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Abstract Software defect prediction (SDP) is an active research field in software engineering to identify defect-prone

modules. Thanks to SDP, limited testing resources can be effectively allocated to defect-prone modules. Although SDP

requires sufficient local data within a company, there are cases where local data are not available, e.g., pilot projects.

Companies without local data can employ cross-project defect prediction (CPDP) using external data to build classifiers.

The major challenge of CPDP is different distributions between training and test data. To tackle this, instances of source

data similar to target data are selected to build classifiers. Software datasets have a class imbalance problem meaning

the ratio of defective class to clean class is far low. It usually lowers the performance of classifiers. We propose a Hybrid

Instance Selection Using Nearest-Neighbor (HISNN) method that performs a hybrid classification selectively learning local

knowledge (via k-nearest neighbor) and global knowledge (via näıve Bayes). Instances having strong local knowledge are

identified via nearest-neighbors with the same class label. Previous studies showed low PD (probability of detection) or

high PF (probability of false alarm) which is impractical to use. The experimental results show that HISNN produces high

overall performance as well as high PD and low PF.
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1 Introduction

It is crucial to prevent financial and human losses

due to the failures of software-intensive systems. Since

software defects may cause system failures, they should

be detected as soon as possible before release. Soft-

ware quality assurance resources are mostly limited and

thereby need to be allocated cautiously. Software de-

fect prediction (SDP) is one of active research fields in

software engineering to identify defect-prone modules

in software intensive systems. By directing valuable

resources to fault-prone modules, SDP can help ma-

nage software quality effectively. SDP is implemented

with the help of machine learning algorithms which re-

quire sufficient local training data to accurately pre-

dict defect-prone modules. It means that sufficient

training data should have the same distribution as test

data. This case is called within-project defect predic-

tion (WPDP). There are some cases where such local

data are not available, e.g., pilot projects within an or-

ganization. Additionally, the cost of identifying labels

of test data is usually expensive. In these situations,

companies can employ cross-project defect prediction

(CPDP) using external data to build a classifier. Typi-

cally, on software defect datasets, the ratio of the de-

fective class to the clean class is far low. This prob-

lem is called “the class imbalance”, which lowers the

performance of classifiers. To cope with the class imba-

lance, various approaches, e.g., data resampling[1], cost-

sensitive learning[2], and ensemble methods[3], have

been suggested. Particularly, in the context of the class

imbalance learning, it is significant to produce high

performance for the minority class while not severely
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lowering the performance of the majority class. Both

the defect detection rate and the overall performance

are measured to evaluate the performance of classifiers

since they have a trade-off relationship. For the defect

detection rate, the probability of detection (PD) and

the probability of false alarm (PF) are used. For the

overall performance, the metric utilizing both PD and

PF values, e.g., balance[4], is employed. Since it mea-

sures how well PD and PF values are balanced, higher

value is better.

As Turhan et al.[5] pointed out, cross-project (CP)

data increases both PD and PF. The reason is that

more known sources of defects and more irrelevancies

are introduced together to the prediction. Since classi-

fiers producing high PF rates are not practical to use, it

is necessary to study the prediction strategy producing

acceptable low PF rates.

The main objective of this research is to develop an

effective prediction model producing high PD and low

PF under cross-project settings. We propose a Hybrid

Instance Selection Using Nearest Neighbor (HISNN)

method to overcome the problems mentioned above by

filtering out irrelevant instances. The proposed ap-

proach performs a hybrid classification with considera-

tion of knowledge about both the class boundary and

the nearest cluster. To evaluate HISNN, this paper in-

vestigates the following research questions:

• RQ1: does HISNN generate performance practical

to use compared with other models under cross-project

settings?

• RQ2: can HISNN produce the prediction perfor-

mance comparable to within-project defect prediction?

The prediction performance of HISNN is assessed

by comparing it with the existing CPDP and the tech-

niques which are suggested for solving the class im-

balance problem. Wilcoxon rank-sum test[6] at a 5%

significance level and the A-statistics effect size test[7]

are conducted for the evaluation of the results. The

results show HISNN is significantly better than classifi-

cation models under CP settings. Furthermore, HISNN

produces overall performance comparable to WPDP.

Therefore, HISNN can be used to manage software

quality effectively by helping the decision making of

resource allocations.

The remainder of this paper is organized as follows.

In Section 2, we describe related work. In Section 3, our

proposed classification model is explained. The experi-

mental setup is described in Section 4. The results of

the experiments are described in Section 5. We explain

the threats to validity of our approach in Section 6.

In the last section, we conclude the paper and discuss

future work.

2 Related Work

2.1 Software Defect Prediction

Software defect prediction (SDP) aims at identifying

fault-prone modules in software. Not only do software

quality assurance activities like testing and inspection

require labor-intensive work, but also time and human

resources for such activities are limited. It is neces-

sary to allocate resources optimally for the purpose of

improving software quality and reducing the cost of

software quality control. Resources can be effectively

allocated more to fault-prone modules owing to SDP.

Researchers proposed a variety of SDP models[8-13]. In

most cases, within-project defect prediction (WPDP)

models have been studied. They are useful only if

companies collect and manage sufficient local historical

data. There are some cases where such local data are

not available, e.g., pilot projects within a development

organization. Small and mid-size organization may not

have enough financial/human resources to collect and

manage historical data. Cross-project defect prediction

(CPDP) is a defect prediction mechanism where a com-

pany without sufficient historical data can employ the

data collected from other companies to build a classi-

fier. More and more studies to solve the issues of CPDP

have been proposed recently.

Zimmermann et al.[14] performed 622 CPDP cases

with only 3.4% success. They indicated that the data

and process characteristics are key elements for the suc-

cess of CPDP. They suggested more researchers should

study CPDP.

He et al.[15] proposed the instance selection based

approach for CPDP. According to experimental results,

they indicated that distributional characteristics, e.g.,

mean, variance, are closely related to the prediction re-

sults.

Ma et al.[16] proposed a transfer learning based

CPDP technique called Transfer Näıve Bayes. The

similarity weights are calculated based on distributional

characteristics and then used for constructing a classi-

fier.

Nam et al.[17] applied a transfer learning technique

on software defect datasets. They asserted that diffe-

rent normalization options based on distributional cha-

racteristics affect the performance of CPDP.

Turhan et al.[5] suggested the nearest neighbor-

based relevancy filtering approach for CPDP. Instances
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from a training dataset were chosen to create a filtered

dataset similar to the test set. k-nearest neighbor us-

ing Euclidean distance was employed to measure the

similarity between training and test instances.

Previous studies of CPDP[5,14-17] utilized distribu-

tional characteristics, e.g., the mean, median, maxi-

mum and minimum, to calculate the similarity between

source and target data. The relevancy filtering method

(Burak filter)[5] employs a k-NN method to reduce PF

rates compared with the CP model not applying the

relevancy filter. In our research, we aim at reducing

PF rates further and obtaining optimal overall perfor-

mance (i.e., high PD and low PF). To show the effec-

tiveness of the proposed approach, it is compared with

the relevancy filtering method.

2.2 Class Imbalance Learning

The class imbalance problem indicates that the ra-

tio of defective instances to non-defective instances is

much low[18]. Through a systematic literature review

on SDP, Hall et al.[8] indicated that some classification

models might be negatively influenced by the class im-

balance. They asserted more SDP studies should take

into account the class imbalance issue to improve the

prediction accuracy.

Although the number of the minority class is far

less than that of the majority, its correct classification

is more valuable. The reason is that the misclassifica-

tion of the minority class is directly related to software

quality. If fault-prone modules are not correctly pre-

dicted, they would not have a chance to be inspected

or tested by limited software quality assurance control.

Thus, the class imbalance learning aims at obtaining

the classifier producing high overall performance (e.g.,

balance) as well as high performance for the minority

without lowering the performance of the majority class.

There have been various approaches to identifying

the minority class by taking into account the key cha-

racteristics of the class imbalance at algorithm and data

levels. A simple way to deal with the class imbalance

at the data level is sampling methods including under-

sampling and over-sampling. At the algorithm level,

cost-sensitive learning techniques are widely applied.

Different costs of misclassification are assigned to the

training instances.

Grbac et al.[19] studied the relationships between

the class imbalance of defect datasets and the perfor-

mance stability of machine learning models. They as-

serted that the prediction ability of classification mod-

els can be negatively influenced by a high level of im-

balance.

Raman and Ioerger[20] proposed the learning algo-

rithm using search ring (LASER) framework to deal

with class imbalance. They proposed a method which

adopts the instance selection strategy, i.e., selective

learning. In highly imbalanced domains, the minority

class instances will be incorrectly classified if global in-

formation is used. Consequently, they employed diffe-

rent instance selection strategies at different regions of

instance space.

In our study, we adopt the concept of LASER frame-

work to produce high prediction performance under

cross-project settings. Based on the work of Beyer et

al.[21], our approach additionally considers the nearest

cluster to improve the performance of nearest neighbor.

3 HISNN Approach

Under CP settings, it is required to address diffe-

rent distributions between source and target data. To

this end, we propose a Hybrid Instance Selection Using

Nearest Neighbor (HISNN) approach, a selective learn-

ing technique based on the local knowledge of source

data. It consists of two main phases, i.e., test data

instance selection and training data instance filtering.

Fig.1 shows the overall defect prediction process using

the HISNN method.

3.1 Testing Data Instance Selection

Our proposed HISNN extends LASER[20] to pro-

vide the high prediction performance for CPDP. The

training instances similar to the test instance are iden-

tified. Hamming distance is used as a similarity mea-

sure. The Min-Ham distance is the minimum distance

in Hamming space where there is a neighbor. Suppose

Min-Ham(xı) = ε, HammingDistance(xı, x) > ε,

∀xı ∈ X, where xı and x are element vectors of X

(instance space).

With the target instance as the center, a search ring

of Min-Ham radius in Hamming space is formed. There

are three possible cases when choosing all instances on

the ring.

• In case 1, only one instance is present (at Min-

Ham distance).

• In case 2, all instances are of the same class.

• In case 3, selected instances are of the different

classes.

In case 1, a test instance is closer to a single train-

ing instance than all the others. In LASER, an instance
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Fig.1. Overall process with hybrid instance selection using nearest neighbor approach.

in case 1 returns the class of the search ring like 1-NN.

Unlike LASER, our approach further explores the near-

est cluster of the close single training instance having

weak local knowledge. Beyer et al.[21] pointed out that

the nearest cluster should be considered when k-NN is

used as a predictor.

For case 1, additional three cases (i.e., case 1-1, case

1-2, case 1-3) are possible. With the single training in-

stance as the center, a search ring of Min-Ham radius

in Hamming space is formed.

• In case 1-1, only one instance is present (at Min-

Ham distance).

• In case 1-2, all instances are of the same class.

• In case 1-3, selected instances are of the different

classes.

Since an instance in case 1-1 has weak local know-

ledge and instances in case 1-3 fall near the decision

boundary, they need the global probability distribution

to determine the class label. Thus, for the instances

in case 1-1 and case 1-3, the näıve Bayes learner is

used. An instance in case 1-2 has strong local know-

ledge. Thus, the instance in case 1-2 returns the class

of the search ring like k-NN in Hamming space. Like-

wise, an instance in case 2 returns the class of the search

ring. For instances in case 3, the näıve Bayes learner is

employed.

HISNN employs a hybrid instance selection strategy,

i.e., k-closest instances for cases 1-2 and 2 and all in-

stances for cases 1-1, 1-3 and 3. The reason of doing

a local instance selection based on the local knowledge

of source data is that more extraneous instances might

be included by the inclusion of other instances. An in-

stance having the weak local knowledge falls near the

decision boundary and thus requires the global proba-

bility distribution to identify its class. Through the hy-

brid instance selection strategy, the strong local know-

ledge is explicitly used to produce the high prediction

performance.

3.2 Training Data Instance Filtering

HISNN approach utilizes outlier removing technique

and nearest neighbor approach to filter out the source

data instances that might hinder the prediction perfor-

mance.
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First of all, the outliers among the source project

data are identified and removed. In the HISNN ap-

proach, the outliers can be detected based on the Ma-

halanobis distance[22]. The Mahalanobis distance mea-

sures the distance between a data instance and the

whole data distribution. Its idea is to measure how

many standard deviations away the data instance is

from the mean of the distribution. We have considered

the data instance as an outlier if it is more than about

three standard deviations away from the mean of the

distribution. The HISNN approach filters the source in-

stances out with this scheme based on both the source

dataset distribution and the target dataset distribution.

The intuition behind this process is quite straight for-

ward. The outliers from the source dataset distribution

are regarded to be the noise of the source project data

and the outliers from the target dataset distribution

are obviously the irrelevant data instances that do not

aid the prediction. After this process, we obtain the

filtered source dataset containing the instances without

outliers.

For better CPDP, source instances similar to the

target data should be identified. Thus, the HISNN ap-

proach performs the nearest neighbor filtering based on

a search ring of Min-Ham radius around each test in-

stance. Only the source instances inside each search

ring will remain in the source dataset.

Finally, the HISNN approach merges the source in-

stances without outliers and the source instances simi-

lar to the test data to get the final training data. The

test instances which need the global probability distri-

bution to determine the class label are classified by the

näıve Bayes using this merged training data.

3.3 Performance Report

Typically, when considering the class imbalance

problem, a classifier is assessed by both the individual

and the overall performance. The individual perfor-

mance on the defective class is evaluated by the proba-

bility of detection (PD) and the probability of false

alarm (PF). The overall performance is assessed by bal-

ance which uses both PD and PF values. Table 1 shows

the confusion matrix used for performance evaluation.

Balance is defined as: balance = 1 −√
(0−PF )2+(1−PD)2

√

2
. It measures a Euclidean dis-

tance between the real (PD,PF ) point and the ideal

(PD,PF ) point, i.e., (1, 0). Balance shows how well

the performance between the defective and the non-

defective classes is balanced by a classifier. PD and

balance are desired to be high in contrast to PF.

Table 1. Confusion Matrix

Predicted Class

Buggy Clean

Actual class Buggy TP (true positive) FN (false negative)

Clean FP (false positive) TN (true negative)

4 Experimental Setup

To show the performance of the proposed approach,

we set up the comparative experiments. For RQ1,

LASER[20], näıve Bayes and Burak filter[5] under CP

settings are compared with our approach. For RQ2,

näıve Bayes under WP settings is compared with

HISNN.

The core concept of LASER is adopted into HISNN

for CPDP. LASER is chosen for experiments to check

whether it can be solely used for CPDP. Näıve Bayes

is chosen because it generally shows high performance

in SDP compared with other predictors[8]. Burak fil-

ter is selected since it is widely employed in CPDP

studies[4-5,23].

To evaluate the performance, our approach is com-

pared with other classifiers on NASA datasets. PD,

PF and balance are selected as performance measures

since they are considered useful in the context of the

class imbalance.

Hypotheses to answer RQ1 and RQ2 are formulated

as follows:

• H10: HISNN is not statistically better than the

other approaches under cross-project settings;

• H1A: HISNN is statistically better than the other

approaches under cross-project settings;

• H20: HISNN is neither statistically better than

nor similar to within-project defect prediction;

• H2A: HISNN is either statistically better than or

similar to within-project defect prediction.

4.1 NASA Datasets

NASA datasets obtained from PROMISE

repository 1○ and NASA MDP Software Defect

Datasets 2○ have been widely employed for the case

studies of SDP. Table 2 describes the characteristics of

1○http://openscience.us/repo/, July 2015.
2○http://nasa-softwaredefectdatasets.wikispaces.com/, July 2015.
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NASA datasets. Table 3 shows the features of NASA

datasets used in the experiments. To organize the

cross-project settings, each NASA dataset is selected

to be test data and the remaining datasets are utilized

as training data. For WPDP, the 50 : 50 random split

is used to obtain training and test data. Each CP and

WP case was run 100 times iteratively and the median

performance is reported.

Table 2. Projects of NASA Datasets

Project Number of Percentage of Description

Instances Buggy

cm1 1 498 09.83 Spacecraft instrument

kc1 1 183 24.85 Storage management

kc2 1 522 20.49 Science data processing

kc3 1 458 09.38 Storage management

mc2 1 161 32.30 Video guidance software

mw1 1 403 07.69 A zero-gravity experiment

pc1 1 109 06.94 Flight software

Table 3. Features of NASA Datasets

Type Feature

LOC Code and comment loc, comment loc, executable
loc, total loc

Halstead Halstead difficulty, Halstead effort, Halstead error,
Halstead length, Halstead time, Halstead volume,
unique operands, unique operators, total operands,
total operators

McCabe Cyclomatic complexity, design complexity

Branch Branch count

4.2 Classification Models

We employ k-NN from MATLAB 3○ and näıve Bayes

from the WEKA machine learning toolkit[24]. As

Turhan et al.[5] recommended, we apply log-filter to

all numeric values (i.e., replacing N with ln(N)) only

when näıve Bayes is used. Log-filter is not used when

k-NN is applied.

5 Experimental Results

Table 4 shows the median PD, PF and balance per-

formance of classification models. The best result over

each experiment is marked in boldface.

Fig.2 illustrates scatter plot of median PD and PF

values of five models over seven datasets. The bet-

ter classification model has more points at the bottom

right of the area since high PD and low PF are desired.

LASER shows the lowest PF value (0.245). However, its

PD value (0.534) is also the lowest. In Fig.2, all points

that represent LASER’s performance are located at the

bottom left of the area. Since the low PD value indi-

cates that the defect detection rate is low, this case is

impractical to use.

PD
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Fig.2. Scatter plot of median PD and PF values of five models
over seven datasets.

Table 4. Median PD, PF, and Balance Performance of Classification Models

Target LASER CP Näıve Bayes Burak Filter WP Näıve Bayes HISNN

Data PD PF Bal PD PF Bal PD PF Bal PD PF Bal PD PF Bal

cm1 0.571 0.311 0.325 0.755 0.423 0.654 0.775 0.436 0.652 0.760 0.377 0.683 0.714 0.351 0.679

kc1 0.312 0.159 0.501 0.642 0.390 0.625 0.751 0.499 0.605 0.840 0.633 0.541 0.486 0.283 0.585

kc2 0.476 0.166 0.611 0.869 0.378 0.716 0.878 0.387 0.712 0.833 0.336 0.730 0.626 0.231 0.689

kc3 0.534 0.245 0.628 0.883 0.414 0.695 0.906 0.440 0.681 0.863 0.377 0.713 0.697 0.262 0.716

mc2 0.461 0.220 0.588 0.807 0.587 0.563 0.673 0.504 0.574 0.653 0.454 0.592 0.711 0.394 0.654

mw1 0.548 0.327 0.605 1.000 0.688 0.513 0.677 0.416 0.627 0.625 0.284 0.671 0.677 0.314 0.681

pc1 0.558 0.318 0.614 0.857 0.732 0.472 0.857 0.788 0.433 0.820 0.600 0.553 0.740 0.507 0.596

Med 0.534 0.245 0.611 0.857 0.423 0.625 0.775 0.440 0.627 0.820 0.377 0.671 0.697 0.314 0.679

Note: PD: probability of detection, PF: probability of false alarm, Bal: balance, Med: median.

qua 3○http://www.mathworks.com, July 2015.
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Näıve Bayes under CP settings (CP NB) produces

the highest PD (0.857). However, it produces high PF

(0.423) as well. In contrast with LASER, CP NB shows

more points at the top right of the area. When practi-

tioners use defect predictors with high false alarm rates,

a great deal of time and budget must be allocated to

explore erroneous alarms. In cases of mw1 and pc1, PF

values show 0.688 and 0.732 respectively. As Turhan

et al.[5] pointed out, false alarm rates as high as 64%

could not be accepted by user groups. For most soft-

ware applications, it is impractical to use the predictors

producing very high PF rates.

To deal with such problems, Burak filter was pro-

posed by Turhan et al.[5] There are several cases of re-

ducing PF values, e.g., from 0.688 to 0.416. However,

there is still a case having very high PF value (0.788).

Like CP NB, Burak filter shows more points at the top

right of the area in Fig.2.

Näıve Bayes under WP settings (WP NB) shows

high PD (0.820) and low PF (0.377) as expected. How-

ever, there are cases producing high PF values (0.633,

0.454, and 0.600).

Our proposed HISNN shows the highest overall

performance (0.679) compared with the other models.

HISNN provides high accuracy for the minority class

without severely lowering the accuracy of the majority

class which is important in the context of the class im-

balance.

The predictive results are analyzed on the basis of

the research of [10, 25] that assesses the variability of

the classification models across multiple runs. We use

the mini boxplot to display the first, the second and the

third quartile of each case. The predictors are sorted

by their medians. Visually, a bar indicates the first-

third quartile range and a circle represents the median.

The minimum and the maximum values are not shown.

The 100 data points for each target project are merged

for each measure. The first, the second and the third

quartile are calculated with 700 data points for seven

projects. Fig.3 shows mini boxplots of median PD, PF

and balance of five models for all the projects sorted by

median. We show the predictive results for individual

projects in Appendix. We conduct the Wilcoxon rank-

sum test[6] at a 5% significance level to check which

classifiers are better than others. To assess the magni-

tude of the improvement, we perform A-statistics effect

size test[7]. An A-statistic of greater than 0.64 (or less

than 0.36) means a medium effect size. Seven hundred

data points for seven projects are used for the two tests.

Table 5 shows the comparison of HISNN with classifiers

based on the two tests. The boldface in the table shows

the significantly better result of HISNN with p-value

< 0.05 or A-statistics > 0.64 for PD and balance (for

PF, A-statistics < 0.36).
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Fig.3. Mini boxplots of (a) median PD, (b) PF, and (c) balance
values of five models over seven datasets.

Table 5. Comparison of HISNN with Other

Classification Models

LASER CP NB Burak Filter WP NB

PD p-value << 0.001 << 0.001 << 0.001 << 0.001

A-statistic 0.910 0.100 0.190 0.200

PF p-value << 0.001 << 0.001 << 0.001 << 0.001

A-statistic 0.750 0.120 0.140 0.270

Bal p-value << 0.001 << 0.001 << 0.001 0.009

A-statistic 0.770 0.650 0.660 0.530

The experimental results of HISNN can be analyzed

based on the two research questions.

For RQ1, in order for a classifier to be practical

to use, it should provide high overall performance as

well as high PD and low PF. In Table 5, the Wilcoxon

rank-sum test shows that the differences in balance val-

ues between HISNN and other classifiers under CP set-

tings are statistically significant with p-value << 0.001.

The effect size for balance is higher than 0.64 (LASER:

0.77, CP NB: 0.65, Burak Filter: 0.66), meaning the



976 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

medium effect. Thus, we reject H10. The results rep-

resent HISNN can be practically used compared with

other classifiers under CP settings.

For RQ2, we check if HISNN is comparable to

WPDP. In Table 5, the Wilcoxon rank-sum test shows

the difference in balance values between HISNN and

näıve Bayes under WP settings is statistically signifi-

cant with p-value << 0.05. In terms of the effect size

test for balance, the effect size is 0.53 indicating a small

effect. Since HISNN is comparable to WPDP, we reject

H20.

The benefit of HISNN is to obtain acceptably low

PF rates as well as high overall performance. However,

the weakness of HISNN is that PD rates are somehow

low compared with those of WPDP. The possible rea-

son of the outcome is as follows. Under CP settings, it

is crucial to select instances of source project similar to

target project. In HISNN, based on the local knowledge

of source data, two cases (a local search and a global

search) are separated. For each case, more irrelevant

instances might not be included. Consequently, low PF

rates could be obtained.

6 Threats to Validity

6.1 Construct Validity

Minimum hamming distance is employed as a simi-

larity measure among training instances in our ap-

proach. This distance metric might not be able to cap-

ture the true feature distributional characteristics.

6.2 External Validity

NASA datasets used for validation are open source

software project data. If our proposed approach is built

on closed software projects developed under different

environments, it might produce better/worse perfor-

mance.

6.3 Statistical Conclusion Validity

In this study, Wilcoxon rank-sum test is performed.

It is the recommended approach to check the statisti-

cal significant difference between two classifiers’ perfor-

mances.

7 Conclusions

Since software defect may cause system failures,

they should be detected as soon as possible before re-

lease. Software defect prediction can help manage soft-

ware quality effectively by directing quality assurance

resources to defective modules in that such resources

are limited. In cases where historical data are not

available, cross-project defect prediction (CPDP) us-

ing external data to build a classifier can be employed.

Its poor performance is mainly due to the different dis-

tributions between the source and the target projects.

One of the typical approaches for CPDP is to identify

source instances similar to a target project by using the

similarity measure based on distributional characteris-

tics.

On software defect datasets, the ratio of the defec-

tive class to the clean class is far low. This problem

called the class imbalance lowers performance of spe-

cific classification models. To deal with the class im-

balance, data resampling, cost-sensitive learning, and

ensemble methods have been studied.

In this paper, we proposed a Hybrid Instance Se-

lection Using Nearest Neighbor (HISNN) method us-

ing a hybrid classification to address the class imba-

lance for CPDP. Applicability of the selective learn-

ing based on the nearest neighbor via the class boun-

dary identification for CPDP was investigated. To ad-

dress the different distributional characteristics, train-

ing data instances were filtered based on the mini-

mum hamming distance used as the similarity measure.

Through Wilcoxon rank-sum test and A-statistics ef-

fect size test, we showed that HISNN is better in terms

of the overall performance. Through the proposed ap-

proach correctly predicting defective modules, the cost

of software quality control can be effectively managed.

As future work, we may study if there exist opti-

mal class imbalance learning techniques for CPDP that

maximize the PD while minimizing the PF.
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[19] Grbac T, Mausa G, Bašić B. Stability of software defect

prediction in relation to levels of data imbalance. In Proc.

the 2nd SQAMIA, Sept. 2013, pp.1:1-1:10.

[20] Raman B, Ioerger T R. Enhancing learning using feature

and example selection. Technical Report, Department of

Computer Science, Texas A&M Univ., 2003.

[21] Beyer K, Goldstein J, Ramakrishnan R, Shaft U. When is

“nearest neighbor” meaningful? In Lecture Notes in Com-

puter Science 1540, Beeri C, Buneman P (eds.), Springer-

Verlag, 1999, pp.217-235.

[22] Mahalanobis P C. On the generalised distance in statistics.

Proc. Natl. Inst. Sci., 1936, 2(1): 49-55.

[23] Turhan B, Tosun A, Bener A. Empirical evaluation of

mixed-project defect prediction models. In Proc. the 37th

EUROMICRO Conf. Softw. Eng. Adv. Appl., Aug. 30-Sept.

2, 2011, pp.396-403.

[24] Hall M, Frank E, Holmes G et al. The WEKA data mining

software: An update. ACM SIGKDD Explor. Newsl., 2009,

11(1): 10-18.

[25] Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener

A. Defect prediction from static code features: Current re-

sults, limitations, new approaches. Autom. Softw. Eng.,

2010, 17(4): 375-407.

Duksan Ryu earned his Bache-

lor’s degree in computer science from

Hanyang University, Seoul, in 1999,

and Master’s dual degree in software

engineering from Korea Advanced

Institute of Science and Technology

(KAIST), Daejeon, and Carnegie Mel-

lon University, Pittsburgh, in 2012. He is a Ph.D. student

in the School of Computing at KAIST. His research areas

are software defect prediction and software reliability

engineering.

Jong-In Jang earned his Bachelor’s

degree in computer science from the

School of Computing, KAIST, in

2014. He is an master student in the

School of Computing at KAIST. His

research areas are software reliability

engineering and requirements engineer-

ing.

Jongmoon Baik earned his B.S.

degree in computer science and statis-

tics from Chosun University, Gwangju,

in 1993. He received his M.S. and

Ph.D. degrees in computer science from

University of Southern California, Los

Angeles, in 1996 and 2000 respectively.

He worked as a principal research

scientist at Software and Systems Engineering Research

Laboratory, Motorola Labs, where he was responsible for

leading many software quality improvement initiatives.

Currently, he is an associate professor in the School of

Computing at KAIST. He is a member of ACM and IEEE.

His research activity and interest are focused on software

six sigma, software reliability & safety, and software

process improvement.

Appendix

In Figs.A1∼A3, mini boxplots of median PD, PF

and balance values of five classifiers for each tar-

get project over seven datasets are shown. In Ta-

bles A1∼A7, the comparison results of HISNN with

other classifiers for each target project are shown.
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Fig.A1. Mini boxplots of median PD values of five models over seven datasets. (a) cm1. (b) kc1. (c) kc2. (d) kc3. (e) mc2. (f) mw1.
(g) pc1.
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Fig.A2. Mini boxplots of median PF values of five models over seven datasets. (a) cm1. (b) kc1. (c) kc2. (d) kc3. (e) mc2. (f) mw1.
(g) pc1.
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Fig.A3. Mini boxplots of median balance values of five models over seven datasets. (a) cm1. (b) kc1. (c) kc2. (d) kc3. (e) mc2. (f)
mw1. (g) pc1.

Table A1. Comparison of HISNN with Other Classification

Models for the cm1 Project

LASER CP NB Burak Filter WP NB

PD p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 0.000 0.220

PF p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 0.000 0.270

Bal p-value <<0.001 <<0.001 <<0.001 0.035

A-statistic 1.000 1.000 1.000 0.420

Table A2. Comparison of HISNN with Other Classification

Models for the kc1 Project

LASER CP NB Burak Filter WP NB

PD p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 0.000 0.000

PF p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 0.000 0.000

Bal p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 0.000 0.890

Table A3. Comparison of HISNN with Other Classification

Models for the kc2 Project

LASER CP NB Burak Filter WP NB

PD p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 0.000 0.000

PF p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 0.000 0.020

Bal p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 0.000 0.030

Table A4. Comparison of HISNN with Other Classification

Models for the kc3 Project

LASER CP NB Burak Filter WP NB

PD p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 0.000 0.010

PF p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 0.000 0.020

Bal p-value <<0.001 <<0.001 <<0.001 0.434

A-statistic 1.000 1.000 1.000 0.530
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Table A5. Comparison of HISNN with Other Classification

Models for the mc2 project

LASER CP NB Burak Filter WP NB

PD p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 1.000 0.660

PF p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 0.000 0.280

Bal p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 1.000 1.000 0.920

Table A6. Comparison of HISNN with Other Classification

Models for the mw1 Project

LASER CP NB Burak Filter WP NB

PD p-value <<0.001 <<0.001 0.300 0.036

A-statistic 1.000 0.000 0.500 0.580

PF p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 0.000 0.000 0.000 0.760

Bal p-value <<0.001 <<0.001 <<0.001 0.036

A-statistic 1.000 1.000 1.000 0.580

Table A7. Comparison of HISNN with Other Classification

Models for the pc1 Project

LASER CP NB Burak Filter WP NB

PD p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 0.000 0.070

PF p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 1.000 0.000 0.000 0.100

Bal p-value <<0.001 <<0.001 <<0.001 <<0.001

A-statistic 0.000 1.000 1.000 0.880


