern Q = a[0, 2]g, and the rear map of L =
a[0, 2]g[1, 2]a[0, 3]a[0, 2]g are given in Table 5. Then,
Sup(L) can be available through them, Sup(L) =
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RM P [6] × HM Q[6] + RM P [10] × HM Q[10] = 4. The
support of L can also be computed by Sup(L) =
RM L[7] + RM L[8] + RM L[11] = 4.

Table 5. Rear Map and Head Map for Example 3

T 1 2 3 4 5 6 7 8 9 10 11 12 13

a g a a g a g g a a g a a

RMP 0 0 0 0 0 1 0 0 0 2 0 5 5

HMQ 1 0 1 2 0 2 0 0 1 1 0 0 0

RML 0 0 0 0 0 0 1 1 0 0 2 0 0

When calculating the matching numbers that pi ends
at the positions in the text, GCS needs to scan the
whole text, and for each position, backtrack w steps
where w is the gap length. Therefore, the time comple-
xity of GCS is O(mnw) where m is the pattern length,
n is the text length, and w is the maximal gap length
between any two consecutive characters. Furthermore,
GCS needs O(n) space to construct the matching table.

4.2.2 PAIG

PAIG[27] also uses an n× (m− 1) matching table as
illustrated in Table 4. The meaning of each cell in the
table is explained as follows. The row information in-
dicates the starting position of a match in the text; the
column information indicates the length of the pattern;
the numbers in the cells indicate the ending indices of
matches; and the numbers in brackets indicate counters
of respective matches. For example, 8(1), 9(2) on row
6 indicate that starting from t6, there are 1 + 2 = 3
matches of P2 = a[0, 2]g[1, 2]a, 1 ending at t9, and the
other two ending at position 10. The final matching
result is obtained through summing up all counters of
the last column. It is 13 for the example in Table 6.

Table 6. Matching Table of PAIG

Position T P1 = a[0, 2]g P2 = a[0, 2] P3 = a[0, 2]

g[1, 2]a g[1, 2]a[0, 3]a

0 a 1(1) 3(1) 5(1)

1 g - - -

2 a 4(1) - -

3 a 4(1), 6(1) 8(1), 9(1) 9(1), 11(2), 12(2)

4 g - - -

5 a 6(1), 7(1) 8(1), 9(2) 9(1), 11(3), 12(3)

6 g - - -

7 g - - -

8 a 10(1) 12(1) -

9 a 10(1) 12(1) -

10 g - - -

11 a - - -

12 a - - -

Computational time is saved through skipping some
empty cells. Once an empty cell is identified, all re-
maining cells on the same row should also be empty.

Therefore PAIG can simply skip them and go to the
beginning of the next row. In applications, only a small
fraction of the table needs to be filled.

For example, starting from position 2, there is no
match of P2 = a[0, 2]g[1, 2]a, thus there should be no
match of P3 = a[0, 2]g[1, 2]a[0, 3]a, either. For the same
reason, on row indices of 2, 5, 7, 8, 11, 12 and 13, PAIG
only fills the first column.

There are n rows and (m−1) columns in the match-
ing table. The length of a variable length cell is at
most 2

∑m−1
i=0 wi = O(mw), where w is the maximal

gap flexibility. Therefore, the time complexity of PAIG
is O(n×m×mw×w× log(mw)) = O(nm2w2 log(mw)).
The space complexity of PAIG is O(n).

4.3 Comparison

Both PAIG and GCS employ an incremental ap-
proach to fill matching tables. In other words, they
are dynamic programming oriented approaches. This
is why they are efficient.

In PAIG, more information is recorded. Therefore
the starting-ending pairs of matches are available. In
GCS, only the ending points of matches are available.
The data structure of GCS is simpler, and it is a matrix
of integers. For this reason, PAIG can be easily revised
to suit global length constraints, while GCS cannot. For
Example 3, if we require that each match have a length
between 7 and 9, then according to the last column in
Table 4, the following starting-ending pairs satisfy this
requirement: (3, 9), (3, 11), (5, 11) and (5, 12). There
are 1 + 2 + 3 + 3 matches.

PAIG and GCS have the same space complexity.
While employing certain memory sharing techniques,
the space complexity of PAIG is O(mw)[44]. However,
it is required that the sequence be segmented and read a
number of times. If we read the whole sequence into the
memory, the space complexity is O(n + mw) = O(n),
since very long gaps or sequences are unreasonable. To
reduce it further, GCS can fill a matching table row by
row instead of column by column. The mod operation
is also needed to keep only w rows. In that case, the
space complexity is O(mw). However, this approach is
more complex, and also requires the segmentation of
the sequence. In most applications, reading the whole
sequence into the memory is a better choice.

The time complexity of GCS is more efficient than
that of PAIG for the worst case, as given above. But
PAIG is more efficient for the best case. According to
the analysis in Subsection 4.2.2, when we fill the match-
ing table of PAIG, if one element is empty, all remaining
cells in the same row are simply skipped. Therefore the
time complexity of PAIG is O(n). However, each ele-
ment in the matching table of GCS should be filled, and
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the time complexity is O(nm). A comparison between
these two algorithms is given in Table 7.

Table 7. Comparison of NAM Algorithms

PAIG GCS

Global length constraints Yes No

Data structure Table Table

Space complexity O(n) O(n)

Time complexity Worst O(nm2w2 log(mw)) O(nmw)

Best O(n) O(nm)

5 OOC: One-off Condition

5.1 Problem Statement

Definition 5 (One-off Condition). Suppose C1 =
(e1, . . . , em) and C2 = (h1, . . . , hm) are two matching
position indices of P in T . If ∀1 6 i, j 6 m, ei 6= hj

then C1 and C2 satisfy the one-off condition.
This one-off condition has some similarity but is dif-

ferent from the non-overlapping condition in [5] (men-
tioned in Subsection 2.2). [5] studies the pattern match-
ing problem with unbounded wildcards, that is, the gap
length between any two consecutive substrings can be
arbitrarily large within the text.

Example 4. Given T = tatttcc, P = t[1, 2]t[1, 2]c.
All occurrences of P in T are {(1, 3, 6), (1, 4, 6), (1, 4,
7), (3, 5, 7)}. (1, 4, 6) and (3, 5, 7) satisfy the one-off
condition, while (1, 3, 6) and (3, 5, 7) do not, because
position 3 occurs in both (1, 3, 6) and (3, 5, 7).

Definition 6 (OOC Problem). The objective of the
OOC problem is to find the maximum number of oc-
currences of P in T , on the condition that any two oc-
currences of P in T must satisfy the one-off condition.
OOC outputs the matching positions.

In Example 4, the objective of the OOC problem is
to get the optimal solution {(1, 4, 6), (3, 5, 7)}.

5.2 Algorithms

5.2.1 SAIL

SAIL[29] scans the input text T . For every position i
if Ti equals pm, it checks whether there is an occurrence
of P in T through a sliding window. SAIL first calcu-
lates the range of possible positions of p1 by considering
global constraints when scanning a possible position of
pm, and then deals with local constraints. Basically,
SAIL conducts two phases, a forward phase and a back-
ward phase. The matching results are provided by the
following procedures of SAIL.

1) List p1, . . . , pj , . . . , pm and start from T1 in a for-
ward manner to locate every pattern letter pj ’s possible
positions in T .

2) SAIL sets “1” to the corresponding cell in Table
8 to indicate a seed position (see Definition 7 below).

This mechanism guarantees that as long as a sequence
c1, c2, . . . , cj exists in T , which satisfies the correspond-
ing local constraints, the cell for a seed position of pj is
marked with “1” in the search table.

3) SAIL keeps searching seed positions of every pat-
tern letter pj until one seed position for the last pat-
tern letter pm is found. Once one seed position of pm is
found, the backward phase is triggered to locate an op-
timal occurrence of P in T . Actually one seed position
of pm indicates that there is a sequence c1, c2, . . . , cm

which satisfies the local constraints, consequently, in
the backward phase, an optimal occurrence is guaran-
teed to be returned.

4) In the backward phase, using cm, a seed position of

pm, which trivially becomes an optimal position
←→
Cm of

pm, SAIL finds
←−−→
Cm−1. Using

←−−→
Cm−1, SAIL finds

←−−→
Cm−2.

This procedure is repeated until all optimal positions of
one optimal occurrence are located. The search table
is re-initialized for the next round search. Letters used
for matching this occurrence are marked to avoid being
used again (for the OCC condition). In Table 8, the
trace of one optimal occurrence has been highlighted.

Table 8. Search Table for P = a[0, 3]e[2, 3]f [0, 3]b[0, 3]g

and T = aadfeefefhbbg

a a d f e e f e f h b b g

a ↑ 1 ← 1 ← 0 ← 0 0 0 0 0 0 0 0 0 0

e 0 0 0 0 ↑ 1 ← 1 ← 0 0 0 0 0 0 0

f 0 0 0 0 0 0 0 0 ↑ 1 0 ← 0 0 0

b 0 0 0 0 0 0 0 0 0 0 ↑ 1 1 ← 0

g 0 0 0 0 0 0 0 0 0 0 0 0 ↑ 1

Definition 7 (Seed Position). When j = 1, posi-
tion i is a seed position of pj if ti = pj; and when
2 6 j 6 m, if ti = pj and ∃ a seed position x of pj−1

such that Nj−1 6 y−x−1 6 Mj−1, position y is a seed
position of pj.

Two important issues were taken into consideration
to design SAIL.

1) Online searching: SAIL returns each matching
substring of P in T as soon as it appears in the input
T .

2) Optimization: under the one-off condition, SAIL
determines which occurrence is an optimal one if mul-
tiple occurrences exist for a pk’s position by applying
the left-most strategy.

In Example 4, SAIL’s output is (1, 3, 6), which is not
the optimal solution {(1, 4, 6), (3, 5, 7)}. Hence, SAIL
is not a complete algorithm, because it loses occur-
rences when the text is available in an offline manner[48].
Meanwhile, the completeness of SAIL has been proven
under a particular restriction[48], i.e., if the pattern does
not have any recurring letters.
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The time complexity of SAIL is O(n + fGMmw),
where f is the frequency of P ’s last letter occurring
in T . The space complexity of SAIL is O(mL), where
L = m +

∑k
i=1 |bi| is the maximum length of a pattern

occurrence with local length constraints.

5.2.2 BPBM

BPBM[30] is an online algorithm based on bit-
parallel technology to simulate the matching process
which adopts two nondeterministic finite state automa-
tons (NFAs). The first NFA is used to identify pattern
matching. When it moves to a terminal state, it in-
dicates a pattern match in the current search window.
The second NFA is used to identify whether there exi-
sts a prefix of the pattern in the current search window
to accelerate the scanning process by dropping useless
sequences in the text.

In BPBM, given a pattern P , the first automaton
is defined by A = (

∑
P , I, F, D), where |∑P | is the

number of letters in the pattern alphabet that contains
all distinct letters in pattern P without wildcards. The
bit masks I, F , D are used to represent the gap ini-
tial state, the gap final state, and the transition state
of P , respectively. I has 1 in the gap initial bits, and
F has 1 in the gap final bits. D has 1 in the active
bits corresponding to each NFA active state of letter
δ ∈ ∑

P ∪{φ} in P , where φ denotes a wildcard. The
BPBM algorithm builds a table B, which also stores
bit masks b1 . . . bL for wildcards and each letter in the
pattern. For letter δ ∈ ∑

P {φ}, we set the j-th bit to
1 if pj = δ or pj = φ.

BPBM obtains D by the following formulae:

D = (D ¿ 1)&B[δ],

D = D|((F − (D&I))∧F ).

The rationale is as follows. First, D = D&B[δ]
checks whether the current letter δ is active. D&I iso-
lates the active gap initial bits. Subtracting this from
F generates ε-transition outcomes from each gap final
bit to the corresponding gap initial bit bi. If bi is active,
the outcome will have 1 only in bit (bi + Ni + Mi − 1)
from bit bi. Else, the outcome will have 1 at the gap
final bit. Then, it fills the upper limit of a gap final
bit with “∧F” operation, successfully propagating the
active bits to the desired target bits. Once the propaga-
tion has been done, we OR the results with the already
active bits in D, as shown in Table 9.

The existing algorithms, Gaps-Shift-And and Gaps-
BNDM[17], based on the bit-parallelism technology can-
not handle a pattern that has only one letter be-
tween successive wildcards and when the minimum lo-
cal length constraints are zero. BPBM can not only
handle these conditions through improving the formula

Table 9. BPBM with P = a[0, 2]g[0, 3]g and T = aagg

Prepro- I = 00010001, F = 01001000, B[a] = 11101110,

cessing B[g] = 01111111, B[φ] = 011001110, D = 00000001

T D Description

g 00001111 D right transition. The 5th∼8th states

are active.

g 01111111 D right transition. The 2nd∼4th states

are active.

a 11101110 D right transition. Have an occurrence.

a 11011100 D right transition. Have an occurrence.

of ε-transition in the matching process, but also return
a concrete matching position sequence, which makes it
more applicable.

The time complexity of BPBM is O(n+fGMdL/we),
where w is the number of bits in a machine word.
BPBM is superior to SAIL, when L has a low w. The
space complexity is O((m + |∑P |)dL/we).

5.2.3 SBO

SBO[49] is an off-line algorithm based on a new non-
linear structure called Nettree. A Nettree is a kind of
directed acyclic graph (DAG) with two kinds of edge
labels, “parent-child” and “child-parent”, where each
node has zero or more children nodes and zero or more
parent nodes. The creation steps of the Nettree are
given below.

SBO keeps searching seed positions of every pat-
tern letter pj (1 6 j 6 m). Once one seed position
of pj is found at Ti, node ni

j will be created in the
j-th layer, and the node will be added at the tail of
the j-th layer. If ni

j is a seed position of seed position
nq

j−1, a parent-child relation between node ni
j and nq

j−1

will be created. Meanwhile, from the m-th level to the
first layer, a child-parent relation will be created, too.
For each node ni

j , SBO defines ni
j ’s indegree Rin(ni

j)
as the number of paths from the layer level to ni

j , ni
j ’s

outdegree Rout(ni
j) as the number of paths from ni

j to
the m-th layer, and R(j) =

∑m
j=1(Rin(ni

j) × Rin(ni
j))

as the degree of the position Tj . For Example 4, the
Nettree is shown in Fig.2, Rin(n3

2) = 1, Rout(n3
2) = 1,

R(3) = R(n3
1) + R(n3

2) = 2.

Fig.2. Nettree for Example 3.
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The SBO algorithm has two strategies: strategy of
greedy-search parent (SGSP) and strategy of right-most
parent (SRMP), to find two occurrences of the same m-
th layer, and then select the better occurrence from the
results of SGSP and SRMP. The main idea of SGSP is
to find an approximately optimal parent according to
the degree of the position. If there are many candidate
positions, SGSP selects the position whose degree R is
the smallest. SRMP is to find the right-most parent of
the current node at each step in the process of searching
for an occurrence.

The time complexity of SBO is O(wn(n+m2)). The
space complexity of SBO is O(wmn).

5.3 Comparison

SBO consumes more space than SAIL and BPBM,
because the Nettree is a tree and contains the whole
candidate seed positions. In general, BPBM has a lower
time and space complexity than SAIL. All three algo-
rithms adopt heuristic strategies, and cannot guarantee
the completeness. When the text is available in an off-
line manner, SBO can obtain more occurrences of the
pattern than SAIL and BPBM in most cases as it re-
lies on using two heuristic strategies repeatedly, and
meanwhile, it also consumes more time than SAIL and
BPBM. A comparison is given in Table 10.

Table 10. Comparison of OOC Algorithms

SAIL BPBM SBO

Matching Left-most Left-most SGSP,

strategy SRMP

Data structure Sliding window Bit-parallel Nettree

Time All polynomial time and SBO > SAIL >

complexity BPBM

Space complexity SBO > SAIL > BPBM

Completeness All incompleteness, in general SBO >

SAIL = BPBM

6 Conclusions

In this paper, we have presented state-of-the-art al-
gorithms for dealing with pattern matching with flexi-
ble wildcards (PMFW), along three lines of efforts,
EPP, NAM and OOC.

For the EPP problem, the algorithm of Bille et al.
has a high efficiency in time and space, when most of
the subpatterns are not just a single letter. In the NAM
problem, PAIG is more efficient when the gaps in the
pattern are not flexible, while GCS is more efficient
for the other case. For the OCC problem, existing al-
gorithms can get complete solutions when the pattern
does not have recurring letters. With the online condi-
tion, BPBM has a better performance than the others.

In the offline condition, SBO can get more occurrences
than the others in most cases.

PMFW is still an open problem. Much work still
needs to be along the following directions.

Further Exploration of the NP-Hard Complexity of
the OOC Problem. For the OOC problem, there does
not yet exist any polynomial algorithm that can achieve
a complete solution in a general case, and therefore, it
is assumed to be NP-hard[24,29].

Multiple Pattern Matching with Flexible Wildcards.
Multiple pattern matching with flexible wildcards is
also an important research task. How to expand exist-
ing pattern matching algorithms with multiple patterns
at the same time? The objective is to achieve optimized
solutions in both efficiency and solution coverage. The
following three key issues need further investigations: 1)
sharing the search space of common subpatterns among
multiple patterns, 2) resource competition constraints
among multiple patterns, and 3) association analysis
among multiple patterns.

Approximate Pattern Matching with Flexible Wild-
cards. The PMFW problem can be extended with ap-
proximate matching. A new problem allowing the po-
sitions and the number of wildcards in the pattern to
have possible uncertainty should be studied. Since the
matching positions of the pattern in a text is uncertain,
the spatial properties of the pattern become more com-
plex, which could result in more challenges on how to
design and analyze matching algorithms. This problem
would play an important role in sequence alignment,
protein structure prediction and so on.

Applications in Bioinformatics. Studies have shown
that many human diseases are related to some repeat-
ing parts of genes, such as bacteria, viruses, and ner-
vous system diseases. Sequence pattern mining with
wildcards can help to find some interesting repetitive
patterns. From the biological point of view, evaluat-
ing sequence patterns by exploring sequential pattern
mining in bioinformatics can provide further insights.
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