
Du P, Zhao JY, Pan WB et al. GPU accelerated real-time collision handling in virtual disassembly. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 30(3): 511–518 May 2015. DOI 10.1007/s11390-015-1541-2

GPU Accelerated Real-Time Collision Handling in Virtual

Disassembly

Peng Du 1 (Ú +), Jie-Yi Zhao 2 (ë#�), Wan-Bin Pan 1 (��Q), and
Yi-Gang Wang 1 (�Àf), Member, CCF, ACM

1School of Media & Design, Hangzhou Dianzi University, Hangzhou 310018, China
2College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China

E-mail: {dp, su27}@zju.edu.cn; {panwanbin, yigang.wang}@hdu.edu.cn

Received November 25, 2014; revised February 18, 2015.

Abstract Previous collision detection methods for virtual disassembly mainly detect collisions at discrete time intervals,

and use oriented bounding boxes to speed up the process. However, these discrete methods cannot guarantee no penetration

occurs when the components move. Meanwhile, because some of the components are embedded into each other, these

components cannot be separated in the subsequent process. To solve these problems, we propose an approach for real-time

collision handling by utilizing the computational power of modern GPUs. First we present a novel GPU-based collision

handling framework for virtual disassembly. Second we use a collision-streams based continuous collision detection to

guarantee no collision missed. Finally we introduce a triangle intersection detection algorithm to solve the problem that

collision cannot be detected when the components are embedded into each other at the initial configuration. The experimental

results show that our method can improve the overall performance of collision detection and achieve real-time simulation.

Keywords GPU-based virtual disassembly, continuous collision detection, discrete collision detection, collision handling

1 Introduction

Virtual disassembly process allows us to decompose

the assembly into parts, while its inverse process makes

the parts reassembled again. The virtual disassembly

process can train users without destructing the actual

assembly[1]. Virtual disassembly is becoming more im-

portant due to the environmental and economic pres-

sures for industrial recycling and reusing.

One can design an interactive virtual disassembly

system by employing a 3D projector to make users im-

mersed in the virtual environment. The system then

allows users to dismount the assembly with interac-

tive devices such as head sensors and 3D mouses. The

disassembly system can also guide users to disassem-

ble the 3D components according to the computed

disassembly sequence, as shown in Fig.1. Additionally,

we can record the disassembly path and then automati-

cally install the components into the original assembled

(a) (b) (c) (d)

Fig.1. Microscope. (a) Disassembly result. (b)∼(d) Assembly
process. Our system can record the disassembly path and then
automatically install the components by taking the reverse op-
erations to the disassembly path.

configurations (Fig.1(d)) by following its reversed path.

To perform the virtual disassembly, collision de-

tection and response between different components is

an important task. Previous collision detection meth-

ods for virtual disassembly mainly detect collisions at

discrete time intervals[2], and use oriented bounding

Regular Paper

Special Section on Computational Visual Media

This work was supported by the National Natural Science Foundation of China under Grant No. 61472111, the Zhejiang Provincial
Natural Science Foundation of China under Grant No. LQ13F020016, the Foundation of Zhejiang Educational Committee under Grant
No. Y201224034, and the Scientific Research Start Foundation of Hangzhou Dianzi University under Grant No. KYS225613032.

©2015 Springer Science +Business Media, LLC & Science Press, China

512 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

boxes (OBBs)[3] to accelerate the virtual process. Un-

fortunately, these discrete methods cannot guarantee

no penetration among different components as they

move. Furthermore, in practice, some components are

intersected at the initial configuration, but the users

think there is no intersection at the initial configura-

tion. Therefore, collision detection cannot get the con-

sistent configuration as the users expected, and these

components cannot be separated in the subsequent pro-

cess.

To solve these problems, we present a hybrid col-

lision detection approach. Firstly we present a GPU-

based continuous collision detection (CCD) to guaran-

tee no collision missed. Secondly we present a triangle

intersection detection (TID) algorithm to solve the em-

bedded problem. The contributions of the paper can

be summarized as follows.

• We present a novel GPU-based collision handling

framework for virtual disassembly. This framework can

guarantee no collision missed by utilizing the capacities

of CCD.

• We present an improved collision-streams based

CCD method which can improve the overall perfor-

mance of collision detection, and achieve real-time

simulation.

• We integrate TID into our parallel CCD system

to solve the problem that collision cannot be detected

when the components are embedded into each other at

the initial configuration.

2 Related Work

In this section, we discuss related work on virtual

disassembly and GPU-based collision detection algo-

rithms.

2.1 Virtual Disassembly

The virtual disassembly process on the design of

a product is an essential aspect for recycling, mainte-

nance, repair, and component/material reusing in the

sustainable development.

For simulating efficient disassembly process,

Popescu and Lacob proposed a method of automati-

cally generating dismounting sequences[4]. In this

method, the valid disassembly trajectories of a com-

ponent relative to its surrounding ones are modeled

based on the mobility operator, and the swept vol-

ume approach is used to evaluate collisions between

components. Finally, the disassembly sequences are

determined through an improved layer peeling tech-

nique. For designing non-destructive disassembly path,

Pomares et al. proposed an object-oriented model re-

quired for developing the disassembly process in a flexi-

ble way[5]. The authors used local and global strategies

for the removal of one component based on the features

of the components.

2.2 Continuous Collision Detection

Collision detection methods can be classified into

discrete collision detection (DCD) and continuous col-

lision detection (CCD). DCD[3,6-11] can check collisions

only at discrete time steps, and may result in collision

misses as the models undergo a fast, continuous move-

ment, whereas CCD is used to compute the first-time-

of-contact between deforming triangles along continu-

ous trajectories. In most cases, we use linear inter-

polation to depict the trajectories of the triangle ver-

tices for improving the efficiency of collision detection.

The CCD test between two deforming triangles reduces

to performing nine vertex-face (VF) and six edge-edge

(EE) elementary tests, where each elementary test is

reduced to find the roots of a cubic equation.

The research on CCD can be mainly divided into

two aspects: high-level culling[12-16] and low-level

culling[17-22]. High-level culling, especially bound-

ing volume hierarchies (BVHs), performs triangle-level

overlap tests to reduce the potential colliding pair-wise

set (PCS). Some widely used high-level culling methods

include continuous normal cone tests[13], star-contour

tests[14], and subspace min-norm certification tests[15].

Low-level culling is to remove redundant primitive pairs

(VF or EE pair) and reduce elementary tests from

PCS. Recently, representative triangles[22] and orphan

sets[13] have been proposed to remove redundant primi-

tive pairs. Continuous separating axis theorem[17], de-

forming non-penetration filter[18] and parallel filter in

subspace[20], was proposed to reduce a large number of

false positives.

2.3 GPU-Based Collision Detection

Current GPUs are regarded as high-throughput pro-

cessors, which operate on an SIMD (single-instruction

multiple data) basis, and the computations are per-

formed simultaneously by executing a large number of

threads. On current GPUs, the multiple threads are

executed by the kernels which are organized into a two-

level hierarchy: blocks and threads. At the top level of

the hierarchy, a grid is organized as a two-dimensional

Peng Du et al.: GPU Accelerated Real-Time Collision Handling in Virtual Disassembly 513

(2D) array of blocks. At the bottom level, all blocks of

a grid are organized into an array of threads. All the

threads in the same block can access a small, high-speed

shared memory.

GPU can accelerate geometry computation[23-24].

Recently, some algorithms of collision detection exploit-

ing the parallel computing capability of modern many-

core GPUs have been designed[25-29]. For example,

Tang et al. presented a parallel continuous collision

detection method based on a collision-streams based

data-level parallelism and a front-based task-level para-

llelism, by utilizing the capacities of GPUs[29]. Addi-

tionally, Zhang and Kim evenly partitioned the front to

make load balance among multiple cores[25]. Pabst et

al. presented an adaptive space grid based parallel colli-

sion detection method[28]. Wong et al. used the advan-

tage of octree grid to address the issue of performance

reduction caused by uneven model subdivision[26].

3 Motivation and Overview

3.1 Motivation

When designing a real-time virtual disassembly sys-

tem which allows users to manipulate different compo-

nents with the consideration of collision, we have to

ensure collision detection and response can achieve 30

or more frames per second. To achieve the requirement,

previous virtual disassembly systems mainly use OBBs

instead of actual components to check collision.

However, there are some drawbacks in the method.

First, as we abstract the components with OBBs, the

details such as holes and irregular corners will be erased

and the simulation effect cannot satisfy the visual re-

quirement. Second, penetration may occur as users

move the components. Third, some of the components

are designed to be embedded into each other at the

initial configuration. Therefore, the intersected compo-

nents cannot be removed from the assembly with pre-

vious collision detection methods.

To solve these problems, we present an approach

of hybrid collision detection. First we present an im-

proved collision-streams based continuous collision de-

tection (CCD) to guarantee no collision missed, and sec-

ond we present a triangle intersection detection (TID)

method to solve the embedded problem.

3.2 System Pipeline

Our virtual disassembly system has the following

parts: components removing, collision culling, and ex-

act collision detection and collision response, which can

be summarized as Fig.2. The exact detection also can

be divided into two phases in terms of whether inter-

section occurs: CCD and TID. For large assembly with

millions of primitives, first we employ QSlim library to

make some simplifications for real-time requirement.

Collision
Culling

Components
Removing

TID

Assembly

Collision
Response

CCD
GPU

Fig.2. Overview of the virtual disassembly system. The path-
way and components of the system: components removing, colli-
sion culling, and exact collision detection and collision response.

4 Parallel Collision Detection

First our algorithm builds a BVH for the assembly,

then builds an intra-collision detection tree and per-

forms a top-down traversal of the tree to check for col-

lision between different components. In terms of CCD

computation, the algorithm assumes linearly interpo-

lating motion between the vertices and the first-time-

of-contact is computed by performing elementary tests

between the features.

4.1 Algorithm Overview

Initially, we construct the following streams on

GPU: vertex stream Sv, intersection stream Si to get

the pairs of intersected components, BV stream Sbv to

save the bounding volume of each triangle, BVH stream

Sbvh to save the bounding volume of each intermediate

node in BVH, front stream Sf to save the nodes of the

bounding volume traversal tree (BVTT), and triangle

pair stream St to save the non-adjacent triangle pairs

whose bounding volumes overlap. And we construct

transformation matrix stream Stm to save the transfor-

mation matrices of the components on CPU. Then in

each simulation time step, first we use high-level culling

method to cull the false positives. For the unsettled

triangle pairs, if it belongs to Si, we use TID to test

intersection, otherwise we use CCD.

In addition, if the intersected components are not

separated, we allow the components to move freely.

Once the collision pair is separated, we remove the com-

ponent pair from Si and use CCD to guarantee no col-

lision for this pair in the next frame. If collisions occur,

we make the configuration of the assembly return to

previous non-collision configuration. For more details,

please refer to Algorithm 1.

514 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

Algorithm 1. Improved Collision-Streams Based CCD

1: for each simulation time step do

2: Send Stm from CPU to GPU

3: Update Sv with Stm

4: Update Sbv and Sbvh with Sv

5: Update Sf with Sbvh and generate St

6: for each triangle pair t in the triangle pair stream St do

7: if the triangles in t belong to the same components

then

8: Continue

9: if t in Si is available then

10: Perform TID for t

11: if intersection occurs for t then

12: Make the intersection pair available in the next

time step

13: else

14: Perform CCD for t

4.2 Collision-Streams

In order to fully utilize the powerful parallel compu-

tation ability of current GPUs, we improve the collision-

streams based CCD[29], in which the authors treat the

GPU as a collection of stream processors that can per-

form large-scale fine-grained parallel computation on

stream data. In terms of the overall CCD algorithm,

the geometric data are represented as stream data, and

the underlying functional modules used in the algo-

rithm (i.e., updating BVHs, front traversal, elementary

tests, etc.) are mapped to computation kernels.

We inherit this method and abstract the primary

data streams as vertex stream Sv, BV stream Sbv, BVH

stream Sbvh, front stream Sf and triangle pair stream

St. In addition, we design some assistant streams,

i.e., intersection stream Si and transformation matrix

stream Stm. These data streams can be summarized as

Fig.3.

BV Stream Vertex Stream
Assembly

Front

Stream

BVH

Stream

Transform

Matrices Stm

Triangle Pair

Stream

Intersection Pair

Stream

Result

Sv

St

Si

Sf Sbvh

Sbv

Fig.3. Collision-streams. All the procedures are mapped to
a set of computation kernels. By executing these kernels, the
streaming CCD algorithm runs entirely on a GPU.

• Vertex Stream Sv. It corresponds to the geomet-

ric coordinates of the vertices of the components. In

order to perform CCD between two discrete time steps,

two vertex streams Svn
and Svn+1

are used to store the

vertex coordinates corresponding to time tn and tn+1,

respectively. In addition, we use Sv0
to represent the

initial vertex coordinate stream.

• BV Stream Sbv and BVH Stream Sbvh. All the

bounding volumes for triangles are represented by Sbv.

All of the components are enclosed by a single BVH

Sbvh. Sbv and Sbvh are updated at each simulation

time step based on Sv.

• Front Stream Sf . At the initial configuration,

we perform BVTT traversal to get the non-intersected

nodes or the leaf nodes where the tree traversal termi-

nated, and then put them into the front stream Sf . In

the following process of CD, we can traverse Sf instead

of BVTT to get the intersected triangle pairs.

• Triangle Pair Stream St. During Sf traversal,

all the non-adjacent triangle pairs whose bounding vol-

umes overlap are collected into St.

• Intersection Stream Si. In the initial stage, we

record all the intersected component pairs into the in-

tersection stream Si. In the following process, if the

intersected components are not separated, we allow the

components to move freely. Once they are separated,

we remove the component pair from Si and use CCD to

guarantee no collision for this pair in the next frame.

• Transformation Matrices Stream Stm. When the

coordinates of components change, we send the trans-

form matrices Stm into GPU, and compute the new

vertex stream Svn+1
with Sv0

and Stm.

4.3 Global-Lock Based Front Tracking

Our collision culling algorithm is based on front

tracking[19]. At the initial stage, we construct a front

stream from BVTT as shown in Fig.4. As the com-

ponents move during the simulation, the front needs

to be updated correspondingly. In order to maintain

a valid front, two operators “sprouting” and “pruning”

are used. By using the sprouting operator, a front is

sprout to the level where bounding volumes are disjoint

or leaf nodes in the tree are reached. The sprouting of

each front node is independent of each other. During

the tracking of the BVTT front, the nodes that need

to be sprouted are flagged as invalid, and their descen-

dants will be traversed in a depth-first manner to check

for collisions. This makes it suitable for parallel pro-

cessing. However, the pruning operator needs to search

for sibling nodes in the BVTT front, which is hard for

parallel execution. Thus in practice, we do not use any

pruning operator since it will affect the parallel perfor-

mance.

Peng Du et al.: GPU Accelerated Real-Time Collision Handling in Virtual Disassembly 515

Front

BVH BVTTA1 A1֒ A1

B1֒ B2 B2֒ B2B1֒ B1

C1֒ C1 C1֒ B2
a֒ C1 d֒ e

b֒ c a֒ d a֒ e

a֒ B2

b֒ B2 c֒ B2

B1 B2

C1a d e

b c

Fig.4. Front construction. In the initial stage, we perform BVTT
traversal to get the non-intersected nodes or the leaf nodes where
the tree traversal terminates, and then put them into the front.

In each process of CD, we represent the front stream

from the previous simulation time step as Sf(t0). After

updating the BVH stream, we can traverse Sf(t0) to get

a new front stream Sf(t1). First, we allocate each node

in Sf(t0) to a thread. If the two bounding volumes of

the node intersect, we will sprout the level until the

bounding volumes are disjoint or the leaf nodes in the

tree are reached. And then we insert the BVTT nodes

into the rear of the front stream Sf(t1). If the reached

node is a leaf node, we insert the corresponding trian-

gle pair into the triangle pair stream. When we insert

a new node into the stream, we use atomic operations

(e.g., atomicAdd() in CUDA or atom add() in OpenCL)

to specify the position in the stream.

4.4 Triangle Intersection Detection

In the initial process, we put the pairs of intersected

components into the intersection stream. In the follow-

ing process, we detect whether the collision pairs of

the intersection stream have intersected at time t1 with

TID. If the previous intersected components have no

intersection at the current time, we flag it as invalid,

and then we use CCD to guarantee no penetration oc-

curs. The triangle-triangle intersection test can be de-

composed into a small number of 3D orientation tests

based on the following Sign Theorem[30].

Theorem 1 (Sign Theorem[30]). Given four points

a, b, c, and d, we define the discriminant:

det(a, b, c, d)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ax ay az 1

bx by bz 1

cx cy cz 1

dx dy dz 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

ax − dx ay − dy az − dz

bx − dx by − dy bz − dz

cx − dx cy − dy cz − dz

∣

∣

∣

∣

∣

∣

∣

. (1)

The sign of (a,b,c,d) has two geometric interpreta-

tions, each corresponding to a right-hand rule. If the

right-hand screw of vectors ba and ca points to d

(Fig.5(a)), or if the right-hand screw of ab directs along

cd (Fig.5(b)), the sign of (1) is above zero.

c

b

b

a

a

d

d

c

(a) (b)

Fig.5. Sign discriminant. We can determine whether the vertex
d is above, on or below a plane (Fig.5(a)) and whether cd is
along the right-hand screw of ab (Fig.5(b)).

Based on Theorem 1, triangle intersection detection

can be summarized as Algorithm 2. First we check

whether the vertices of one triangle are on the same

side of the other triangle. If so, we conclude no inter-

section occurs. If all of the vertices are in the same

plane, we use line-line intersection detection to judge

whether intersection occurs and then terminate the al-

gorithm. Otherwise we make p1 be the only vertex in

the positive half space induced by T2 (line 11 in Algo-

rithm 2). Finally, we test edge pairs (p1q1, p2q2) and

(p1r1, r2p2) with Theorem 1. As shown in Fig.6, L is

the intersection line of triangles T1 and T2, which are

represented with ij in T1 and kl in T2 respectively. If

all these discriminants are not above zero, that means

ij intersects with kl, namely intersection occurs.

Algorithm 2. Triangle Intersection Detection
1: Compute det(p2, q2, r2, p1), det(p2, q2, r2, q1),

det(p2, q2, r2, r1)
2: if the signs are all above zero then

3: Return false
4: if the signs are equal to zero then

5: Return check intersection with line-line intersection test
in the mutual plane

6: Compute det(p1, q1, r1, p2), det(p1, q1, r1, q2),
det(p1, q1, r1, r2)

7: if the signs are above zero then

8: Return false
9: Make p1 be the only vertex in the positive halfspace in-

duced by the plane of triangle T2

10: Compute det(p1, q1, p2, q2), det(p1, r1, r2, p2)
11: if the signs are not above zero then

12: Return true
13: Return false

516 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

r

r

p

p

q

q

T

T

L ik
jl

Fig.6. Triangle intersection detection. Based on Theorem 1, if
all these discriminants are not above zero, intersections occur.

5 Implementation and Results

In this section, we describe our implementation and

present the performance of our algorithm on several

benchmarks.

Implementation. We implemented our algorithm on

a standard Intel Core machine on a 64-bit Windows 7

platform (3.0 GHz, 8 GB RAM, NVIDIA Tesla K20c

GPU). We used CUDA toolkit 5.5 and Visual studio

2008 as the development environment. k-DOPs (specifi-

cally 16-DOPs) was used as bounding volumes because

they provide a good balance between tight fitting and

rapid updating[11]. Representative triangle[22] was em-

ployed to reduce the redundant elementary tests. We

used deforming non-penetration filter (DNF)[18] to cull

the false positives.

Benchmarks. In order to test the performance of our

algorithm, we have tested our method on four bench-

marks.

• Microscope. As shown in Fig.1, the assembly has

19k triangles, and 2.9k simplified triangles with QSlim

library.

• Tooling. As shown in Fig.7, the assembly has 43.5k

triangles, and 5.1k simplified triangles with QSlim li-

brary.

• Lathe. As shown in Fig.8(a) and Fig.8(b), the as-

sembly has 120k triangles, and 4.3k simplified triangles

with QSlim library.

• Robot. As shown in Fig.8(c) and Fig.8(d), the as-

sembly has 43k triangles, and 3.8k simplified triangles

with QSlim library.

(a) (b) (c)

Fig.7. Tooling. (a) Disassembly result. (b) (c) Assembly pro-
cess.

(a) (b) (c) (d)

Fig.8. Benchmarks. (a) (c) Disassembly process.

Table 1 highlights the performance of our algorithm.

In addition, we have compared the speedup with front-

based CCD under a 4-core PC[19], as shown in Fig.9.

0

1

2

3

4

5

6

7

8

Microscope Tooling Lathe Robot

Speedup over
BVH Refitting

Speedup over
Intersection Test

Speedup over
Overall Time

Fig.9. Speedup over front-based CCD under 4 cores.

Table 1. Executed Time (ms) of Our Method on BVH

Refitting, Intersection Tests and Overall Time

Model BVH Refitting Intersection Test Overall Time

Microscope 09 11 20
Tooling 14 17 31
Lathe 13 14 27
Robot 10 12 22

6 Comparison and Analysis

In this section, we compare our algorithms with pre-

vious GPU and multi-core based CD algorithms and

highlight some of the benefits.

Comparison. The previous virtual assembly systems

mainly check for collision between OBBs instead of ac-

tual components to improve the performance. As op-

posed to these methods, our approach provides object-

space accuracy and is quite fast. Our algorithm is a

purely GPU-based approach and there is almost no

communication bottleneck in terms of repeated data

transfer between CPU and GPU. Moreover, our frame-

work is more flexible and makes it easy to incorporate

with the previous virtual disassembly systems.

We have implemented some previous methods (in-

cluding local-lock based CCD[29], front-based multi-

core CCD[19]). In the following of the section, we would

like to compare our method with them.

Peng Du et al.: GPU Accelerated Real-Time Collision Handling in Virtual Disassembly 517

• Local-Lock Based CCD. They abstract the stream

data into vertex stream, BVH stream, front stream,

triangle pair stream, feature pair stream, etc.[29] When

new nodes are inserted into the front stream or triangle

pair stream, they are firstly reserved in the shared mem-

ory with atomic operation, and then merged into the

global memory. Experiments show we can get almost

the same performance as the local-lock method. But

our method is more compatible with low-end graphics

card for no limitation on the capacity of shared mem-

ory. The result illustrates our global-lock method is

better for the small assembly.

• Front-Based Multi-Core CCD. At the initial con-

figuration, they insert the non-intersected or leaf nodes

of BVTT into a front list. In the following process, they

can traverse the front parallel with multi-core[19]. Ex-

periments prove that our method achieves 6∼8 times

speedup compared with the front-based method under

a 4-core PC.

Limitation. In this paper, we design an interactive

virtual disassembly system which employs 3D projector

to immerse users into the virtual environment, and al-

lows people to dismount the assembly with interactive

devices. When one component is surrounded by an-

other tightly, it is not easy to separate the components

with 3D mouse, because many collisions occur.

7 Conclusions

In this paper, we imported CCD into virtual disas-

sembly and presented a hybrid collision handling ap-

proach. We solved the problem that collision cannot

be detected when the components are embedded into

each other at the initial configuration. The experiment

results show that our method can improve the overall

performance of collision detection and response, and

achieve real-time simulation.

In the future work, we would like to improve the

performance by integrating new research achievements,

such as the improved front-based CCD with a load-

balancing static task partition strategy[25].

Acknowledgement We would like to thank Sung-

eui Yoon, Zhen-Dong Wang and Min Tang for useful

discussion and paper writing. We also thank NVIDIA

for the Hardware Donation Program (Tesla K20 GPU)

and the anonymous reviewers for their helpful feed-

backs.

References

[1] Srinivasan H, Shyamsundar N, Gadh R. A framework for

virtual disassembly analysis. Journal of Intelligent Manu-

facturing, 1997, 8(4): 277–295.

[2] Coutee A S, Bras B. Collision detection for virtual objects

in a haptic assembly and disassembly simulation environ-

ment. In Proc. ASME 2002 International Design Engineer-

ing Technical Conferences and Computers and Information

in Engineering Conference, September 29–October 2, 2002,

pp.11–20.

[3] Gottschalk S, Lin M, Manocha D. OBBTree: A hierarchical

structure for rapid interference detection. In Proc. the 23rd

ACM SIGGRAPH, August 1996, pp.171–180.

[4] Popescu D, Lacob R. Disassembly method based on connec-

tion interface and mobility operator concepts. The Inter-

national Journal of Advanced Manufacturing Technology,

2013, 69(5/6/7/8): 1511–1525.

[5] Pomares J, Puente S T, Torres F, Candelas F A, Gil P.

Virtual disassembly of products based on geometric mod-

els. Computers in Industry, 2004, 55(1): 1–14.

[6] Wu J, Dick C, Westermann R. Efficient collision detection

for composite finite element simulation of cuts in deformable

bodies. The Visual Computer, 2013, 29(6/7/8): 739–749.

[7] Fan W S, Wang B, Paul J C, Sun J G. An octree-based

proxy for collision detection in large-scale particle systems.

Science China Information Sciences, 2013, 56(1): 1–10.

[8] Hubbard P M. Interactive collision detection. In Proc. IEEE

Symposium on Research Frontiers in Virtual Reality, Oc-

tober 1993, pp.24–31.

[9] Bradshaw G, O’Sullivan C. Adaptive medial-axis approxi-

mation for sphere-tree construction. ACM Transactions on

Graphics, 2004, 23(1): 1–26.

[10] van den Bergen G. Efficient collision detection of complex

deformable models using AABB trees. Journal of Graphics

Tools, 1997, 2(4): 1–13.

[11] Klosowski J, Held M, Mitchell J, Sowizral H, Zikan K. Effi-

cient collision detection using bounding volume hierarchies

of k-DOPs. IEEE Transactions on Visualization and Com-

puter Graphics, 1998, 4(1): 21–36.

[12] Tang M, Manocha D, Kim Y J. Hierarchical and controlled

advancement for continuous collision detection of rigid and

articulated models. IEEE Transactions on Visualization

and Computer Graphics, 2014, 20(5): 755–766.

[13] Tang M, Curtis S, Yoon S E, Manocha D. ICCD: Interactive

continuous collision detection between deformable models

using connectivity-based culling. IEEE Transactions on Vi-

sualization and Computer Graphics, 2009, 15(4): 544–557.

[14] Schvartzman S C, Pérez Á G, Otaduy M A. Star-

contours for efficient hierarchical self-collision detection.

ACM Transactions on Graphics, 2010, 29(4): 80:1–80:8.

[15] Barbič J, James D L. Subspace self-collision culling. ACM

Transactions on Graphics, 2010, 29(4): 81:1–81:9.

[16] Zheng C, James D L. Energy-based self-collision culling for

arbitrary mesh deformations. ACM Transactions on Graph-

ics, 2012, 31(4): 98:1–98:12.

[17] Tang M, Manocha D, Yoon S E, Du P, Heo J P, Tong R F.

VolCCD: Fast continuous collision culling between deform-

ing volume meshes. ACM Transactions on Graphics, 2011,

30(5): 111:1–111:15.

518 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

[18] Tang M, Manocha D, Tong R F. Fast continuous collision

detection using deforming non-penetration filters. In Proc.

ACM SIGGRAPH Symposium on Interactive 3D Graphics

and Games, February 2010, pp.7–14.

[19] Tang M, Manocha D, Tong R F. MCCD: Multi-core colli-

sion detection between deformable models using front-based

decomposition. Graphical Models, 2010, 72(2): 7–23.

[20] Tang C, Li S, Wang G. Fast continuous collision detection

using parallel filter in subspace. In Proc. ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games, Febru-

ary 2011, pp.71–80.

[21] Du P, Tang M, Tong R F. Fast continuous collision culling

with deforming non-collinear filters. Computer Animation

and Virtual Worlds, 2012, 23(3/4): 375–383.

[22] Curtis S, Tamstorf R, Manocha D. Fast collision detec-

tion for deformable models using representative-triangles.

In Proc. ACM SIGGRAPH Symposium on Interactive 3D

Graphics and Games, February 2008, pp.61–69.

[23] Tang M, Zhao J Y, Tong R F, Manocha D. GPU accel-

erated convex hull computation. Computers & Graphics,

2012, 36(5): 498–506.

[24] Zhao J Y, Tang M, Tong R F. Connectivity-based segmen-

tation for GPU-accelerated mesh decompression. Journal of

Computer Science and Technology, 2012, 27(6): 1110–1118.

[25] Zhang X Y, Kim Y J. Scalable collision detection using

p-partition fronts on many-core processors. IEEE Trans-

actions on Visualization and Computer Graphics, 2014,

20(3): 447–456.

[26] Wong T H, Leach G, Zambetta F. An adaptive octree grid

for GPU-based collision detection of deformable objects.

The Visual Computer, 2014, 30(6/7/8): 729–738.

[27] Kim D, Heo J P, Huh J, Kim J, Yoon S E. HPCCD: Hy-

brid parallel continuous collision detection using CPUs and

GPUs. Computer Graphics Forum, 2009, 28(7): 1791-1800.

[28] Pabst S, Koch A, Straβer W. Fast and scalable CPU/GPU

collision detection for rigid and deformable surfaces. Com-

puter Graphics Forum, 2010, 29(5): 1605–1612.

[29] Tang M, Manocha D, Lin J, Tong R F. Collision-streams:

Fast GPU-based collision detection for deformable models.

In Proc. ACM SIGGRAPH Symposium on Interactive 3D

Graphics and Games, February 2011, pp.63–70.

[30] Devillers O, Guigue P. Faster triangle-triangle intersec-

tion tests. Research Report, RR-4488, INRIA, 2002.

https://hal.inria.fr/inria-0072100/file/RR-4488.pdf, Mar.

2015.

Peng Du received his Ph.D. degree

in computer science and technology

from Zhejiang University, Hangzhou, in

2013. Currently, he is a postdoctoral

researcher in Korea Advanced Institute

of Science and Technology (KAIST),

as well as a lecturer in Hangzhou

Dianzi University. His research interests include computer

graphics, global illumination, parallel computation and

collision detection.

Jie-Yi Zhao received his Ph.D. de-

gree in computer science and technology

from Zhejiang University, Hangzhou, in

2013. Currently, he is a postdoctoral

researcher in the University of Texas

at Houston. His research interests

include computer graphics and GPU

computing.

Wan-Bin Pan is a Ph.D. candidate

in the State Key Lab of CAD & CG

of Zhejiang University, as well as a

lecturer in Hangzhou Dianzi Univer-

sity. His research interests include

3D CAD model reuse and virtual

assembly.

Yi-Gang Wang received his Ph.D.

degree in applied mathematics from

Zhejiang University, Hangzhou, in

1999. Currently, he is a professor

in Hangzhou Dianzi University. His

research interests include virtual reality,

computer graphics, and image process.

