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Abstract Nowadays energy-efficiency becomes the first design metric in chip development. To pursue higher energy
efficiency, the processor architects should reduce or eliminate those unnecessary energy dissipations. Indirect-branch pre-
diction has become a performance bottleneck, especially for the applications written in object-oriented languages. Previous
hardware-based indirect-branch predictors are generally inefficient, for they either require significant hardware storage or
predict indirect-branch targets slowly. In this paper, we propose an energy-efficient indirect-branch prediction technique
called TAP (target address pointer) prediction. Its key idea includes two parts: utilizing specific hardware pointers to
accelerate the indirect branch prediction flow and reusing the existing processor components to reduce additional hardware
costs and power consumption. When fetching an indirect branch, TAP prediction first gets the specific pointers called
target address pointers from the conditional branch predictor, and then uses such pointers to generate virtual addresses
which index the indirect-branch targets. This technique spends similar time compared to the dedicated storage techniques
without requiring additional large amounts of storage. Our evaluation shows that TAP prediction with some representative
state-of-the-art branch predictors can improve performance significantly over the baseline processor. Compared with those
hardware-based indirect-branch predictors, the TAP-Perceptron scheme achieves performance improvement equivalent to
that provided by an 8K-entry TTC predictor, and also outperforms the VPC predictor.
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1 Introduction

Power has become a first-class architectural design
constraint[1], forcing the processor architects to make
their great effort to reduce or eliminate those unneces-
sary energy dissipations as many as possible. Computer
architecture research has pursued two themes for higher
performance: exploiting parallelism and using specula-
tion. Branch prediction is the best-known example of
speculation. If the branch prediction was wrong, useless
instruction executions would waste energy. Previous re-
searchers have made great contributions to improve the
prediction accuracy of conditional branches[2-6]. Some
aggressive kinds of branch predictors have already been
used in newly published processors. Unlike conditional
branch prediction, it is more difficult to achieve high
prediction accuracy of indirect branches, for they re-
quire predicting target addresses instead of the branch
directions[7-9]. Nowadays the indirect-branch predic-
tion has become more important, for a great many pro-

grams are developed using object-oriented languages,
such as C++, Java. Indirect branches in those pro-
grams are used to implement several programming con-
structs, including virtual function calls, switch-case
statements and function pointers[10]. As shown in Fig.1,
they are more critical to processor performance com-
pared to conditional branches.

Though recent commercial processors have imple-
mented the indirect-branch predictors such as Cortex-
A15[11], AMD K10 families[12], they are usually spe-
cific predictors, which require a large dedicated sto-
rage to store the indirect-branch targets. This kind of
predictors[3,8-9,13], called dedicated-storage-predictors
in this paper, can predict targets rapidly[3,8,13]. Their
storage requirement, however, takes up significant die
area, which translates into extra power consumption.
In the light of energy efficiency, such techniques are
inefficient especially when the processor runs the appli-
cations that have rare indirect branches. To solve this
critical issue, Kim et al. proposed a novel way called
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Fig.1. MPKI (mispredictions per kilo instructions) of conditional branches and indirect branches in SPEC CPU INT 2006 and DaCapo

benchmarks using the conventional Perceptron branch predictor and the BTB. For DaCapo benchmarks, indirect branches are more

critical to processor performance compared to the conditional branches①.

VPC prediction[9] that reuses the existing branch pre-
dictor and the branch target buffer (BTB) to predict
indirect branches. Though it has very low cost, it may
take many cycles to finish one prediction, thus reducing
its performance improvement[14] compared to that of
the dedicated-storage-predictors. As the branch predic-
tion has already consumed large amount of energy and
is critical to the processor performance, what the ar-
chitects need is an energy-efficient solution that spends
similar time compared to that of dedicated-storage-
predictors based on only existing branch prediction
components. Such a solution should also be suitable
to various kinds of branch predictors.

In this paper, we propose a fast, hardware-reusing
indirect-branch prediction called target address pointer
(TAP) prediction. Its key idea, shown in Fig.2, in-
cludes two parts: utilizing specific hardware pointers
to accelerate the prediction flow and reusing the exist-
ing branch prediction components to reduce additional
hardware costs.
• Pointer Acceleration. It constructs a certain set of

specific hardware pointers, target address pointers, to
establish the mapping from the indirect-branch occur-
rences to the stored indirect-branch targets.
• Existing Hardware Reusing. It reuses the existing

branch predictor to distinguish various indirect-branch
occurrences, and stores multiple indirect-branch targets
in the existing hardware, such as the BTB.

When fetching an indirect branch, TAP prediction
first uses the branch predictor to generate the bits of
the target address pointer, and then selects the vir-
tual address calculated from this pointer to index the
predicted target. It is also a general solution to reuse
various kinds of branch predictors. Our experimental
results show that for four representative branch predic-
tors: GShare[15], Perceptron[2], O-GEHL[4], and TAGE
predictor[5], TAP prediction reduces the indirect-bra-

Fig.2. TAP prediction structure.

nch MPKI significantly over the commonly-used BTB-
based prediction. The MPKI reduction results in per-
formance improvement of 3.17%, 9.31%, 6.24% and
9.46%, respectively. Compared with previously pro-
posed hardware-based predictors, TAP prediction with
Perceptron predictor (TAP-Perceptron scheme) could
achieve performance improvement equivalent to an 8K-
entry TTC predictor or a 2 K-entry Cascaded predictor,
and also outperforms the VPC predictor by 2.39%.

2 Related Work

BTB is used to predict indirect-branch targets
conventionally[16]. However, the BTB records only the

①The running configuration is described in Section 5.
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last-taken targets, which cannot distinguish various
indirect-branch occurrences, resulting in poor predic-
tion accuracy[8].

Previously proposed techniques of indirect-branch
prediction have been proved to predict targets accu-
rately. They can be classified into two types: pure
hardware methods and hardware-software cooperative
methods. The pure hardware methods use only hard-
ware components, predicting indirect branch targets
dynamically depending on the recorded branch histo-
ries. The hardware-software cooperative methods mo-
dify compilers to guide the indirect-branch prediction
using related values or path information.

One sort of pure hardware methods is the dedicated-
storage-predictor. Chang et al. first proposed Tagged
Target Cache (TTC) to use branch history informa-
tion to distinguish differences among indirect-branch
occurrences[8]. Its concept is similar to that of a
two-level branch predictor[15]. Each TTC entry con-
tains a target address and a tag field. When fetching
an indirect branch, the TTC predictor is indexed us-
ing the XOR result of the branch address (PC) and
the global branch history register (GHR) to provide
the predicted target. When the indirect branch re-
tires, the corresponding TTC entry is updated with
the actual target address. Driesen and Hölzle pro-
posed another dedicated-storage-predictor, a cascaded
predictor, by combining multiple target predictors[7,17].
A simple first-stage predictor is used for the easy-
to-predict (single-target) indirect branches, whereas a
complex second-stage predictor is used for the hard-to-
predict indirect branches. The IT-TAGE predictor[5]

proposed by Seznec and Michaud is conceptually simi-
lar to a multistage cascade structure. Its mechanism
employs a base predictor and a number of tagged tables
indexed by a very long GHR, PC, and path history. The
predicted target comes from the table with the longest
history, which the access hits. The dedicated-storage-
predictors consume large amount of extra energy in-
duced by the extra target-address storage.

An alternative to the dedicated-storage-predictor
is VPC predictor that uses existing branch predic-
tion components to reduce additional cost and energy
consumption[9]. VPC prediction treats an indirect
branch with T targets as T virtual direct branches, each
with its own unique target address. When fetching an
indirect branch, VPC prediction accesses the branch
predictor iteratively. One of T virtual direct branches
is predicted as well as a conditional branch in each time
of iteration. This iterative process stops when a vir-
tual direct branch is predicted to be taken, or a pre-
defined maximum iteration number is reached. This
technique, however, may take many cycles to accom-

plish the indirect-branch prediction, thus reducing its
performance efficiency[14]. Our previous work[18] pro-
poses to use pointers to accelerate the indirect branch
prediction, but those pointers are quite different with
the pointers from the generation to the usage in this
paper. This paper uses branch predictor to generate
the pointers, which is actually utilizing the prediction
mechanism to make the indirect branch benefit from the
high-performance branch predictors rather than simply
storing them in the PHT. Thus the technique in this
paper is more extensible and accurate.

With the help of the compiler and ISA modifica-
tion, the hardware-software cooperative method im-
proves processor performance significantly as well. Joao
et al. proposed dynamic predication for hard-to-predict
indirect branches (DIP)[14]. The compiler identifies the
indirect branches that are suitable for predication along
with their control-flow merge (CFM) points. When
fetching a hard-to-predict indirect branch, the proces-
sor predicates the instructions between T targets of
the indirect branch and the CFM point, thereby in-
creasing the probability of fetching from the correct
target path at the expense of executing more instruc-
tions. Farooq et al. proposed a Value Based BTB In-
dexing (VBBI) technique, a novel research done with
compiler assistant[19]. For each static hard-to-predict
indirect branch, the compiler identifies a hint instruc-
tion whose output value strongly correlates with the
indirect-branch target. At run time, multiple indirect-
branch targets are stored and subsequently accessed
from the BTB according to different indices, which are
computed using the branch addresses and the hint in-
structions’ output values.

3 Motivation

As energy efficiency has become a first-class metric
in processor designs, processor architects must consider
the cost-benefit trade-offs, choosing those structures
that achieve high performance per unit energy[20]. In
such a way, improving performance based on the exist-
ing components is a good choice of energy-performance
trade-offs.

Let us first analyze VPC prediction, the indirect
branch prediction that almost uses the minimal extra
hardware costs. In fact, it organizes the targets of an in-
direct branch as a linked list. It adopts the same way as
the linked list accessing to predict each target sequen-
tially. VPC prediction differentiates various indirect-
branch occurrences by recording their access sequence
of the target linked list. Its effects, however, are partly
reduced by such sequential access, especially in the case
where an indirect branch has many target addresses.
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In order to accelerate the prediction flow and main-
tain the low hardware costs, we propose a completely
novel technique, which organizes the targets of an indi-
rect branch as an array instead of a linked list. In such a
way, when predicting an indirect branch, the target will
be obtained easily using the index of the array, which is
much faster than that of accessing a linked list sequen-
tially. Its running time is O(1) rather than O(n). The
concept comparison of these two methods is shown in
Fig.3.

Our previous work called TAP prediction proposed
to use pointers for indirect branch prediction[21]. In this
paper, we make the following extensions.

1) We extend the TAP prediction mechanism to sup-
port the cases where an indirect branch has more than
16 targets. We propose to use iterative prediction algo-
rithm for those situations, which usually occur in pro-
grams written in object-oriented languages.

2) We develop the TAP prediction to use the last-
taken targets provided by the BTB, which has about
40% prediction accuracy of indirect branches. By using
the BTB results, TAP prediction no longer changes the
conditional-branch prediction flow or does not require
any additional precoding techniques. In addition, this
mechanism can accelerate the speed of TAP prediction
flow and training flow as well.

Fig.3. Concept of VPC prediction and TAP prediction. (a) VPC prediction procedure. (b) TAP prediction procedure.
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3) We extend the TAP prediction to use TAGE
predictor, which is one of the best high-performance
branch predictors. It also achieves as good performance
as that of other branch predictors.

4) We regard the TTC predictor as not only a com-
parison target, but an assistant structure for TAP pre-
diction. By redefining TTC, it can further improve the
TAP prediction performance.

5) We conduct the experiments in the gem5 simula-
tor rather than the SimpleScalar simulator. The gem5
simulator can provide full-system evaluations. As a re-
sult, we can run various real applications, such as the
DaCapo benchmarks, to fully exploit and evaluate our
technique.

6) We change the ISA in our experiments from Alpha
to x86, which makes TAP prediction compared with
other techniques fairly.

7) We evaluate not only the indirect-branch-sensitive
benchmarks, but other benchmarks in [21] as well.
From the results, we show that TAP prediction has
no adverse impacts on those indirect-branch-insensitive
programs.

8) We evaluate the influence of energy consumption
with TAP prediction. This shows that TAP prediction
could not only improve performance, but reduce energy
waste as well.

9) We evaluate the TAP prediction in TSMC 28nm
technology rather than the 65 nm technology in that
conference paper.

4 Target Address Pointer Prediction

4.1 Idea of TAP Prediction

The key idea of TAP prediction is to predict a
pointer, which points to an indirect-branch target
stored in the existing components such as BTB, rather
than to predict a target address directly. In fact, such
pointers can be treated as the indices of the indirect-
branch target arrays that are organized by the TAP
prediction. Using pointers has three benefits: first, it is
easy to access the pointed data when the pointers are
obtained; second, it is possible to store the pointed data
in the existing storage, for those data can be stored in
distributed memory locations; third, the pointer can
be obtained in various ways, thus it can be adapted
to different types of branch predictors. Based on such
three advantages, TAP prediction uses target address
pointers as the intermediate representations of those
indirect-branch targets, separating the indirect-branch
prediction flow into two steps, as shown in Fig.4: first
generate a target address pointer according to each
indirect-branch occurrence distinguished by branch his-
tories (indirect-branch occurrences mapping), and then

use this pointer to fetch the predicted target (targets
mapping). As the way of occurrence mapping is partly
determined by the target mapping, we explain the lat-
ter one first.

Fig.4. Mappings of TAP prediction.

4.1.1 Target Mapping

TAP prediction reuses existing processor compo-
nents to store indirect-branch targets. The most com-
mon method is to save those targets in BTB. During
a program executing, TAP prediction dynamically allo-
cates some BTB entries, called target-entries, to store
the encountered targets of indirect branches. Each
target-entry is indexed by a virtual address calculated
from the obtained target address pointer during the
prediction. To the processors that already contain spe-
cific indirect-branch target storage such as TTC, TAP
prediction can allocate the target-entries in TTC in-
stead of BTB. TAP prediction also requires a sort of
entries, called allocation-entries, to record the target-
entry allocation information of each indirect branch.
Each bit in such entries represents whether the corre-
sponding target-entry has been already allocated for
this indirect branch. Multiple allocation-entries can be
employed to record a great number of target-entries.
Allocation-entries are indexed by some special target
address pointers, which are defined by hardware de-
signers. An example of target mapping is illustrated in
Fig.5.

The target address pointers are treated as the func-
tion pointers to call the function fTAP(PC ), which
generates different virtual addresses to index the target-
entries. fTAP(PC ) could have multiple simple imple-
mentations to distribute the generated virtual addresses
widely, thereby reducing their interference with each
other and with the conditional branches. In our paper,
the virtual address is generated by PC [highest : 7] XOR
Constant, PC [6 : 0], where Constant is “1010 . . . 1010”.
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Fig.5. Example of target mapping where the target address pointer is defined as 7-bit. As a result, there are 124 target-entries and 4

allocation-entries. Both target-entries and allocation-entries are distributed in the BTB indexed by their virtual addresses. Here, the

high part of the virtual address is computed by fTAP(PC ), which we use “XXX ” instead. Four allocation-entries are concatenated to

form the whole allocation information of target-entries.

4.1.2 Indirect-Branch Occurrences Mapping

TAP reuses the existing branch predictor to generate
the target address pointers. In such way, the indirect-
branch occurrences can be recognized and differentia-
ted by the existing high-performance branch predic-
tors, reducing extra hardware costs. There are two is-
sues which have to be addressed: 1) how to recognize
indirect branches, and 2) how to differentiate various
indirect-branch occurrences.

Recognizing an Indirect Branch②. Processor ac-
cesses the branch predictor and BTB simultaneously
at the fetch stage conventionally, which provides the
branch direction and the target address respectively. As
TAP prediction also uses the last-taken target in BTB
for indirect branches (please see the details in Subsec-
tion 4.2), it remains this traditional procedure, only
adding a flag bit to each BTB entry indicating the en-
countered branch is an indirect branch. TAP prediction
enters the indirect-branch procedure only when the cor-
responding flag is found to be set.

Differentiating the Indirect-Branch Occurrences. To
adapt to various kinds of branch predictors, TAP pre-
diction adopts a simple but efficient method to gene-
rate target address pointers, i.e., it reuses the exist-
ing branch predictor to construct several small predic-
tors, each of which predicts one bit of the target ad-
dress pointer, and accesses them iteratively if necessary.
These small predictors, called sub-predictors, perform
as well as the original predictor, but use fewer branch
histories. The prediction result of each sub-predictor,
“Taken/Not-Taken”, is defined as one bit of the target
address pointer, “1/0”. For example, if we divide the

original branch predictor into four sub-predictors, tar-
get address pointer which has more than 4 bits can be
obtained by accessing the branch predictor twice. Dur-
ing the predictor updating, each sub-predictor treats
the corresponding bit of the target address pointer as
its training goal. Note that constructing sub-predictors
does not change the conditional branch prediction flow.

This paper chooses four representative branch pre-
dictors — GShare[15], Perceptron[2], O-GEHL[4], to-
gether with TAGE Predictor[5-6] — to implement the
occurrences mapping. Their ways of constructing sub-
predictors are as follows (detailed implementations are
listed in Table 1).

TAP-GShare. To this kind of predictor that uses
SRAMs to construct PHTs, the SRAMs are divided
into four groups. Each group constructs a sub-predictor
with one-quarter of PHT entries. A multiplexer is
added to each SRAM to select the corresponding in-
dex in indirect-branch prediction.

TAP-Perceptrons. Shown in Fig.6, for this
computation-based predictor, four new adders are em-
ployed to calculate the results of the sub-predictors.
The weights read from the predictor table are simulta-
neously sent to the sub-predictors to generate the target
address pointers in indirect-branch prediction.

TAP-O-GEHL. As this predictor uses both PHTs
and computations to predict branch directions, a sub-
predictor is constructed with one-quarter of PHTs, ad-
ditional adders, and corresponding multiplexers. Ac-
cording to different fetching cases, O-GEHL selects ei-
ther the original mechanism to predict branch direc-
tions or the sub-predictors to produce the target ad-
dress pointers.

②If predecode has been done during the ICache line fill and its result has been stored in the ICache, the implementation of this
part can be ignored.
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Fig.6. Sub-predictor implementation of TAP-Perceptron scheme. In each access of indirect branch cases, only 4 bits of target address

pointers will be obtained. Because of this, a 7-bit target address pointer should be obtained by accessing the branch predictor twice.

Table 1. Sub-Predictor Implementations of Various Branch Predictors

Predictor Scheme Structural Description

TAP-GShare Original configuration: 32K-entry GShare PHT, 1-cycle prediction delay

Construct sub-predictors: divide the original PHT into 4 small PHTs

Each sub-predictor has 8 K-entry PHT indexed by XOR result of the PC and low 13-bit of GHR

The higher bit of each obtained saturating counter represents the bit of the target address pointer

TAP-Perceptron Original configuration: path-based perceptron, 64KB table, using 64-bit GHR as inputs. Each entry has 64
weights (wi). 2-cycle prediction delay

Construct sub-predictors: divide the 64 weights (wi) into 4 parts. Each part constructs a sub-predictor, using
the low 16-bit of GHR and the segmented weights to calculate the output. The output is redefined as one bit
of the target address pointer

TAP-O-GEHL Original configuration: 64K-bit, including 8 predictor tables. Tables are indexed with hash functions of
branch history, path history, and PC. The set of used global history lengths forms a geometric series, i.e.,
L(j) = αj−1L(1). Its result is the sum of each tables’ output. 2-cycle prediction delay

Construct sub-predictors: divide 8 predictor tables into 4 sub-predictors. Each sub-predictor has 2 predictor
tables and captures the recent 20 global branch histories. All tables are extended with two read ports (or
implemented with 2 SRAM cells) to provide 4 signed counters for each sub-predictor. Each sub-predictor
performs as well as the O-GEHL predictor to generate one bit of the target address pointer

TAP-TAGE Original configuration: 64K-bit, including 8 predictor tables. Tables are indexed with hash functions of
branch history, path history, and PC. The set of used global history lengths forms a geometric series, i.e.,
L(j) = αj−1L(1). The predicted result comes from the table with the longest history, which the access hits
2-cycle prediction delay

Construct sub-predictors: divide 8 predictor tables into 4 sub-predictors. Each sub-predictor has 2 predictor
tables and captures the recent 20 global branch histories. All tables are extended with two read ports (or
implemented with 2 SRAM cells) to provide 4 signed counters for each sub-predictor. Each sub-predictor
performs as well as the TAGE predictor to generate one bit of the target address pointer

TAP-TAGE. The separation of this kind of predic-
tor performs as similarly as that of O-GEHL predictor,
only using PHT selections instead of those computation
logics.

The benefits of constructing sub-predictors from
original branch predictor are as follows. First, TAP
prediction transforms the prediction of target address

pointers into the direction predictions of multiple sub-
predictors, and thus the improvements in conditional-
branch prediction accuracy can also benefit TAP pre-
diction. Second, the implementation is quite simple.
It only needs to copy the logic of the existing branch
predictor, including both prediction logic and updating
logic. Third, it is quick to obtain the prediction re-
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sults because sub-predictors work simultaneously. The
number of accesses in the TAP branch predictor is
(log2 N)/k, where N is the maximum possible targets
number of an indirect branch, and k is the number of
constructed sub-predictors. It is much faster than that
of the VPC’s serial prediction which is O(N).

4.2 TAP Prediction Flow

According to previous descriptions, TAP predic-
tion requires two steps to get the predicted indirect-
branch target with the help of a target address pointer.
Though this is proved to predict target accurately,
its prediction is slower than that of the conventional
branch prediction flow. In order to accelerate the
prediction, TAP prediction uses the last taken target
stored in BTB, which corresponds to its PC address, as
well.

Fig.7 is a diagram to illustrate the prediction stages
of TAP prediction. In the first cycle of fetching an
instruction, TAP prediction performs as the same as
conventional instruction fetch: both the BTB and the
branch predictor are accessed simultaneously. If the
BTB hits and it is predicted as taken, the target stored
in the BTB entry (last-taken target) is issued to the
pipeline. Meanwhile, the corresponding flag is checked
to investigate whether it is an indirect branch. If this
branch is an indirect branch, TAP prediction forces the
processor’s fetch unit to access the branch predictor,
which is accessed as several sub-predictors, once more

(using a transformed branch history such as left-shifting
the branch history with zero) to generate the target ad-
dress pointer. It may take more than one cycle to obtain
the whole target address pointer if the defined pointer’s
length is greater than the number of sub-predictors. Af-
ter calculating the virtual address through fTAP(PC ),
in the next cycle, TAP prediction accesses the BTB (or
TTC) using the obtained virtual address for the pre-
dicted indirect-branch target. If it misses, TAP predic-
tion stalls fetching instructions until the actual target
is calculated in the pipeline. If it hits, the stored tar-
get is compared with the previously issued target. If
they are different, the newly obtained target is issued
to the pipeline, and the previously issued target must
be canceled. Otherwise, the processor continues using
the previously issued target.

4.3 TAP Training Flow

The training flow of TAP prediction is illustrated in
Fig.8. For conditional branches, TAP prediction does
not change their original training procedures. For indi-
rect branches, though it appears a little complex, it will
be finished in a few cycles in most cases (the results are
shown in Section 6).

For correct predictions of indirect branches, TAP
prediction firstly performs the branch predictor updat-
ing and the BTB updating simultaneously in the train-
ing flow. The branch predictor updating is to train the
sub-predictors to be the correct target address pointer.

Fig.7. Diagram to illustrate the TAP’s prediction stages.
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Fig.8. TAP’s training flow.

If the bit number of the target address pointer is bigger
than the number of constructed sub-predictors, it needs
several times of iteration to train the sub-predictors.

For BTB updating, it has possibility that TAP pre-
diction uses the pointed target instead of the last taken
target in correct prediction cases, therefore the corre-
sponding BTB entry containing the last taken target

of the indirect branch will be replaced by the correct
target rather than update only its LRU information.
It is also necessary to update the LRU information of
the entry pointed by the target address pointer and the
corresponding allocation entry③.

For the misprediction cases, TAP prediction should
train the corresponding target address pointer to point

③In this paper, we modeled our design using full-synthesizable design. In full-synthesizable designs, the BTB’s target and the
LRU information are usually implemented separately and are constructed using SRAMs and registers respectively. In these cases, the
LRU updates can be performed simultaneously. We used such configuration for the following experiments.
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at the BTB entry storing the correct indirect-branch
target and update the allocation entry. In the first cy-
cle of training, it is the same as the traditional training
flow: updates the BTB with the correct target if the
branch is actually taken. Then TAP prediction starts to
search whether its correct target is stored in the BTB.
First, the allocation entries are read from the BTB, and
then TAP prediction traverses the allocated entries ac-
cording to the allocation information. While traversing,
the target stored in each entry is compared with the
correct target. If they are identical, each sub-predictor
regards the bit of the correct target address pointer as
its training goal. These cases are called wrong point-
ers. If no matched entry is found, called meaningless
pointers, it will allocate a new target-entry in sequence
and update the allocation-entries. The traversing pro-
cess also checks whether the information in allocation
entries should be updated (if an allocated target-entry
is evicted). Finally, sub-predictors are trained to gene-
rate the correct target address pointer.

Although the traversing target is a little complex,
TAP employs three methods to simplify this proce-
dure. First, if the last taken target is not found in the
BTB, TAP prediction starts to allocate a new entry
for this indirect branch directly, avoiding the travers-
ing flow. In these cases, the indirect branch is either
in its first appearance of the program or not encoun-
tered for a long time. To the latter cases, its targets
are possibly replaced by other branch targets, thereby
it is more efficient to allocate directly rather than to
traverse. Second, during reading the contents of alloca-
tion entries, if the flag of an allocation entry is invalid,
it is unnecessary to access the next allocation entry.
This is used to accelerate the cases where an indirect
branch does not have too many targets. Third, if the
target-entry number of traversing equals the number
of pipeline stages④, TAP prediction should stop the
traversing and allocate an entry directly. The maxi-
mum penalty of a branch prediction is the number of
the pipeline stages; thus keeping traversing is meaning-
less and causes more penalties than the original design.

5 Experimental Methodology

We employed gem5[22], a cycle-accurate performance
simulator, in x86 full-system mode to evaluate the ef-
fects of TAP prediction. Table 2 shows the parame-
ters of our baseline processor, which employs only the
BTB to predict indirect branches. The latencies of
various branch prediction strategies and the predic-
tion/training delays introduced by TAP prediction have
been considered in our experiments. Our workload

includes the benchmarks of SPEC CPU INT 2006[23]

and the DaCapo-9.12 benchmarks[24]. The SPEC CPU
INT 2006 evaluation shows the effects of TAP predic-
tion on various kinds of benchmarks. DaCapo bench-
marks are written in Java, which consists of a set of
open source, client-side, real-world applications with
non-trivial memory loads. Their evaluation shows the
effects on indirect branch sensitive programs. The
DaCapo benchmarks are running on the OpenJDK-
1.6.20⑤ with -Xint option. Table 3 shows the char-
acteristics of the examined benchmarks on the baseline
processor.

Table 2. Baseline Processor Configuration

Item Configuration

Pipeline depth 16 stages; out-of-order execution

Instruction 4-instruction per cycle;

fetch fetch and at first pred taken branch

Regs Physical integer Regs: 256;

physical float regs: 256

Execution 4-wide decode/rename/dispatch/issue/writeback;

engine load queue: 64-entry; store queue: 64-entry

Branch 4K-entry, 4-way BTB (LRU),

predictor 1-cycle prediction delay;

32-entry return address stack;

structures of the direction predictors

are listed in Table 1;

15-cycle branch misprediction penalty

Caches 32KB, 8-way, 2-cycle L1 DCache & ICache;

1MB, 16-way, 10-cycle unified L2 cache,

64B block size with LRU replacement policy

Memory 200-cycle memory latency

Note: Regs means general purpose registers.

6 Results and Analysis

In this section, we offer not only the performance
evaluations of various indirect-branch prediction strate-
gies, but their results of energy consumption as well.

6.1 Timing Estimation

To evaluate the timing impact of TAP prediction im-
plementation, we model the TAP schemes by extend-
ing the front-end of a commercial full-synthesizable 64-
bit superscalar processor that runs about 1GHz under
TSMC 65nm technology. It can issue and complete
three instructions per clock cycle. Instructions com-
plete in order, but execute out of order. Its dynamic
branch prediction employs a 2K-entry, 2-level branch
predictor and a 512-entry, 4-way set-associative BTB,

④The exact number is the result of subtracting the number of allocation entries from the number of pipeline stages.
⑤http://openjdk.java.net/, Sept. 2014.
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Table 3. Characteristics of Evaluated Benchmarks

Configuration Number of Indirect Branches Indirect Branches

in Dynamic Execution (K) MPKI

astar 1 330 0.01

bzip2 803 0.01

gcc06 123 0.17

gobmk 829 0.47

h264ref 25 0.01

hmmer 1 617 5.76

libquantum 6 0.02

mcf 146 0.17

omnetpp 3 779 0.61

perlbench 4 265 15.67

sjeng 1 751 4.94

avrora 5 904 32.60

batik 8 418 42.63

eclipse 8 307 37.75

fop 6 107 18.50

h2 5 958 34.74

jython 4 168 22.51

luindex 6 127 18.57

lusearch 6 402 35.61

pmd 6 141 18.63

sunflow 6 464 31.72

tomcat 3 106 7.69

tradebean 6 166 18.75

tradesoap 6 105 18.49

xalan 6 577 36.40

which has 1-cycle access latency. To catch up with
the technology development, we perform timing eval-
uations of various implementations using TSMC 28 nm
technology instead of 65 nm technology. The imple-
mentations and their timing parameters are listed in

Table 4. The evaluation results prove that construct-
ing sub-predictors does not increase the latency of
the conditional branch prediction. This is because
a sub-predictor uses fewer predictor tables (for fewer
GHRs), thereby saving some multiplexors or reducing
the number of adding operands, compared to the origi-
nal branch predictor.

6.2 MPKI Impacts and Performance
Improvement

Fig.9 shows the indirect-branch MPKI of the base-
line and the TAP schemes. TAP prediction reduces
indirect-branch MPKI significantly for all indirect-
branch sensitive programs. For example, the TAP-
TAGE scheme reduces the average MPKI from 16.10
to 9.51. Table 5 shows the conditional-branch MPKI
impacts. As TAP prediction reuses existing branch
predictor to generate the target address pointers, it
is inevitable to have adverse impacts on conditional
branches. However, those impacts are relatively small
compared to the significant indirect-branch MPKI im-
provement achieved by TAP prediction. The results
show that the impacts on conditional branch predic-
tion vary under those four TAP schemes. The TAP-
GShare scheme has the most contentions, whereas
the TAP-TAGE scheme has the least contentions.
This is because the mechanisms in aggressive high-
performance branch predictors, which are inherently
used to avoid aliasing problems and contentions for con-
ditional branches, are also effective to avoid the interfe-
rence between predicting branch directions and target
address pointers.

Table 4. Timing Parameters of Branch Components Under TSMC 28nm Typical Process (0.9V)

Components SRAM Timing (ns) Estimated Max Latency

Cell Tsetup TClkToQ w/o TAP w/TAP Sub-Predictor in TAP

BTB Data 128× 148 0.053 27 0.332 3 0.408 7 0.408 7 –

Tag 128× 120 0.054 13 0.264 8

GShare 128× 32 0.040 60 0.229 0 0.302 2 0.302 2 0.289 7

Perceptron 128× 64 0.043 04 0.237 6 0.461 2 0.461 2 0.428 9

O-GEHL 128× 16 0.043 17 0.224 6 0.437 0 0.437 0 0.400 1

TAGE 128× 16 0.043 17 0.224 6 0.401 1 0.401 1 0.394 5

Fig.9. Indirect-branch MPKI impacts of TAP predictors.
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Table 5. Conditional-Branch MPKI Comparisons

Configuration GShare Perceptron O-GEHL TAGE

Baseline TAP Baseline TAP VPC Baseline TAP Baseline TAP

astar 11.04 11.05 8.31 8.40 8.80 9.13 9.71 8.20 8.22

bzip2 26.29 26.31 20.67 20.68 21.14 21.81 22.02 20.52 20.53

gcc06 2.39 2.40 0.42 0.43 0.93 1.87 2.07 0.23 0.24

gobmk 38.11 38.85 30.32 30.65 30.78 31.65 31.97 30.15 30.16

h264ref 0.63 0.64 0.13 0.14 0.64 0.49 0.50 0.09 0.09

hmmer 5.54 6.04 4.04 4.06 4.53 4.57 4.60 3.97 3.98

libquantum 2.25 2.33 0.46 0.47 0.98 1.77 1.80 0.30 0.30

mcf 28.30 28.36 21.68 21.72 22.15 23.44 23.64 21.45 21.51

omnetpp 10.52 10.59 7.13 7.21 7.63 8.64 8.65 6.93 6.95

perlbench 7.50 11.05 4.88 4.94 5.38 6.14 7.69 4.72 4.74

sjeng 23.86 28.05 18.28 18.48 18.76 19.76 22.97 18.09 18.14

avrora 9.30 11.80 6.79 6.86 7.28 7.67 9.13 6.67 6.69

batik 6.06 7.95 4.32 4.37 4.82 4.99 6.00 4.23 4.24

eclipse 6.32 8.12 4.58 4.63 5.08 5.22 6.23 4.50 4.51

fop 15.74 19.23 11.78 11.92 12.27 13.02 15.31 11.62 11.66

h2 12.10 14.44 9.18 9.29 9.67 10.01 11.69 9.08 9.10

jython 10.16 12.55 7.54 7.63 8.04 8.39 9.90 7.43 7.46

luindex 15.90 19.38 11.91 12.05 12.40 13.15 15.45 11.76 11.79

lusearch 10.82 13.16 8.11 8.20 8.60 8.94 10.51 8.01 8.03

pmd 15.67 19.16 11.72 11.86 12.21 12.96 15.24 11.56 11.60

sunflow 7.13 10.08 4.81 4.87 5.31 5.85 7.22 4.67 4.69

tomcat 13.45 17.24 9.76 9.87 10.25 11.10 13.25 9.58 9.61

tradebean 15.78 19.26 11.81 11.95 12.30 13.05 15.34 11.65 11.69

tradesoap 15.52 19.01 11.59 11.73 12.08 12.83 15.10 11.44 11.47

xalan 12.34 14.65 9.39 9.50 9.88 10.21 11.91 9.29 9.31

Average 12.91 15.96 9.58 9.69 10.08 10.67 12.59 9.45 9.47

The MPKI reduction leads to attractive IPC im-
provement shown in Fig.10, where GMEAN means the
geometric mean for results of each benchmark. As TAP
prediction does not increase the latency of the branch
prediction, IPC evaluation generally reflects the per-
formance impact. The TAP schemes achieve significant
performance improvements for indirect-branch sensitive
programs, and have no adverse impacts for other pro-
grams. The IPC improvements of TAP-GShare, TAP-
Perceptron, TAP-O-GEHL and TAP-TAGE are 3.17%,
9.31%, 6.24% and 9.46%, respectively. As DaCapo
benchmarks written in Java are more indirect-branch
sensitive compared to the SPEC CPU INT 2006 bench-

marks, they have much more significant performance
improvements. The effect of the updating mechanism in
TAP-Perceptron scheme is listed in Table 6. The result
shows that it takes only 2.83 cycles for each indirect-
branch update averagely. It can only improve perfor-
mance by 1.14% averagely as if each update could be
finished in one cycle. Therefore, although the travers-
ing to the target-entries makes the training a little more
complex, it would not affect performance significantly.

We also evaluate the various breakdowns of indi-
rect branch mispredictions in TAP prediction shown in
Fig.11. Fig.11(a) shows that only one allocation entry
is used for the majority of training process, while all

Fig.10. IPC improvement of TAP predictors.
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Table 6. Training Penalty Cycles in TAP-Perceptron Scheme

Configuration Number of IB Cycles per IPC ∆ w/Ideal

(K) IB Update Update (%)

astar 1 330 2.36 1.22

bzip2 803 3.05 1.14

gcc06 123 4.49 1.32

gobmk 829 3.39 1.09

h264ref 25 1.11 1.32

hmmer 1 617 1.56 1.25

libquantum 6 2.03 0.66

mcf 146 3.79 0.92

omnetpp 3 779 4.52 1.28

perlbench 4 265 4.93 1.67

sjeng 1 751 4.16 1.20

avrora 5 904 2.58 1.24

batik 8 418 1.98 1.26

eclipse 8 307 1.86 1.25

fop 6 107 2.55 0.88

h2 5 958 2.35 1.21

jython 4 168 2.45 1.23

luindex 6 127 3.54 1.23

lusearch 6 402 2.38 1.22

pmd 6 141 2.15 0.74

sunflow 6 464 3.13 1.28

tomcat 3 106 3.93 1.25

tradebean 6 166 3.54 1.23

tradesoap 6 105 3.55 1.23

xalan 6 577 2.31 1.20

Average 3 870 2.83 1.14

Note: IB stands for indirect branch.

four allocation entries are accessed in very rare cases.
Fig.11(b) shows that the traversing process can be fini-
shed in 16 cycles in most cases. Fig.11(c) shows that
using the last taken target can quickly identify the mis-
prediction type, and the cases of the meaningless point-
ers happen less often than those of the wrong pointers.

As not all benchmarks in SPEC CPU INT 2006 are
indirect-branch sensitive, we choose only a subset of
SPEC CPU INT 2006, each of which gains at least 5
percent performance with a perfect indirect branch pre-
dictor, together with the DaCapo benchmarks for the
following experiments.

6.3 Comparison with Other Indirect-Branch
Predictors

We choose the TAP-Perceptron predictor as a rep-
resentative example to compare with other hardware-
based indirect-branch predictors, the TTC predictor,
the Cascaded predictor and the VPC predictor, for the
Perceptron predictor has been widely implemented in
newly commercial processors. Fig.12 and Fig.13 illus-
trate the comparisons of the indirect-branch MPKI and
the IPC improvement.

1) Comparison with TTC Predictor and Cascaded
Predictor. The TTC predictor and the Cascaded pre-
dictor are representative dedicated-storage-predictors.
We simulate various sizes of the TTC predictor from
256-entry to 64K-entry and the Cascaded predictor
from 64-entry to 16K-entry filter, each entry of which
has 5 bytes (40 bits). On average, the TAP-Perceptron
predictor achieves the equivalent performance provided
by an 8K-entry TTC predictor, or a Cascaded predic-
tor with 2K-entry filter. We conclude that if the TTC
has fewer than 64 entries, it would affect the perfor-
mance averagely, for the frequent replacements lead to
low prediction accuracy. On the other hand, the perfor-
mance improvement growth of dedicated-storage pre-
dictors would not be increased obviously if they have
some more of entries, e.g., TTC has more than 8 K-
entry, for the GShare-like algorithm constrains its per-
formance improvement.

Fig.11. Various breakdowns of indirect branch mispredictions in TAP prediction. (a) Number of allocation entries accessed in training

flow. (b) Number of target entries traversed in training flow. (c) Fraction of different types of indirect branch misprediction.
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Fig.12. Comparisons of indirect-branch MPKI.

Fig.13. Comparisons of IPC improvements.

2) Comparison with VPC Predictor. We also com-
pare the efficiency of the VPC predictor and the TAP
predictor. In our experiments, the maximum iteration
number of VPC prediction is set to 15, for the branch
penalty we define is only 15. In addition, as the LFU
training algorithm of VPC prediction is difficult to im-
plement in hardware, we adopt a simple way for up-
dating: insert the newly encountered indirect-branch
target sequentially at the tail of the access sequence.
We find that VPC prediction in our evaluations usually
requires 3 to 6 iterations to finish predictions, which
is less effective than the results in [9]. Although VPC
prediction has some alternative training algorithms like
random replacement and linked list appendance to re-
duce its complexity, they largely depend on the time
when they construct the target linked list. For instance,
in the linked list appendance algorithm, if the first ele-
ment in the list was used infrequently, VPC prediction
would not have good performance as we expected. In

our selected program segments, as the frequently pre-
dicted targets usually appear later than some other tar-
gets, they are inserted into the middle or at the tail of
the access sequence.

In our experiments, the TAP predictor outperforms
a VPC predictor by 2.39%. Besides the total indirect-
branch MPKI of VPC prediction, we also evaluate its
MPKI if VPC predictions are finished in three cycles (3-
cycle-MPKI). Fig.14 and Fig.15 illustrate that although
the total indirect-branch MPKI of VPC prediction is
similar to that of TAP prediction, the 3-cycle-MPKI in-
creases significantly, especially for the benchmarks with
higher number of dynamic targets. This finding is simi-
lar to the analysis in research [14]. It indicates that
VPC prediction requires more cycles to reach the same
accuracy as that of TAP prediction. On the other hand,
as shown in Table 5, VPC prediction’s adverse impact
on conditional branch predictions is also greater than
that of TAP prediction. VPC prediction generates and
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Fig.14. MPKI comparisons among TAP prediction and various types of VPC predictions.

Fig.15. IPC improvement comparisons among TAP prediction and various types of VPC predictions.

predicts a virtual branch in each cycle. Thus, VPC
prediction usually occupies more table entries of the
branch predictor for one branch occurrence.

6.4 Sensitivity to Different BTB Sizes

We also evaluate the effects of different BTB sizes.
We take the TAP-Perceptron scheme as an example.
The results in Table 7 show that TAP prediction could
provide significantly performance improvement even
with small BTB sizes.

Table 7. Effect of Different BTB Sizes in

TAP-Perceptron Scheme

BTB Baseline IB MPKI TAP IB MPKI IPC ∆ (%)

8K 22.00 13.89 17.77

4K 24.69 15.78 15.40

2K 27.25 16.60 12.20

1K 28.97 18.14 10.19

512 31.12 20.22 8.22

Note: IB stands for indirect branch.

6.5 With the Help of TTC

The BTB was used to store indirect-branch targets
in previous evaluations. As modern processors usua-
lly have a specific, independent indirect branch pre-
dictor, such as TTC, TAP prediction can also place
the indirect-branch targets in the TTC rather than oc-
cupy the BTB resources. In this way, TAP predic-
tion changes its mechanism that is based on the simple

GShare algorithm to the more aggressive mechanism
used in the high-performance branch predictor for the
purpose of higher indirect-branch prediction accuracy.

Instead of all types of indirect-branch entries stored
in the BTB, placing different types of entries in the
TTC and in the BTB respectively is a better choice.
The TTC contains both the target-entries and the
allocation-entries. The index of TTC is the virtual ad-
dress generated by the fTAP(PC ) instead of the PC
XOR GHR. The BTB is still responsible for storing
the last taken branch target and recognizing an indi-
rect branch. When fetching an instruction, the BTB is
accessed in the first cycle, which is the same as that of
the conventional branch prediction, and in the following
cycles, TTC is accessed to provide the pointed target
addresses. In the training process, the BTB and the
TTC are trained for their own goals respectively. Fig.16
and Fig.17 show the MPKI impacts and the IPC im-
provement of TAP prediction with the help of the TTC
predictor. It can reduce the MPKI from 24.69 to 12.93,
resulting in 28.87% performance improvement.

6.6 Area and Energy Consumption Estimation

The additional area of indirect branch prediction
is mainly dominated by its SRAM requirement. TAP
prediction together with VPC prediction requires only
extra 512 bytes attached to the BTB as the indirect-
branch flags, while TTC 8 K-entry needs extra 80 KB
SRAMs for target storing and Cascaded 2 K-entry
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Fig.16. MPKI impacts of TAP predictors with the help of TTC predictor.

Fig.17. IPC improvement of TAP predictors with the help of TTC predictor.

needs extra 16KB SRAMs as filters. The energy dis-
sipation of additional hardware is also included in our
energy evaluation.

The parameters of this energy evaluation are derived
from the Cacti tool[25], which is configured with TSMC
28nm technology. The power consumption of the pre-
decoding logic has been also included in our simula-
tions. As Fig.18 shows, the energy consumption of
TAP-Perceptron prediction is reduced by 8.43% over
that of the baseline processor and that of other indi-
rect branch predictors. TAP prediction achieves energy
reduction by making fewer pipeline flushes and fewer
wrong-path instruction executions due to high indirect-
branch prediction accuracy. The energy-delay product

(EDP) improvements compared to the baseline proces-
sor are shown in Fig.19. TAP prediction achieves the
best in EDP by 25.45% over the baseline processor.

7 Conclusions

In this paper, we proposed and evaluated a fast
hardware-reusing technique of indirect-branch predic-
tion called TAP prediction. It reuses the existing
branch predictor to construct several sub-predictors,
which are used to generate the bits of the target ad-
dress pointer when fetching an indirect branch. This
pointer is used to calculate a virtual address indexing
the predicted target stored in the BTB or the TTC.

Fig.18. Comparisons of energy reduction using the TAP-Perceptron predictor.
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Fig.19. Comparisons of energy-delay product (EDP) improvement using TAP-Perceptron predictor.

With the help of such pointers, TAP prediction achieves
similar time to that of dedicated-storage-predictors
without additional dedicated storage. TAP prediction
is also highly extensible to various branch prediction
structures. All examined predictors benefit from this
technique and only a minor hardware modification is
required for implementation. It reduces the energy con-
sumption by making fewer pipeline flushes and fewer
wrong-path instruction executions due to high indirect-
branch prediction accuracy as well.
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