
Bernardeschi C, Cassano L, Domenici A. SRAM-based FPGA systems for safety-critical applications: A survey on design

standards and proposed methodologies. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 30(2): 373–390

Mar. 2015. DOI 10.1007/s11390-015-1530-5

SRAM-Based FPGA Systems for Safety-Critical Applications: A
Survey on Design Standards and Proposed Methodologies

Cinzia Bernardeschi 1, Luca Cassano 2,∗, Member, IEEE, and Andrea Domenici 1

1Department of Information Engineering, University of Pisa, Pisa 56122, Italy
2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy

E-mail: cinzia.bernardeschi@ing.unipi.it; luca.cassano@polimi.it; andrea.domenici@ing.unipi.it

Received December 21, 2013; revised October 10, 2014.

Abstract As the ASIC design cost becomes affordable only for very large-scale productions, the FPGA technology is

currently becoming the leading technology for those applications that require a small-scale production. FPGAs can be

considered as a technology crossing between hardware and software. Only a small-number of standards for the design

of safety-critical systems give guidelines and recommendations that take the peculiarities of the FPGA technology into

consideration. The main contribution of this paper is an overview of the existing design standards that regulate the design

and verification of FPGA-based systems in safety-critical application fields. Moreover, the paper proposes a survey of

significant published research proposals and existing industrial guidelines about the topic, and collects and reports about

some lessons learned from industrial and research projects involving the use of FPGA devices.

Keywords design verification, electronic design, safety-critical system, SRAM-based FPGA

1 Introduction

Since the first FPGA device was developed by Xilinx

in 1984 with the XC2064 chip, the FPGA technology

has enormously grown in terms of flexibility, reliability

and computational power. Although it is still not com-

parable with ASIC technology in terms of either com-

putational power or silicon area occupation, the FPGA

technology has imposed itself in many application fields

thanks to very good performance, low non-recurrent de-

sign cost and very short time to market.

In particular, SRAM-based FPGA devices are em-

ployed in many application fields such as broadcast,

wireless and wired communication systems[1], cryptog-

raphy and network security[2], and consumer products,

as well as in fields with stringent safety requirements,

such as airborne[3], aerospace and defense[4], railways[5],

and industrial and nuclear power plant control[6].

This interest is due to the capability of SRAM-based

FPGAs of being dynamically and partially reconfigured

at run-time, which makes this technology much more

powerful and flexible than non-dynamically reconfigu-

rable technologies, such as flash- and antifuse-based FP-

GAs. Using SRAM-based FPGAs and exploiting dy-

namic partial reconfiguration, a designer can adapt the

functionality implemented by the system to changing

environment and operational requirements. For exam-

ple, dynamic partial reconfiguration has been used in

a platform for satellite payload processing[7]. A satel-

lite payload may perform different tasks in the course

of its mission, such as acquiring data, processing it,

and transmitting it to ground. FPGA devices may be

reconfigured for each task, thus improving resource uti-

lization.

Nevertheless, SRAM-based FPGA devices are still

seldom used in those parts of systems related with the

safety of the system itself, due to the vulnerability to

faults of the SRAM-based configuration memory[8]. On

the other hand, in the last years, a number of dedicated

conferences and workshops, such as the NASA/ESA

Conferences on Adaptive Hardware and Systems and

the Military and Aerospace Programmable Logic De-

Survey
∗Corresponding Author

©2015 Springer Science+Business Media, LLC & Science Press, China



374 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

vices Workshops, demonstrate great interest in employ-

ing SRAM-based FPGA devices in safety- and mission-

critical applications. In [9], the maturity of reconfigu-

rable FPGA technologies for safety-critical applications

is discussed.

A safety-critical system is a system whose fail-

ure or malfunction may result in death or serious

injury to people, loss or serious damage of equip-

ment or environmental harm. In the IEC 61508-

2 functional safety standard[10], for safety related

electric/electronic/programmable electronic systems

(E/E/PE) operating in a low-demand mode of opera-

tion, the lower limit on the target failure measures is set

at an average probability of 10−5 dangerous failures per

hour of functioning. On the other hand, for E/E/PE

safety-related systems operating in a high-demand con-

tinuous mode of operation, the lower limit is set at an

average probability of 10−9.

As discussed in [11], testing alone cannot guarantee

such requirement; combining fault tolerant approaches,

such as replication and diversity, together with testing

and other techniques such as Failure Mode and Effects

Analysis (FMEA) and reliability analysis methods, can

improve the reliability of the system, but the result is

still far from the 10−9 goal. It is then necessary to com-

plement the fault removal (i.e., testing) and fault tole-

rance strategies with a fault avoidance strategy, with

the goal of producing high-quality systems, as free as

possible of systematic faults. This goal can be achieved

with rigorous development processes carried out accord-

ing to standards that explicitly take into account the

requirements of safety-critical systems.

Many standards are available to developers of

safety-critical systems, but most of them do not directly

address the specific issues of the FPGA technology, or

provide only limited guidance about them. There are

two main differences between the ASIC and the FPGA

design from the system designer point of view. The

first difference is that the FPGA design flow is much

more automated than the ASIC one, and thus it leads

designers to rely much more on the CAD tools provided

by the FPGA vendor and to pay less attention to ver-

ifying the correctness of the intermediate products of

the various design phases and to trust too much the

CAD tools[12]. The second difference is that the final

product of the FPGA design is a software, i.e., the bit-

stream. Because of this, FPGAs are often perceived by

designers as easy to modify and correct late in the de-

velopment process, and thus FPGA-based systems are

often designed with development methods more similar

to a code and fix approach than a true hardware design

process, and methods that would not be accepted for

the design of more costly and less flexible technologies,

such as ASICs or microprocessors[13].

In [13], Cercone et al. discussed how FPGA pro-

gramming has not evolved much beyond the classical

sequential development methodology of specifying re-

quirements, creating the design, coding, simulating and

testing. Often the documentation and testing of an

FPGA project is left as an “end of project” task. The

authors discussed how logic and functional testing is

often completed only for known operational conditions,

thus ensuring that the device does what it is supposed

to do, but not ensuring that it does not perform unre-

quested functions. The paper strongly endorses the ne-

cessity of adapting verification and validation methodo-

logies relying on modern design processes to the FPGA

design, incorporating verification techniques as integral

parts of the entire design process.

Habinc[14], as well as Fernández-León[12] and Gib-

bons and Ames[15], discussed how many problems and

failures in space applications involving FPGA devices

are the result of applying inadequate development, veri-

fication and validation methodologies. The authors ob-

served that since the FPGA technology became suffi-

ciently mature, it is being employed more and more

heavily in space applications, performing more and

more complex and critical tasks.

Gibbons and Ames[15] discussed the failure of the

NASA Wide Field Infrared Explorer (WIRE) project,

which was due to the indeterminate state of the output

of a control FPGA device, during the power-up phase.

The authors focused on that experience, arguing that a

robust design process of an FPGA-based safety-critical

system must rely on a great experience of designers in

any aspect of the specific FPGA technology employed.

Finally, Fernández-León[12] discussed the results of

an audit of FPGA-based designs conducted by the Eu-

ropean Space Agency, which revealed that the overall

design methodology and the quality control applied to

these designs were often poorly defined and in some

cases even risky or negligent.

Taking these issues into account, designers of

FPGA-based systems often borrow the standards and

guidelines from more traditional technologies and adapt

them to the needs of FPGA-based development. More-

over, because of the lack of specific regulations and

standards, a number of guidelines, such as [16], and

lessons learned from research and industrial projects,

such as [12-13, 15], have been published over the years.



Cinzia Bernardeschi et al.: SRAM-Based FPGA Systems for Safety-Critical Applications 375

Our work intends to present a brief overview of

the existing standards for the use of FPGAs in safety-

related systems, and, in general, hardware-based sys-

tems development, and to survey proposed techniques,

guidelines and lessons learned about the design, veri-

fication and validation of FPGA-based safety-critical

systems. This work is meant for both practitioners and

researchers working in the field of design and verifica-

tion of FPGA-based safety-critical systems. In particu-

lar, practitioners could exploit the present work to get

a quick overview of the existing standards as well as to

enrich their background through lessons learned from

industrial and research projects involving the develop-

ment of FPGA-based systems. On the other hand, re-

searchers approaching the novel design and verification

techniques could obtain from the present work a first

picture of the existing trends.

Since the design of an FPGA-based system has

many steps in common with the ASIC design flow and

since there is not yet a comprehensive and specific stan-

dard for the development of FPGA-based systems, in

the following sections, we report general information,

requirements and guidelines specific of ASIC designs

but also applicable to FPGA designs, and, when availa-

ble, activities and requirements specific of the FPGA

design flow.

The remainder of this paper is organized as follows:

in Section 2, we briefly describe the main features of

the FPGA technology; in Section 3, we quickly review

the standards in force for FPGAs in safety-critical ap-

plication fields; in Section 4, we present a survey of the

research proposals, guidelines and lessons learned for

FPGA-based system design and verification in safety-

critical application fields; Section 5 presents the main

techniques for the analysis of the effects of radiation

on SRAM-based FPGA systems; Section 6 reports on

some published case studies; Section 7 discusses open

issues; finally, Section 8 concludes the paper.

2 FPGA Technology

2.1 FPGA Programming

An FPGA is a prefabricated array of programmable

blocks, interconnected by a programmable routing

architecture and surrounded by programmable in-

put/output blocks. Fig.1 shows the basic architecture

of an FPGA chip.

Programmable blocks may be simple combinato-

rial logic (soft logic blocks) or memories, multiplexers,

ALUs and other kinds of prefabricated circuitry (hard

logic blocks). Logic blocks may be programmed to im-

plement a certain functionality, the routing architecture

may be programmed to interconnect various blocks, and

I/O pads may be programmed to ensure off-chip con-

nections.

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Connection

Box

Connection

Box

Connection

Box

Connection

Box

Connection

Box

Connection

Box
Switch

Box

Switch

Box

Switch

Box

Switch

Box

Connection

Box

Connection

Box

Fig.1. Basic FPGA structure.

The purpose of the logic block is to provide the basic

computational and storage element for the construction

of the complete logic system. The programmable rout-

ing architecture, composed of wires and programmable

switches, provides connections among logic blocks and

I/O blocks to complete a user-designed circuit. Finally,

the I/O architecture is composed of I/O pads disposed

along the perimeter of the FPGA device, each one im-

plementing one or more communication standards.

FPGA programming consists of downloading to the

device a programming code, called bitstream, that di-

rectly defines the hardware structure of the FPGA de-

vice by enabling or disabling gates in logic blocks to

implement a certain function and of enabling or dis-

abling connections between wires to connect or dis-

connect logic blocks, or to connect or disconnect logic

blocks to/from I/O pads.

Three FPGA programming technologies exist:

static memory (SRAM) based, non-volatile memory

(flash and EEPROM) based and antifuse-based[17].

In the static memory based programming techno-

logy, the bitstream is downloaded in the configuration

memory of the device. This technology allows an indefi-

nite number of device reprogrammings and has the best

ratio of the device area for user resources to the area

used by configuration memory, because static memo-

ry is realized with the same standard CMOS used for



376 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

FPGA devices. On the other hand, SRAM-based FP-

GAs need a supporting non-volatile memory to store

the configuration data while the device is not powered.

Further, FPGA devices based on SRAM are the most

susceptible to the adverse effects of radiations.

The flash/EEPROM programming technologies

grant a limited number of reprogramming processes

and have a worse real-estate utilization, because

flash/EEPROM cells are fabricated with a non-

standard CMOS production process. On the other

hand, these technologies do not need any supporting

non-volatile memory. Further, flash/EEPROM-based

FPGAs are much less susceptible to the effects of ra-

diations, and, in particular, almost immune to single

event upsets in the configuration memory.

The antifuse programming technology does not

allow any reprogramming of the device. Like

flash/EEPROM-based FPGAs, also antifuse-based

ones have bad real-estate utilization, but, again, they

do not need any supporting non-volatile memory. Fi-

nally, antifuse-based FPGAs have no configuration

memory, and are thus immune from long-term effects

of SEUs (single event upsets).

The FPGA device performance both in terms of

computational speed and silicon area occupation is pro-

portional to the size and complexity of the basic logic

block, but the simpler the structure of the logic block it-

self, the higher the degree of flexibility and programma-

bility offered to the designer, and thus a trade-off be-

tween performance and flexibility must be found. Like-

wise, the higher the number of switch boxes and long

wires in the routing architecture and the number of

communication standard implementable in a single I/O

pad, the higher the flexibility level, but at the same

time, the worse the computational speed and the area

occupation performance.

Modern FPGAs are extremely complex and power-

ful devices. They can be configured to host a complete

microprocessor, or even a System-on-Chip, i.e., a com-

plete system, composed of processor, memory and pe-

ripherals, all placed on the same chip. There are many

embedded processors that can be placed on FPGA de-

vices, among which we can mention the Xilinx MicroB-

laze and PicoBlaze, and the Altera Nios and Nios II,

provided by the FPGA vendors themselves. Further,

apart from the previously mentioned soft-CPUs, more

complex and powerful cores, such as the ARM Cortex-

M1 core or the Gaisler LEON4 CPU, can be placed on

modern, high-performance, FPGA devices.

More detailed discussions about FPGA architec-

tures can be found in [17].

2.2 Advantages and Issues Related to FPGA-

Based Designs

As has been analyzed in depth by Kuon and

Rose[18], FPGA-based designs are usually larger, slower

and much more energy-consuming than full-custom de-

signs. Nevertheless, they are more and more widely

employed in all application fields and the interest in us-

ing FPGA devices in safety-related applications, such

as space missions or railways systems, is growing. This

is basically due to the two main factors of low cost and

short time to market[17].

A full-custom design needs very expensive CAD

tools for simulation, verification, synthesis, and floor-

planning. Further, a full-custom design needs a large

number of engineers working for many months. Finally,

full-custom designs require the use of masks, which may

cost several millions dollars, to drive the lithographic

process. On the other hand, the cost of an FPGA device

ranges between some tens and one thousand dollars.

Further, licenses of CAD tools for FPGA-based designs

are much cheaper than those of tools for full custom

designs. The only large cost related to FPGA-based

designs is the cost of the development team. Thus, es-

pecially for low-scale, and medium-scale productions,

FPGAs are often the best technological choice.

From the time to market point of view, after the

completion of a full custom design process, the design-

ing company must send the obtained masks to a silicon

foundry (often located in a different country or even

continent) to physically produce the chips, which may

be sent back to the customer up to three months later.

Then, the chips have to be tested and, if modifications

to the design are needed, the design process has to ite-

rate one of the previously performed design activities,

after which a new fabrication process will be performed.

A full custom design may need up to three fabrica-

tion iterations and thus up to twelve or even eighteen

months between the product conception and its avail-

ability to customers. FPGA-based designs, instead,

do not require fabrication delays. Design errors can

be identified much more easily during the prototyping

phase and thus the time to market of an FPGA-based

design generally ranges between three and six months.

The main issues related to the design of FPGA-

based systems and their adoption in safety-critical ap-

plication fields are the lack of standards specifically ad-



Cinzia Bernardeschi et al.: SRAM-Based FPGA Systems for Safety-Critical Applications 377

dressing the FPGA technology and the severe suscep-

tibility of FPGA devices to the effects of radiations.

As we have already discussed in the introduction of

this paper, given the relative youth of the FPGA tech-

nology, and its not yet wide acceptance in safety-related

application fields, there are very few design standards

specifically addressing the FPGA technology. This, to-

gether with the ease and the low cost of prototyping

and fixing defects, often led designers to underestimate

design issues, thus causing projects failures. In order to

overcome the lack of standards and to guide designers,

several industrial guidelines and lessons learned from

projects have been published.

Radiations, both in space and at ground level, may

cause a system to fail. In particular, radiations hit-

ting the silicon surface of digital circuits may alter the

content of memory elements. Radiation hitting SRAM-

based FPGA devices may have even worse effects, since

they could permanently corrupt the contents of the con-

figuration memory (until a device reconfiguration), thus

changing the functionality implemented in the device.

3 Standards Regulating the Design of

Hardware Systems in Safety-Critical

Systems

A general framework for the design and develop-

ment of hardware and software safety-critical systems

is the IEC 61508 standard, and in particular the IEC

61508-2[10] and the IEC 61508-3[19] for hardware and

software systems respectively. Currently a specific regu-

lation on FPGA design in safety-critical systems exists

only in the aerospace application field: the ECSS-Q-ST-

60-02C[20]. Moreover, in the airborne application field,

the RTCA/DO-254 standard[21] can be applied to the

design and development of electronic systems and thus

also to FPGA-based systems. In all the other applica-

tion fields, the regulations in force require adopting the

standard for the design and development of both soft-

ware and hardware systems. In particular, in the au-

tomotive application field, the reference standards are

the ISO/DIS 26262-5[22] and the ISO/DIS 26262-6[23],

and in the railways application field, the CENELEC

EN 50128[24] and the CENELEC EN 50129[25].

Since the design of modern VLSI systems always

involves the use of high level hardware description lan-

guages, all the standards agree on the application of a

V-shaped design flow, which is inspired by the classical

software design flow. Fig.2 shows the V-shaped design

flow taken from the IEC 61508-2[10] standard for the

ASIC development lifecycle. Note that, although the

figure representing the V-shaped lifecycle seems to be

specifically related to ASIC designs, the same lifecycle

has to be taken into account also when the design of an

FPGA-based system is addressed[10].

In the V-shaped lifecycle, in each phase of the

development (the left-hand branch of the V), require-

ments are defined and sub-products are produced to

fulfill the requirements. Moreover, after each phase, the

intermediate products of the phase are verified against

the requirements specified in the previous phase: for

example, the adequacy of the hardware architecture in

fulfilling the requirements specification must be veri-

fied, the adequacy of the designed modules and their

integration in fulfilling the architecture must be veri-

fied and so on.

In the validation phase of the lifecycle (the right-

hand branch of the V), all the products of the develo-

pment phase are evaluated in order to ensure correct-

ness and consistency with respect to the global require-

ments. In other words, it must be verified that the ob-

tained FPGA-based system fulfills the functional and

safety requirements specified in the requirement speci-

fication phase and does not contain undesired function-

alities. In some cases, this final validation shall be car-

ried out by an independent party.

The ECSS-Q-ST-60-02C standard requires that the

system verification is performed in a realistic applica-

tion environment. Thus, a system breadboard shall be

designed and used by covering all the operating modes

and conditions of the device. Also radiation testing

shall be performed on the prototype if the required

radiation-hardening level is not yet granted by the used

technology.

In the following of this section, we present a brief

summary of the requirements imposed by the previously

mentioned safety standards, and for each phase of the

V-shaped design lifecycle, we place particular emphasis

on the requirements imposed by the ECSS-Q-ST-60-

02C standard for FPGAs.

3.1 Development Process

3.1.1 System Safety Requirements Specification

In this phase, starting from the requirements specifi-

cation document of the whole system (named “E/E/EP

system safety requirement specification” in the figure),

requirements for the FPGA-based system are extracted

and analyzed. In particular, it is recommended to iden-

tify those requirements that involve functionalities that



378 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

E/E/PE System
Safety Requirements

Specification

E/E/PE System
Architecture

ASIC
Architecture

ASIC Validation
Validation
Testing

Validated
ASIC

Verification of
Complete ASIC

Module
Integration

Testing

Module
Testing

ASIC Design and
Behavioural
Modelling

Module
Design

Synthesis,
Placement and

Routing

Post-Layout
Simulation

Final Coding
Output

Verification

ASIC Safety
Requirements
Specification

Fig.2. ASIC development lifecycle (the V-shaped model)[10].

allow the system to reach and maintain a given safety

level, those functions that allow the system to detect,

identify and handle faults and those functions related

to performance- and time-critical operations.

The specification of the system requirements shall

contain details relevant to the design to achieve the

safety integrity level and the required target failure

measure for the safety function, as specified by the

E/E/PE system safety integrity requirements specifi-

cation.

In particular, the ECSS-Q-ST-60-02C standard im-

poses the following additional requirements related to

the occurrence of faults due to radiation:

• error handling,

• test device on ground and flight,

• proof of required fault coverage during tests.

Moreover, the standard imposes the production of

a feasibility study in order to estimate the requested

power consumption, speed and radiation tolerance. At

the end of this phase, a document that completely col-

lects and defines the requirements for the FPGA-based

system is produced. This document is required to be

complete, unequivocal, clear and precise, verifiable and

testable.

An interesting point is that all the standards highly

recommend the use of semi-formal methods, such as

logic/function block diagrams, sequence diagrams, data

flow diagrams, and of formal methods, such as finite

state machines, timed Petri nets, LOTOS, OBJ and Z,

for the specification, the analysis, and the verification

of high-level system requirements.

3.1.2 System Architecture

In this phase, the overall architecture of the sys-

tem is defined. In particular, the high-level compo-

nents that will compose the system are identified, the

interfaces among them are specified and the input and

the output of the system are defined. Moreover, the

decision on how to partition the system into its hard-

ware and software components shall be taken during

this design phase. A significant effort shall be paid in

identifying a hardware architecture able to fulfill the

previously defined safety requirements: for example,

architectural-level fault-tolerance schemes are selected

in this phase. Moreover, in this phase, it must be de-

fined which components of the architecture will be de-

veloped from scratch and which ones will be purchased

as the third party intellectual properties.



Cinzia Bernardeschi et al.: SRAM-Based FPGA Systems for Safety-Critical Applications 379

Desired qualities of the produced architecture are

modularity, testability, maintainability, and low com-

plexity. The produced architecture shall be verified

according to the previously defined requirements. To

ensure that the architectural design captures the infor-

mation necessary to allow the subsequent development

activities to be performed correctly and effectively, the

architectural design shall be described with appropriate

levels of abstraction by using semi-formal and formal

notations.

3.1.3 System Design and Behavioral Modeling

In this phase, the previously defined architecture is

refined into a number of sub-components. The high-

level behavioral specification of these components is

defined in this phase. All the standards agree on re-

quiring the use of hardware description languages (be-

havioral VHDL/Verilog) to describe the behavior of the

components and about the observance of coding guide-

lines. Furthermore, proven-in-use design environments

and simulators shall be used.

3.1.4 Module Design

During the module design, the high level behavioral

model of the design is translated into a structural de-

scription composed of the hardware modules in accor-

dance with the architectural design. In this phase, the

use of behavioral/structural hardware description lan-

guages is highly recommended. Moreover, in this phase

area, power consumption and timing constraints of the

defined modules are specified. The ECSS-Q-ST-60-02C

standard places particular emphasis on the definition of

time constraints and of a detailed pin plan for FPGA

designs.

After each module has been designed, it must be

tested in order to determine if it is fit for use. The pur-

pose is to verify the implementation by testing every

possible operational mode of the module. Static analy-

sis tools are used to facilitate this process.

After all modules have been designed and integrated

in the complete system, integration testing shall be per-

formed. In integration testing, the separate modules

will be tested together to expose faults in the interfaces

and in the interaction between integrated components.

Testing is usually black-box as the code is not directly

checked for errors.

3.1.5 Synthesis, Placement, and Routing

After the detailed design has been completed, it

must be synthesized so as to generate the gate-level

netlist implementing the system. During this phase,

proven-in-use simulation, synthesis tools, and techno-

logical libraries must be used.

In the placement and routing phase, the synthesized

netlist is placed on the chip and routing information is

defined in order to meet the timing constraints. More-

over, the power and clock distribution is performed.

3.1.6 Final Coding

In the FPGA programming phase, the placed and

routed design is translated into the programming bit-

stream, the FPGA device is programmed and the re-

sulting prototype is tested. The design validation will

be performed on the produced prototypes of the system.

3.2 Validation Process

After the development phase, the implemented de-

sign must be validated. The first validation step is the

post-layout simulation. At this stage, 1) estimated de-

lays shall be verified, 2) gate-level simulations, formal

verification, and static timing analysis shall be per-

formed, 3) key parameters such as voltages, noise, fre-

quencies, bandwidth, power consumption, shall be veri-

fied, and 4) functional verification shall be performed.

Moreover, the ECSS-Q-ST-60-02C standard asks to

verify the effectiveness of the implemented radiation-

hardening mechanism. Finally, the standard places

particular emphasis on the use of IP-cores: when such

modules are purchased and used, great attention must

be paid to the verification of the IP-core itself and to the

verification of the correct integration of the IP-core into

the architecture under design. In particular, it must be

verified that the third-party IP-core exactly performs

the functionalities declared by the vendor and does not

implement hidden unwanted functionalities.

Post placement and routing verification shall be per-

formed: electrical properties and cross-talk sensitivity

shall be evaluated; I/O timing and power distribution

shall be checked; it must be verified whether the ob-

tained post place-and-route netlist is functionally con-

sistent with the gate-level netlist; timing performance

shall be evaluated; clock skew and clock latency shall

be estimated.

Complete system testing will compare the system

specifications against the actual system implementa-

tion. After the integration test is completed, the next

test level is the system test. In the lower-level tests,

testing is done against technical specifications, while

system tests look at the system from the perspec-

tive of the customer and the future user. The testers



380 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

validate whether the requirements are completely and

appropriately met. Many functions and system charac-

teristics result from the interaction of all system com-

ponents, and consequently, they are only visible on the

level of the entire system and can only be observed and

tested there.

4 FPGA Research Proposals, Guidelines, and

Lessons Learned

In this section, we propose a survey of research pro-

posals, industrial and academic guidelines, and lessons

learned from real-world projects regarding the design

and verification of FPGA-based systems in safety-

critical application fields. We have organized the survey

following the structure of the V-shaped lifecycle previ-

ously presented. For each phase of the design process,

we report activities that should be carried out as well

as proposed techniques and tools.

4.1 Safety Requirements Specifications

In accordance to the standards, in [14] and [16], it is

confirmed that the risk analysis should be carried out

during the concept and requirements definition phase,

along with the feasibility study and the requirements

specification.

According to these two studies, the feasibility study

should: 1) analyze the availability and quality levels

of the existing FPGA technologies and identify a set

of candidate FPGA target devices taking into account

the amount of available logic blocks and I/O pins, the

maximum reachable operating frequency and the power

consumption level; 2) conduct a preliminary worst-case

timing analysis of external interfaces and clock do-

mains; 3) check the availability and reliability of all

required design tools and libraries.

The requirements specification document should

discuss the following aspects of the design: 1) identify

details of the operating environment, such as tempera-

ture, humidity, and dust; 2) discuss safety-related re-

quirements, such as self-test and auto-diagnostic capa-

bilities, reliability, testability, maintainability, and ob-

servability requirements and radiation-hardening level;

3) identify requirements on the interfaces with exter-

nal devices and the protocols that have to be followed

between the device under design and any external de-

vices; 4) determine the power budget and the operating

frequency range of the system; 5) identify the timing,

size, and electrical constraints of the system.

The risk analysis should identify the critical issues

of the design and identify the possible backup solu-

tions, including, but not limited to: 1) maturity of the

foreseen FPGA device family, including CAD tools, li-

braries and vendor support; 2) suitability of the chosen

technology for the intended mission; 3) undetermined

I/O behavior and internal initial state during power-up.

In [12], Fernández-León stressed that a designer

should implement a reliable development methodology

for the definition, design, verification, physical imple-

mentation, and validation phases. Moreover, the au-

thor pointed out that designers should assess and docu-

ment the radiation threats to the circuit. The effects of

radiation on the circuit shall be identified, and counter-

measures shall be properly designed, implemented and

verified.

In [26], an innovative FPGA requirements speci-

fication process for the design of safety-critical sys-

tems based on programmable devices is presented. It

is suggested that the design process should start with

a requirements specification redacted using the formal

specification language Z. Then, using the INFORMED

design method, the boundary between hardware and

software components of the system is identified. Any

basic computation is then partitioned, by deciding what

shall be implemented in hardware and what shall be

implemented in software. For those functionalities that

shall be implemented in hardware, a manual refinement

using Synchronous Receptive Process Theory (SRPT)

is performed, and then each hardware module is com-

piled into Pebble, and subsequently in VHDL. Software

components shall be implemented in SPARK Ada and

they will interact using the Ravenscar tasking subset.

The main Ada program, and the FPGA device will

then communicate through a veneer component, send-

ing data to and from the FPGA via a method appro-

priate to the particular system, such as shared memory

or dedicated bus. Fig.3 shows the overall development

process proposed in [26].

In [8], Sutton underlines the need of machine-

readable formalisms for requirements specification in

order to guarantee that all the requirements have been

addressed during the design process.

4.2 System Architecture

At this stage of the design life-cycle, the target de-

vice shall be chosen and consequently the vendor’s CAD

tool shall be chosen and purchased. The choice of older

and more stable and reliable CAD tool instead of newer



Cinzia Bernardeschi et al.: SRAM-Based FPGA Systems for Safety-Critical Applications 381

ones, with better performance but lower reliability, is

recommended. The use of hardware description lan-

guages, such as Verilog or VHDL, and of CAD tools

to produce the architectural design is highly recom-

mended.

Specification (Z)

INFORMED

Boundary Design

Partition

SPARK Design

Develop Proof

SPARK Code

CPU Target Veneer ParSpark

Compile

PowerPC obj VHDL

Compile Compile

Pebble

Transform

SRPT Model

Refinement

PLD Specification (Z)Ravenscar Processes

Fig.3. Development process proposed by Hilton et al.[26]

The guidelines proposed in [14] and [16] give also

suggestions about the architectural design phase.

In [14], Habinc gave recommendations about the

architectural design phase of an FPGA employed in

a safety-critical system. They were learned from the

analysis of a great number of FPGA designs for space

projects, many of which show problems related to the

FPGA device itself. In particular, Habinc focused on

four main issues: reset, clocks, power, and interfaces.

While asynchronous reset allows an immediate reset

of the flip-flop, it most often poses tight timing require-

ments on the routing of the reset signal. Because of

this, the solution proposed in [14] is to assert the inter-

nal reset signal asynchronously and to de-assert it syn-

chronously. For outputs that are critical for the system

operation, it is recommended that the corresponding

flip-flops are reset asynchronously. Finally, the state

during and just after a reset should be documented in

detail.

Clocks should control all storage elements, i.e., the

design should be fully synchronous. The number of

clock regions should be minimized since FPGA devices

normally have only a few dedicated clock buffers. Since

the choice between synchronous or asynchronous de-

sign is made at the HDL description phase, the use of

simple HDL source code templates that are available

from the FPGA vendors is highly recommended in or-

der to avoid coding errors that would lead to an asyn-

chronous architecture, while the desired architecture is

synchronous, or vice versa. Clock gating techniques

should be avoided.

Concerning power consumption, Habinc[14] sug-

gested avoiding clock signal manipulations that are in

conflict with synchronous design methods. Careful at-

tention to the power up and down sequences of FPGA

devices should always be paid, since some technologies

exhibit uncontrollable behaviors on their input and out-

put pins during these phases. The power-up/power-on-

reset sequence should be carefully defined and docu-

mented, following the vendor guidelines.

About I/O interfaces, Habinc suggested placing

a Schmitt trigger inverter between the analog input

sources and the FPGA inputs pins to reduce the risk

of violating the rise and fall times. Moreover, Habinc

recommended much attention in ensuring that bus con-

tention cannot occur, internally as well as externally

to the FPGA. FPGA devices have several special pins

that are often not used by the application. Neverthe-

less, these pins need careful consideration during the

design of the board on which the device will work. In

general, it should be ensured that all special pins, test

pins, and unused pins are properly terminated, strictly

following the FPGA vendor guidelines. Unused pins

should normally be left unconnected. It is not recom-

mended to connect unused pins directly to power or

ground. Finally, the state of the unused pins shall be

properly documented.

In [27], a large number of formalisms for high level

architectural system modeling are presented, such as fi-

nite state machines, Petri nets and all their extensions,

Statecharts and UML. Similarly, many languages and

techniques for the verification of designed modules are

discussed in [28]. The main approaches are: 1) the

e language, an object-oriented language for testbench

design, giving designers the chance to easily generate

sets of input stimuli, specify constraints and proper-

ties, and assess the simulation coverage; 2) OpenVera,

a testbench language similar to e, with a C-like syntax;

3) ForSpec, a temporal logic based specification and

modeling language developed at Intel; and 4) Property

Specification Language (PSL), originally developed in



382 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

2004 by Accellera, and then standardized in 2005 by

IEEE, which allows the designer to specify complex

properties, combine them, and then verify the final pro-

perties.

4.3 Behavioral Modeling and Module Design

In this phase, a detailed description of the high level

functional blocks defined in the previous phase shall be

produced, implementing the defined functionalities, in-

terfaces, interconnections, and interactions[14].

In this phase, the use of a hardware description lan-

guage, such as Verilog or VHDL, and of CAD tools

is also highly recommended. A strict coding standard

should be used to avoid systematic faults due to coding

errors: it is suggested to avoid non-synthesizable code

and coding instructions that would lead to the inser-

tion of latches. The use of constants and parameters is

highly recommended. Naming, indenting, spacing, and

commenting standards are useful to easily detect coding

errors and to improve code understandability[16].

In [29], a VHDL guidance for safe and certifiable

FPGA design is reported. Conmy et al.[31] recom-

mended avoiding states with encodings that differ by

just one bit when designing finite state machines: in

this way, a single event upset could not cause the

machine to jump into an unwanted state. Moreover,

they strongly suggested limiting the size of each VHDL

module in order to improve module testability and

maintainability. Finally, they suggested careful atten-

tion to the development of operations involving float-

ing point numbers since they are particularly difficult

to manipulate on an FPGA.

A very large number of alternative high level hard-

ware programming languages have been proposed as in-

termediate languages between the architectural design

and the description of the device structure in a hard-

ware description language. Most of these languages are

derived from C, such as Handel-C and SPARK, from

C++, such as Streams-C and ASC, or from Java, such

as Sea Cucumber. SystemC should be mentioned par-

ticularly, which is widely employed as a high-level de-

sign language for electronic systems.

Alternative approaches are: ELLA, which allows ab-

straction and formal reasoning about the design; Es-

terel, a synchronous language used for programming

reactive systems that can be automatically compiled

in VHDL or Verilog; LAVA, a relational language de-

signed to express circuit designs by describing the rela-

tive placement of building blocks of the circuit itself.

Finally the MATCH compiler and the AccelFPGA com-

piler allow translating MATLAB programs in VHDL

and Verilog code for FPGAs.

After the implementation of all HDL modules, the

module integration phase shall be performed, gradu-

ally integrating the HDL modules in order to compose

the whole system. Compliance to the required cod-

ing standards and guidelines must be verified[16]. Test

benches shall be designed, in order to perform beha-

vioral simulations of each module, to check both exter-

nal interactions and interfaces and internal data flows.

For complex designs, it is important to use self-checking

test benches that can perform the test activity, auto-

matically check the results, and produce a test report,

without requiring a visual inspection of the waveforms.

It is important at this phase to have automated test

vector generators, in order to generate input sequences

that can stimulate each part of the component at least

once and as randomly as possible[16]. Also boundary

value tests shall be performed in order to evaluate the

robustness of the design.

In [12], the necessity of inspecting and simulating

the synthesized netlist in order to verify its correctness

is emphasized. Moreover, SEU simulation and emula-

tion are recommended. Finally, it is required to check

whether the designed fault tolerance techniques have

been properly implemented and synthesized, without

any unwanted extra logic insertion or redundant logic

resources removal by CAD tools.

4.4 Synthesis, Placement and Routing, and
Final Coding

A number of studies presenting alternative place-

and-route algorithms able to increase the robustness of

a given design against faults have been published in the

last years. In [30], the Reliability-Oriented Routing Al-

gorithm (RoRA) for TMR-based designs is presented.

The work starts from the consideration that the XTMR

tool from Xilinx fails in some cases to protect the de-

sign from single event upsets due to the presence of

common causes of failure in the routing of the design.

RoRA heuristically places and routes the three replicas

of the design and the voting circuit in such a way that

the four components of the design do not share any

routing resource. The algorithm proposed in [31] tries

to keep the length of wires as short as possible in or-

der to reduce the likelihood of open/short faults and to

reduce the common regions between two nets in order

to reduce the likelihood of bridge faults. In [32], an al-

ternative cost function for an existing place-and-route



Cinzia Bernardeschi et al.: SRAM-Based FPGA Systems for Safety-Critical Applications 383

algorithm is presented. While legacy place-and-route

algorithms try to optimize the timing or the area occu-

pied by the design, the algorithm proposed in [32] tries

to minimize the error propagation probability of the

design. In [33], a place-and-route algorithm that aims

at minimizing the number of configuration bits used by

the routing resources of the design is presented. Finally,

the problem of multiple cell upsets (MCUs) (bit flips of

multiple configuration memory elements due to a sin-

gle particle strike) in TMR-based designs is addressed

in [34]. The paper presents PHAM, a placement algo-

rithm that exploits the knowledge of the physical layout

of the configuration memory of the device to maximize

the distance between configuration memory cells be-

longing to different replicas of the design.

After the synthesis, place-and-route and bitstream

generation, the correct functionality of the system

coded in the bitstream shall be verified, as discussed

in [12, 16]. Moreover, the correctness and trustworthi-

ness of externally purchased IP-cores shall be assessed.

Nevertheless, verifying the correctness of a system at

the bitstream level is an extremely hard task. FPGA

vendors do not provide any detail about the structure of

the bitstream, and the problem of verifying third-party

IP-cores is made harder by the fact that very often these

cores are provided as obfuscated or encrypted netlists.

Thus, designers generally perform testing activities on

the programmed device, spending great effort in design-

ing sufficiently effective test cases. Nevertheless, testing

cannot be exhaustive for medium/large scale designs.

Recently, Luna Inc. has developed a software plat-

form called Change Detection Platform (CDP)[37]. This

environment is able to reconstruct the logic and post-

place-and-route netlists, as well as the behavioral de-

scription of the system, starting from the bitstream. In

this way, it is possible to verify that the translation tool

provided by the FPGA vendor did not introduce bugs in

the bitstream. Further, it is possible to verify whether

the purchased netlist-level IP-cores do not contain de-

fects, unwanted functionalities, or security flaws.

5 Radiation Effects Analysis and Mitigation

Radiations may produce system malfunctions[36].

In particular, radiations affecting digital circuits may

cause changes in the contents of memory elements and

in the value of signals. Radiations on SRAM-based

FPGA devices have even worse effects, since when af-

fecting the configuration memory, they could perma-

nently change the functionality implemented in the de-

vice (until reconfiguration)[37]. The above mentioned

effect is known as single event upset (SEU). Other ef-

fects of radiations on digital circuits are the total ioniz-

ing dose (TID), i.e., the accumulation of charge in the

interface between the metal and the oxide layers that

cause an increase of power consumption and a decrease

of circuit speed, and single event transients (SETs), i.e.,

transient impulses on wires in the circuit. Neither TID

nor SETs have been widely studied in SRAM-based FP-

GAs since these devices are much more susceptible to

SEUs, but they must be considered when other FPGA

technologies are used[38-39].

Although the effects of radiation are much more in-

tense in space, it has been demonstrated that radia-

tion may corrupt the behavior of digital circuits also

at ground level[40]. The ECSS-Q-ST-60-02C requires

that the radiation hardening techniques implemented

in the design are assessed through radiation testing and

the SEU sensitivity of the system is analyzed. More-

over, techniques for mitigation of SEUs are either highly

recommended or mandatory, depending on the safety

level. A number of techniques have been proposed to

this purposes. In the remainder of this section, we will

first present the main techniques for the analysis of the

effects of SEUs on SRAM-based FPGA systems, and

then some SEU mitigation techniques.

5.1 SEU Effects Analysis Techniques

The sensitivity to SEUs of SRAM-based FPGA

systems can be analyzed according to four main ap-

proaches: accelerated radiation ground testing, fault

emulation boards, analytical computation, and fault

simulation.

Accelerated radiation ground testing[41] emulates

the radioactive environment in which the system will

work by exposing a prototype of the FPGA-based sys-

tem to a flux of radiations. During the exposure to the

radiation flux, the prototype is fed with a set of input

patterns, and its behavior is monitored. The drawbacks

of accelerated radiation testing are: 1) the impossibility

of injecting SEUs only in the configuration memory of

the FPGA, since the whole chip area will be irradia-

ted (including user resources); 2) a possibility that the

device be permanently damaged after the experiment;

and 3) high cost.

A number of fault emulation boards have been de-

veloped to evaluate the effects of SEUs in the configu-

ration memory of SRAM-based FPGAs systems[42-43].

These boards emulate the occurrence of SEUs by modi-

fying the bitstream of the target system whose behavior



384 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

is then dynamically evaluated. Fault emulation can be

performed either before downloading the bitstream on

the device under test, or at run time exploiting partial

dynamic reconfiguration. Unlike radiation testing ex-

periments, fault emulation allows focusing specifically

on SEUs in the configuration memory of the FPGA,

leaving out any other resources. Moreover, fault emu-

lation avoids the risk of damaging the device under

analysis. The drawbacks of SEU emulation are: 1) high

cost; 2) complex usability; and 3) strong chip and ven-

dor dependence.

Analytical approaches, such as those presented in

[44-46], have been developed to avoid the high cost

of radiation testing and the long experimental time of

fault emulation. In [44], a model based on the structure

of the design implemented on the FPGA is built, and

the topological modifications induced by SEUs in each

configuration bit are deduced, thus discovering which

SEUs affect the design. In [45], a model for the iden-

tification of sensitive paths to SEUs is presented. The

model combines the error probability of all nodes of

the circuit with the error propagation probability of

each path of the circuit. Finally, in [46], a probabilis-

tic model to estimate the reliability of SRAM-based

FPGA system is presented. Given the probability of

occurrence of an SEU, the model estimates the proba-

bility of having a system failure after a given amount of

time. The drawback of these approaches is that, since

the analysis is carried out without taking into account

the input patterns fed into the system, they are able to

provide a worst-case analysis while they are not able to

provide information about the behavior of the system

in its normal operating conditions.

A large number of fault simulators for digital cir-

cuits can be found in the literature, but very few of

them target the analysis of the effects of SEUs. More-

over, an even smaller number of simulators that specifi-

cally address the FPGA technology can be found. In

[47-48], two simulators of SEUs affecting digital circuits

have been proposed. Both simulators work at the gate-

level representation of the circuit, thus ensuring accu-

rate results, but neither one takes into account any de-

tails specific of the FPGA technology. The only simu-

lator targeting SEUs in FPGAs is SST[49] that works

on the register transfer level representation of the sys-

tem. Because of this, SST can only emulate the effects

of SEUs in logic resources, e.g., flip-flops and memo-

ries, and it cannot reproduce the effects of SEUs in the

configuration memory. Recently, a simulator of SEU

effects in SRAM-based FPGAs, based on the stochas-

tic activity networks formal specification language, has

been proposed[50-51].

5.2 SEU Mitigation and Correction
Techniques

Many SEU mitigation techniques are discussed in

the literature. In [52], SEU mitigation techniques are

classified into two main families: fabrication process

based and design-based.

Fabrication process based techniques aim at reduc-

ing the effects of radiation through the use of non-

standard CMOS logic gates, such as the silicon-on-

insulator (SOI) technology from IBM[53] and radiation-

hardened memory cells[54]. The approach proposed by

IBM in [53] relies on the placement of a thin layer of

silicon on top of an insulator during the manufacturing

process. All the transistors of the device are then built

on top of this silicon layer, which is characterized by a

reduced capacitance, and then by a reduced suscepti-

bility to the effects of radiations. Radiation-hardened

memory cells rely on providing standard memory cells

with feedbacks devoted to restore the correct value

when the content of the cell is corrupted. These tech-

niques are able to alleviate the long-term effects of ra-

diation exposure (i.e., TID), and to reduce, but not to

eliminate, SEUs. The main drawback of such solutions

is the high cost due to the non-standard CMOS fabri-

cation process.

Design-based techniques rely on hardware redun-

dancy, i.e., the use of extra components of the FPGA

device (duplication or triplication) and voting systems

to detect (when duplication is used) or correct (when

triplication is used) the occurrence of SEUs[55]. A

generalization of hardware redundancy is device redun-

dancy, that is, using multiple independent FPGA de-

vices performing the same functionality, whose out-

put is then checked by a voting system. Design-

based techniques are widely accepted because they

are much cheaper than fabrication process based tech-

niques. Hardware redundancy exploits the spare com-

ponents (when available) of the FPGA device, and thus

its cost (apart from the increased power consumption)

is actually null. When device redundancy is used, the

cost of multiple devices is always lower than the cost of

non-standard CMOS devices. An additional advantage

of design-based techniques is that they can be applied

to different levels of design abstraction and can address

different fault types.

Finally, SEUs may be corrected by exploiting the

partial dynamic reconfiguration capabilities of modern



Cinzia Bernardeschi et al.: SRAM-Based FPGA Systems for Safety-Critical Applications 385

FPGA devices through readback and reconfiguration[56]

or memory scrubbing[57]. Both techniques are applied

at run time, during the system normal operation. Read-

back and reconfiguration consist in periodically read-

ing, either partially or totally, the contents of the con-

figuration memory, comparing it to a golden copy of

the bitstream and reconfiguring the device in order to

correct any detected fault. Memory scrubbing is sim-

ilar to memory readback and reconfiguration, and the

main difference is that reconfiguration occurs at reg-

ular intervals. With blind scrubbing, the whole bit-

stream is reloaded, irrespective of the occurrence of

faults, whereas with selective scrubbing, readback ope-

rations make it possible to identify faults and correct

them with partial reconfigurations.

6 Case Studies

In this section, we cite studies that report on FPGA

applications in different industrial fields and address de-

velopment issues.

6.1 Hydraulic Leakage Monitoring

Hydraulic systems are used in aircraft to actuate

highly critical components, such as control surfaces

and landing gear. Leakages may cause pressure losses,

which may lead to catastrophic failures, and thus a hy-

draulic leakage monitoring (HLM) system is used to

detect leakages and isolate defective sections of the hy-

draulic system by operating shut-off valves.

Hammarberg and Nadjm-Tehrani[58] reported on

the development of the electronic components of an

HMS (white boxes in Fig.4), based on formal specifi-

cations written in the Esterel language. Esterel mod-

ules are used both for the system and the fault model,

thus allowing the verification of safety properties in the

presence of faults. The main safety property is that no

more than one valve is closed at the same time, since

this condition could block the hydraulic system. The

property has been verified by model checking combined

with FTA and FMEA under several fault hypotheses.

The Esterel model has then been automatically trans-

lated into VHDL, leading to the FPGA implementa-

tion. The authors compare the automatic generation

of VHDL code from Esterel with handwritten and op-

timized code, and conclude that the overhead of the

automatically generated code is acceptable for the ap-

plication, given the resource availability afforded by the

FPGAs.

6.2 Reactor Trip System

Andrashov et al.[59] described the development and

V&V (verification and validation) process used for the

control logic of reactor trip systems (RTS) implemented

with FPGA technology. The RTS is the central and

most critical part of a nuclear powerplant’s protection

system. It samples sensor signals measuring physical

magnitudes (e.g., temperature, pressure, or neutron

flux), compares them with the allowed operating val-

ues, and shuts down the reactor if the prescribed limits

are exceeded. Fig.5 shows the considered RTS, consist-

ing of three signal channels feeding a two-out-of-three

voter.

The adopted development process is an adaptation

of the V-lifecycle, where the development branch of the

V is divided into two main phases, FPGA design and

FPGA implementation. The design phase consists of

the preliminary electronic design subphase, where the

system is modeled at the diagram level and verifica-

HS 1

&

HS 2

HS 1 Sensors

H-ECU

Check

Result
PLD 1

Sensors

High Side

1B

1C

2B

2C

Sensors

Low Side

Value

Sensors
Value

Blocks

PLD 2

Shut-Off

Signals

Shut-Off

High Side

Shut-Off

Low Side

HS 2 Sensors

Fig.4. Hydraulic monitoring system[58].



386 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

tion is done by design review, and the detailed elec-

tronic design subphase, where system is modeled at the

schematics and VHDL level, and verification is done

by simulation and static analysis. The implementation

phase consists of the subphases of logic synthesis, place-

ment and routing, and bitstream generation, where the

system is modeled at the register transfer, netlist, and

floorplan level, respectively. Verification is done by gate

simulation and time simulation.

Operator's Control Panel of Main Control Room

Signal Forming 

Cabinet 1

Signal Forming 

Cabinet 2

Signal Forming

Cabinet 3

2 out of 3

Cross Output Cabinet

Output Control Signals

Fig.5. Reactor trip system[59].

Special emphasis is placed on testing the RTS al-

gorithms, i.e., the logic functions performed by the ba-

sic RTS subsystems. Thirty-four algorithms have been

identified and tested by simulation with a 100% cove-

rage of input value combinations chosen with the boun-

dary value criterion.

6.3 Car Body Controller

Traub et al.[60] described the development of an

FPGA-based body controller unit (BCU) (Fig.6), in

charge of controlling a car’s electrically operated win-

dows, rear-view mirrors, and other components. The

considered BCU has been designed as a centralized

FPGA controller replacing a number of electronic con-

trol units. The BCU includes a MicroBlaze processor,

thus supporting the implementation of different func-

tional parts of the application in software or in hard-

ware.

The adopted development process is centered on

model-based design, for both hardware and software.

The BCU functions are modeled with Simulink and

Stateflow diagrams, from which HDL code (for hard-

ware modules) and C code (for software) are automati-

cally generated. The code is then synthesized for the

Xilinx Spartan 3 FPGA. The authors reported data

on resource requirement for different architectural ap-

proaches. An interesting result is that for some func-

tional modules, a hardware implementation may re-

quire more FPGA resources than a software implemen-

tation using the MicroBlaze processor.

7 Open Issues

Many issues are still unsolved and make the ap-

plication of SRAM-based FPGA devices in the safety-

related parts of systems still problematic. Three main

points remain open. The first is the lack of methods

and tools for the formal verification of netlists at both

the logic and the post-place-and-route level: what de-

signers can do is just to simulate the obtained netlist

trying to apply a sufficiently effective set of tests. This

lack of methods has a twofold negative result: on the

one hand, it is very difficult to verify the functional

equivalence of the synthesized netlist with respect of

the original high-level behavioral specification, which

forces designers to trust the correctness of the synthesis

process implemented by the vendor tool; on the other

hand, it is unfeasible to verify the functional correct-

ness and the absence of unwanted functionalities of the

CAN

CAN

Roof

LIN
Right Door Rear Right

Rear LeftLeft Door

Power

Window

Power

Window

Power

Window

Power

Window

Seat 

Switch

Seat 

Switch

Rear-View

Mirror

Rear-View

Mirror

LIN

LIN

LIN

Convertible

Roof Control
Body Control

Fig.6. Body controller unit[60].



Cinzia Bernardeschi et al.: SRAM-Based FPGA Systems for Safety-Critical Applications 387

third-party IP-cores provided at the netlist-level, which

forces designers to rely on the correctness of the pur-

chased netlist.

The second open point is the lack of open-source,

freely modifiable and usable tools for the verification

of the functional equivalence and the absence of un-

wanted functionalities of the obtained bitstream with

respect of the previously verified netlist. For example,

the Change Detection Platform of Luna Inc. is a high-

end tool developed in a research project of the US De-

fense Advanced Research Projects Agency, specifically

addressed to the contractors of the US Department of

Defense and not freely available. The lack of such tools,

again, forces designers to rely on the correctness of the

translation tool provided by the device vendor and on

the trustworthiness of the IP-core provider.

Finally, partial dynamic reconfiguration in safety-

critical applications represents a still open point. Mod-

ern devices largely support partial dynamic reconfigu-

ration. This allows the system to both activate a given

functionality only when needed and deactivate func-

tionalities when not needed (thus saving space), and

to adapt its behavior to the changes in the working

environment or in the user requirements[61]. On the

other hand, the use of partial dynamic reconfiguration

in safety-critical systems imposes hard requirements to

the design, as discussed in [61]. In particular, the re-

liability of the data transfer is required if the new bit-

streams are dynamically sent to the system when re-

quired, or a highly reliable persistent memory has to

be used to store the unused bitstreams if the system is

equipped with all the bitstreams since power-up. Fur-

thermore, it must be ensured that the partial reconfigu-

ration process does not affect the correct operation of

the non-reconfigured part that may be required to keep

working transparently.

An additional open issue is related to the assessment

of the sensitivity to SEUs. Radiation testing may entail

too high a cost for small-scale designs and fault emula-

tion takes a very long time for real-world designs. This

gets even worse when a number of iterations of design

and sensitivity analysis are required before achieving

an acceptably robust design. To alleviate these prob-

lems early, assessment techniques have been proposed,

in order to estimate the sensitivity of the system be-

fore implementing a prototype and thus allowing early

corrections[44-46]. On the other hand, a number of tech-

niques aiming at identifying the untestable faults in a

design have been proposed[62-63]. The identification of

those faults that can never be tested allows reducing the

number of faults that must be taken into account dur-

ing the fault emulation process, thus speeding it up. On

the other hand, what is still lacking is a unified frame-

work of tools and techniques integrated in the standard

design flow that may be used by designers at the various

stages of the design.

8 Conclusions

This paper summarized the design standards for the

development of FPGA-based systems in safety critical

applications together with the literature proposals, in-

dustrial and academic guidelines, and lessons learned

from real projects.

Three main points about the design of FPGA-based

systems in safety-critical application field can be identi-

fied. The first point is that it is strongly recommended

to start the design of a safety-critical FPGA-based sys-

tem only after a well-structured and well-documented

design flow has been identified.

The second recommendation is never to completely

trust the CAD tools provided by the FPGA device ven-

dor, and is always to verify the intermediate products

of all phases of the design process using external tools

(both simulation tools and formal methods).

Finally, even if the design and development process

of an FPGA-based system is very much like the design

and development process of a software system, the de-

signer must know in depth all the technological details

of the final target device that will host the system, such

as special I/O pins, working frequency range, tempera-

ture, voltage and humidity ranges.

Tools and methodologies addressing these issues will

boost the application of SRAM-based FPGA devices in

safety-critical systems.

References

[1] Cardells-Tormo F, Valls-Coquillat J, Almenar-Terre V,

Torres-Carot V. Efficient FPGA-based QPSK demodula-

tion loops: Application to the DVB standard. In Proc.

the 12th Int. Conf. Field-Programmable Logic and Appli-

cations, Sept. 2002, pp.102-111.

[2] Mazzeo A, Romano L, Saggese G P, Mazzocca N. FPGA-

based implementation of a serial RSA processor. In Proc.

Conf. Design, Automation and Test in Europe, March 2003,

pp.582-587.

[3] Christophersen H B, Pickell W J, Koller A A, Kannan

S K, Johnson E N. Small adaptive flight control systems

for UAVs using FPGA/DSP technology. In Proc. the 3rd

American Institute of Aeronautics and Astronautic (AIAA)

Unmanned Unlimited Technical Conf., Workshop, and Ex-

hibit, Sept. 2004, pp.1-8.



388 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

[4] Lédeczi Á, Völgyesi P, Maróti M, Simon G, Balogh G,

Nádas A, Kusy B, Dóra S, Pap G. Multiple simultaneous

acoustic source localization in urban terrain. In Proc. the

4th Int. Symp. Information Processing in Sensor Networks,

April 2005, Article No. 69.

[5] Dobias R, Kubatova H. FPGA based design of the railway’s

interlocking equipments. In Proc. the Digital System Design

EUROMICRO Systems, Aug. 31–Sept. 3, 2004, pp.467-473.

[6] She J, Jiang J. Application of FPGA to shutdown system

No.1 in Candu. In Proc. the 6th American Nuclear Soci-

ety Int. Topical Meeting on Nuclear Plant Instrumenta-

tion, Control, and Human-Machine Interface Technologies,

April 2009, pp.1562-1573.

[7] Sterpone L, Violante M. Analysis of the robustness of the

TMR architecture in SRAM-based FPGAs. IEEE Transac-

tions on Nuclear Science, 2005, 52(5): 1545-1549.

[8] Sutton A. No room for error: Creating highly reliable,

high-availability FPGA Designs, April 2012. http://w-

ww.synopsys.com/Solutions / IndustrySegmentSolutions/-

MilAero/Documents/FPGA-high-rel.pdf, Nov. 2014.

[9] Sabena D, Sterpone L, Schölzel M, Koal T, Vierhaus H,

Wong S, Glein R, Rittner F, Stender C, Porrmann M, Hage-

meyer J. Reconfigurable high performance architectures:

How much are they ready for safetycritical applications?

In Proc. the 19th IEEE European Test Symp., May 2014.

[10] International Electrotechnical Commission (IEC).

61508-2 ed2.0: Functional safety of electrical/electro-

nic/programmable electronic safety-related systems — Part

2: Requirements for electrical/electronic/programmable

electronic safety-related systems, April 2010. http://webst-

ore.iec.ch/webstore/webstore.nsf/Artnum PK/43983, Nov.

2014.

[11] Bowen J P, Stavridou V. Safety-critical systems, formal

methods and standards. Software Engineering Journal,

1993, 8(4): 189-209.

[12] León A F. Field programmable gate arrays in space. IEEE

Instrumentation Measurement Magazine, 2003, 6(4): 42-

48.

[13] Cercone J A, Beims M A, McGill K G. Verification and

validation of programmable logic devices. In Proc. the 7th

Military and Aerospace Programmable Logic Devices Int.

Conf., September 2004.

[14] Habinc S. Lessons learned from FPGA developments.

Technical Report, FPGA-001-01, Gaisler Research, Sept.

2002. http://microelectronics.esa.int/asic/fpga 001 01-0-

2.pdf, Nov. 2014.

[15] Gibbons W, Ames H. Use of FPGAs in critical space flight

applications — A hard lesson. In Proc. the Military and

Aerospace Applications of the Programmable Devices and

Technologies Conf., 1999.

[16] Söderberg A, Hérard J, Mortensen L B. Guideline for

design and safety validation of safety-critical functions

realized with hardware description language. Technical

Report 578. http://www.nordtest.info/index.php/techni-

cal-reports/item/guideline-fordesign-and-safety-validation-

of-safetycritical-functions-rea lized-with-hardwaredescripti-

on-language-nt-tr-578.html, Nov. 2014.

[17] Kuon I, Tessier R, Rose J. FPGA architecture: Survey and

challenges. Foundations and Trends in Electronic Design

Automation, 2008, 2(2): 135-253.

[18] Kuon I, Rose J. Measuring the gap between FPGAs and

ASICs. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 2007, 26(2): 203-215.

[19] International Electrotechnical Commission (IEC). 61508-

3 ed2.0: Functional safety of electrical /electronic /pro-

grammable electronic safety-related systems — Part 3:

Software requirements, April 2010.

[20] European Cooperation for Space Standardization (ECSS).

Q-ST-60-02C space product assurance: ASIC and

FPGA development, July 2008. http://everyspec.com

/ESA/ECSS-Q-ST-60-02C 48182/, Nov. 2014.

[21] Radio Technical Commission for Aeronautics (RTCA).

DO-254 design assurance guidance for airborne electronic

hardware, April 2000. http://www.faa.gov/regulationspo-

licies/advisorycirculars/index.cfm/go/document.informati-

on/documentID/22211, Nov. 2014.

[22] International Organization for Standardization (ISO).

26262-5: Road vehicles — Functional safety — Part

5: Product development at the hardware level, Novem-

ber 2011. https://global.ihs.com/doc detail.cfm?document

name=ISO%2026262-5, Nov. 2014.

[23] International Organization for Standardization (ISO).

26262-6: Road vehicles — Functional safety — Part

6: Product development at the software level, Novem-

ber 2011. https://global.ihs.com/doc detail.cfm?document

name=ISO%2026262-6, Oct. 2014.

[24] European Committee for Electrotechnical Standardization

(CENELEC). EN 50128: Railway applications — Commu-

nications, signaling and processing systems — Software for

railway control and protection systems, November 2011.

[25] European Committee for Electrotechnical Standardization

(CENELEC). EN 50129: Railway applications — Commu-

nications, signaling and processing systems — Safety re-

lated electronic systems for signaling, February 2003.

[26] Hilton A J, Townson G, Hall J G. FPGAs in critical hard-

ware/software systems. In Proc. the 11th ACM/SIGDA In-

ternational Symposium on Field Programmable Gate Ar-

rays, Feb. 2003, p.244

[27] Gomes L, Barros J P, Costa A. Modelling formalisms for

embedded system. In Embedded Systems Handbook, Zu-

rawski R (ed.), CRC Press, Boca Raton, FL, 2006, pp.134-

168.

[28] Gupta S, Dutt N, Gupta R, Nicolau A. Spark: A high-

level synthesis framework for applying parallelizing com-

piler transformations. In Proc. the 16th Int. Conf. VLSI

Design, Jan. 2003, pp.461-466.

[29] Conmy P, Pygott C, Bate I. A VHDL guidance for safe and

certifiable FPGA design. In Proc. the 5th IET Conference

on System Safety, October 2010, pp.1-6.



Cinzia Bernardeschi et al.: SRAM-Based FPGA Systems for Safety-Critical Applications 389

[30] Sterpone L, Reorda M S, Violante M. RoRA: A reliability-

oriented place and route algorithm for SRAM-based FP-

GAs. In Proc. PhD Research in Microelectronics and Elec-

tronics, Vol.1, July 2005, pp.173-176.

[31] Zarandi H R, Miremadi S G, Pradhan D K, Mathew J. SEU-

mitigation placement and routing algorithms and their im-

pact in SRAM-based FPGAs. In Proc. the 8th Int. Symp.

Quality Electronic Design, March 2007, pp.380-385.

[32] Huang W, Meyer F, Park N, Lombardi F. Testing mem-

ory modules in SRAM-based configurable FPGAs. In Proc.

Int. Workshop on Memory Technology, Design and Test-

ing, Aug. 1997, pp.79-86.

[33] Golshan S, Bozorgzadeh E. Single-event-upset (SEU)

awareness in FPGA routing. In Proc. the 44th ACM/IEEE

Design Automation Conf., June 2007, pp.330-333.

[34] Sterpone L, Battezzati N. A new placement algorithm for

the mitigation of multiple cell upsets in SRAM-based FP-

GAs. In Proc. Conf. Design, Automation and Test in Eu-

rope, March 2010, pp.1231-1236.

[35] Graf J. Change detection platform for FPGA trust. In Proc.

Government Microcircuit Applications and Critical Tech-

nology Conf., March 2011.

[36] Baumann R. Radiation-induced soft errors in advanced

semiconductor technologies. IEEE Transactions on Device

and Materials Reliability, 2005, 5(3): 305-316.

[37] Graham P, Caffrey M, Zimmerman J, Sundararajan P,

Johnson E, Patterson C. Consequences and categories of

SRAM FPGA configuration SEUs. In Proc. the 6th Mil-

itary and Aerospace Applications of Programmable Logic

Devices, September 2003.

[38] Wang J J, Cronquist B, McCollum J, Hawley F, Yu D,

Chan R, Katz R, Kleyner I. Total dose and SEE of metal-

to-metal antifuse FPGA. In Proc. the 2nd Military and

Aerospace Applications of Programmable Devices and Tech-

nologies Conf., September 1999.

[39] Rezgui S, Wang J J, Sun Y, Cronquist B, McCollum J.

Configuration and routing effects on the SET propagation

in flash-based FPGAs. IEEE Transactions on Nuclear Sci-

ence, 2008, 55(6): 3328-3335.

[40] Normand E. Single event effects in avionics and on the

ground. Int. Journ. High Speed Electronics and Systems,

2004, 14(2): 285-298.

[41] Carmichael C, Fuller E, Fabula J, Lima F D. Proton test-

ing of SEU mitigation methods for the Virtex FPGA.

In Proc. Military and Aerospace Applications of Pro-

grammable Logic Devices, September 2001.

[42] Alderighi M, Casini F, D’Angelo S, Pastore S, Sechi G,

Weigand R. Evaluation of single event upset mitigation

schemes for SRAM based FPGAs using the FLIPPER fault

injection platform. In Proc. the 22nd IEEE Int. Symp. De-

fect and Fault-Tolerance in VLSI Systems, September 2007,

pp.105-113.

[43] Aguirre M, Tombs J N, Muñoz F, Baena V, Torralba A

J, Fernández-León A, Tortosa-López F. FT-UNSHADES:

A new system for SEU injection, analysis and diagnostics

over post synthesis netlist. In Proc. the 8th Military and

Aerospace Programmable Logic Devices Int. Conf., Septem-

ber 2005.

[44] Sterpone L, Violante M. A new analytical approach to esti-

mate the effects of SEUs in TMR architectures implemented

through SRAM-based FPGAs. IEEE Transactions on Nu-

clear Science, 2005, 52(6): 2217-2223.

[45] Asadi G, Tahoori M B. An analytical approach for soft er-

ror rate estimation of SRAM-based FPGAs. In Proc. the

7th Military and Aerospace Programmable Logic Devices

Int. Conf., Sept. 2004.

[46] Heron O, Arnaout T, Wunderlich H J. On the reliability

evaluation of SRAM-based FPGA designs. In Proc. Int.

Conf. Field Programmable Logic and Applications, August

2005, pp.403-408.

[47] Schulz S, Beltrame G, Merodio-Codinachs D. Smart behav-

ioral netlist simulation for SEU protection verification. In

Proc. the 9th European Conf. Radiation and Its Effects on

Components and Systems, September 2008, pp.406-411.

[48] Calienes Bartra W, Reis R. SET and SEU simulation toolkit

for LabVIEW. In Proc. the 12th European Conf. Radiation

and Its Effects on Components and Systems, Sept. 2011,

pp.829-836.

[49] Gutiérrez D G. Single event upsets simulation tool

functional description. Technical Report, TEC-EDM/

DGG-SST2, European Space Agency, 2004. http://micr-

oelectronics.esa.int/asic/SSTFunctionalDescription1-3.pdf,

Nov. 2014.

[50] Bernardeschi C, Cassano L, Domenici A, Sterpone L. Ac-

curate simulation of SEUs in the configuration memory of

SRAM-based FPGAs. In Proc. IEEE Int. Symp. Defect and

Fault Tolerance in VLSI and Nanotechnology Systems, Oc-

tober 2012, pp.115-120.

[51] Bernardeschi C, Cassano L, Domenici A, Sterpone L. AS-

SESS: A simulator of soft errors in the configuration

memory of SRAM-based FPGAs. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Sys-

tems, 2014, 33(9): 1342-1355.

[52] Kastensmidt F L, Carro L, Reis R. Fault-Tolerance Tech-

niques for SRAM-Based FPGAs. Secaucus, USA: Springer-

Verlag New York, Inc., 2006.

[53] IBM. SOI technology: IBM’s next advance in chip de-

sign, January 2000. http://wwwibm.com/chips/bluelogic-

/showcase/soi/soipaper.pdf, Oct. 2014.

[54] Calin T, Nicolaidis M, Velazco R. Upset hardened mem-

ory design for submicron CMOS technology. IEEE Trans-

actions on Nuclear Science, 1996, 43(6): 2874-2878.

[55] Carmichael C, Fuller E, Blain P, Caffrey M. SEU mitiga-

tion techniques for Virtex FPGAs in space applications. In

Proc. Military and Aerospace Programmable Logic Devices

Int. Conf., September 1999.

[56] Gokhale M, Graham P, Johnson E, Rollins N, Wirthlin

M. Dynamic reconfiguration for management of radiation-

induced faults in FPGAs. In Proc. the 18th Int. Parallel

and Distributed Processing Symp., April 2004, pp.28-38.



390 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

[57] Heiner J, Collins N, Wirthlin M. Fault tolerant ICAP con-

troller for high-reliable internal scrubbing. In Proc. IEEE

Aerospace Conf., March 2008.

[58] Hammarberg J, Nadjm-Tehrani S. Formal verification of

fault tolerance in safetycritical reconfigurable modules. Int.

J. Softw. Tools Technol. Transf., 2005, 7(3): 268-279.

[59] Andrashov A, Kharchenko V, Sklyar V, Siora A, Reva L.

Verification of FPGA-based NPP I&C systems: General ap-

proach and techniques. In Proc. the 19th Int. Conf. Nuclear

Engineering in Osaka, October 2011.

[60] Traub M, Sander O, Rathner A, Becker J. Generating

hardware descriptions from automotive function models

for an FPGA-based body controller: A case study.

In Proc. MathWorks Automotive Conf., April 2008.

http://www.mathworks.it/automotive/macde2008/procee-

dings/day2/ 04daimlergenertinghwdescriptionswithhdlcod-

erpaper.pdf, Oct. 2014.

[61] Osterloh B, Michalik H, Habinc S, Fiethe B. Dynamic

partial reconfiguration in space applications. In Proc.

NASA/ESA Conf. Adaptive Hardware and Systems, July

29-August 1, 2009, pp.336-343.

[62] Bernardeschi C, Cassano L, Domenici A. SEU-X: A SEU

un-eXcitability prover for SRAM-FPGAs. In Proc. the 18th

IEEE Int. On-Line Testing Symp., June 2012, pp.25-30.

[63] Bernardeschi C, Cassano L, Domenici A, Sterpone L. Un-

excitability analysis of SEUs affecting the routing structure

of SRAM-based FPGAs. In Proc. the 23rd ACM Int. Conf.

Great Lakes Symp. VLSI, May 2013, pp.7-12.

Cinzia Bernardeschi received her

Laurea degree and Ph.D. degree in

computer science in 1987 and 1996

respectively, both from the University

of Pisa. She is an associate professor

with the Department of Information

Engineering of the University of Pisa.

Her research interests are in the area of

software engineering, dependable systems and application

of formal methods for specification and verification of

safety-critical systems. Her most recent work is related to

the application of theorem proving and model checking

techniques for fault simulation and reliability analysis of

electronic circuits and systems.

Luca Cassano received his B.S.

and M.S. degrees both in computer

engineering in 2006 and 2009 respec-

tively from the University of Pisa, Italy.

In 2013, he received his Ph.D. degree

in information engineering from the

Department of Information Engineering

of the University of Pisa. During his

Ph.D. course, Dr. Luca Cassano spent a visiting period

at the Department of Automation and Informatics of the

Politecnico di Torino, Italy, under the supervision of Dr.

Luca Sterpone, and a visiting period at the Cognitive

Interaction Technology — Center of Excellence (CITEC)

of the University of Bielefeld, Germany, under the super-

vision of Prof. Mario Porrmann. Dr. Cassano is currently

a postdoctoral research fellow at the Department of Elet-

tronica, Informazione and Bioingegneria, Politecnico di

Milano, under the supervision of Prof. Cristiana Bolchini.

His research interests cover the analysis of the effects

of SEUs in the configuration memory of SRAM-based

FPGA systems, fault simulation, test and untestability

analysis of digital circuits and systems, the use of machine

learning techniques for fault testing and diagnosis for

digital circuits and systems as well as the energy analysis

of automatic weather stations.

Andrea Domenici obtained his

Ph.D. degree in information engineering

from the University of Pisa, Italy, in

1992. He has been an assistant professor

at the Sant’Anna School of University

Studies and Doctoral Research, Pisa,

and is currently at the Department of

Information Engineering of the University of Pisa, where

he teaches software engineering and does research in the

fields of dependable systems and application of formal

methods in the development of safety- and mission-critical

systems. He has also been active in object-oriented design

and grid architectures. In this latter field, he took part in

the European Datagrid Project and in the Enabling Grids

for E-sciencE (EGEE) project, in cooperation with the

European Organization for Nuclear Research (CERN) and

the Italian National Institute of Nuclear Physics (INFN).


