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Abstract Advertisement (ad) selection plays an important role in sponsored search, since it is an upstream component

and will heavily influence the effectiveness of the subsequent auction mechanism. However, most existing ad selection

methods regard ad selection as a relatively independent module, and only consider the literal or semantic matching between

queries and keywords during the ad selection process. In this paper, we argue that this approach is not globally optimal.

Our proposal is to formulate ad selection as such an optimization problem that the selected ads can work together with

downstream components (e.g., the auction mechanism) to achieve the maximization of user clicks, advertiser social welfare,

and search engine revenue (we call the combination of these objective functions as the marketplace objective for ease of

reference). To this end, we 1) extract a bunch of features to represent each pair of query and keyword, and 2) train a

machine learning model that maps the features to a binary variable indicating whether the keyword is selected or not, by

maximizing the aforementioned marketplace objective. This formalization seems quite natural; however, it is technically

difficult because the marketplace objective is non-convex, discontinuous, and indifferentiable regarding the model parameter

due to the ranking and second-price rules in the auction mechanism. To tackle the challenge, we propose a probabilistic

approximation of the marketplace objective, which is smooth and can be effectively optimized by conventional optimization

techniques. We test the ad selection model learned with our proposed method using the sponsored search log from a

commercial search engine. The experimental results show that our method can significantly outperform several ad selection

algorithms on all the metrics under investigation.

Keywords advertisement selection, sponsored search, probability model

1 Introduction

Sponsored search is the main monetization chan-

nel for the commercial search engines. In sponsored

search, the paid advertisements (ads) are presented to

users along with the organic search results. First, these

ads bring values to the users, in terms of product in-

formation, significant discount, etc. Second, these ads

certainly bring values to the advertisers, since their

marketing campaigns reach the target audience. Third,

these ads also bring values to the search engine, since

the search engine will gain revenue once the ads are

clicked by the users.

Putting it simple, today’s sponsored search systems

basically work in the following manner. First of all, ad-

vertisers are required to open accounts in the sponsored

search system, create ad campaigns under each account,

and upload a group of ads (together with keywords and

bids) into each campaign. Given a query submitted by

a user, the sponsored search system selects a set of key-

words by using an ad selection algorithm. Then all the

ads that bid on the selected keywords will be fed into

the downstream modules in the sponsored search sys-

tem. Next these ads will go through an auction process.

The auction mechanism determines which of these ads

will be shown to users (according to a ranking rule)

and how much they need to pay if they are clicked by

the user (according to a pricing rule). The generalized

second-price auction (GSP)[1-2] is one of the most popu-

larly used auction mechanisms. With GSP, the ads are
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ranked in the descending order of the rank score, which

is defined as the product of the ad quality score and the

bid. Quality score is an estimation of how relevant the

ad, keywords, and landing page are to the search en-

gine user who is seeing the ad. Sometimes, people use

the predicted ad click probability as the quality score.

However, it is not a necessity, though both scores can

indicate the quality of the ad. In some research and in-

dustry practice, the predicted ad click probability and

the ad quality score are regarded as two signals. We

will take the latter setting in this paper. In the ranked

ad list, the top-ranked ads are shown to the web user.

If the user clicks on some of the ads, the owner of the

clicked ads will be charged according to a second-price

rule, i.e., the payment is the minimum bid for the ad

to win its current rank position. The process is shown

in Fig.1.

As can be seen from the above description, the ad

selection algorithm resides in the upstream of the spon-

sored search system. It determines which ads (more

accurately, which keywords bidden by the ads) will be

fed into the auction mechanism. Therefore ad selection

plays a very important role. Garbage in, then garbage

out. If the ad selection result is bad, it is almost impos-

sible for the sponsored search system to deliver relevant

ads to users, help the right advertisers to achieve their

campaign goals, and help the search engine gain desired

revenue.

There has been a rich literature on ad selection. We

group the existing ad selection algorithms into two cate-

gories. The first category of methods[3-4] mainly relies

on the relevance between queries and keywords. They

often expand the queries and/or keywords using addi-

tional text streams like organic search results, ad copies,

and landing pages, when computing the relevance score.

The second category of methods[5-7] performs ad selec-

tion based on the semantic relationship between queries

and keywords. They usually use historical clicks on the

ads to mine the semantic relationship. It is clear that

both categories of methods regard ad selection as a rela-

tively independent module. In other words, they define

a local criterion for ad selection, without considering

the impact of ad selection on the auction mechanism in

the downstream of the sponsored search system. In this

regard, we argue that these approaches are not globally

optimal.

In our opinion, a better solution to ad selection is

to explicitly consider its global impact, i.e., with the ad

selection results, whether the overall sponsored search

system (including the auction mechanism) can achieve

the maximization of user clicks, advertiser social wel-

fare (defined as the expectation of the realized adver-

tiser values), and search engine revenue. We call the

combination of these objective functions as marketplace

objective for simplicity.

With this global view, what we should do is to for-

mulate ad selection as an optimization problem. In

the problem, the objective function is the aforemen-

tioned marketplace objective. The auction mechanism

(including its sub-component, the quality score compu-

tation algorithm, and/or the ad click prediction algo-

rithm) is regarded as known and fixed, and will be used

in the calculation of the marketplace objective, given a

particular set of ads selected by the ad selection algo-

rithm. The ad selection algorithm combines a number

of features extracted from each query-keyword pair and

generates a binary value, indicating whether an ad is

selected or not. By solving this optimization problem

over historical sponsored search logs, we will be able

to learn the optimal combination coefficients (in other

words, the optimal model parameters) in the ad selec-

tion algorithm, and use them to perform ad selection

in the future.

We would like to state the following two remarks

Ad Selection by Match
Type

Search Query Selected Ads Display Click

Ranking

Rank Score (RS):
BidΤQuality Score

Pricing

Pricing Rule 
(2nd-Price):
BidΤRS(Next)/RS

Exact Match

Phrase Match

Broad Match

Advanced Match

Fig.1. Sponsored search system.
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about the proposed formulation. 1) The proposed me-

thod only affects the ad selection procedure and does

not change the auction mechanism at all. In practice,

this method can be used for advanced match which al-

ready exists in the sponsored search system as a black

box, and thus it will cause little impact on the adver-

tisers’ strategy in an auction. 2) The phrase “global

optimization” in the paper refers to the global view of

ad selection together with the downstream components.

It does not imply a global maximum in the optimization

problem.

The above formalization seems quite natural; how-

ever, it is technically challenging because the market-

place objective is non-convex, discontinuous, and in-

differentiable with respect to the parameters in the ad

selection algorithm due to the ranking and second-price

rules in the auction mechanism. To tackle the challenge,

we propose a probabilistic approximation of the market-

place objective, which is smooth and can be effectively

optimized by conventional optimization techniques. In

particular, we treat ranking scores as random variables

rather than deterministic values. With the distribution

of the rank scores, we can compute the probability of an

ad being ranked at any given position, and the expected

pay per click according to the second-price rules. Be-

sides, we also use some techniques to approximate the

sign function and the maximum function in the mar-

ketplace objective. By doing so, all the discontinuous

and indifferentiable components in the marketplace ob-

jective function are approximated to be differentiable,

and then the optimization problem can be solved by

conventional optimization techniques, such as the gra-

dient method. We evaluate the proposed method in

a sponsored search system. The experimental results

show that our method outperforms several ad selection

methods in terms of several widely used metrics.

To sum up, the contributions of our work are listed

as below.

• As far as we know, this is the first ad selection

method that considers optimizing the marketplace ob-

jective of the entire sponsored search system.

• We propose a probability method to smooth the

marketplace objectives for ease of optimization. This

provides a good reference for solving the complex opti-

mization problems in sponsored search due to the exis-

tence of the generalized second-price auctions.

The rest of the paper is organized as the following.

We give a literature review on the related work in Sec-

tion 2. In Section 3, we introduce the proposed ad se-

lection framework by optimizing the marketplace objec-

tive. In Section 4, we describe the probability method

to approximate the discontinuous and indifferentiable

objective functions. In Section 5, we discuss the effi-

cient solution of the proposed model. In Section 6, we

present the experimental results to show the effective-

ness of the proposed ad selection framework. In the

end, we conclude the paper and suggest the future re-

search direction in Section 7.

2 Related Work

Existing work on ad selection can be organized in

two categories: one is based on the relevance match-

ing among queries and ads/keywords, and the other is

based on mining the relationship among queries and

ads/keywords from the historical ad click data.

The relevance-based methods often suffer from the

short text streams, i.e., the text lengths of queries, key-

words, and ad copies are usually very short. Therefore,

many of these methods are focused on expanding the

text streams of both queries and ads/keywords. Broder

et al.[3] enriched both queries and ads with additional

knowledge features. They used the organic search re-

sults to create relevant documents for the query. As

query expansion can hardly be done in a real-time

system, Broder et al.[5] proposed another approach of

matching the ads against rare queries that can be ac-

complished online. In this method, they built expanded

query representations from the preprocessed related

queries. Choi et al.[4] explored the usage of the land-

ing pages to expand the text stream of ads. Wang et

al.[8] proposed an efficient ad search solution that uses

a block-based index to tackle the issues associated with

query expansion. The block-based index was employed

in a retrieval system to return the top relevant ads.

The other category of methods uses the historical

ad click information to mine the relationship among

queries and ads/keywords. Antonellis et al.[9] built a

click graph from the historical user queries and the cor-

responding ad clicks, and then proposed a new schema

of Simrank++ to suggest the keywords for ad selection.

Fuxman et al.[6] conducted the keyword suggestion by

making use of the query logs of the search engine. They

built a bipartite graph between queries and webpages,

and carried out the propagation of the concept tags on

the bipartite graph to make the keyword suggestion. In

the work of Hillard et al.[7], they introduced a machine

learning approach based on the translation models to

predict the ad relevance, which can help select more

relevant ads for the sponsored search system.



298 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

The above methods regard ad selection as a sepa-

rated module of query-keyword matching. They do not

consider the marketplace objective from all the players

in the sponsored search system.

3 Marketplace Objective

As mentioned in the introduction, we propose ex-

plicitly optimizing the marketplace objective when

learning the ad selection algorithm. In this section, we

will discuss how we define the marketplace objective,

and how we compute it given the ad selection algo-

rithm, the click prediction algorithm, and the auction

mechanism.

3.1 Preliminaries

To better illustrate the marketplace objective, we

first give some preliminary notations. Let Ω =

(Q,K,A) be the object space in sponsored search,

where Q is the set of input queries submitted by the

users, K is the set of keywords given by the adverti-

sers, and A is the set of ads composed by the adverti-

sers. Usually, an advertiser can bid on several keywords

ki ∈ K for an ad aj ∈ A. Suppose the sizes of K and A

are M and N respectively, then we can use the follow-

ing N ×M dimensional matrix B = {bji} to represent

advertisers’ selected keywords, in which

bji =

{
1, if aj bids ki,

0, otherwise.

If bji = 1, there will be a non-zero value v̄(j, i) in-

dicating the bid of ad aj for keyword ki.

With these preliminary notations, we will go

through the major components in the sponsored search

systems. In the meanwhile, we will encounter more no-

tations. For the sake of clarity and for ease of reference,

we list the major notations in Table 1.

3.2 Ad Selection

In this subsection, we consider the ad selection algo-

rithm. This algorithm takes a pair of query and ad, and

outputs a binary variable indicating whether the ad is

selected or not. In practice, this is done in two steps.

First, the algorithm determines whether a keyword is

selected or not, given the query. Second, it employs

the matrix B to obtain the ads that should be selected.

The details are given as follows.

Table 1. Notations

Notation Explanation

Ω = Ad space with the query set Q, keyword

(Q,K,A) set K, and ad set A

q Query

aj Ad, j = 1, · · · , N
ki Keyword, i = 1, · · · ,M
r Ad position, r = 0, 1, · · · ,m− 1

η Indicator vector for keywords.

ηi = 1, if ki is selected; otherwise, ηi = 0.

θ Indicator vector for ads.

θj = 1, if aj is selected; otherwise, θj = 0.

c(·) Ad click prediction function

h(·) Ad quality score function

v(·) Highest bid of an ad for a query

g(·) Ad ranking function, g(·) = h(·)v(·)
R(·) Marketplace objective

ζθ(·) Permutation function on the subset Aq

ζ−1
θ (r) Ad ranked at position r by permutation ζ

D(r) Discount at position r

ς(·) Sigmoid function

ai ≻ aj Ad ai is ranked higher than aj in an auction

j ≻1 i Ad aj is ranked just one position higher

than ai in an auction

For a pair of query q and keyword ki, one extracts a

group of features x
(q)
i = (x

(q)
i1 , · · · , x

(q)
in ), where n is the

number of features. Suppose we have a linear function

to combine these features, i.e.,

f(ω,x
(q)
i ) = ωTx

(q)
i ,

where ω is an n-dimension parameter vector. In real ap-

plications, usually complex non-linear models are used.

Given that our goal is to demonstrate the idea of global

optimization, without loss of generality, we consider the

linear model. The output of the linear function is con-

verted to a score indicating how likely ki should be se-

lected given the query. As a common practice, we use a

sigmoid function ς(·) 1○ to compute this score. By com-

paring the score with a threshold, we can get a binary

value ηi indicating whether the keyword ki is selected

or not, i.e.,

ηi = sgn(ς(ωTx
(q)
i )− t), (1)

where sgn(·) is the sign function and t is the threshold.

We use vector η to represent the selection results

for all the keywords, whose element ηi is the binary

indicator for keyword ki.

Given the selection results for the keywords, we need

to retrieve all the related ads. Here we use vector θ to

denote the selection results for ads, whose element θj

1○ Wikipedia. Sigmoid function. http://en.wikipedia.org/w/index.php?title=Sigmoid function, Feb. 2013.
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indicates whether ad aj ∈ A is selected. θ can be com-

puted based on the bidding relationship matrix B:

θ = sgn(Bη). (2)

3.3 Auction

Only those ads whose θj = 1 will enter this stage.

First, the click probabilities will be computed for these

ads. We use c(·) to denote the click prediction function,

which takes the pair of the query q and the ad aj as in-

put and predicts the click probability c(j) of aj if it is

ranked at the first position in the ad list. The click pre-

diction function is usually trained using the real click

through rate in the historical sponsored search log. In

the sponsored search system, the click probability c(j)

can be used to estimate the future revenue. Meanwhile,

the system will also compute the quality scores for these

ads. We use h(·) to denote the quality score function,

which also takes the pair of the query q and the ad

aj as input. The quality score is an estimation of how

relevant the ad, keywords, and landing page are to the

search engine user who is seeing the ad. It can be used

for ad ranking and pricing. Note that in some work,

the ad click probability is regarded as the ad quality

score. As mentioned before, we will treat them as two

separate signals.

Then since one ad may bid on multiple selected key-

words, it is associated with multiple bids. We need to

determine which bid to use in the auction process. Ac-

cording to the industry practice, the highest bid will be

used, and we denote it as v(j), i.e.,

v(j) = max{v̄(j, i)|bji = 1, ηi = 1}. (3)

Given the quality score and the final bid, GSP ranks

ads according to the following rank score[1], which is de-

fined as the product of quality score and bid,

g(j) = h(j)v(j),∀θj = 1.

Sorting the ads in the descending order of the rank

scores generates a permutation ζθ(·). For ease of refer-

ence, we use ζ−1
θ (r) to denote the index of the ad ranked

at position r (r = 0, 1, · · · ,m−1) by permutation ζθ(·),
and then the permutation can be written as,

ζθ({aj |θj = 1})
→ aζ−1

θ (1), aζ−1
θ (2), · · · , aζ−1

θ (r), · · ·

s.t. g(ζ−1
θ (r)) > g(ζ−1

θ (r + 1))

∀r, θζ−1
θ (r) = 1.

The top ranked ads in the permutation will be

shown to the user. Note that for simplicity we do not

consider the reserve rank score, which is used in prac-

tice to filter out less competitive ads in order to increase

search engine revenue. If some ads are clicked by the

user, the advertisers will be charged according to the

second-price rule, i.e., the payment is

g(ζ−1
θ (r + 1))

h(ζ−1
θ (r))

.

3.4 Utilities

Based on the discussions on the sponsored search

system in Section 1 and Section 3, let us consider how

the marketplace objective is defined and computed.

As mentioned in the introduction, we mainly con-

sider three aspects when defining the marketplace ob-

jective, which reflects the utilities of the users, adver-

tisers, and search engine respectively. In particular:

• We use the expected click to reflect the utility of

the user, with higher click through rate usually indicat-

ing higher satisfaction of the user with the ads shown

to him/her.

•We use the expected bid as the utility of the adver-

tiser, which is a lower bound of the corresponding social

welfare. Note that we assume the advertisers are con-

servative, which means no advertiser is bidding above

his/her own valuation on the keyword. This assump-

tion is reasonable for Leme and Tardos[10] have justi-

fied that bidding above the valuation is a dominated

strategy. A strategy is called dominated if it is always

better to play some other strategy, regardless of what

opponents may do. Besides, the same assumption was

also adopted in many other studies like [10-14]. With

this assumption, the expected bid is a lower bound of

the social welfare and thus the maximization of the ex-

pected bid can approach the maximization of the social

welfare. Note that the meticulous analysis of the real

relationship between value and bid is far beyond the

scope of this paper. Besides, almost all existing models

on the strategic behaviors of the advertisers assume full

information is available, which is unrealistic in practice.

Therefore, we take a rough approach, i.e., we regard the

total expected bid, which is the lower bound of the so-

cial welfare, as the utility of the advertiser.

• We use the expected revenue as the utility of the

search engine, which is the total payment from the ad-

vertisers.

With the notations given in Subsections 3.1∼3.3, we

can obtain the mathematical forms of the above three
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utilities. We then define the marketplace objective (de-

noted as R(q)) as the convex combination of them:

R(q) =
m−1∑
r=0

(
α1 × c(ζ−1

θ (r)) + α2 × v(ζ−1
θ (r))×

c(ζ−1
θ (r)) + α3 ×

g(ζ−1
θ (r + 1))

h(ζ−1
θ (r))

×

c(ζ−1
θ (r))

)
×D(r). (4)

Here αi (i = 1, 2, 3) are the balancing parameters

satisfying αi > 0 (i = 1, 2, 3),
∑3

i=1 αi = 1, and m is

the maximal number of ads shown on the search result

page. Because the CTR (click through rate) varies ac-

cording to different positions, we introduce a position

discount function D(r). In the above formulation,

• The term c(ζ−1
θ (r)) is the predicted click proba-

bility of the ad aζ−1
θ (r) when it is ranked at the first

position of the ad list. By multiplying it with the posi-

tion discount D(r), we will get the click probability of

this ad when it is ranked at position r. This term cor-

responds to user utility. Note that we ignore the cases

that more than one click happens in a single impression,

which are very rare in practice.

• The term v(ζ−1
θ (r))× c(ζ−1

θ (r))×D(r) is the pro-

duct of the maximal bid of an ad and the ad click proba-

bility at position r. It corresponds to the advertiser

utility.

• The term
g(ζ−1

θ (r+1))

h(ζ−1
θ (r))

× c(ζ−1
θ (r)) × D(r) is the

payment of the ad ranked at position r according to

the second-price rule, if it is clicked. This term corre-

sponds to the search engine utility.

Given the marketplace objective, it is not difficult

to formalize the ad selection problem as the following

optimization problem:

max
ω

∑
q∈Q

R(q) (5)

s.t. ηi = sgn(ς(ωTx
(q)
i )− t), i = 1, · · · ,M,

θ = sgn(Bη),

v(j) = max{v̄(j, i)|bji = 1, ηi = 1},∀θj = 1,

g(j) = h(j)v(j),∀θj = 1.

Please note that in the above formulation, our goal is

to learn the parameter ω in the ad selection algorithm,

by regarding the click prediction function, the quality

score function, and the auction mechanism as known

and fixed. By solving this optimization problem, we

can get the optimal parameter vector ω∗ and use it in

the future ad selection processes.

4 Smoothed Approximation

In Section 3, we have described the idea of learning

the ad selection algorithm by maximizing the market-

place objective. However, the learning process is non-

trivial. The optimization problem (5) is a nonlinear

optimization while the marketplace objective (4) is non-

convex, discontinuous, and indifferentiable with respect

to the model parameter of the ad selection algorithm.

To the best of our knowledge, there are no effective

methods for directly solving this kind of problem.

To better understand and hopefully solve the prob-

lems with the discontinuity and the indifferentiability,

we first need to analyze where the discontinuity and the

differentiability come from. Basically, they are due to

the following three functions in the marketplace objec-

tive:

• sgn Function. This discontinuous and indifferen-

tiable function is used in (2), which describes the rela-

tionship between the selected keywords and the selected

ads.

• max Function. This discontinuous and indifferen-

tiable function is used in (3), which finds the highest

bid to determine the bid of an ad for a given query.

• ζ Function. This discontinuous and indifferen-

tiable function is used in (4) to define the ranking rule,

which outputs a permutation of ads.

To effectively optimize the marketplace objective,

we propose smoothing the aforementioned three func-

tions. By doing so, we will be able to obtain a conti-

nuous and differentiable approximation of the market-

place objective. Then conventional optimization meth-

ods can be employed to maximize this approximated

objective function to learn the parameter in the ad se-

lection algorithm. However, even the objective is dif-

ferentiable, it is still non-convex so that we may only

obtain a local optimal. The good news is that the ex-

perimental results in Section 6 show that we can already

get a good solution and it converges stably with random

initial points.

4.1 Smoothed sgn Function

We can directly remove the sgn function as well as

the threshold in (1) and let ηi = ς(ωTx
(q)
i ) to represent

the probability of keyword ki being selected. The sgn

function in (2) can be effectively smoothed by using the

sigmoid function ς(·), i.e.,

θj = sgn

( M∑
i=1

bjiηi

)
≈ 2ς

( M∑
i=1

bjiηi

)
−1.
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The range of
∑M

i=1 bjiηi is [0,+∞), and thus the range

of θj is [0, 1). We can approximately regard θj as the

possibility of ad aj being selected as a candidate. Fur-

thermore, we define Xj as a Bernoulli random variable

to indicate whether ad aj is selected, with the successful

probability θj .

4.2 Smoothed max Function

In order to smooth the max function, we employ the

following probabilistic method. Specifically, given that

aj is selected, i.e., Xj = 1, we define the probability of

v̄(j, i) as,

p(v̄(j, i)|Xj = 1) =
φ(v̄(j, i))bjiηi∑

bjl=1,ηl>0 φ(v̄(j, l))bjlηl
,

where φ(·) is a transformation function which can be

polynomial, exponential, etc. Without loss of genera-

lity, we choose φ(x) = eτx as the transformation func-

tion, where τ is a positive coefficient.

Suppose v̄(j, î) is the highest bid among all v̄(j, i).

Then the above formula can be rewritten as below.

p(v̄(j, i)|Xj = 1)

=
eτv̄(j,i)bjiηi∑

bjl=1,ηl>0 e
τv̄(j,l)bjlηl

=
eτ(v̄(j,i)−v̄(j,̂i))bjiηi∑

bjl=1,ηl>0 e
τ(v̄(j,l)−v̄(j,̂i))bjlηl

=
eτ(v̄(j,i)−v̄(j,̂i))bjiηi

bjîηî +
∑

bjl=1,ηl>0,l ̸=î e
τ(v̄(j,l)−v̄(j,̂i))bjlηl

.

Therefore, when τ is very large, p(v̄(j, î)|Xj = 1)

will approach 1 and the probabilities corresponding to

the other bids will approach 0. Thus, when we select

aj , v(j) ≡ v̄(j, î) can be approximately expressed as

the following conditional expectation of v̄(j, i) on all

the keyword ki, i.e.,

v(j) ≈ E(v̄(j, i)|Xj = 1)

=

M∑
i=1

p(v̄(j, i)|Xj = 1)v̄(j, i).

Note that we only give the definition of v(j) when aj
is selected, for the input set for the maximum function

in (3) will be Ø when θj = 0, i.e.,

θj = 0 =⇒
∑
i

bjiηi = 0

=⇒ {v̄(j, i)|bji = 1, ηi = 1} = Ø.

4.3 Smoothed ζ Function

The permutation function ζ is relatively more dif-

ficult to approximate, because it contains the ranking

function. We employ a method similar to SoftRank[15]

to smooth it. The basic idea is to regard the rank score

of each ad as a random variable with a Gaussian dis-

tribution. Then the rank of an ad can be analytically

expressed based on the score distribution of all the ads.

With the rank distribution, we will be able to compute

the expected payment for each ad.

Note that any unimodal distribution with good

smoothness and controllable parameters is appropriate.

We follow SoftRank to use Gaussian distribution as an

example in the paper. The experimental results in Sec-

tion 6 suggest that Gaussian distribution has already

led to very promising results. We will investigate on

other unimodal distributions in our future work.

In particular, we use g(j) = h(j)v(j) as the mean

of the Gaussian distribution, and set its variance as σs.

That is,

p(sj |Xj = 1) = N (sj |s̄j , σ2
s) ≡ N (sj |g(j), σ2

s).

Here sj is the random variable for the rank score. Since

the score distribution is only defined when aj is selected,

the probability should be conditional, given Xj = 1.

With the aforementioned score distribution, we can

compute the probability that an ad is ranked above

another. In particular, given ad aj ∈ A, we define

πij ≡ P(ai ≻ aj) as the probability that another ad

ai ∈ A is ranked above aj in the final ad rank list. Note

that we consider all the ads in A, because we need to go

through all the ads to construct the rank distributions.

Therefore, we will discuss four cases in order to define

this probability.

1) If both ai and aj are selected, the probability that

ai beats aj is P(Si − Sj > 0|Xi = 1, Xj = 1) where Si

and Sj are drawn from p(si|Xi = 1) and p(sj |Xj = 1)

respectively. Then this probability is the integral of

the difference of the two Gaussian random variables,

which itself is a Gaussian. Therefore, we can write

the probability as P(Si − Sj > 0|Xi = 1, Xj = 1) =∫∞
0

N (s|s̄i − s̄j , 2σ
2
s)ds.

2) If ai is not selected but aj is selected (i.e.,

Xi = 0, Xj = 1), then it is easy to get P(Si − Sj >

0|Xi, Xj) = 0, indicating that ai will never be ranked

above aj in the final ranked list.

3) We have P(Si − Sj > 0|Xi, Xj) = 1 when ai is

selected but aj is not (i.e., Xi = 1, Xj = 0), indicating

that the selected ad ai will always be ranked above the

unselected ad aj .
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4) To make the definition of the probability com-

plete (the probabilities for all the cases sum up to one),

we set P(Si−Sj > 0|Xi, Xj) = 1/2 when Xi = 0, Xj =

0, which means ai has half of the possibility to beat aj
if both of them are not selected.

The above discussions can be mathematically writ-

ten as:

P(ai ≻ aj |Xi, Xj)

=


∫∞
0

N (s|s̄i − s̄j , 2σ
2
s)ds, Xi = 1, Xj = 1,

0, Xi = 0, Xj = 1,

1, Xi = 1, Xj = 0,

1/2, Xi = 0, Xj = 0,

P(Xi, Xj)

=


θiθj , Xi = 1, Xj = 1,

(1− θi)θj , Xi = 0, Xj = 1,

θi(1− θj), Xi = 1, Xj = 0,

(1− θi)(1− θj), Xi = 0, Xj = 0,

πij ≡ P(ai ≻ aj)

=

1∑
Xi=0

1∑
Xj=0

P(Xi, Xj)× P(ai ≻ aj |Xi, Xj)

= θi(1− θj) + (1− θi)(1− θj)/2 +

θiθj

∫ ∞

0

N (s|s̄i − s̄j , 2σ
2
s)ds. (6)

The permutation appears in the marketplace objec-

tive in two ways: the rank position of an ad (used in

computing the click probability) and the two ads ranked

adjacent to each other (used in computing the second-

price payment). Therefore, to smooth it, we need to

compute the rank distributions and the adjacent-pair

distributions. In the following paragraphs, we demon-

strate how we obtain them by using πij .

4.3.1 Rank Distribution

With πij , we can compute the rank distribution of

each ad aj . Let rj be the rank of ad aj , then its

distribution is denoted as pj(r) ≡ P(rj = r). Here

we take the same assumption as in [15] that πij (i =

1, · · · , j − 1, j + 1, · · · , N) are independent with each

other with the fixed index j. The range for rj is

0, 1, · · · , N − 1.

Then the distribution of rj can be obtained by con-

sidering the rank rj as a Binomial-like random variable,

equal to the number of successes of N −1 Bernoulli tri-

als, where the probability of success is πij . We can get

this distribution by a recursive process. If we define

the initial rank distribution for the ad aj as p
(1)
j (r), the

rank can only be the position 0 since aj is the only ad.

Then we have the rest N − 1 ads to be inserted to the

ranked list.

p
(i)
j (r) ={
δ(r), i = 1,

p
(i−1)
j (r − 1)πij + p

(i−1)
j (r)(1− πij), i ∈ [2, N ].

(7)

Here δ(x) = 1 if x = 0; otherwise, δ(x) = 0.

We further define p
(i)
j (r) = 0 if r < 0 as the trivial

case, and then we can get the final rank distribution

pj(r) ≡ p
(N)
j (r). It is not difficult to see that the ex-

pectation of rj is E[rj ] =
∑N

i=1,i ̸=j πij .

From the above recursive process, we can see that

if an ad aj is selected and it is good enough that every

other ad cannot beat it, then it will be ranked at the

top position with rj = 0. If an ad aj is not selected, it

will be randomly ranked at some position below all the

selected ads. Notice that the calculations on the rank

distributions of different ads are independent, and thus

it is easy to conduct a distributed implementation.

4.3.2 Adjacent-Pair Distribution

Then we compute the adjacent-pair distribution,

i.e., pj,i(r) ≡ P(rj = r, ri = r + 1). Given πji, we can

consider aj and ai together as a union in a recursive

generating process. In the first step, we add the union

of aj and ai into the ranked list and they are placed

at position 0 and position 1 respectively. In each of

the following steps, when we add a new ad al into the

list, there may be three cases: al is ranked above aj ,

al is ranked below ai, and al is ranked between aj and

ai. Given πji, the conditional probabilities of the three

cases are π̃lji, π̃jil, and π̃jli respectively. (The defini-

tions of the conditional probabilities are shown in Ap-

pendix A.) Here we only care about the first two cases

because we have assumed that aj and ai are ranked

adjacent to each other. Therefore, the recursive ex-

pression of pj,i(r) is written as,

p
(l)
j,i(r|πji) = δ(r),when l = 1,

p
(l)
j,i(r|πji) = p

(l−1)
j,i (r − 1|πji)π̃lji + (8)

p
(l−1)
j,i (r|πji)π̃jil,when 2 6 l 6 N − 1.

Again, we define p
(l)
j,i(r) = 0 if r < 0 as the tri-

vial case, and then we can get the final rank probabi-

lity pj,i(r) ≡ p
(N−1)
j,i (r|πji) × πji. Similar to the rank

distribution, we can regard pj,i(r) as a multinomial-

like distribution with pj,i(r) = P(Y1 = r, Y2 = 0, Y3 =
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N−r−2), where Y1, Y2, Y3 denote the random variables

of the numbers that the ad al is inserted into the above

three positions respectively.

4.4 Smoothed Objective Function

Based on the discussions in Subsections 4.1∼4.3, we

can obtain the following smoothed approximation to

the marketplace objective R(·) in (4) as R(·),

R(q) =

N∑
j=1

m−1∑
r=0

c(j)D(r)

(
α1pj(r) + α2v(j)pj(r) +

α3

N∑
i=1,i̸=j

g(i)

h(j)
pj,i(r)

)
.

Note in the above formula, the sum is over the ad in-

dexes rather than the ad rank positions. As a result,

it becomes continuous and differentiable, and therefore

easy to optimize.

5 Solving Optimization Problem

Since the smoothed objective function becomes dif-

ferentiable, we can choose to optimize it using the gra-

dient descent method. In particular, the gradient can

be computed according to the chain rule,

∂R
∂ω

=
∂R
∂η

· ∂η
∂ω

.

The first term ∂R
∂η can be derived from the

differentiation of pj(r) over η, which can be obtained

recursively similar to p
(i)
j (r), i.e.,

∂R
∂η

=
∂R
∂v

· ∂v
∂η

+
∂R

∂pj(r)
· ∂pj(r)

∂η
+

∂R
∂pj,i(r)

· ∂pj,i(r)
∂η

.

The second term ∂η
∂ω can be easily obtained by the

model of the function f(ω,x
(q)
i ) and the sigmoid func-

tion ηi = ς(ωTx
(q)
i ).

The derivation ∂R
∂ηt

, t = 1, · · · ,M , is

∂R
∂ηt

=
N∑
j=1

m−1∑
r=0

c(j)D(r)

(
α1
∂pj(r)

∂ηt
+

α2

(
∂v(j)

∂ηt
pj(r) + v(j)

∂pj(r)

∂ηt

)
+

α3

N∑
i=1,i̸=j

h(i)

h(j)

(
∂v(i)

∂ηt
pj,i(r) + v(i)

∂pj,i(r)

∂ηt

))
.

For simplicity, we denote vj = v(j) and vij = v̄(j, i).

According to the definition of v(j) in (3), we have

vj =

M∑
i=1

vjiφ(vji)bjiηi

M∑
i=1

φ(vji)bjiηi

,

and its derivative is,

∂vj
∂ηt

=
vjtφ(vjt)bjt∑M
i=1 φ(vji)bjiηi

−(∑M
i=1 vjiφ(vji)bjiηi

)
φ(vjt)bjt(∑M

i=1 φ(vji)bjiηi

)2
=

(
vjtφ(vjt)bjt

M∑
i=1

φ(vji)bjiηi −

φ(vjt)bjt ×
M∑
i=1

vjiφ(vji)bjiηi

)/
(

M∑
i=1

φ(vji)bjiηi

)2

=
φ(vjt)bjt

∑M
i=1(vjt − vji)φ(vji)bjiηi(∑M
i=1 φ(vji)bjiηi

)2 .

We also need a recursive process to obtain the

derivative of pj(r). Denoting ϕ
(i)
t,j(r) =

∂p
(i)
j (r)

∂ηt
, we can

get the derivative from (7):

ϕ
(1)
t,j (0) = 0,

ϕ
(i)
t,j(r) = ϕ

(i−1)
t,j (r − 1)πij + ϕ

(i−1)
t,j (r)(1− πij) +(

p
(i−1)
j (r − 1)− p

(i−1)
j (r)

) ∂πij
∂ηt

.

The derivative of pj,i(r) can be calculated in a sim-

ilar way to that of pj(r). Denoting

ψ
(l)
t,j,i(r) =

∂p
(l)
j,i(r|πji)
∂ηt

,

we can obtain the derivative from the recursive expres-

sion (8):

ψ
(1)
t,j,i(0) = 0,

ψ
(l)
t,j,i(r) = ψ

(l−1)
t,j,i (r − 1)π̃lji + ψ

(l−1)
t,j,i (r)π̃jil +

p
(l−1)
j,i (r − 1|πji)

∂π̃lji
∂ηt

+ p
(l−1)
j,i (r|πji)

∂π̃jil
∂ηt

.

According to the definition of pj,i(r), we can get

∂pj,i(r)

∂ηt
= ψ

(N−1)
t,j,i (r)πji + p

(N−1)
j,i (r|πji)

∂πji
∂ηt

.
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The derivative of πij over ηt can be expressed as

∂πij
∂ηt

=
∂πij
∂θ

· ∂θ
∂ηt

+
∂πij
∂v

· ∂v
∂ηt

=

(
∂πij
∂θi

∂πij
∂θj

)
∂θi
∂ηt
∂θj
∂ηt

+

(
∂πij
∂vi

∂πij
∂vj

)
∂vi
∂ηt
∂vj
∂ηt

 .

From (6) and considering the fact

∂

∂µ

∫ ∞

0

N (x|µ, σ2)dx = N (0|µ, σ2),

we can obtain the derivatives of πij over θ and v as

the following forms.
∂πij

∂θt
=

1−θj
2 + θj

∫∞
0

N (s|s̄i − s̄j ,

2σ2
s)ds, when t = i, t ̸= j;

∂πij

∂θt
= −(1 + θi)/2 +

θi
∫∞
0

N (s|s̄i − s̄j , 2σ
2
s)ds, when t ̸= i, t = j;

∂πij

∂θt
= 0,

when t ̸= i, t ̸= j.

∂πij
∂vt

=
θiθjuiN (0|uivi − ujvj , 2σ

2
s), t = i, t ̸= j,

−θiθjujN (0|uivi − ujvj , 2σ
2
s), t ̸= i, t = j,

0, t ̸= i, t ̸= j.

With the definition of θ in Section 3, we can ob-

tain the derivative of θ over η easily. The derivatives

of conditional probabilities π̃lji, π̃jil can be calculated

similarly. To save space, we put the calculation of the

derivatives in an online appendix file 2○.

Therefore, the gradient method can be implemented

to compute the optimal parameter vector ω∗. In the

industry practice, there are exact match and advanced

match for query-keyword matching. The trained model

can be used in two ways: 1) we can use it directly in

the online ad selection platform; 2) we can use it of-

fline to generate a static table of query-keyword pairs,

and apply the query-keyword mappings in the table for

advanced match.

6 Experimental Evaluation

In this section, we evaluate our proposed method

by comparing it with four baseline algorithms on a real-

world dataset. We simulated a sponsored search system

to validate the benefit of the ad selection methods for

the users, the advertisers, and the search engine. The

experimental results show that the proposed global op-

timization method significantly outperforms the base-

lines on several metrics. Furthermore, we provide a

study to elaborate the effectiveness of our method.

6.1 Dataset

The data used in the experiments is sampled from

the sponsored search log of a commercial search engine

in the period of two months. We sampled 14 912 queries

in May 2012 for training and another 17 487 queries in

June 2012 for test. We first extracted the keyword can-

didates for these queries using all the matching rules

in the sponsored search system, and then extracted all

the associated ads according to the bidding table in the

ad database. The quality scores and the predicted click

probability of these ads are also extracted for the simu-

lation of the auction mechanism. Finally, we got over

300 thousand query-keyword pairs, over 700 thousand

query-ad pairs and over 1.5 million query-keyword-ad

tuples. The details can be seen in Table 2.

Besides, in order to prepare the training objec-

tives for the baseline methods, we extracted the query-

keyword level normalized click through rate (nCTR),

social welfare, and revenue. The normalized click

through rate is calculated based on the sum of adjusted

clicks over the sum of adjusted impressions. The ad-

justments are conducted by multiplying the number of

clicks/impressions in different ad positions with the po-

sition discount function D(r). As explained in Subsec-

tion 3.4, we use the sum of bids of the clicked ads to

approximate the social welfare. The revenue is calcu-

lated as the sum of the payoffs from advertisers for the

given query-keyword pair.

6.2 Baselines

As discussed in Section 2, there are two categories

of existing ad selection algorithms. We first calculated

the cosine similarity between query and keyword as the

baseline on behalf of the relevance-based models. Note

Table 2. Statistics of the Dataset

Number of Queries Number of Query-Keyword Pairs Number of Query-Ad Pairs Number of Query-Keyword-Ad Tuples
May 2012 14 912 342 791 743 050 1 577 683
June 2012 17 487 427 366 928 418 2 030 186

2○ https://www.dropbox.com/s/qczlc9mh6jh8yg2/Appendix.pdf, Jan. 2015.
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that we did not choose the methods of [3-4] because

both of them use external text streams like the landing

pages. It is beyond the scope of our study, for we re-

gard that the external information might be extracted

as features in the models. For the click information

based methods, we chose Simrank++[9]. Besides the

above two categories, we used a classification method

and a regression method both trained on the query-

keyword features under the supervision of historical in-

formation including nCTR, social welfare, and revenue.

The implementation of the four baselines is explained

as below.

• For the first baseline, the cosine similarity between

query q and keyword k is defined as the similarity be-

tween their vector representations based on term fre-

quency, i.e.,

simcosine(q, k) =
#CommonTerms√
Len(q)×

√
Len(k)

,

where Len(q) and Len(k) are the numbers of terms in

q and k respectively. We denote it by Cosine for ease

of reference.

• For the second baseline Simrank++, we merged

all the queries and keywords appeared in the test data

as one side and extracted the clicked ads in May 2012 as

the other side to build the click bipartite graph. There

are 486 024 queries and keywords in the test data, and

306 816 of them are associated with 1.3 million clicked

ads. The generated click bipartite graph contains 3.2

million edges, the scale of which is even larger than the

main subgraph in [9]. Thus, we implemented the prun-

ing technique in the original Simrank paper[16] with

a radius 2, and ran 7 iterations as suggested by [16].

Though the click graph is very large, there are still

many pairs of queries and keywords without predicted

similarities. Among the 427 366 query-keyword pairs in

the test data, there are only 231 069 pairs with Sim-

rank++ scores, indicating that they do not have com-

mon clicked ads in May 2012, if we regard both the

queries and keywords as input queries. This is also a

limitation of the click information based methods.

• For the third and the fourth baselines, we com-

bined nCTR, social welfare, and revenue as the training

targets. We normalized the three values to standard

normal distribution N (0, 1) and then summed them

up as the targets. Among the 342 791 query-keyword

pairs in the training data, there are 233 586 pairs with

impressions and only 80 552 pairs of them with clicks.

For the classification model, we used the query-keyword

pairs with more than 20 impressions but with zero click

as the negative training examples, and used the query-

keyword pairs with more than 20 impressions and with

the nCTR higher than 0.04 as the positive training

examples. Both groups of the examples contain more

than 60 thousand query-keyword pairs. For the regres-

sion model, we took use of all the query-keyword pairs

with non-zero impressions. We used SVM-light[17] to

train the classification and the regression models using

the linear setting. For ease of reference, we denote the

two baselines as SVM-Cls and SVM-Reg respectively.

6.3 Query-Keyword Features

We extracted three categories of query-keyword fea-

tures including keyword related features, query related

features, and query-keyword related features.

• Keyword Related Features. Given a keyword, we

extracted the average bid, the number of ads that bid

it, the number of orders that bid it, the number of cam-

paigns that bid it, and the number of advertisers that

bid it from the advertiser database and the ad database,

and extracted the number of ad impressions, the num-

ber of ad clicks, and the average ad click position for

the keyword in a period of time (e.g., one month) from

the auction log.

• Query Related Features. Given a query, we re-

garded the query as a keyword and extracted the simi-

lar features as the keyword-related features.

• Query-Keyword Related Features. Given a pair of

query and keyword, we extracted the cosine similarity,

edit distance, and word distance between them. We

also used two features computed from the translation

models[18].

6.4 Evaluation Metrics and Simulation

We run a simulation of the sponsored search system

for the comparing algorithms, and check their perfor-

mance on the estimated nCTR for the users, the esti-

mated social welfare for the advertisers, and the esti-

mated revenue for the search engine.

In the simulation, for a given query, each algorithm

will select a set of keywords and the corresponding ads.

With the quality score and the bid, we can calculate the

rank score of each ad. Then, according to (4), we can

calculate the three parts of the marketplace objective

respectively. After that, we multiply the marketplace

objectives by the normalized query frequencies. Thus,

we can sum all the queries up and obtain the estimated

nCTR, the estimated social welfare, and the estimated

revenue.
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6.5 Scalability

We first make a complexity analysis on the proposed

model, and then explain how we implement it when the

scale of the problem increases.

For a given query, we assume that there are M key-

words and N ads involved, and we consider the top

m positions in the ad list. Then the complexity of

the probability πij is O(N2), and the complexity of

the rank distribution pj(r) for the top m positions is

O(N2m). The complexity of the triple probability π̃lji
is O(N3), and in each calculation, it will call a nu-

merical integration algorithm. The computation com-

plexity of the adjacent-pair distribution for the top m

positions is O(N3m), and the complexity of calculating

its derivatives is similar. Therefore, the calculation of

the adjacent-pair distribution is the bottleneck for the

proposed model.

There are several ways to speed up the algori-

thm. One way is to approximate the rank distribution

pj(r) with Rank-Binomial distribution as presented in

SoftRank[15]. Similarly, the adjacent-pair distribution

can also be approximated by multinomial-like distri-

bution as we discussed in Subsection 4.3.2. These

approximations will significantly reduce the computa-

tional complexity. Another way is to use the paral-

lel computing techniques. As the calculations on rank

distributions of different ads are independent, we can

implement them in parallel. The implementation is be-

yond the scope of the paper.

Besides the above complexity analysis, we should

note that the test process is quite fast and only needs

to perform an inner product to sort the keywords. In

industry practice, we can update historical features fre-

quently but only retrain the model parameter in proper

period, which is the strategy that the quality score com-

putation algorithm and the ad click prediction algo-

rithm adopt. We can further control the volume and

quality of the training set according to the computa-

tional capabilities, and then the proposed method can

be deployed to the search engine.

6.6 Parameter Setting

For the parameters of the proposed model, we set

the exponent of the sigmoid function for η to 0.2, i.e.,

ς(x) = 1/(1 + e−0.2x), to make it like a linear function.

We set the exponent of the sigmoid function for θ to

3 so that it approaches to a stepwise function, which

looks more similar to the definition of bji. We set the

variance of the rank score to a fixed value 10 and we

only consider the top four positions in the ad list, corre-

sponding to the mainline ads. The balancing parame-

ters α1, α2, α3 of the marketplace objective are set to

0.8, 0.1, 0.1 to make the three parts of the objective in

the same level of magnitude. Note that a search engine

might balance the benefits of users, advertisers, and it-

self according to some pre-defined curve. We just use

these balancing parameters to show the performance

of the proposed algorithm. The model is trained us-

ing stochastic gradient descent with a random initial

parameter vector ω in 20 trails and most of them con-

verge to a stable optimal ω∗ with the relative error less

than 0.2%. We use the best one to compare with the

baselines.

6.7 Ad Selection Performance

We denote the proposed global optimization model

as Global for ease of reference, and compare its per-

formance with those of the baseline algorithms Cosine,

Simrank++, SVM-Cls, and SVM-Reg. We report the

performance of these algorithms with respect to esti-

mated nCTR, estimated social welfare, and estimated

revenue.

We sort the keywords of each query increasingly

according to the predicted scores and split them into

20 buckets. We drop the bucket of keywords with the

smallest scores in each step, and get a declining curve

for every model on each of the three evaluation met-

rics. The curves are shown in Figs. 2∼4. Besides, we

also compute the area under curve (AUC) to compare

the performance of these models in Table 3. Note that

we normalize the values under each evaluation metric

by dividing them by a certain value in the correspond-

ing results, to protect the business information of the

involved commercial search engine.
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Table 3. AUC of the Five Models on Three Metrics

nCTR Social Welfare Revenue
Cosine 0.897 8 0.842 3 0.822 2
Simrank++ 0.901 4 0.845 3 0.817 6
SVM-Cls 0.893 3 0.816 0 0.781 7
SVM-Reg 0.900 8 0.833 8 0.801 5
Global 0.906 2 0.880 7 0.851 6

From the experimental results, we have the follow-

ing observations.

• The Global method outperforms the four baselines

in estimated social welfare and estimated revenue in all

buckets. For estimated nCTR, Global only outperforms

the baselines in the middle buckets. However, the AUC

of Global for estimated nCTR is still the largest in Ta-

ble 3. Therefore, we can claim that Global achieves the

best performance in the experiments.

• Global performs better than SVM-Cls and SVM-

Reg, though the three models are trained on the same

feature set. The reason is explained as below. SVM-Cls

and SVM-Reg take the historical information to build

the training targets, and thus the models cannot fit the

future predictions very well. Global considers the effec-

tiveness of the downstream components when comput-

ing its marketplace objective, thereby it can generate

better predictions compared with SVM-Cls and SVM-

Reg.

• Generally, Cosine and Simrank++ perform better

than SVM-Cls and SVM-Reg. It shows that the query-

keyword features are far from enough to build a good

model. They might be easily beaten by some simple

heuristics. We should take a global view in the ad se-

lection problem towards the marketplace objective to

combine the features.

To sum up, the proposed Global model outperforms

the four baseline ad selection methods on all the three

evaluation metrics.

6.8 Statistical Study

We analyze how the Global model outperforms the

baseline methods. Our key conclusion is that: the base-

line methods tend to select the keywords that can maxi-

mize the nCTR, social welfare, and revenue based on

the historical auction and ad click data; differently, the

Global method considers the downstream components

like the auction mechanism in its optimization so that it

can select the keywords that will maximize the nCTR,

social welfare, and revenue in future auctions. To draw

the above conclusion, we conduct the following statis-

tical study.

For each of the five models in the comparison experi-

ments, we keep the top 70% ranked keywords for each

query as selected keywords and put the corresponding

ads in the downstream auction. Then for each metric

(nCTR, social welfare, and revenue), we compute the

percentage of the metric earned by the top 70% key-

words over all the keywords. We check the percentages

of the metrics for the five models in the historical ad

click data in the training set (May 2012), and in the

simulated sponsored search results in the test set (June

2012). The values are listed in Table 4 and Table 5.

For example, the last value 95.66% in the last row in

Table 5 means that the top 70% keywords selected by

the Global method help the search engine earn 95.66%

revenue compared with selecting the 100% keywords on

the simulated results in the training set.

From these tables, we have the following observa-

tions.

• From Table 4, the Global model does not always

perform the best on the metrics. Simrank++ achieves

the best on both nCTR and revenue, while SVM-Cls

achieves the best on social welfare. The reason is ex-

plained as below. The training of Global does not rely

much on the historical data; differently, the training of

some baselines highly depends on the historical data.

For instance, the computation of Simrank++ is con-

ducted on the click graph built from the historical ad
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click data; for another instance, the training target of

SVM-Cls is a combination of historical nCTR, social

welfare, and revenue.

Table 4. Metric Percentages of the Five Models on

Historical Data in Training Set

nCTR(%) Social Welfare(%) Revenue(%)

Cosine 75.16 99.10 98.09

Simrank++ 81.13 99.27 98.88

SVM-Cls 77.25 99.43 97.89

SVM-Reg 76.42 98.97 97.83

Global 76.30 99.08 97.99

• From Table 5, the Global model outperforms all

the four baselines in all metrics. The reason is explained

below. Our method leverages much information from

the downstream components in a global view in the

training process which is closer to the real application,

and thus our learned model can perform better when

working together with the downstream components in

the test process. The sponsored search system is di-

vided into several parts, but only when these parts fit

each other can it be a united system.

Table 5. Metric Percentages of the Five Models on

Simulated Results in Test Set

nCTR(%) Social Welfare(%) Revenue(%)

Cosine 93.46 91.20 91.81

Simrank++ 94.90 91.22 91.70

SVM-Cls 94.47 88.84 87.95

SVM-Reg 95.02 91.04 91.40

Global 96.75 96.57 95.66

7 Conclusions and Future Work

In this paper, we argued that a good ad selection

algorithm should perform global optimization for the

marketplace objective for the entire sponsored search

system, instead of just optimizing a locally defined ob-

jective. Given that the marketplace objective is dis-

continuous and indifferentiable, we proposed a set of

smoothing techniques so as to obtain a smoothed ap-

proximation to the marketplace objective. After that,

we employed a gradient descent method to optimize the

smoothed marketplace objective, in order to learn the

desired ad selection model. We tested our proposed

algorithm using the sponsored search logs from a com-

mercial search engine. The experimental results have

shown that the proposed method outperforms several

conventional ad selection algorithms in terms of several

evaluation metrics.

For the future study, we plan to work on the fol-

lowing aspects. First, we will study alternative meth-

ods to smooth the marketplace objective and compare

their effectiveness. Second, we will study the approxi-

mation ratio of the smoothed marketplace objective, so

as to provide a theoretical guarantee on the proposed

approach. Third, in this paper, we regard the click

prediction algorithm and auction mechanism as fixed

components when learning the ad selection algorithm.

In the future, we plan to optimize all these compo-

nents simultaneously, which may potentially generate

even better results.
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Appendix A Conditional Probabilities

In the first step of the recursive process, we add

the union of aj and ai into the rank list and they are

placed at position 0 and position 1 respectively. In each

of the following steps, when we add a new ad al into

the list, there will be three cases: al is ranked above aj ,

al is ranked below ai, and al is ranked between aj and

ai. The conditional probabilities of the three cases are

calculated as below.
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P(al ≻ aj |aj ≻ ai) =
P(al ≻ aj ≻ ai)

P(aj ≻ ai)
,

P(ai ≻ al|aj ≻ ai) =
P(aj ≻ ai ≻ al)

P(aj ≻ ai)
,

P(aj ≻ al ≻ ai|aj ≻ ai) =
P(aj ≻ al ≻ ai)

P(aj ≻ ai)
.

Like the pairwise beat probability, the calculation

of P(ai ≻ aj ≻ ak) can be separated into several cases,

P(ai ≻ aj ≻ ak)

=



P(Si > Sj > Sk), Xi = Xj = Xk = 1,

πij , Xi = Xj = 0, Xk = 1,

0.5, Xi = 1, Xj = Xk = 0,

1/6, Xi = Xj = Xk = 0,

0, otherwise.

We can see that the most difficult part in calcu-

lation is P(Si > Sj > Sk). As we discussed in Sec-

tion 4, Si, Sj , Sk are drawn from the Gaussian ran-

dom variables p(si), p(sj), p(sk) with different means

s̄i, s̄j , s̄k but the same variance σ2
s . Here we use

µi, µj , µk to denote the means and σ2 to denote the

variance for simplicity. Since the rank score distribu-

tions are independent, we can get the joint distribution

by simply multiplying them together, i.e., p(si, sj , sk) =

p(si)p(sj)p(sk). With the joint distribution, we can get

P(Si > Sj > Sk)

=

∫ +∞

−∞
dsj

∫ sj

−∞
dsk

∫ +∞

sj

p(si)p(sj)p(sk)dsi

=

∫ +∞

−∞
dsj

∫ sj

−∞

(
1− Φ(sj |µi, σ

2)
)
p(sj)p(sk)dsk

=

∫ +∞

−∞
p(sj)Φ(sj |µk, σ

2)
(
1− Φ(sj |µi, σ

2)
)
dsj .

Here Φ(x|µ, σ2) = 1
2

(
1 + erf

(
x−µ

σ
√
2

))
is the cumula-

tive distribution function of normal random variable

N (µ, σ2), and erf(x) is the error function 3○. Then we

can calculate this probability with a one-dimensional

numerical integration. There are several standard

methods to compute the numerical integration 4○, and

we can also make some preprocessing to trade space for

time. Combined with the previous formulas, we can

calculate the conditional probabilities.

3○ Wikipedia. Error function. http://en.wikipedia.org/wiki/Error function, Jan. 2015.
4○ Wikipedia. Numerical integration. http://en.wikipedia.org/wiki/Numerical integration, Jan. 2015.


