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Abstract An aggregate nearest neighbor (ANN) query returns a point of interest (POI) that minimizes an aggregate

function for multiple query points. In this paper, we propose an efficient approach to tackle ANN queries in road networks.

Our approach consists of two phases: searching phase and pruning phase. In particular, we first continuously compute the

nearest neighbors (NNs) for each query point in some specific order to obtain the candidate POIs until all query points find

a common POI. Second, we filter out the unqualified POIs based on the pruning strategy for a given aggregate function.

The two-phase process is repeated until there remains only one candidate POI, and the remained one is returned as the final

result. In addition, we discuss the partition strategies for query points and the approximate ANN query for the case where

the number of query points is huge. Extensive experiments using real datasets demonstrate that our proposed approach

outperforms its competitors significantly in most cases.

Keywords ANN query, spatial database, road network

1 Introduction

Nearest neighbor (NN) search and its variants in

road networks have been well-studied in the past few

years, due to their importance in a wide spectrum of

applications. The aggregate nearest neighbor (ANN)

query, one of NN query variations, returns the point

of interest (POI) that minimizes an aggregate function

with respect to a set of query points[1]. This type of

queries is often raised in our real life. For example,

some friends at different locations would like to find a

meeting place (e.g., a restaurant) on weekend. Different

from conventional NN queries, in an ANN query, there

are multiple query points, and the query result depends

on the specified aggregate function, which can usually

be sum, max, or min. Take the above problem of find-

ing a meeting place as an example, the sum function

makes sure that the total distance (or time) traveled

by all persons is minimum, while the max/min func-

tion aims to minimize the maximum/minimum travel-

ing distance (or time) requested by any person.

An example of a road network is depicted in Fig.1.

The points n1, n2, . . . , n7 represent the nodes in the

road network, and the number on each edge is the dis-

tance (or time) to travel the corresponding road seg-

ment. A set of POIs P = {p1, p2, p3} (e.g., restaurants)

and a set of query points Q = {q1, q2} (e.g., persons)

are located on the edges of the road network.
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Fig.1. ANN queries for different aggregate functions.

Example 1. If the aggregate function is sum, the

ANN for Q is p2. Similarly, if the aggregate function is

max, the ANN for Q is p3, and if the aggregate function

is min, the ANN for Q is p2. The shortest paths from

all query points to the ANNs for different aggregate

functions are illustrated in Fig.1.

As shown in the aforementioned example, it is more

complex to handle ANN queries in road networks than

those in Euclidean spaces, because the location and the

accessibility of the POIs are restricted by the computa-

tion of network distance (i.e., the length of the shortest

path connecting two points). Existing algorithms for

processing ANN queries in road networks[1] have two

limitations. 1) They are not applicable when the edge

weights are not proportioned to their physical lengths.

For example, in some real applications like traffic net-

works, the weight of edges is represented by the travel-

ing time. 2) The query performance is not very efficient

when the number of query points is huge, as demon-

strated by our experimental results.

In this paper, we propose an efficient algorithm for

ANN queries in road networks, which avoids the short-

comings mentioned above. With effective pruning tech-

niques, our approach filters out the unqualified candi-

date POIs, and outperforms the current state-of-the-art

competitors in most cases. In general, most of POIs

such as restaurants and hotels are usually stationary on

the road network. Therefore, in this paper, we will not

consider moving objects, which will be studied in our fu-

ture work. Thus we tackle the ANN query by employing

the network Voronoi diagram (NVD). Specifically, our

approach employs the Voronoi-based kNN query pro-

cessing algorithm[2] to expand the search space gradua-

lly, and enables effective pruning strategies to speed

up the query processing. Furthermore, we present an

approximate algorithm for processing ANN queries in

road networks (with extremely small cost) when the

number of query points is very large. The key contri-

butions of this paper are summarized as follows.

• We solve the ANN query in a road network using

NVD. To the best of our knowledge, this is the first

work to deal with the ANN query based on the NVD.

• We develop effective pruning strategies for sum

aggregate function and max aggregate function respec-

tively to prune the unqualified POIs that cannot be

ANNs.

• We present an efficient NVD-based algorithm for

processing ANN queries in road networks, prove its cor-

rectness, and analyze its time complexity.

• We propose an approximate algorithm for ANN

queries with a large number of query points in road

networks.

• We conduct extensive experiments with real

datasets to demonstrate the effectiveness of our pre-

sented strategies and the efficiency of our proposed al-

gorithms.

A preliminary report of this study appears in [3],

where only ANN queries with sum function are con-

sidered. In this paper, we extend the preliminary ver-

sion by 1) studying ANN queries with max function; 2)

proposing an approximate algorithm for ANN queries

with a large number of query points to speed up the

query processing; 3) conducting a more comprehensive

experimental evaluation to examine more performance

aspects.

The rest of this paper is organized as follows. Sec-

tion 2 reviews the related work. Section 3 presents pre-

liminaries. Section 4 elaborates our approach to tackle

ANN queries in road networks, proves its correctness,

and analyzes its time complexity. Section 5 discusses

the approximate ANN query in road networks. Exten-

sive experimental results and our findings are reported

in Section 6. Finally, Section 7 concludes the paper

with some directions for future work.

2 Related Work

NN search is one of the oldest problems in com-

puter science. Many algorithms based on R-trees[4]

for processing NN queries have been proposed in the

database literature. These algorithms follow either the

depth-first (DF)[5-6] or the best-first (BF)[7] traver-

sal paradigm. As demonstrated in [7] and [8], the

DF-based algorithm accesses more nodes than neces-

sary, while the BF-based algorithm achieves the opti-

mal I/O performance by only visiting the nodes nece-

ssary. Furthermore, the BF-based algorithm is incre-

mental, i.e., it returns the NNs in ascending order of

their distances to the query point; and thus, k does
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not have to be known in advance. In addition, dif-

ferent variants of NN queries, such as continuous NN

(CNN) search[9], range NN query[10], continuous ob-

structed NN search[11], reverse NN (RNN) retrieval[12],

visible NN search[13], closest pair query[14], group NN

search[15], ANN query[16], and so on, have been inves-

tigated as well.

However, the above NN query and its variants focus

on the Euclidean space. In the context of road net-

works, they have also been well studied. In [2, 17-19],

kNN queries in road networks are efficiently solved. In

addition, some variations of NN queries in road net-

works (e.g., CNN[20], RNN[21]) and several interesting

queries (e.g., distance join queries[22], multi-source sky-

line computation[23], optimal meeting point queries[24])

have been discussed in the literature.

As one of the most important queries in road net-

works, the ANN query was investigated by Yiu et al.[1]

Three algorithms were proposed, namely Incremen-

tal Euclidean Restriction (IER), Threshold Algorithm

(TA), and Concurrent Expansion (CE). IER uses the

R-tree index to prune the search space by comparing

the shortest aggregate distance with the Euclidean dis-

tance, while TA and CE incrementally expand the net-

work around each query point and employ some top-

k aggregate query processing techniques to guide and

terminate the search. Our work is different from [1] as

we utilize the NVD and effective pruning techniques to

speed up the query processing, and we also explore the

problem of approximate ANN search.

Another similar work is the Voronoi-based spatial

skyline algorithm[25], which finds the skyline points

to multiple query points by identifying the Voronoi

polygons intersected with the convex hull of the query

points. This differs from our work as the ANN query

aims at finding the optimal aggregating point with re-

spect to different aggregate functions, and the Voronoi

polygons intersected with the convex hull may not be

the result of an ANN query.

Qin et al.[26-27] addressed the problem of ANN

query monitoring for moving objects in the Euclidean

space. Li et al.[28] discussed the ANN queries whose

query points are moving. Chen et al.[29] proposed the

problem of ANN queries with keyword constraints for

spatial-textual data. Hashem et al.[30] explored the

ANN queries whose query points have location privacy

concern. Lian et al.[31-32] addressed the ANN queries

in uncertain databases and uncertain graphs.

3 Preliminaries

In this section, we introduce the definition of the

ANN query on road networks, and then we review the

network Voronoi diagram. Table 1 summarizes the

symbols used frequently in the rest of this paper.

Table 1. Frequently Used Symbols

Notation Description

n Number of query points

P Set of POIs

Q Set of query points, Q = {q1,. . . , qn}

S ANN candidates set, i.e., set of pi ∈ P
which is possible to be ANN

Si Set of POIs which are expanded by qi

H Heap which is used to store all qi with
the min or max network distance from
qi to its latest kNN as its priority

NNqi qi’s first NN, and NNqi ∈ P

kNNqi qi’s k-th NN, and kNNqi ∈ P

FNNqi qi’s furthest NN which is expanded cur-
rently

NDist(p, q) Minimum network distance from p to q

ADist(pi, Q)=
f(NDist(pi, q1),
. . .,NDist(pi, qn))

Aggregate distance between pi and any
query point in Q

3.1 Problem Definition

A network can be modeled as an undirected

weighted graph with its nodes and POIs as the graph

vertices and the links connecting two points as the

graph edges. The locations of the POIs are constrained

on the edges. The distance between two points is the

length of the shortest path connecting them rather than

the Euclidean distance.

Without loss of generality, suppose a road network

N = {V,E, P}, in which V is the set of nodes, E is the

set of edges, and P is the set of POIs. We first construct

a new network N ′ = {V ′, E′} from N as follows. Let

V ′ = V ∪P . For any edge in E which does not contain

a POI in P inside its interior, we add it to E′ with the

same weight. For any edge in E that contains one or

more POIs, we subdivide them into multiple sub-edges

according to the POIs on the edge, and the weights of

the resulting sub-edges are proportional.

Fig.2(a) illustrates an example of a realistic net-

work. Edges of the network are usually roadways and

interesting objects (p1, p2, p3) located on edges. The in-

teresting object pi represents a facility (e.g., restaurant,

gas station). Fig.2(b) shows its topological graph corre-

sponding to Fig.2(a). The weight on one edge is usually

the distance or travelling time between endpoints.
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Fig.2. Example of a real network and its topological graph. (a)
Real network. (b) Topological graph.

Definition 1. Let f be an aggregate function, such

as sum, max, and min. Then, given a set of query

points Q, a set of POIs P , and an aggregate func-

tion f , an aggregate nearest neighbor query returns a

POI p ∈ P such that ADist(p,Q) 6 ADist(p′, Q),

∀p′ ∈ P − {p}.

3.2 Network Voronoi Diagram

In this subsection, we give a brief introduction to

the network Voronoi diagram (NVD), as well as some

related concepts.

Given a road network with a set of POIs P =

{p1, p2, . . . , pm}, we divide the network into m regions,

each of which contains a subset of edges and is sur-

rounded by some dotted lines. Each region is associa-

ted with a POI pi, which is the nearest neighbor of

any query point located in this region. The associated

POI pi is called the generator, and the corresponding

region is named as the network Voronoi polygon (NVP)

of pi, denoted as NVP(pi). As shown in Fig.3, NVP(p1)

contains the edges: (n1, p1), (n1, b1), (n5, p1), (n5, b5),

(n5, b2), and is surrounded by the lines: (b1, b2), (b2, v),

(v, b5).
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Fig.3. Example of a network Voronoi diagram.

Definition 2. Given a road network with a set of

POIs P = {p1, p2, . . . , pm}, the network Voronoi dia-

gram is defined as:

NVD(P ) = {NV P (p1), NV P (p2), . . . , NV P (pm)}.

Fig.3 shows the network Voronoi diagram NVD(P )

for the given road network, where P = {p1, p2, p3}. An-

other important concept is the border points, which

are the points lying on the edges connecting two adja-

cent NVPs. By the property of NVP, we can find that

a border point is actually the intermediate point of a

path between the generators of two adjacent NVPs. For

example, in Fig.3, the location of b1 is the intermediate

position of the path (p1-n1-n2-p2) from p1 to p2. By

computing the border points, the generation of NVD

is facilitated. Intuitively, the generation of a Voronoi

diagram in Euclidean spaces could be accomplished by

making perpendicular bisector of two generator points.

Nevertheless, how to generate an NVD based on a net-

work graph? Hakimi et al.[33] proposed an algorithm

to solve this problem. In this paper, we use a similar

storage schema to store information of an NVD as in

[2]. Fig.4 illustrates it for the NVD of Fig.3.
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Fig.4. Example of NVD storage schema. d(x, y): the distance
between x and y.

4 ANN Query

A naive method to process an ANN query is to tra-

verse the whole network and compute all aggregate dis-

tances for each POI, and then we can find the ANN

with the minimum aggregate distance. However, it is

obviously infeasible due to the huge cost of traversing

the whole network for every query.

In this section, we present our approach based on

the NVD to tackle ANN queries in road networks. Our

approach consists of two phases. 1) Searching phase. In

this phase, we continuously compute the next NN from

each query point to obtain a candidate set of POIs un-

til we find a common POI for all query points. Here,

the next NN of a query point q refers to the NN af-

ter the last found NN of q, i.e., supposed that the k-th

NN is the furthest NN that has been found for q cur-

rently, then the next NN refers to the (k+ 1)-th NN of
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q. In addition, the process of continuously computing

the next NN for one query point is called expanding

this query point in the rest of the paper. And the ex-

panding order decides which query point we would like

to expand. 2) Pruning phase. After we obtain a can-

didate set, we continuously expand the search space by

computing the next NN for a certain query point, and

prune the unqualified candidate POIs that cannot be

ANNs.

Note that when the aggregate function is min, the

processing of an ANN query is straightforward. We

only need to compute the NN of each query point, and

fetch the POI which has the smallest distance to its

query point as the ANN result. Thus, we do not dis-

cuss the min function for space saving.

4.1 Searching Phase

The objective of searching phase is to obtain an

ANN candidates set S, which includes the final query

result. We assume that there are n query points in

Q. The searching phase includes such steps as follows.

To begin with, we search the first NN NNqi for each

qi ∈ Q and add NNqi to the list Si respectively. Then

we check whether there is an intersection among S1,

. . . , Sn. If not, we continue to expand the search space

for one query point qi.

When retrieving the kNN for each qi, in this pa-

per, we apply V N3 algorithm[2] based on the NVD

generated in advance. Based on the property of NVD,

the next NN of a query point is located in one of

the adjacent NVPs of the current NN. After kNNqi

is retrieved, we insert it to the tail of the list Si,

which is actually an ordered list of qi’s NNs, i.e.,

Si = {NNqi , 2NNqi , . . . , kNNqi}. This phase stops

until there is an intersection among S1, . . . , Sn, i.e.,

S1 ∩ S2 ∩ . . .∩Sn 6= ∅. This means that we have found

out the first common p ∈ P which is expanded by all qi.

Hence, p is the current best candidate of ANN, and we

can compute aggregate distance ADist(p,Q) denoted

by distagg.

Lemma 1. When we have found out the first com-

mon p ∈ P which is expanded by all qi (S1 ∩ S2 ∩ . . . ∩

Sn = {p}), let S = S1 ∪ S2∪ . . .∪Sn, then the ANN

must be in S.

Proof. Suppose p′ is the ANN and p′ /∈ S. As

p′ /∈ S, p′ /∈ Si. Since Si is an ordered list of

qi’s NNs, we can conclude that for each qi ∈ Q,

NDist(p′, qi) > NDist(p, qi). This conclusion is il-

lustrated explicitly in Fig.5. Then we can derive that

ADist(p′, Q) > ADist(p,Q). This indicates that p′ is

not the ANN, which contradicts with our assumption.

Therefore the ANN must be in S. �

Monotone Nondecreasing

q.S/ıNNq֒ NNq֒ ⊲⊲⊲֒ p֒ ⊲⊲⊲ ֒ kNNq℘֒ p'

q.S/ıNNq֒ ⊲⊲⊲֒ p℘֒ ⊲⊲⊲ ֒ p'

qn.Sn/ıNNqn֒ ⊲⊲⊲֒ p֒ ⊲⊲⊲ ℘֒ ⊲⊲⊲ ֒ p'

S/S S
⊲⊲⊲ Sn

Fig.5. Illustration of searching phase.

Algorithm 1 details the process of the searching

phase (lines 1∼11). For each query point qi, the al-

gorithm finds the first nearest neighbor and puts the

NN into the query point’s expanded list Si. In addi-

tion, each query point is inserted into a minheap (H)

with the weight NDist(NNqi , qi) (lines 3∼6). Then we

compute the next nearest neighbor (e.g., p′) of the top

element in H and add it into the expanded set Scurrent

of the corresponding query point qcurrent. At the same

time, we need to update the weight of qcurrent in H as

NDist(p′, qcurrent) (lines 7∼11). The algorithm repeats

the above procedures until there is a POI p which is ex-

panded by all query points. After the common POI is

found, the aggregate distance ADist(p, Q) is computed

(line 12).

Algorithm 1. Searching Phase (SP)

Input: NVD, P , Q, f

Output: S, Si, H, distagg

1: H = new heap; S = ∅;Si = ∅; distagg =∞; i = 1;

2: Create a new heap entry E;

3: while i 6 n do

4: Compute qi’s first nearest neighbor NNqi ;

5: Si = {NNqi}; E.qid = qi; E.dist = NDist(NNqi , qi);

6: Insert(H, E); i = i + 1;

7: while ∩ni=1Si = ∅ do

8: E = removeHead(H);

9: qcurrent = E.qid; compute qcurrent’s next NN p′;

10: Scurrent = Scurrent∪ {p′}; E.dist = NDist(p′, qcurrent);

11: Insert(H, E);

12: return S = ∪ni=1Si; {p} = ∩ni=1Si; distagg = ADist(p,
Q);

Example 2. Consider the network of Fig.6 and as-

sume that we want to find the ANN for query points

q1, q2, and q3. Algorithm 1 finds the first nearest neigh-

bor of query points q1, q2 and q3. Their expanded sets

and the heap are initialized to S1 = {p1}, S2 = {p2},

S3 = {p3}, and H = {(q1, 1), (q2, 1), (q3, 1)}. Suppose
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the heap here is a min heap, then the query points con-

tinue to expand until there is a POI p which is accessed

by all query points. At this time, S1 = {p1, p9}, S2

= {p2, p9, p1}, S3 = {p3, p7, p9}, S = {p1, p2, p3, p7,

p9}, and H = {(q1, 3), (q3, 4), (q2, 3)}. Here, p9 is

the common POI we want to find. When the aggre-

gate function is sum, distagg = 9. When the aggregate

function is max, distagg = 4.
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Fig.6. ANN query example.

Notice that Fig.6 only shows the outline of network

Voronoi diagram and omits the nodes and edges inside

NVPs. Thus, the paths between the query points and

the POIs cannot be seen directly from the diagram.

But we connect the query points with the POIs using

different dashed lines and mark the network distance

between them on each line.

4.2 Pruning Phase

The target of pruning phase is to prune unqualified

POIs that cannot be the ANN from the candidate set S.

If there is only one POI in S, then that POI is indeed

the ANN we want. In the sequel, we discuss the pruning

strategies for sum and max functions respectively.

4.2.1 Pruning Phase for sum Function

Before pruning objects from S, we select a query

point according to a certain expanding order of query

points to retrieve the next NN (p′), and then compute

dist =
∑n

i=1 NDist(xi, qi), where

xi =

{

p′, if p′ ∈ Si,

NNqi , if p′ /∈ Si.

If dist > distagg, we calculate the set S′

i for each qi.

S′

i =















{o|o ∈ Si, NDist(o, qi) <

NDist(p′, qi)}, if p′ ∈ Si,

∅, if p′ /∈ Si.

Then let S′ = S′

1 ∪ . . .∪S′

n. For ∀p ∈ S∧p /∈ S′, object

p can be pruned from S, as stated in Lemma 2.

Lemma 2. Let p′ be the next nearest neighbor of

one query point, and dist =
∑n

i=1 NDist(xi, qi). If

dist > distagg and ∀p ∈ S ∧ p /∈ S′, object p can be

pruned from S.

Proof. For each i where p′ ∈ Si, as p /∈ S′,

p /∈ S′

i, and we can get NDist(p, qi) > NDist(p′,

qi) according to the definition of S′

i. For each i

where p′ /∈ Si, we have NDist(p, qi) > NDist(NNqi ,

qi). Since dist =
∑n

i=1∧p′∈Si
NDist(p′, qi) +

∑n
i=1∧p′ /∈Si

NDist(NNqi , qi), we have ADist(p, Q) =
∑n

i=1 NDist(p, qi) > dist. ADist(p, Q) > distagg due

to dist > distagg. Hence p cannot be the ANN, and can

be discarded. �

If dist < distagg, we only need to put qi’s next near-

est neighbor p′ into its expanded set Si, and then deter-

mine whether p′ is expanded by all query points or not.

If so, we update distagg by the value of ADist(p′, Q)

and change the current candidate of ANN to p′. Then

we proceed in this way until there is only one POI in

S.

Next we analyze which POIs can be pruned from

S in terms of the pruning strategy. Fig.7 shows an

example of the pruning phase. As shown in Fig.7, we

have searched q1’s next nearest neighbor p′, and then

we compute the value of dist according to its definition

in the pruning strategy for sum function. Here suppose

p is the current candidate of ANN, which has been ex-

panded by all query points. In general, there are three

cases for the relationship of expanding order between p

and p′. First, p′ is expanded prior to p (such as objects

in S2). Second, p′ is expanded after p (such as objects

in Sj). Third, some query points have not expanded to

p′ (such as qn), i.e., p
′ does not belong to Sn. According

to the definition of the set S′

i and the set S′ mentioned

earlier, POIs pruning can be triggered in the first or the

third case. For the first case, the POIs between p′ and

p (such as p′′) can be pruned when p′′ does not belong

to S′. For the third case, the POIs which are expanded

prior to p can be pruned when they do not belong to

S′.

Monotone Nondecreasing

q.S/ıNNq֒ NNq֒ ⊲⊲⊲֒ p֒ p'℘ 

q.S/ıNNq֒ ⊲⊲⊲֒ p'֒ ⊲⊲⊲֒ p''֒ ⊲⊲⊲ ֒ p֒ ⊲⊲⊲ ℘

qj.Sj/ıNNqj֒ ⊲⊲⊲֒ p֒ ⊲⊲⊲֒ p' ֒ ⊲⊲⊲ ℘

qn.Sn/ıNNqn֒ ⊲⊲⊲֒ p֒ ⊲⊲⊲ ℘

⊲⊲⊲
⊲⊲⊲

⊲⊲⊲
⊲⊲⊲

Fig.7. Illustration of the pruning phase.
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Algorithm 2 shows the pseudo-code of our pruning

algorithm for sum function. In Algorithm 2, we use a

heap to store query points. In every round of the prun-

ing phase, we first retrieve the head of the heap H and

get its next nearest neighbor. Then we apply our prun-

ing strategy to speed up the ANN query processing.

The heap may be min heap or max heap, depending

on the expanding order of query points, which is to be

discussed in Subsection 4.4.

Algorithm 2. Pruning for sum Function (PSF)

Input: NVD, P , Q, S, Si, H, distagg , f

Output: ANN , distagg

1: while |S| > 1 do

2: E = removeHead(H);

3: qcurrent = E.qid; compute qcurrent’s next NN p′;

4: dist =
∑n

i=1∧p′∈Si
NDist(p′, qi) +

∑n
i=1∧p′ /∈Si

NDist(NNqi , qi);

5: if dist > distagg then

6: Compute S′

1, S
′

2, . . ., S
′
n;

7: S = S∩ (∪ni=1S
′

i); Scurrent = Scurrent + {p′};

//Scurrent is the expanding set of qcurrent

8: else

9: Scurrent = Scurrent + {p′};

10: if p′ ∈ ∩ni=1Si then

11: S = S − {p}; p = p′; distagg = ADist(p, Q);

12: E.qid = qcurrent; E.dist = NDist(p′, qcurrent);

13: Insert(H, E);

14: return ANN (the last POI in S) and distagg ;

As shown in Algorithm 2, lines 1∼13 are the prun-

ing phase which is the core of the algorithm. Line 4

computes the value of dist. If the next nearest neigh-

bor p′ of top element in H belongs to some expanded

set Si, we use the actual distance value from p′ to each

query point qi to compute the value of NDist(p′, qi);

otherwise we use the distance from query point qi to

its first nearest neighbor, i.e., NDist(NNqi , qi). The

value of dist computed in this way is the lower bound

of the aggregate distance from p′ to all query points. If

dist > distagg, some POIs that cannot be the ANN can

be pruned by intersecting the sets S and the union set

of S′

i (line 7). If dist 6 distagg and p′ is also a common

POI, line 11 updates the current candidate ANN and

distagg. Lines 12∼13 update the weight of qcurrent in

H .

Example 3. Take Fig.6 as an example, and suppose

after searching phase, we have got a POI p9 accessed

by all query points. At this time, distagg = 9, S1 =

{p1, p9}, S2 = {p2, p9, p1}, S3 = {p3, p7, p9}, S =

{p1, p2, p3, p7, p9}, and H = {(q1, 3), (q3, 4), (q2,

3)}. Next the algorithm turns into the pruning phase.

We compute q1’s next nearest neighbor p8 and dist =

NDist(p8, q1) +NDist(p2, q2) +NDist(p3, q3) = 5.5.

As dist < distagg , we put p8 into S1 and update q1’s

weight in H . Hence, S1 = {p1, p9, p8}, and H = {(q2,

3), (q3, 4), (q1, 3.5)}.

Then we compute q2’s next nearest neighbor p8 and

dist = NDist(p8, q1) + NDist(p8, q2) + NDist(p3,

q3) = 9.5. Since dist > distagg, we can get S′ = {p1,

p9} ∪ {p2, p9, p1} = {p1, p2, p9}. S = S ∩ S′ = {p1,

p2, p9}, i.e., we have pruned the POIs p3 and p7. At

this time, S2 = {p2, p9, p1, p8}, and H = {(q1, 3.5),

(q2, 5), (q3, 4)}. Then we compute q1’s next nearest

neighbor p2 and dist = NDist(p2, q1) + NDist(p2, q2)

+ NDist(p3, q3) = 7. As dist < distagg, we just put p2
into S1 and update q1’s weight in H . Thus, S1 = {p1,

p9, p8, p2}, and H = {(q3, 4), (q2, 5), (q1, 5)}. Then

we compute q3’s next nearest neighbor p10 and dist =

NDist(p1, q1) + NDist(p2, q2) + NDist(p10, q3) =

10. As dist > distagg, we can get S′ = {p3, p7, p9},

and S = S ∩ S′ = {p9}. Hence, we have pruned the

POIs p1 and p2, and the remaining p9 in S is the final

query result.

4.2.2 Pruning Phase for max Function

In Subsection 4.2.1, we have discussed the pruning

phase when the aggregate function is sum. Now in this

subsection, we present the pruning phase for the max

function. Before discussing this, we give the pruning

differences between the sum and the max functions.

If the aggregate function is max, its goal is to find a

POI which minimizes the maximum distance from any

query point to that POI. Hence, in the pruning phase,

in order to compute the value of dist, we apply the

maximum distance from any query point to the POI p′

instead of the sum of these distances in the sum func-

tion. In addition, similar to the pruning phase for the

sum function, if p′ does not belong to some query point

qi’s expanded set, we use the distance from query point

qi to its latest expanded neighbor FNNqi instead of the

distance from query point qi to its first nearest neigh-

bor NNqi . This can guarantee the value of dist as large

as possible, and then can improve the performance of

pruning.

Pruning Strategy for max Function. Before pruning

POIs from S, we select a query point according to a

certain expanding order of query points to retrieve the

next nearest neighbor (p′), and then compute dist =

max{NDist(x1, q1), . . . , NDist(xn, qn)}, where

xi =

{

p′, if p′ ∈ Si,

FNNqi , if p′ /∈ Si.
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We suppose dist = NDist(xk, qk). If dist > distagg,

we calculate the set S′ as follows:

S′ =















{o |o ∈ Sk, NDist(o, qk) <

NDist(p′, qk)}, if xk = p′,

Sk, if xk = FNNqk .

For ∀p ∈ S ∧ p /∈ S′, object p can be pruned from S, as

stated in Lemma 3.

Lemma 3. Let p′ be the next nearest neighbor of

one query point, and dist = max{NDist(x1, q1),. . . ,

NDist(xn, qn)}. If dist > distagg and ∀p ∈ S ∧ p /∈ S′,

object p can be pruned from S.

Proof. We suppose dist = NDist(xk, qk). For xk =

p′, as p /∈ S′, NDist(p, qk) > NDist(p′, qk). This is to

say ∀p /∈ S′, ADist(p, Q) > NDist(p, qk) > NDist(p′,

qk) = dist. As dist > distagg, ADist(p, Q) > distagg.

Hence p cannot be the ANN, and can be discarded. For

xk = FNNqk , the proof is similar. �

Same as the pruning strategy for function sum, if

dist < distagg, we only need to put qi’s next nearest

neighbor p′ into its expanded set Si, then update distagg
by the value of ADist(p′, Q) and change current can-

didate of ANN to p′ when p′ is expanded by all query

points. In addition, in the pruning strategy for function

max, we can compute S′ by Sk directly rather than by

S′

i of each query point.

Considering this pruning strategy, we could find it

has higher pruning performance than the pruning stra-

tegy for function sum. This can be found from the way

to compute the set S′. In Subsection 4.2.1, we have dis-

cussed the pruning strategy for the sum function which

prunes the POIs in the two cases. These POIs are be-

tween p′ and p for the first case, and are expanded prior

to p for the second case. We can prune them if and only

if they do not belong to S′. In fact, this condition can-

not be satisfied easily because most POIs are very likely

to belong to the set S′

i of a certain query point. Then

when we let S′ = S′

1 ∪ . . .∪S′

n, they are still in the

set S′, and hence we cannot prune them. However, in

the pruning strategy for function max, it will prune the

POIs which are not in the set Sk or are not in the POIs

which are prior to p′ (according to the definition of S′

in the pruning strategy for function max). Hence, the

number of POIs in the set S′ in the pruning strategy

for the max function is far less than that in the pruning

strategy for the sum function. In general, we can dis-

card more POIs in one iteration in the pruning phase

of the max function.

The pruning phase of the max function is detailed

in Algorithm 3. Line 4 computes the value of dist ac-

cording to the pruning strategy for function max. If

dist 6 distagg, the processing way is the same as Algo-

rithm 2. If dist > distagg, different from Algorithm 2,

we only need to compute the intersection set between S

and S′, and some POIs that cannot be the ANN can be

pruned. Line 11 updates the current candidate ANN

and distagg. Lines 12∼13 update the weight of query

point qcurrent in H .

Algorithm 3. Pruning for max Function (PMF)

Input: NVD, P , Q, S, Si, H, distagg, f

Output: ANN , distagg

1: while |S| > 1 do

2: E = removeHead(H);

3: qcurrent = E.qid; compute qcurrent’s next NN p′;

4: dist = max{NDist(x1, q1),. . . , NDist(xn, qn)};

5: if dist > distagg then

6: Compute S′;

7: S = S ∩ S′; Scurrent = Scurrent + {p′};

8: else

9: Scurrent = Scurrent + {p′};

10: if p′ ∈ ∩ni=1Si then

11: S = S − {p}; p = p′; distagg = ADist(p, Q);

12: E.qid = qcurrent; E.dist = NDist(p′, qcurrent);

13: Insert(H, E);

14: return ANN (the last POI in S) and distagg;

Example 4. Also take Fig.6 as an example. Similar

to the phase, we find the ANN for the sum function,

and next we compute q1’s next nearest neighbor p8 and

dist = max{NDist(p8, q1), NDist(p1, q2), NDist(p9,

q3)} = 4. As dist = distagg, we only need to put p8
into S1 and update q1’s weight in H . Hence, S1 = {p1,

p9, p8}, and H = {(q2, 3), (q3, 4), (q1, 3.5)}. Then

we compute q2’s next nearest neighbor p8 and dist =

max{NDist(p8, q1), NDist(p8, q2), NDist(p9, q3)} =

5. As dist > distagg, we can get S′ = {p2, p9, p1}. S =

S ∩ S′ = {p1, p2, p9}, i.e., we have pruned the POIs p3
and p7. At this time, S2 = {p2, p9, p1, p8}, and H =

{(q1, 3.5), (q3, 4), (q2, 5)}. Then we compute q1’s next

nearest neighbor p2 and dist = max{NDist(p2, q1),

NDist(p8, q2), NDist(p9, q3)} = 5. As dist > distagg,

we can get S′ = {p1, p9, p8}, and S = S ∩ S′ = {p1,

p9}, i.e., we have pruned the POI p2. At this time, S1

= {p1, p9, p8, p2}, and H = {(q3, 4), (q1, 5), (q2, 5)}.

Then we compute q3’s next nearest neighbor p10 and

dist = max{NDist(p2, q1), NDist(p8, q2), NDist(p10,

q3)} = 8. As dist > distagg, we can get S′ = {p3, p7,

p9}. S = S ∩ S′ = {p9}; hence, we have the POI p1,

and p9 is the final query result for the max function.
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4.3 Voronoi-Based ANN Algorithm

As mentioned earlier, our Voronoi-based ANN al-

gorithm (VANN) contains the searching phase and the

pruning phase. Algorithm 4 lists the pseudo-code. Line

1 invokes Algorithm 1. Lines 3 and 5 obtain the ANN

result for the sum function and the max function re-

spectively.

Algorithm 4. Voronoi-Based ANN Algorithm (VANN)

Input: NVD, P , Q, f

Output: ANN , distagg

1: S, Si, H, distagg = SP (NVD, P , Q, f); // see Algorithm 1

2: if f is sum function then

3: ANN , distagg = PSF (NVD, P , Q, S, Si, H, distagg , f);

4: else if f is max function then

5: ANN , distagg = PMF (NVD, P , Q, S, Si, H, distagg,
f);

6: return ANN and distagg ;

Example 5. As the example depicted in Fig.6, after

calling Algorithm 1, we can get S = {p1, p2, p3, p7, p9},

S1 = {p1, p9}, S2 = {p2, p9, p1}, S3 = {p3, p7, p9}, H

= {(q1, 3), (q3, 4), (q2, 3)}, and distagg = 9 or 4. If the

aggregate function is sum, we call Algorithm 2, and the

ANN result is p9 and distagg = 9. When the aggregate

function is max, we employ Algorithm 3, and the ANN

result is p9 and distagg = 4. The pruning details can

be seen in example 3 and example 4, respectively.

The following theorem proves the correctness of our

algorithms.

Theorem 1. For an ANN query, if we do the first

step according to Algorithm 1, and then apply Algo-

rithm 2 for function sum and Algorithm 3 for function

max, the final ANN result we obtain is correct.

Proof. According to the proof of Algorithm 1 in

Lemma 1, we are sure that the accurate ANN result is

in S. Then from the proof of Algorithm 2 in Lemma 2

and that of Algorithm 3 in Lemma 3, we can find it

only prunes objects not being the ANN results. Thus

according to our algorithms, we obtain a correct re-

sult. �

4.4 Analysis

In this subsection, we first discuss the effect of ex-

panding order of query points. Then we analyze its

time complexity.

When query points expand their search space by

gradually computing their nearest neighbors, there are

three classes of expanding orders as follows. The first

is that we expand query points in their number order.

That is to say, we compute each query point qi’s next

nearest neighbor circularly. The next two kinds are cor-

responding to the type of the heap, i.e., min heap or

max heap.

Number-Based Expanding Strategy. This strategy is

to expand the search space in the order of all query

points circularly. In fact, there must be a specific

optimal expanding order for query points. However,

we cannot know this optimal expanding order in ad-

vance. Thus this strategy might cause some useless

search space expanding, resulting in ineffective pruning

performance.

Minimum Distance Expanding First Strategy. This

strategy is based on the intuition that the location of

the ANN is more likely to be close to the centroid of

the query points. Thus, we always expand the query

point whose distance to its latest expanded neighbor

is minimum. This leads to all query points expanding

to the centroid fairly. Hence it can avoid some useless

expanding.

Maximum Distance Expanding First Strategy. This

strategy gives priority to the expanding of the query

point whose distance to its latest expanded neighbor is

maximum. In fact, this strategy almost cannot prune

any POIs in S. The reason is that it expands one query

point all the time until it visits all the POIs. Next it

will expand another query point until it visits all the

POIs. Thus, in our experimental evaluation, we do not

apply it in our approach.

Optimization About Expanding. During the prun-

ing phase, if a query point qi’s expanded set Si has

contained all of the elements in S, we are disinclined to

expand this query point. The reason is that if we con-

tinue to expand the query point qi, the pruning strat-

egy for the sum function almost cannot prune any more

POIs in S. Since even though it meets the pruning con-

dition, and the expanded sets of all query points do not

contain query point qi’s next nearest neighbor, at this

time, the number of POIs in S′ is minimum (according

to the definition of S′ in the sum function). Now S′,

which is equal to S′

i, is still the subset of S. Therefore

it cannot prune any POI in S. For the pruning stra-

tegy for the max function, its pruning performance is

not much better than that by expanding other query

points whose expanded set does not include all the ele-

ments in S.

Next, we analyze the time complexity of our algo-

rithms. As mentioned before, we employ the NVD-

based kNN algorithm[2] to compute the kNN of the

query points. This algorithm is similar to the Dijkstra

algorithm (see [2] for more details).
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Theorem 2. Let |B| be the number of border

points in NVD, and |D| be the record number of bor-

der points to border points and border points to its

generators. The time complexity of our algorithm is

O(|Q| × (|B|+ |P |+ |D|)× log (|B|+ |P |)).

Proof. For a graph with |V | vertices and |E|

edges, the complexity of the Dijkstra algorithm is

O(|V | + |E|) × log |V |. Our algorithm uses the Di-

jkstra algorithm to compute kNNs based on NVD,

where |V | = |B| + |P | and |E| = |D|. Thus, the

time complexity of kNN processing in our algorithm

is O(|B| + |P | + |D|) × log (|B|+ |P |). In the worst

case, we will compute all kNNs for each query point;

hence, the time complexity of our algorithm is O(|Q| ×

(|B|+ |P |+ |D|)× log (|B|+ |P |)). �

5 Approximate ANN Query

For the scenarios where the number of query points

is very large, the execution time of an ANN query will

become unbearable. Sometimes it may be unnecessary

to find the exact ANN result. Instead, an approximate

result is preferred, for the purpose of reducing the pro-

cessing time significantly.

In fact, for either solving a meeting problem or se-

lecting a location for residents in real life, people are

inclined to gather together. Thus, we can consider a

group of adjacent persons as one query point. In this

way, we can greatly reduce the number of query points

in the ANN query, and thus we can reduce the CPU

time greatly.

5.1 Partition Algorithm

In this paper, we propose an algorithm to parti-

tion the query points. The main idea is that we regard

some adjacent query points in the Euclidean space as

a Union-Find set and compute the geometric center of

these query points, and then we fetch the closest point

to the geometric center on road network as a query

point. This is because the proximity in the Euclidean

space reflects the proximity in the road network to some

extent, and the cost of finding adjacent query points in

road network is too expensive. Nevertheless, how to

partition the query points?

We define |UFS| as the size (i.e., the upper bound

number of query points) of a Union-Find set and NUFS

as the number of Union-Find sets. We propose some

partition strategies by |UFS| and NUFS. When |UFS|

is the limited parameter, we only need to combine the

adjacent query points or their Union-Find sets as long

as the number of query points in the Union-Find set is

not beyond |UFS| after combination. Thus, the num-

ber of Union-Find sets by this partition strategy is not

sure. It depends on the distribution of the query points.

When NUFS is the limited parameter, this means

the number of Union-Find sets after the partition is

sure and equal to NUFS. In addition, we can classify

it into two kinds of strategies according to partitioning

the query points for Union-Find sets averagely or arbi-

trarily. Averagely, we mean the number of query points

in a Union-Find set is fixed as (|Q|/NUFS).

For example, suppose there are 100 query points in

an ANN query, they must be partitioned to two Union-

Find sets (NUFS = 2). The averagely partitioning result

must be (50, 50), while arbitrarily partitioning result is

{(x, y)|x+ y = 100, 1 6 x, y 6 99}.

Algorithm 5 details the process for these three

kinds of partition strategies. Lines 3∼5 compute

the Euclidean distance between any two query points.

Algorithm 5. Partition Algorithm (PA)

Input: NVD, P , Q, |UFS|, NUFS

Output: Q′

1: H = new heap; create a new heap entry E;

2: Create a Union-Find set UFS;

3: foreach qi ∈ Q and qj ∈ Q (i 6= j) do

4: Compute dist Euclidean distance between qi and qj ;

5: H ←− (qi, qj , dist);

6: switch the partition strategy do

7: case partition by |UFS|

8: while there is a query point which is not added to a

Union-Find set do

9: E = removeHead(H);

10: if |UFSE.qi | + |UFSE.qj | 6 |UFS| then

11: Union(E.qi, E.qj);

12: case partition by NUFS averagely

13: while there is a query point which is not added to a

Union-Find set do

14: Fetch a query point qi which is not added to a

Union-Find set;

15: for i← 1 to |Q|/NUFS do

16: Compute qi’s adjacent query point qj which is not

added to a Union-Find set;

17: Union(E.qi, E.qj);

18: case partition by NUFS arbitrarily

19: while the number of Union-Finds is not equal to

NUFS do

20: E = removeHead(H);

21: if E.qi and E.qj are not in the same Union-Find

set then

22: Union(E.qi, E.qj);

23: foreach equivalence partitioning in UFS do

24: Compute its average coordinate x, y;

25: Fetch the closest point to (x, y) on road network as the

query point q′;

26: Q′ ←− q′;

27: return Q′;
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Lines 6∼11 partition the query points when |UFS| is

the limited parameter. Lines 12∼17 detail the process

of averagely partitioning with parameter NUFS. Simi-

larly, lines 18∼22 detail it with arbitrarily partitioning.

Lines 23∼27 fetch a closest point on the road network

as the new query point.

Fig.8 shows the partition results for three parti-

tion strategies. There are eight query points. If

|UFS| = 3, the partition result may be like that shown

in Fig.8(a). After the partition, it has four Union-Find

sets. Fig.8(b) and Fig.8(c) show the partitioning re-

sults for NUFS = 3 with the average and the arbitrary

partitioning respectively. Clearly, NUFS with average

partitioning may group two remote query points into a

set, resulting in a set with poor proximity.

(a)

(b)

(c)

Fig.8. Three partition strategies. (a) |UFS| = 3. (b) NUFS = 3,
averagely. (c) NUFS = 3, arbitrarily.

5.2 Partition Strategy and Parameter

Selection

The selection of the three partition strategies de-

pends on the real application scenarios. The |UFS|

strategy fixes the number of Union-Find sets, i.e., the

upper bound of the number of query points is pro-

vided. Thus this strategy is preferred for the sce-

nario where the number of query points is very large,

and the system/application is sensitive to the response

time. Compared with the |UFS| strategy, the NUFS

average/arbitrary strategies constrain the size of each

Union-Find set. With small NUFS, the Euclidean cen-

ter of each set is closer to the points in the set, and

thus the approximate ANN is closer to the exact ANN.

In other words, the error bound of the approximate al-

gorithm is guaranteed. Therefore, these two strategies

are practical for the applications which require higher

accuracy.

5.3 Complexity Analysis

The complexity of Algorithm 5 is O(|Q|2) and the

complexity of exact ANN algorithm is O(|Q| × (|B| +

|P | + |D|) × log (|B|+ |P |)). Thus, the complexity of

approximate algorithm is O(|Q|2) + O(|Q′| × (|B| +

|P | + |D|) × log (|B|+ |P |)). In general, |Q′| < |Q| ≪

(|B|+|D|). Thus, the approximate ANN algorithm will

greatly improve the performance.

6 Experimental Evaluation

In this section, we experimentally evaluate the effi-

ciency of our proposed algorithms. We conduct exten-

sive experiments for different kinds of query point ex-

panding order and compare the performance with IER

and TA[1]. Note that, we do not compare against CE

algorithm[1] because, as shown in [1], it has the worst

performance.

6.1 Experimental Setup

In our experiment, we use the real road network

(San Francisco road map[34]) as datasets. In the original

road map, since the weight of each edge is the Euclidean

distance between its end-points, we set the weight of

each edge to the Euclidean distance multiplied by a

random number chosen from the range [1, F ]. In this

way, parameter F reflects the factor by which the actual

weight may deviate from the Euclidean distance.

We uniformly generate interesting data objects on

the network edges. The parameter P represents the

density of data objects (i.e., the number of data objects

over the number of edges in the network). The query

points in Q are generated randomly on edges that are

connected sub-network covering A percent of the net-

work edges. For example, by default, each query has
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10 query points randomly generated in A = 4 percent

of the network. In addition, by default, the density of

data objects P is equal to 0.04 and the parameter F

is equal to 1. For each experiment setting, we average

the results of the algorithm over 10 queries. The ex-

periments are run on a PC with a Pentiumr CPU of

2.0 GHz.

6.2 VANN Algorithm Performance

In this subsection, we evaluate the performance of

the VANN algorithm based on the following three cri-

teria: 1) query processing time; 2) page accesses dur-

ing query processing; 3) the number of nodes visited

when expanding on the road network (i.e., A* or Di-

jkstra algorithm). Notice that IER and TA apply A*

algorithm to expand on the road network, and hence

we compute the number of nodes visited according to

the nodes accessed on the road network during the al-

gorithms. However, when computing kNN based on

Voronoi on road network, we only need to expand the

cell of Voronoi, and thus we compute the number of

the border points and objects as the number of nodes

visited for our algorithms. In addition, we use the ave-

rage value of iterations for query points when comput-

ing kNN to evaluate our algorithms. We compute it

by (Total of Iterations)/|Q|. The average value of

iterations reflects the performance of our pruning stra-

tegy. In our experiments, we show the number of nodes

visited by dividing 1 000, and use Min.sum to rep-

resent our algorithm with minimum distance expand-

ing first strategy (Min) for sum function (the similar

meaning for Min.max, Num.sum, Num.max, IER.sum,

IER.max, TA.sum and TA.max).

6.2.1 Effect of A

As shown in Fig.9, the costs of four algorithms in-

crease with A since our algorithms must expand more

interesting data objects, while IER and TA must ex-

pand a larger range of the network, incurring that the

CPU time, page accesses and the number of nodes visi-

ted grow as the parameter A becomes larger.

However, as depicted in Fig.9(a), our algorithm with

the Min strategy is better than IER in CPU time. The

reason is that although IER uses R-tree index, it still

needs to explore the network and compute the aggre-

gate distance, while our algorithm does not need to

expand the network and only searches the look-up ta-

bles. However, the CPU time of our algorithm with the

Num strategy is larger because there are many invalid

computations that do not prune data objects in S.

Fig.9(b) illustrates the performance of page ac-

cesses. Our algorithm outperforms IER. The reason

is that IER needs to explore the network and retrieve

only a small number of edges at each step, whereas our

algorithms retrieve the pre-computed values in only one

step. Thus the number of page accesses is smaller than

that of IER. The performance of nodes visited shown in

Fig.9(c) is similar to that of page accesses in Fig.9(b).

Fig.9(d) plots the average value of iterations for our

algorithms. We can observe that the performance of

the Min strategy is much better than that of the Num

strategy. This is because the Num strategy has com-

puted many invalid kNNs. As the parameter A be-

comes larger, the expanding range of each query point

is larger, and hence more kNNs must be computed for

each query point to obtain ANN result.

Fig.10 shows the performance of ANN queries for

the same criteria when the function is max. The per-

formance of our algorithm for function max is better

than that of the algorithm for function sum with both

Min strategy and Num strategy. The reason is that the

efficiency of the pruning strategy for function max is

higher than that of the pruning strategy for function

sum. This can be seen from Fig.10(d). The reasons
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why our algorithm with Min strategy outperforms IER

and TA are similar to the explanation of algorithm for

function sum. Note that our algorithm with Num stra-

tegy is also better than IER and TA. In addition, the

performance of IER for function max is better than

that for function sum, while the performance of TA for

function max is worse than that for function sum. This

is because the termination condition of IER for function

max is more easily reached than that for function sum,

while the termination condition of TA for function max

is much harder than that for function sum.

6.2.2 Effect of P

In the next experiment, we compare the four algo-

rithms on the density of objects. From Fig.11, we can

observe that the costs of our algorithms increase with

P since there are more NVPs, and thus our algorithms

must expand more interesting data objects, while that

has little effect on IER and TA. When P is equal to

0.08, our algorithms become worse than IER and TA

when F = 1. In fact, the density of objects is mostly

less than 0.08 in real life, for example, in [2], the maxi-

mal density of objects is 0.058 (Restaurant).

In Fig.12, we compare the performance of our algo-

rithms with that of IER and TA for the max function.

Different from the sum function, the performance of

our algorithms for the max function is better than that

of IER and TA. The reason is that our algorithms for

the max function are much more efficient than that

for the sum function as stated above. In Fig.11(d) and
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Fig.12(d), we can observe that the Num strategy is very

sensible to the density of objects, and its average value

of iterations is larger as the value of P becomes larger.

This is because more kNNs must be expanded for each

query point when we can prune the objects in set S,

while this is not clear for the Min strategy.

6.2.3 Effect of |Q|

The next experimental factor is the number of query

points. In Fig.13, we can find that the CPU time

increases with |Q| because more query points should

be considered for ANN queries. From Fig.14, we can

notice that TA is not very appropriate to evaluate

ANN queries for the max function. In Fig.13(d) and

Fig.14(d), we can observe that the average value of

iterations is smaller as the number of query points

becomes larger. This is because we compute it by

(Total of Iterations)/|Q|.

6.2.4 Effect of F

In the next experiment, we compare the algorithms

after distorting the edge weights by different factor F .

As shown in Fig.15 and Fig.16, we can see that our al-

gorithms and TA are not affected by this parameter.

On the other hand, the performance of IER degrades

with F . The reason is that IER uses Euclidean dis-

tance as a lower bound of the network distance. When

the weight of each edge deviates from the Euclidean

distance largely, it may do many unnecessary compu-

tations.

6.3 Performance of Approximate ANN

Algorithm

In this subsection, we evaluate the performance

of approximate ANN algorithm. In addition to the

query processing time and page accesses, the value

of deviation is also important. We compute it by

(distagg approximate − distagg)/distagg × 100%. This cri-

terion reflects the extent of deviation between approxi-

mate result and exact result. The factors for approxi-

mate experiment are |UFS| and NUFS.

6.3.1 Effect of |UFS|

Fig.17 shows the effect of the parameter |UFS| on

the performance of the algorithm for the sum function

and the max function with the Min strategy. In this ex-

periment, the number of query points is 200. As shown

in Fig.17(a), we can observe that there is hardly any

deviation after optimization for function sum when the

upper bound number of query points is below 8. The
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deviation for function max is always higher than that

for function sum. When |UFS| = 0, it means that we

apply origin query points to evaluate ANN queries, and

thus the value of deviation is 0. In Fig.17(b), the CPU

time largely decreases as |UFS| grows. Similar to the

experimental result mentioned above, the CPU time of

our algorithm for function sum is highly larger than

that for function min. The performance comparison of

the page accesses in Fig.17(c) is similar to that of CPU

time.

6.3.2 Effect of NUFS

Fig.18 shows the performance of our algorithms by

the effect of the parameter NUFS. In this experiment,

we averagely partition query points for function sum

and arbitrarily partition query points for function max.

We can easily find that the experimental results by

NUFS are opposite to them by |UFS|. As shown in

Fig.18(a), the deviation is very large when the aggre-

gate function is sum. This is because it may dam-

age the local proximity when we averagely partition

the query points to a fixed number of Union-Find sets.

When NUFS = 200, it is equivalent to |UFS| = 0, and

hence the value of deviation is 0. In Fig.18(b) and

Fig.18(c), the CPU time and page accesses increase as

|UFS| grows.

According to what discussed above, the perfor-

mance of the approximate algorithm for ANN queries

depends on the partition strategy. The deviation is ac-

ceptable if we do not limit the number of query points in

a Union-Find set; otherwise the deviation is very large.

This can be reflected by comparing the experimental

results in Fig.17(a) and Fig.18(a).

To sum up, the performance of our approach with

the Min strategy is better than that with the Num

strategy in most cases. The efficiency of pruning stra-

tegy for functionmax is much higher than that for func-

tion sum. Our approach with the Min strategy outper-

forms IER and TA significantly in most cases. In ad-

dition, our algorithms are not sensible to the deviation

between the edge weight and its Euclidean length.

7 Conclusions

In this paper, we proposed a novel approach to solve

the ANN query problem in road networks. Our ap-

proach contains two phases: searching phase and prun-

ing phase. The task of searching phase is to obtain

a candidate set S by computing the NNs of the query

points using NVD. In the pruning phase, effective prun-

ing strategy is applied to prune interesting data objects

from S. In addition, we proposed an approximate algo-

rithm for an ANN query with a large number of query



796 J. Comput. Sci. & Technol., July 2015, Vol.30, No.4

0

4

8

12

16

  

D
e
v
ia

ti
o
n
 (

%
)

    
0

40

80

120

160

0

700

1400

2100

2800

3500

UFS

       

UFS

       

UFS

C
P
U

 T
im

e
 (

s)

P
a
g
e
 A

c
c
e
ss

e
s

Min.sum

Min.max

Min.sum

Min.max

Min.sum

Min.max

(a) (b) (c)

Fig.17. Effect of |UFS|. (a) Deviation. (b) CPU time. (c) Page accesses.













       

NUFS
























       

NUFS

        

NUFS



D
e
v
ia

ti
o
n
 (

%
)

C
P
U

 T
im

e
 (

s)

P
a
g
e
 A

c
c
e
ss

e
s

(a) (b) (c)

Min.sum

Min.max

Min.sum

Min.max
Min.sum

Min.max

Fig.18. Effect of NUFS. (a) Deviation. (b) CPU time. (c) Page accesses.

points and the accuracy of result is not crucial. Exten-

sive experimental results show that the performance of

our proposed algorithms outperforms that of their com-

petitors in most cases. In the future, we plan to inves-

tigate some more interesting and challenging problems

of ANN queries, such as how to provide a theoretical

analysis of the approximate ANN algorithm and give a

theoretical bound of the error, and how to process ANN

queries efficiently for moving objects.
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