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Abstract Recently, with the growing popularity of Internet of Things (IoT) and pervasive computing, a large amount

of uncertain data, e.g., RFID data, sensor data, real-time video data, has been collected. As one of the most fundamental

issues of uncertain data mining, uncertain frequent pattern mining has attracted much attention in database and data

mining communities. Although there have been some solutions for uncertain frequent pattern mining, most of them assume

that the data is independent, which is not true in most real-world scenarios. Therefore, current methods that are based

on the independent assumption may generate inaccurate results for correlated uncertain data. In this paper, we focus on

the problem of mining frequent itemsets over correlated uncertain data, where correlation can exist in any pair of uncertain

data objects (transactions). We propose a novel probabilistic model, called Correlated Frequent Probability model (CFP

model) to represent the probability distribution of support in a given correlated uncertain dataset. Based on the distribution

of support derived from the CFP model, we observe that some probabilistic frequent itemsets are only frequent in several

transactions with high positive correlation. In particular, the itemsets, which are global probabilistic frequent, have more

significance in eliminating the influence of the existing noise and correlation in data. In order to reduce redundant frequent

itemsets, we further propose a new type of patterns, called global probabilistic frequent itemsets, to identify itemsets that

are always frequent in each group of transactions if the whole correlated uncertain database is divided into disjoint groups

based on their correlation. To speed up the mining process, we also design a dynamic programming solution, as well as two

pruning and bounding techniques. Extensive experiments on both real and synthetic datasets verify the effectiveness and

efficiency of the proposed model and algorithms.
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1 Introduction

In recent years, with the widespread usage of per-

vasive computing and collection of uncertain data in

daily life, e.g., real-time video data[1], moving ob-

ject search[2-4], geo-positioning services (GPS) data[5],

RFID data[6], sensor data[7], mining and managing un-

certain data attracts much attention of data mining and

database researchers. Moreover, due to its usefulness,

discovering frequent itemsets is also well studied in the

uncertain environment[8-20]. Even though many effi-

cient algorithms of uncertain frequent itemset mining

have been proposed, all of them assume that different

transactions are independent. Unfortunately, this as-

sumption does not hold in many real-world scenarios.

In the following, we first introduce two representative

real-world scenarios where correlation plays a key role.

Scenario 1 (Mining Correlated Sensor Data). Sen-

sor data are often uncertain due to noise and trans-
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mission errors[7]. For instance, in a real scenario of

sensor networks, due to noise, the data collected from

different sensors often have big differences even though

these sensors locate nearby. Thus, the correlation of

locations should be considered. In particular, when the

collected sensor data are massive, finding the frequent

combinations (itemsets) of attribute values (such as val-

ues of temperature, humidity, and concentration of car-

bon dioxide) will help us to discover some underlying

properties of the data.

Scenario 2 (Mining Correlated RFID Data). Due to

the limitation of hardware and the protocols of RFID,

e.g., ALOHA[21], the raw data from RFID systems are

usually incomplete and inaccurate. Moreover, correla-

tions often exist because of signal interference of dif-

ferent RFID readers and response conflicts of multiple

tags. Consider a scenario which has multiple RFID

readers in a range, where the broadcasting signals from

different RFID readers interfere with each other. Thus,

the data collected from the RFID readers are corre-

lated. If we want to know which items appear together

with others frequently, the influence of correlation in

the uncertain data should not be ignored.

According to the above application scenarios, min-

ing frequent itemsets has to consider the correlation

existing in uncertain data. We will show an example to

clarify the difference between mining frequent itemsets

under the independent assumption and that under the

correlated assumption.

Example 1 (Motivation). Fig.1 shows a sensor net-

work which consists of six sensors to monitor the envi-

ronment of the building, such as collecting temperature

or humidity values. Table 1 is the correlated uncertain

data generated from the sensor network. Each tran-

saction corresponds to a record collected from a sensor

and it includes several possible values of different data

types, e.g., temperature or humidity.

Fig.1. Sensor-based indoor monitoring system.

Table 1. Correlated Uncertain Database

TID Transactions

T1 a(0.85), b(0.8), c(0.75), d(0.1), e(0.87), g(0.5)

T2 a(0.9), b(0.7), e(0.6), f(0.05), g(0.45)

T3 c(0.9), b(0.8), e(0.8)

T4 a(0.9), b(0.1), c(0.6), d(0.3), f(0.2)

T5 a(0.5), b(0.2), c(0.8), d(0.8), e(0.6)

T6 a(0.7), b(0.1), d(0.7), e(0.8), f(0.1)

Note: TID: transaction identification.

In this example, we find that three sensors locate

in the room, and the other three sensors are deployed

in the corridor. Also, there is an air-conditioner in the

room. It is obvious that the collected data are cor-

related due to their spatial closeness. After cleaning

the raw data, we can obtain the uncertain database

shown in Table 1, where each probability in bracket

denotes the likelihood that the corresponding value ap-

pears. Some pairs of sensors have correlation based on

their spatial information, and each corresponding pair

of transactions with correlation is assigned a non-zero

Pearson’s correlation coefficient 1○ to evaluate the cor-

relation between the two transactions. In this paper,

we only consider linear correlation, which is actually

very common in real world[22]. Thus, the correlation

between any pair of transactions is represented via a

correlation coefficient. For example, if the correlation

coefficient between T1 and T2 is given as 0.7, we can

generate the joint distribution of the appearance of item

{g} in T1 and T2 according to the correlation coefficient

and Table 1. Note that ¬T1 means the item {g} does

not appear in T1, and ¬T2 means that {g} does not

appear in T2. Thus, Pr{{g} appears in T1 ∩ T2} =

0.7
√
0.5× 0.5× 0.45× 0.55 + 0.5× 0.45 ≈ 0.4.

Similar to previous studies on mining frequent item-

sets over independent uncertain data, the support of

an itemset is still considered as a random variable in

correlated uncertain data. However, the distribution

of the support of an itemset does not follow the sim-

ple Poisson binomial distribution[18]. According to Ta-

ble 2, we can find that each probability within the

bracket is actually the marginal probability that the

corresponding item appears in the current transaction.

For example, Pr{{g} appears in T1} = Pr{{g} ap-

pears in T1 ∩ T2} + Pr{{g} appears in T1 ∩ ¬T2} =

0.4 + 0.1 = 0.5. In particular, under the indepen-

dent assumption, we will believe Pr{{g} appears in

T1∩T2} = 0.5×0.45 = 0.225. However, actually Pr{{g}
appears in T1 ∩ T2} = 0.4 due to correlation. Thus,

1○ρxy =
p(xy)−p(x)p(y)√

p(x)(1−p(x))p(y)(1−p(y))
.
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previous approaches under the independent assumption

overestimate or underestimate the distribution of sup-

port and are not suitable for correlated uncertain data.

Table 2. Joint Distribution of Existing Probabilities of Item g

{g} T1 ¬T1

T2 0.4 0.05

¬T2 0.1 0.45

The above example well motivates us to work

on mining frequent itemsets over correlated uncertain

data. However, the problem is not trivial, as there are

mainly three challenges.

Challenge 1. How to design an effective model, in-

tegrating the correlation and the probability distribu-

tion of support of an itemset? For mining frequent

itemsets in correlated uncertain data, the core prob-

lem is to model the probability distribution of support

of an itemset, which is the sum of a series of correlated

Bernoulli random variables. As we mentioned above, it

is impossible that the support of an itemset still follows

the Poisson binomial distribution due to the existence of

complex correlation. Thus, a direct idea is whether the

existing correlation models, i.e., probabilistic graphical

models, can be used. Although probabilistic graphical

models utilize the factorization to reduce the complex

joint distribution of random variables into the product

of conditional independent sub-random variables, it is

not suitable to model the probability distribution of

support since support is the summation, not the pro-

duct, of the sub-random variables. In other words, the

complexity of inference is still exponential even if the

probabilistic graphical models are used to represent the

distribution of support.

Challenge 2. What types of itemsets are more

significant in correlated uncertain data? Suppose the

probability distribution of support in correlated uncer-

tain data is obtained, the existing concept of proba-

bilistic frequent itemset over independent uncertain

data can be re-used on the new probability distribution.

However, when the thresholds are low, a large number

of redundant itemsets will be generated. Through ex-

perimental observations, we find that some itemsets are

frequent in a few correlated transactions rather than the

whole uncertain database. We call these frequent item-

sets as local frequent itemsets, and others as global fre-

quent itemsets. Based on these definitions, our follow-

up question is which itemsets are more significant con-

sidering the relationship between local and global fre-

quent itemsets.

Challenge 3. How to solve the problem of mining

frequent itemsets over uncertain data efficiently? Ef-

ficiency is always one of the most crucial criteria of

pattern mining algorithms in both deterministic data

and uncertain data. Especially, efficiency and scalabi-

lity are still the main challenges in the complex environ-

ment. Due to the lack of properties of Possion binomial

distribution that exist under the independent assump-

tion, existing efficient algorithms of mining probabilis-

tic frequent itemsets do not work in correlated scena-

rios. A naive solution is to directly enumerate all pos-

sible worlds to compute the probability distribution of

support in correlated uncertain data. However, its com-

plexity is exponential.

In this paper, we address the above challenges and

make the following contributions.

• We propose a novel probabilistic model, called

Correlated Frequent Probability model (CFP model),

to exactly represent the distribution of support of an

itemset over correlated uncertain data.

• Due to the inherent correlation, we can divide

the whole correlated uncertain database into different

groups where transactions in each group are only corre-

lated to each other. In order to find significant patterns,

we propose a new type of interesting pattern, called

global frequent itemset, which is not only frequent in

each correlated group but also frequent among different

groups.

• Based on the CFP model, we design an effi-

cient dynamic programming algorithm together with

two pruning and bounding methods, which can be used

to find correlated frequent itemsets and global frequent

itemsets efficiently.

The rest of the paper is organized as follows. Pre-

liminaries and our problem formulation are introduced

in Section 2. In Section 3, we present our novel

model, CFP model, for capturing the correlated fre-

quent probability of an itemset. Based on this model,

several efficient algorithms, which aim to find correlated

frequent itemsets and global frequent itemsets, and ef-

fective pruning strategies are proposed in Section 4. Ex-

perimental studies on both real and synthetic datasets

are reported in Section 5. We review existing studies

in Section 6 and conclude this paper in Section 7.

2 Problem Formulation

In this section, we review the preliminaries about

uncertain frequent itemset mining in Subsection 2.1.

Then, the definitions of correlated probabilistic fre-
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quent itemset and global probabilistic frequent itemset

are introduced in Subsections 2.2 and 2.3, respectively.

2.1 Preliminaries

Let I = {i1, i2, . . . , in} be a set of distinct items.

We name a non-empty subset, X , of I as an itemset.

For brevity, we use X = x1 . . . xn to denote itemset

X = {x1, . . . , xn}. X is an l-itemset if it has l items.

Given a correlated uncertain database (CUD) includ-

ing N transactions, each transaction is denoted as a

tuple (tid, Y ), where tid is the transaction identifier,

and Y = {y1(p1), . . . , ym(pm)}. Y contains m units.

Each unit has an item yi and a marginal probability

pi, denoting the likelihood of item yi appearing in the

tid-th transaction. Ψ = {ρ1,2, . . . , ρN−1,N} is the set

of correlation coefficients where the correlation of each

pair of transactions is indicated by a Pearson’s corre-

lation coefficient to show their correlation. We assume

the correlation is not the second or a higher order in-

teraction among N transactions in this work. In other

words, the N transactions only have linear correlation.

Note that ρi,j = 0 if the i-th and the j-th transactions

are independent, otherwise, 0 < ρi,j 6 1.

Definition 1 (Support and Correlated Distribution

of Support). Given a correlated uncertain database

CUD, and an itemset X, the support of X, denoted

as sup(X), is a random variable, which represents the

possible count that X appears in CUD. The correlated

distribution of support of X is the probability mass

function of sup(X) in CUD, i.e., Pr{sup(X) = k},
k ∈ [0,maxv], where maxv is the maximum possible

value of sup(X).

2.2 Correlated Probabilistic Frequent Itemset

In this subsection, we define the concepts of corre-

lated frequent probability and correlated probabilistic

frequent itemset, and then formulate the problem of

mining correlated frequent itemsets.

Definition 2 (Correlated Frequent Probability).

Given a correlated uncertain database CUD which

includes N transactions, a minimum support ratio

minsup, and an itemset X, X’s correlated frequent

probability, denoted as Prcor(X), is shown as follows:

Prcor(X) = Pr{sup(X) > N ×minsup}

=
maxv
∑

k=N×minsup

Pr{sup(x) = k},

where sup(X) follows the correlated distribution of

sup(X) in CUD.

Definition 3 (Correlated Probabilistic Frequent

Itemsets). Given a correlated uncertain database CUD

including N transactions, a minimum support ratio

minsup, and a probabilistic threshold pft, an itemset

X is a correlated probabilistic frequent itemset if X’s

correlated frequent probability is greater than pft,

Prcor(X) = Pr{sup(X) > N ×minsup} > pft.

Table 3 summarizes the symbols we use. We further

explain our above definitions and clarify the difference

between mining frequent itemsets in independent un-

certain data and that in correlated uncertain data via

the following example.

Table 3. Summary of Notations

Notation Description

CUD Correlated uncertain database

Ti The i-th transaction in CUD

ρij Correlated coefficient between the i-th

and the j-th transactions

minsup Specific minimum support threshold

pft Specific probabilistic frequent threshold

sup(X) Support count of an itemset X

esup(X) Expectation of support of X

Prind(X) Independent frequent probability of X

Prcor(X) Correlated frequent probability of X

Example 2 (Independent Distribution of Support vs

Correlated Distribution of Support). Given the corre-

lated uncertain database in Table 1, we can get two

different distributions of sup(g) under the independent

and the correlated assumptions respectively in Table 4.

If minsup = 0.5, pft = 0.3, according to Definition 4,

we can compute the correlated frequent probability of

{g}, which is Prcor(g) = Prcor{sup(2) = 2} = 0.4 >

0.3. Thus, {g} is a frequent itemset. On the other

hand, under the independent assumption, the indepen-

dent frequent probability of {g} is 0.225. Therefore,

{g} is not a frequent itemset. In fact, the correlation in

data influences the probability distribution of support.

Table 4. Independent/Correlated Probability

Distribution of sup(g)

sup(g) Independent Probability Correlated Probability

Distribution Distribution

0 0.275 0.45

1 0.500 0.15

2 0.225 0.40

Based on Definition 3, we formulate our problem as

follows.
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Problem Statement 1 (Mining Probabilistic Fre-

quent Itemsets over Correlated Uncertain Databases).

Given a correlated uncertain database CUD including

N transactions, a minimum support ratio minsup, and

a probabilistic threshold pft, this problem is to find all

correlated probabilistic frequent itemsets.

2.3 Global Probabilistic Frequent Itemsets

As we discussed in Subsection 2.2, the correlated

distribution of support can completely capture the ef-

fect of correlation so that it can remove the inaccurate

measurement of independent distribution of support.

Unfortunately, similar to traditional frequent itemset

mining problems, the definition of correlated probabilis-

tic frequent itemsets may lead to a lot of redundant

frequent itemsets when minsup and pft are low. In

such case, it is hard for a user to understand the result

of frequent itemsets directly. Therefore, a small set of

itemsets should be refined from all the correlated proba-

bilistic frequent itemsets so that these itemsets are more

significant in correlated uncertain data. Based on the

experimental results generated from real applications,

we find that some itemsets only frequently appear in

a few transactions with high correlation to each other

even though they are correlated probabilistic frequent.

Recall example 1, in the indoor sensor network, the

three sensors, T1, T2, and T3, are located nearby in a

room having an air-conditioner, and the other three

sensors are deployed in the corridor. Although the two

groups of sensors are used to monitor the temperature

in a building, collected temperatures are likely to have a

big gap due to the air-conditioner. If we get a frequent

itemset about the temperature only within a group, the

frequent itemset may be meaningless since its correlated

frequent probability is likely enhanced by the correla-

tion of the sensors in the group. Thus, a reasonable

intuition is that a true frequent itemset should be fre-

quent among all the groups. In other words, under

the correlated scenario, a frequent itemset is preferred

if it is globally frequent in each group, which includes

some correlated transactions. Clearly, global frequent

itemsets help eliminate the influence of local correla-

tion. Another important problem is how to find these

groups. With the correlated coefficients of transactions,

we can partition the whole database into some disjoint

groups, called correlated groups, where transactions in

each group should have higher correlation. Moreover,

different groups should be lowly correlated or indepen-

dent. Based on the correlated groups, the global proba-

bilistic frequent itemset is defined as follows.

Definition 4 (Global Probabilistic Frequent Item-

set). Given a correlated uncertain database CUD, which

is partitioned into disjoint groups of transactions, a

minimum support ratio minsup, and a probabilistic fre-

quent threshold pft, an itemset X is a global probabilis-

tic frequent itemset if X is a correlated probabilistic fre-

quent itemset in each group.

Note that the definition of global probabilistic fre-

quent itemset can also be easily extended to be more

flexible if a parameter, δ, is introduced to measure the

global degree. In other words, an itemset is relaxed

global probabilistic frequent if the itemset is a corre-

lated probabilistic frequent itemset in at least δ corre-

lated groups. That is, it does not need to be a corre-

lated probabilistic frequent itemset in every group, but

only in at least δ groups of them. Since the extension is

straightforward and does not affect the overall structure

of the problem and the devised algorithms, we continue

to keep our definition of global probabilistic frequent

itemset in each group in the following problem state-

ment and other sections.

Problem Statement 2 (Mining Global Frequent

Itemsets over Correlated Uncertain Databases). Given

a correlated uncertain database CUD, partitioned into

correlated groups, a minimum support ratio minsup,

and a probabilistic threshold pft, this problem is to find

all global probabilistic frequent itemsets.

3 CFP Model

In this section, we introduce the novel Correlated

Frequent Probability (CFP) model. Firstly, we re-

view several properties of support and linear correla-

tion. Then, we show the distribution of support in two

correlated transactions via the Pearson’s correlation co-

efficient. Finally, by extending the case in two trans-

actions, the model of the distribution of support in N

correlated transactions is proposed and proven.

Support is the sum of a series of correlated random

variables, each of which follows the Bernoulli distribu-

tion. Each Bernoulli random variable corresponds to

a random event that the given itemset appears in the

corresponding transaction. According to our linear cor-

relation assumption, n Bernoulli random variables must

satisfy the following lemma.

Lemma 1 (Property of Linear Correlation[22]).

Given a random variable B, which is the sum of n

correlated Bernoulli random variables bi, n Bernoulli

random variables have no second order or higher order
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correlation if and only if,

Pr(b1 = v1, . . . , bn = vn)

Pr(b1 = v1)× · · · × Pr(bn = vn)

=
∑

16i6j6n

Pr(bi = vi, bj = vj)

Pr(bi = vi)Pr(bj = vj)
− n(n+ 1)

2
+ 1,

where vk = 0 or 1 when k ∈ [1, n].

As shown in Section 1, existing popular models for

correlated uncertain data are not suitable for calculat-

ing the probability distribution of support of an itemset.

Thus, we propose a novel approach to model the proba-

bility distribution of support in correlated uncertain

data. In order to explain the intuition of our model, we

consider the simplest case, where the correlated uncer-

tain database only contains two correlated transactions

with a Pearson’s correlation coefficient. The probabi-

lity distribution of support can be represented by the

recursive formula in the following theorem.

Theorem 1 (Probability Distribution of sup(X) in

Two Correlated Transactions). Given an itemset X,

two transactions, T1 and T2, where X appears with

probabilities p1 and p2, respectively, and a correlated

coefficient ρ1,2, the probability distribution of sup2(X)

is,

Pr{sup2(X) = k}
= p2 × Pr{sup1(X) = k − 1}+

(1 − p2)× Pr{sup1(X) = k}+
ρ1,2

√

p1p2(1− p1)(1− p2)C2,k,1,

where sup2(X) = T1(X) + T2(X) is a random vari-

able, which is the sum of two Bernoulli random vari-

ables T1(X) and T2(X). Additionally, k can only be 0,

1, or 2, so

C2,k,1 =



















0, if k < 0 or k > 2,

1, if k = 0,

−2, if k = 1,

1, if k = 2.

Proof. According to the joint probability distribu-

tion of sup2(X), and the definitions of covariance and

correlated coefficient, we have

Pr{sup2(X) = 0}
= (1− p1)(1− p2) + ρ1,2

√

p1p2(1 − p1)(1− p2)

= p2Pr{sup1(X) = −1}+
(1− p2)Pr{sup1(X) = 0}+
ρ1,2

√

p1p2(1− p1)(1 − p2),

Pr{sup2(X) = 1}
= p2(1 − p1) + p1(1 − p2)−

2ρ1,2
√

p1p2(1− p1)(1 − p2)

= p2Pr{sup1(X) = 0}+ (1 − p2)Pr{sup1(X) = 1} −

2ρ1,2
√

p1p2(1− p1)(1 − p2),

Pr{sup2(X) = 2}
= p1p2 + ρ1,2

√

p1p2(1− p1)(1 − p2)

= p2Pr{sup1(X) = 1}+ (1 − p2)Pr{sup1(X) = 2}+

ρ1,2
√

p1p2(1 − p1)(1− p2).

Therefore, we can induce the form of C2,k,1 as above. �

According to Theorem 1, we can further induce a

general representation for the probability distribution

of supn(X) which includes n transactions in Theorem 2

as follows.

Theorem 2 (Probability Distribution of sup(X) in

n Correlated Transactions). Given an itemset X, a

correlated uncertain database which includes n trans-

actions, T1, . . . , Tn, where X likely appears with proba-

bilities p1, . . . , pn, respectively, and a set of correlated

coefficients {ρ1,2, . . . , ρn−1,n}, the probability distribu-

tion of supn(X) is,

Pr{supn(X) = k}
= pnPr{supn−1(X) = k − 1}+ (1− pn)×

Pr{supn−1(X) = k}+
n−1
∑

j=1

√

pnpj(1− pn)(1− pj)ρj,kCn,k,j , (1)

where supn(X) =
∑n

i=1 Ti(X) is a random variable,

which is the sum of n Bernoulli random variables

Ti(X), i ∈ [1, n], and k can be an arbitrary integer

from 1 to n, thus we have

Cn,k,j

=















































0, if k < 0 or k > n,

C2,0,1 = C2,2,1 = 1, and C2,1,1 = −2,

if k = 2, j = 1,

pn−2Cn−1,k−1,j−1 + (1− pn−2)Cn−1,k,j−1,

if n > 2, j = k − 1,

pn−1Cn−1,k−1,j + (1− pn−1)Cn−1,k,j ,

if n > 2, j = 1, . . . , k − 2.

Proof. The theorem can be proven by mathematical

induction. Firstly, we have already proven that the re-

cursive form is correct when n = 2 by Theorem 1. Thus,
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the initial condition holds. In addition, we extend The-

orem 1 to the case where n = 3, and the following

recursive relationship can be deduced.

Pr{sup3(X) = k}
= p3Pr{sup2(X) = k − 1}+

(1− p3)Pr{sup2(X) = k}+
2

∑

j=1

√

p1p2(1− p1)(1− p2)ρj,kC3,k,j ,

where sup3(X) =
∑3

i=1 Ti(X) is a random variable,

which is the sum of three random variables Ti(X) fol-

lowing Bernoulli distribution, i ∈ [1, 3]. Furthermore,

k can only be 0, 1, or 2. Thus,

C3,k,j

=











0, if k < 0 or k > 3,

p2C2,k−1,1 + (1 − p2)C2,k,1, if j = 1,

p1C2,k−1,1 + (1 − p1)C2,k,1, if j = 2.

Then, we assume the case of supn−1(X) holds and

further deduce the case of supn(X). Since supn−1(X)

is right, we can obtain the following formula.

Pr{Fn(X) = k}
= pnPr{Fn−1(X) = k − 1}+

(1 − pn)Pr{Fn−1(X) = k}+
n−1
∑

j=1

√

pnpj(1− pn)(1 − pj)ρj,k ×

(

∑

C(n,k=0,j=0)

k−1
∏

i=1,i6=j

bi −
∑

C(n,k=0,j=1)

k−1
∏

i=1,i6=j

bi −

∑

C(n,k=1,j=0)

k−1
∏

i=1,i6=j

bi +
∑

C(n,k=1,j=1)

k−1
∏

i=1,i6=j

bi

)

.

Therefore, Theorem 2 holds. �

To sum up, we propose a novel model, the CFP

model, to represent the probability distribution of sup-

port of an itemset in this section. We assume the dis-

cussed correlation is linear since it is true in most real-

world cases, e.g., the distance of sensors mainly deter-

mines the correlations of each other. Thus, we utilize

the correlated coefficients to measure the correlations

of any two transactions and further infer the recursive

form (in (1)) to obtain the probability distribution.

4 Mining Algorithms

In this section, we introduce several algorithms and

pruning-and-bounding techniques for mining correlated

probabilistic frequent itemsets and global probabilistic

frequent itemsets, respectively.

4.1 Mining Correlated Probabilistic Frequent

Itemsets

According to the CFP model, the probability dis-

tribution of support of an itemset is represented as in

Theorem 2. To determine whether an itemset is a cor-

related probabilistic frequent itemset, we need to com-

pute the correlated frequent probability of the itemset.

A naive solution is to directly apply (1) to compute the

probability recursively. Unfortunately, the naive solu-

tion is infeasible since the computational complexity of

the recursive process is O(2N ), where N is the size of

the correlated uncertain database. In this subsection,

we propose an efficient dynamic-programming-based al-

gorithm to compute the correlated frequent probability

exactly. Then, we design two pruning methods to speed

up the whole mining process in Subsection 4.1.2. Fi-

nally, we introduce an Apriori framework to find all the

correlated probabilistic frequent itemsets.

4.1.1 Dynamic Programming-Based Exact Algorithm

Based on (1), we can design a 3-dimensional dy-

namic programming algorithm to compute the frequent

probability efficiently. The pseudo-code is shown in Al-

gorithm 1.

Algorithm 1. Dynamic-Programming Algorithm (DP)
Input: a correlated uncertain database CUD including N trans-
actions, an itemset X, a minimum support ratio minsup

Output: a correlated frequent probability of X, Prcor(X)

1 Scan CUD, pull out probability p1, . . . , pn for X

2 Initialize HPDX ← {1− p1, p1, 0, . . . , 0}
3 for i← 2 to |CUD| do
4 PDX ← {0, . . . , 0}
5 if i = 2 then

6 M ← 0; M0,1 ← 1; M1,1 ← −2; M2,1 ← 1

7 else

8 HM ← M

9 for k ← 0 to i do

10 for j ← 1 to k − 2 do

11 Mk,j ← pi−2 × HMk−1,j−1 + (1 − pi−2) ×
HMk,j−1

12 Mk,k−1 ← pi−1×HMk−1,j +(1−pi−1)×HMk,j

13 for k ← 0 to i do

14 PDX [k]← pi×HPDX [k−1]+(1−pi)×HPDX [k]

for j ← 1 to i− 1 do

15 PDX [k]← PDX [k]+ρj,i

√

pipj(1− pi)(1− pj)Mk,j

16 Prcor(X)←
∑|CUD|

m=|CUD|×minsup
PDX [m];

17 return Prcor(X);
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In Algorithm 1, the algorithm firstly initializes the

probability distribution of sup(X) as a vector accord-

ing to the initial conditions of Theorem 2 in line 2. In

lines 3∼15, the algorithm iteratively calculates the dis-

tribution of sup(X) in the first i transactions. Note

that PDX and HPDX are used to store the distribu-

tion of sup(X) in the current iteration and that in the

previous one, respectively. Similarly, M and HM de-

note the Cn,k,j when n is fixed at i and i − 1, respec-

tively. Then during iteration, we compute Cn,k,j of

Theorem 2 in lines 4∼12, and then calculate PDX in

lines 13∼15. Finally, the correlated frequent probabi-

lity of X , Prcor(X), is accumulated in line 16.

Computational Complexity Analysis. According to

Algorithm 1, we can know that the time and the space

complexities are O(N3) and O(N2), respectively, where

N is the size of the correlated uncertain database.

4.1.2 Pruning and Bounding Techniques

Based on Algorithm 1, we can exactly calculate the

probability distribution of support and the correlated

frequent probability of any itemset with O(N3) com-

putational cost. We need effective pruning techniques

to speed up the mining process. In this subsection,

we prove that the anti-monotonic pruning method still

works in the correlated uncertain data and propose a

tight upper bound of the correlated frequent probabi-

lity.

Lemma 2 (Anti-Monotonic Pruning). Given a cor-

related uncertain database CUD and an itemset X,

∀Y ⊇ X will not be a correlated probabilistic frequent

itemset if X is a correlated probabilistic infrequent item-

set.

Proof. According to the definition of correlated

frequent probability, we know that it is actually the

sum of the probabilities whose support is greater than

minsup. Moreover, by (1), each probability of each

value of support depends on the corresponding marginal

probability. However, the marginal probability of any

superset of X cannot be greater than that of X . Thus,

the correlated frequent probability of any superset of

X must be lower than that of X , and hence the lemma

holds. �

Lemma 3 (Upper Bound of Prcor(X)). Given a

correlated uncertain database CUD, a minimum sup-

port ratio minsup, and an itemset X, the correlated

frequent probability of X satisfies the following relation-

ship,

Prcor(X)

6







































esup(X)
N×minsup , ∃ρj,k > 0,

2−esup(X)×θ,

∀ρj,k 6 0 and 2× esup(X)− 1 6 θ,

e−esup(X)×θ2/4,

∀ρj,k 6 0 and 0 6 θ 6 2× esup(X)− 1,

where esup(X) is the expectation of sup(X), θ =
N×minsup−esup(X)

esup(X) .

Proof. Based on Theorem 2, we know that the

probability distribution of supn(X) is,

Pr{supn(X) = k}

= pnPr{supn−1(X) = k − 1}+ (1− pn)×

Pr{supn−1(X) = k}+
n−1
∑

j=1

√

pnpj(1− pn)(1− pj)ρj,kCn,k,j .

We can divide the above formula into two parts,

where the first part is

Pr{supn(X) = k}

= pnPr{supn−1(X) = k − 1}+ (1− pn)×

Pr{supn−1(X) = k},

which is a simple recursive formula. And the second

part is

n−1
∑

j=1

√

pnpj(1− pn)(1− pj)ρj,kCn,k,j ,

where −1 6 ρj,k 6 1.

In Lemma 3, we try to get the upper bound of

Prcor(X), which is actually

Prcor(X) =

n
∑

k=minsup

Pr{supn(X) = k}.

We analyze (1) according to the following two dif-

ferent cases.

Case 1 (∃ρj,k > 0). When there is at least a ρj,k > 0,

according to Markov inequality, we can obtain the fol-

lowing upper bound of Prcor(X),

Prcor(X) 6
esup(X)

N ×minsup
,

where esup(X) is the expectation of support of X .
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Case 2 (∀ρj,k 6 0). Since all ρj,k 6 0, we know that,

for each k,

Pr{supn(X) = k}
6 pnPr{supn−1(X) = k − 1}+ (1− pn)×

Pr{supn−1(X) = k}.

Thus, we can obtain,

Prcor(X) 6

n
∑

k=minsup

pnPr{supn−1(X) = k − 1}+

(1 − pn)× Pr{supn−1(X) = k}.

According to Chernoff inequality, we can obtain the

following upper bound of Prcor(X),

Prcor(X) 6



















2−esup(X)×θ,

2× esup(X)− 1 6 θ,

e−esup(X)×θ2/4,

0 6 θ 6 2× esup(X)− 1,

where θ = N×minsup−esup(X)−1
esup(X) .

Combining the above two cases, Lemma 3 holds. �

To sum up, the aforementioned lemmas indicate

that we can prune infrequent itemsets effectively. And

we apply the pruning technique in a general framework

that will be presented in the next subsection.

4.1.3 Apriori-Style Framework

In this subsection, we give a general Apriori-style

algorithm framework in Algorithm 2, which seamlessly

integrates the aforementioned dynamic-programming-

based efficient algorithm and the pruning-and-bounding

method to discover all correlated probabilistic frequent

itemsets.

In Algorithm 2, the algorithm initially fills C1 with

distinct items in line 1. In lines 4∼7, the algorithm

determines which k-itemsets are correlated probabilis-

tic frequent. In particular, the upper-bound pruning

method is used to filter infrequent itemsets in line 5.

For the itemsets which cannot be pruned in line 5, we

have to compute the correlated frequent probabilities of

these itemsets in line 6. After obtaining all correlated

probabilistic frequent k-itemsets, we can generate the

(k + 1)-size candidate set in line 8. Finally, the results

are returned in line 11.

Correctness of CApriori Algorithm. Algorithm 2 is

extended from the Apriori algorithm[23]. The main dif-

ferences are the correlated frequent probability compu-

tation and pruning methods. According to Lemma 2

and Lemma 3, we can guarantee that the two pruning

methods are safe. Algorithm 1 is also correct. There-

fore, there is no false positive or false negative frequent

itemset. Thus, Algorithm 2 is correct.

Algorithm 2. Correlated Apriori Algorithm Framework
(CApriori)

Input: a correlated uncertain database CUD, a minimum sup-
port ratio minsup, and a probabilistic threshold pft
Output: a result set of all correlated probabilistic frequent item-
sets

1 C1 ← {All distinct items in CUD}
2 k = 1; j = 0

3 while (|Ck| 6= 0) do

4 for each X ∈ Ck do

5 if UpperBound(X) > pft then

6 if DP (X,CUD,minsup) > pft then

7 Fk.insert(X);

8 Ck+1 ← GenerateCandidates(Fk);

9 F ← F ∪ Fk;

10 k ← k + 1;

11 return F ;

4.2 Mining Global Probabilistic Frequent

Itemsets

According to the definition of the global frequent

itemsets, we next present the algorithm to find all

the global frequent itemsets. Recall the motivation

example in Fig.1, where we can divide the six sensors

into two groups, group1 = {T1, T2, T3} and group2 =

{T4, T5, T6}, obviously. For item {b} (which means that

the temperature is cold), we present the distributions

of sup{b} in group1, group2 and the whole database in

Fig.2. If minsup = 1
3 , pft = 0.5, the item {b} is cor-

related frequent in group1 and in the whole database,

but not in group2. Thus, {b} is not a global frequent

item in the database. As we mentioned in example 1,

the sensors in group1 report low temperature due to the

air-conditioner, but we cannot say that the temperature

of the building is low. This also indicates that defining

and discovering global probabilistic frequent itemsets is

necessary.

To capture the global frequent itemsets, our first

task is to partition the database into some disjoint

correlated groups. Various approaches can be used to

do the partition, such as K-means, hierarchical clus-

tering and so on. However, it is impossible to define

a distance between any pair of the transactions in our

database, since if two transactions are not correlated
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Fig.2. Partitioning CUD into correlated groups.

(e.g., independent), their distance is infinite. Thus, the

distance-based partitioning or clustering approaches are

not suitable for our problem. To avoid the problem of

distance measurement, we construct a graph in which

the nodes represent the transactions and the weighted

edges denote the correlation coefficients, while uncorre-

lated transactions are unconnected. Then, we conduct

graph clustering methods to discover correlated groups.

Since we do not know how many correlated groups ex-

ist in the database, we cannot use the methods where

the number of clusters must be specified. Thus, we ap-

ply the MCL algorithm[24], which is a graph clustering

method and does not need to set the number of clusters,

to generate all the correlated groups.

After partitioning, if we conduct the mining algo-

rithm separately on these groups, much redundant com-

putation will occur since some itemsets might be in-

frequent in some groups while frequent in others. To

avoid redundant computation, we modify the Apriori

framework so that these groups can share their pruning

results. The pseudo-code is shown in Algorithm 3.

In Algorithm 3, the algorithm finds distinct items

in line 1. Before going to the mining stage, we load

the correlated groups which are generated by the offline

MCL Algorithm in line 2. In lines 5∼8, we discover the

correlated frequent k-itemsets in each partition with

the shared candidate set. Then, the algorithm gene-

rates the global frequent k-itemsets by removing the

itemsets that are not correlated frequent in at least one

partition in lines 9∼13. This algorithm prevents redun-

dant computation because in line 14, we generate the

shared set of (k + 1)-candidates only with global fre-

quent k-itemsets, so that we avoid the problem stated

above.

To clarify how Algorithm 3 works, we present a run-

ning example as shown in Fig.3.

Example 3 (Grouped Apriori Algorithm (GApri-

ori)). Given the correlated uncertain database in Ta-

ble 1, and all correlated coefficients shown in Fig.2,

minsup = 1
3 , pft = 0.5, we can perform Algorithm 3

to discover the global frequent itemsets. Notice that

{d} is not frequent in group 1 and {b} is not frequent

in group 2, they are removed from F1 and will not be

used to generate C2. The same cases go for {ac} and

{ce} in the second step.

Algorithm 3. Grouped Apriori Algorithm Framework (GApri-
ori)

Input: a correlated uncertain database CUD, a minimum sup-
port ratio minsup, and a probabilistic threshold pft
Output: a result set of all correlated probabilistic frequent item-
sets

1 C1 ← {All distinct items in CUD};
2 Load the set of correlated groups of CUD;

3 k = 1; j = 0;

4 while (|Ck | 6= 0) do

5 for each partition p do

6 for each X ∈ Ck do

7 if (UpperBound(X) > pft & DC(X, p,minsup)

> pft) then

8 F p

k
.insert(X);

9 Fk ← F p1
k

; //p1 means the first partition

10 for each partition p other than p1 do

11 for each X ∈ Fk do

12 if X /∈ F p

k
then

13 Remove X from Fk;

14 Ck+1 ← GenerateCandidates(Fk);

15 k ← k + 1;

16 return F ;

Candidate 1

Candidate 2

Result

ıb}

ıb}

ıb} Not Found

ıac} Not Found

ıa}

ıa}

ıa}

ıa}

ıa}

ıac}

ıac}

ıae}

ıae}

ıae}

ıae}

ıae}

ıce}

ıce}

ıc}

ıc}

ıc}

ıc}

ıc}

ıd}

ıd}

ıe}

ıe}

ıe}

ıe}

ıe}

ıf}

F

F

Fig.3. Example of grouped Apriori algorithm.
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5 Experimental Study

In this section, we report the experimental results

on tests of the efficiency of the proposed algorithms and

the quality of global probabilistic frequent itemsets. In

order to conduct a fair comparison, all the experiments

are performed on an Intelr CoreTM i7 3.40 GHz PC

with 4 GB main memory, running on Microsoft Win-

dows 7. Moreover, all the algorithms were implemented

and compiled using Microsoft’s Visual C++ 2010.

In order to test our proposed method, we use a real

correlated uncertain dataset and three classical deter-

ministic benchmarks from FIMI repository 2○. For the

real dataset, it comes from a real sensor network moni-

toring project[25]. The dataset is generated from 97

sensors and contains 19 275 transactions. Each tran-

saction records the monitored sample from one sensor,

where a single item represents the possible values of a

monitored event associated with a confidence. More-

over, the correlation between any pair of sensors is

determined by a function of spatial information. In

this dataset, 86% pairs of sensors, each of which cor-

responds to one transaction, have non-zero correlation.

For each deterministic benchmark data, each item is as-

signed a probability that follows the Gaussian distribu-

tion. Assigning probability to deterministic databases

to generate uncertain data is widely accepted by pre-

vious related studies[11-13,16,19]. In addition, the three

benchmarks include a dense dataset, Accident, a sparse

dataset, Kosarak, and a very large synthetic dataset

T25I15D320k, which is used to test the scalability of

the proposed approaches[11]. The characteristics and

the default parameters of the datasets are shown in

Table 5. For the Accident dataset, in order to retain

the dense property in uncertain environment, we let

the probabilities of items have high mean (0.8) and low

variance (0.1). In particular, 50% of the transactions in

the Accident dataset are selected randomly, and each

pair of them is assigned a non-zero correlation coeffi-

cient, which is a real number generated in the interval

of 0 to 1 following the uniform distribution. For the

Kosarak and the T25I15D320k datasets, due to their

sparse property, we set the probabilities with low mean

(0.5) and high variance (0.5), 20% of the transactions

are randomly chosen, and each pair of them is assigned

a non-zero correlation coefficient with the same afore-

mentioned method.

5.1 Time Efficiency Test

In this subsection, we verify the efficiency of the pro-

posed algorithms and the pruning strategies. We com-

pare two correlated probabilistic frequent itemset min-

ing algorithms: CApriori and CApriori-NoPrune which

does not include the pruning methods in Lemma 2 and

Lemma 3, and two global probabilistic frequent itemset

mining algorithms: GApriori and GApriori-NoPrune,

which also does not have the two pruning strategies.

Varying minsup. Figs.4(a)∼4(c) show the running

time of the four competitive algorithms w.r.t. minsup

in the Real, Accident and Kosarak datasets, respec-

tively. When minsup decreases, we observe that the

running time of all the algorithms goes up. In addition,

GApriori is always the fastest algorithm, CApriori-

NoPrune is the slowest one, and GApriori-NoPrune is

faster than CApriori.

It is reasonable because GApriori and GApriori-

NoPrune aim to find all the global probabilistic frequent

itemsets rather than correlated probabilistic frequent

itemsets. GApriori-NoPrune is slower than GApriori

since it does not apply the upper-bound-based pruning.

Moreover, the result that CApriori always outperforms

CApriori-NoPrune makes sense as well. Since CApriori-

NoPrune does not apply the aforementioned pruning, it

has to spend O(N3) computational cost to check each

itemset. However, CApriori filters out most infrequent

itemsets with only O(N) time cost. Another interesting

observation is that all the algorithms spend more time

under the same minsup in the Accident dataset than

that in the Kosarak dataset. This result also makes

Table 5. Characteristics and Default Parameters of Datasets

Dataset Number of Trans. Number of Items Avg. Length minsup pft Correlation Coefficient (%)

Real data 019 275 41 126 17.0 0.5 0.9 86

Accident 340 183 41 468 33.8 0.6 0.9 50

Kosarak 990 002 41 270 08.1 0.5 0.9 20

T25I15D320k 320 000 41 994 25.0 0.5 0.9 20

qua 2○Frequent itemset mining implementations repository. http://fimi.us.ac.be, May 2015.
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Fig.4. Test of running time. (a) Real: minsup vs time (pft = 0.9). (b) Accident: minsup vs time (pft = 0.9). (c) Kosarak: minsup
vs time (pft = 0.9). (d) Real: pft vs time (minsup = 0.5). (e) Accident: pft vs time (minsup = 0.6). (f) Kosarak: pft vs time
(minsup = 0.5).

sense because the assigned probabilities and the num-

ber of non-zero correlation coefficients in Accident are

greater than those of Kosarak.

Varying pft. Figs.4(d)∼4(f) report the running time

w.r.t. pft. We can find that GApriori is still the fastest

algorithm in most of time. Different from the results

w.r.t minsup, we observe that, by varying pft, the fluc-

tuation of the running time is relative stable. Thus,

pft does not have significant impact on the running

time of the four proposed algorithms. This is reason-

able because most of the probabilities of the correlated

frequent itemsets are 1.

5.2 Pruning Power Test

To better verify the effectiveness of our proposed

pruning technique, in this subsection, we report the

pruning ratio of the upper-bound-based pruning in

Figs.5(a)∼5(f).

Varying minsup. Figs.5(a)∼5(c) show the pruning

ratio w.r.t. minsup in the Real dataset, Accident and

Kosarak datasets, respectively. The pruning ratio in

the Accident dataset is smaller than those in the Real

and Kosarak datasets. The smaller pruning ratio in-

dicates that the computation saved in the Accident

dataset is smaller than that in the other two datasets.

Moreover, the less pruning ratio makes sense because

the Accident dataset is set with high mean and low

variance for each item, and it is assigned non-zero cor-

relation coefficients to 50% of the transactions as well.

Therefore, the upper bound-based pruning in Lemma

3 becomes weaker since the expectations of the sup-

port of correlated infrequent itemsets in the Accident

dataset are generally larger than those in the other two

datasets.

Varying pft. Figs.5(d)∼5(f) report the pruning ra-

tio w.r.t. pft. Different from the results w.r.t. minsup,

we observe that the pruning ratio is stable by varying

pft. The results confirm again that pft does not have

significant impact on the efficiency of the algorithms.

5.3 Memory Cost Test

In this subsection, we report the results of memory

cost of the four algorithms under different parameter

settings.

Varying minsup. According to Fig.6(a), the mem-

ory costs of GApriori and GApriori-NoPrune are less

than those of CApriori and CApriori-NoPrune, espe-

cially when minsup is low. This is reasonable since the

numbers of infrequent candidates stored in both GApri-

ori and GApriori-NoPrune are much smaller than those

of the other algorithms. In addition, we can observe

that the sharp change of the memory usage curve of

CApriori-NoPrune is earlier than that of CApriori be-

cause there are few frequent itemsets when minsup is

high and most of the infrequent itemsets are filtered out

by the upper-bound-based pruning of CApriori.
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Varying pft. Fig.6(b) shows the memory cost w.r.t.

pft. We observe that the memory usages of both

GApriori and GApriori-NoPrune are smaller than those

of the other two algorithms. Furthermore, we also ob-

serve that, by varying pft, the fluctuation of the mem-

ory cost is still stable. Thus, pft does not have signifi-

cant impact on the memory cost of the four algorithms.

5.4 Quality of Global Frequent Itemsets

In this subsection, we analyze the quality of global

frequent itemsets. We sample 1 000 itemsets from the

results of CApriori and those of GApriori, respectively.
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For each sample, we first compute the joint entropy of

the correlated distribution of support in all the tran-

sactions in its corresponding dataset, and then we do

frequency counting to get a counting distribution of

entropy values for each algorithm. For example, the

counting distribution of entropy values in the Kosarak

dataset when minsup = 0.1 and pft = 0.5 is presented

in Fig.6(f). We can observe that there are roughly 500

itemsets, whose entropy values are in the interval of 70

to 75, in the set sampled from the results of the GApri-

ori algorithm. The black bars in Fig.6(f) report the

counting distribution of entropy values based on the

sampled results of the GApriori algorithm. Similarly,

the counting distribution of the entropy values for re-

sults sampled from CApriori is shown in the gray bars

in Fig.6(f).

Figs.6(c)∼6(f) show that the sampled results of

global probabilistic frequent itemsets generally have

a higher average entropy value, which indicates that:

1) the counting distribution of the entropy values for

the sampled results of correlated probabilistic frequent

itemsets is in overall more uniform than that of global

probabilistic frequent itemsets. This is because the con-

dition for correlated probabilistic frequent itemsets is

not so strict as that for global probabilistic frequent

itemsets, and thus all kinds of cases w.r.t. the proba-

bility distribution of correlated probabilistic frequent

itemsets are possible. Therefore, there could be many

different entropy values for the correlated probabilistic

frequent itemsets. 2) The entropy values for the sam-

pled results of global probabilistic frequent itemsets are

usually higher because the global probabilistic frequent

itemsets are less influenced by a local cluster of highly

correlated transactions, which confirms the intuition of

global frequent itemsets.

5.5 Scalability Test

In this subsection, we report the scalability of our

proposed algorithms. In Fig.7(a), when increasing the

number of transactions in the T25I15D320k dataset

from 20 k to 320 k, we observe that the running time of

the four algorithms almost increases linearly. However,

the slopes of the four curves are different. The slopes of

GApriori and GApriori-NoPrune are smaller than those

of CApriori and CApriori-NoPrune. This result is rea-

sonable because GApriori and GApriori-NoPrune aim

to discover global frequent itemsets, and the other algo-

rithms are to find correlated frequent itemsets. Addi-

tionally, Fig.7(b) reports the memory usages of the four

algorithms, which demonstrate their linearity w.r.t. the

number of transactions. The slopes of the memory us-

age curves of GApriori and GApriori-NoPrune are still

smaller than those of other algorithms since GApriori

and GApriori use the MCL algorithm to partition the

whole database and only store the correlated groups

with smaller sizes.

5.6 Mutual Information Test

Although we focus on addressing the linear corre-

lation of correlated uncertain data in this paper, we

also try to briefly evaluate other correlation measure-

ments, such as the mutual information 3○. We select

the aforementioned Accident dataset and 50% of the

transactions in the Accident dataset are selected ran-

domly, and each pair of them is assigned a non-zero

normalized mutual information value, which is a real

number generated in the interval of 0 to 1 following the

uniform distribution. Fig.7(c) shows the running time

of our proposed algorithm, CApriori, and the mutual-

information-based algorithm, which utilizes the Apri-
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∑
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p(x)p(y)

).
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ori mining framework but calculates the correlated fre-

quent probability based on mutual information. When

minsup decreases, we observe that CApriori is signifi-

cantly faster than the mutual-information-based algo-

rithm. That is because that there is no dynamic pro-

gramming scheme of calculating the correlated frequent

probability based on the mutual information, and we

have to enumerate all possible worlds to compute the

correlated frequent probability based on the mutual in-

formation. Therefore, our model can efficiently address

the linear correlation in correlated uncertain data.

6 Related Work

In this section, we review the related work in three

categories, mining frequent itemsets in deterministic

data and those in uncertain data, and techniques of

mining and managing correlated uncertain data.

6.1 Deterministic Mining Frequent Itemsets

Since Agrawal and Srikant first proposed the con-

cept of mining frequent itemsets (or called mining large

itemset)[23], many efficient algorithms about mining

frequent itemsets have been designed, such as FP-

growth[26], Eclat[27], and so on. However, mining the

complete set of frequent itemsets produces a lot of

redundant itemsets because of the well-known down-

ward closure property. To solve such problem, some

alternative approaches were proposed instead of min-

ing complete frequent itemsets, such as mining fre-

quent closed itemsets[28], mining frequent maximal

itemsets[29], mining non-derivable frequent itemsets[30],

and so on. These alternative methods can be grouped

into two categories: the lossless compression-based

methods and the lossy compression-based methods.

Among the aforementioned approaches, mining fre-

quent closed itemsets and mining non-derivable item-

sets are lossless compression-based methods. The oth-

ers belong to the lossy compression-based methods.

Moreover, even though there are a lot of studies on

mining frequent itemsets, all these approaches do not

concern the correlated property of uncertain data.

6.2 Uncertain Mining Frequent Itemsets

The second category of researches related to our

work is mining frequent itemsets over uncertain data.

Different from the deterministic case, the definition

of a frequent itemset over uncertain data has two

types of semantic explanations: expected support-

based frequent itemset[8,11] and probabilistic frequent

itemset[12], both of which consider the support of an

itemset as a discrete random variable. However, the two

definitions use different probabilistic methods on the

random variable to define the frequent itemset over un-

certain data. In the definition of the expected support-

based frequent itemset, the expectation of the support

of an itemset is defined as the measurement, called as

the expected support of this itemset[8-9,11,15]. In the

definition of probabilistic frequent itemset[12,16,19], the

probability that an itemset appears at least the mini-

mum support (minsup) times is defined as the measure-

ment, called as the frequent probability of an itemset.

Although there are related researches of mining fre-

quent itemsets over uncertain data, all of them are

built over the independent assumption, which means

that each transaction is independent from other trans-

actions. In other words, none of the existing work about

mining frequent itemsets over uncertain data considers

correlation. Moreover, correlation is an important and

universal property in real-world uncertain data, and

thus the real application of mining frequent itemset over

uncertain data cannot ignore the effect of correlation.

Therefore, to the best of our knowledge, this work is

the first one of mining probabilistic frequent itemsets

based on the intrinsic correlation in uncertain data.

6.3 Mining and Managing Correlated

Uncertain Data

In addition, managing and mining correlated un-

certain (or probabilistic) data has attracted much at-

tention from the database and the data mining com-

munities. Sen et al. first proposed a general frame-

work to reduce a query processing in probabilistic

databases based on possible world semantics to the cor-

responding probabilistic inference problems in proba-

bilistic graphical models (PGMs)[31-32]. Furthermore,

the work in [33] modelled temporally correlated proba-

bilistic streams by a graphical model. Besides the

issues of query processing over correlated uncertain

data, a few studies on clustering correlated uncertain

data have been proposed in recent years. Olteanu and

van Schaik[34] proposed a clustering algorithm to han-

dle a symbolic representation of correlated probabilis-

tic events. In addition, a junction-tree-based index,

called INDSEP, was proposed to store the joint proba-

bilities for the variables under/among the nodes for se-

lection on uncertain data[35]. Recently, Gu et al. ad-
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dressed the problem of clustering correlated probabilis-

tic graphs[36].

Although there are related studies of querying and

mining correlated uncertain data, most of them were

proven as #P-hard problems and were solved by ap-

proximation algorithms. Different from aforementioned

related studies, our work focuses on linear correlation

and develops a polynomial-time solution to calculate

the correlated frequent probability for each itemset and

avoid the exponential enumeration computation for the

corresponding possible worlds. Hence, to the best of our

knowledge, this work is the first work of mining proba-

bilistic frequent itemsets based on the linear correlated

uncertain data.

7 Conclusions

In this paper, we studied the problem of mining fre-

quent itemsets over correlated uncertain data, where

there may be correlation between any pair of uncertain

objects (tuples). For capturing the correlation in the

given uncertain data, we proposed a novel probabilistic

model, called Correlated Frequent Probability model

(CFP model), which can represent the probability dis-

tribution of support of any itemset. Moreover, based

on the experimental observations, we discovered that

some probabilistic frequent itemsets are only frequent

in several transactions with high positive correlation

rather than in the whole database. In order to elimi-

nate the redundant frequent itemsets and the noisy in-

fluence in uncertain data, a new type of itemset, called

global frequent itemsets, was defined to identify item-

sets. In addition, to enhance the efficiency of the mining

process, we designed an Apriori-style framework which

seamlessly integrates a dynamic-programming-based ef-

ficient algorithm with two pruning and bounding tech-

niques. In particular, a scheduler-based efficient algo-

rithm was also developed for mining global frequent

itemsets. Extensive experiments on both real and syn-

thetic datasets verified the effectiveness and efficiency

of the proposed model and algorithms.
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[3] Chen L, Özsu M T, Oria V. Robust and fast similarity

search for moving object trajectories. In Proc. ACM SIG-

MOD, June 2005, pp.491-502.

[4] Cheng R, Kalashnikov D V, Prabhakar S. Querying im-

precise data in moving object environments. IEEE Trans.

Knowl. Data Eng., 2004, 16(9): 1112-1127.

[5] Deshpande A, Guestrin C, Madden S, Hellerstein J M,

Hong W. Model-driven data acquisition in sensor networks.

In Proc. the 30th VLDB, August 31-September 3, 2004,

pp.588-599.

[6] Kodialam M S, Nandagopal T. Fast and reliable estimation

schemes in RFID systems. In Proc. the 12th MOBICOM,

September 2006, pp.322-333.

[7] Liu Y, Liu K, Li M. Passive diagnosis for wireless sensor net-

works. IEEE/ACM Trans. Netw., 2010, 18(4): 1132-1144.

[8] Chui C K, Kao B, Hung E. Mining frequent itemsets from

uncertain data. In Proc. the 11th PAKDD, May 2007,

pp.47-58.

[9] Chui C K, Kao B. A decremental approach for mining

frequent itemsets from uncertain data. In Proc. the 12th

PAKDD, May 2008, pp.64-75.

[10] Calders T, Garboni C, Goethals B. Efficient pattern mining

of uncertain data with sampling. In Proc. the 14th PAKDD,

June 2010, pp.480-487.

[11] Aggarwal C C, Li Y, Wang J, Wang J. Frequent pattern

mining with uncertain data. In Proc. the 15th SIGKDD,

June 28–July 1, 2009, pp.29-38.

[12] Bernecker T, Kriegel H P, Renz M, Verhein F, Züfle
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