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Abstract We present the AS-Index, a new index structure for exact string search in disk resident databases. AS-Index

relies on a classical inverted file structure, whose main innovation is a probabilistic search based on the properties of algebraic

signatures used for both n-grams hashing and pattern search. Specifically, the properties of our signatures allow to carry

out a search by inspecting only two of the posting lists. The algorithm thus enjoys the unique feature of requiring a constant

number of disk accesses, independently from both the pattern size and the database size. We conduct extensive experiments

on large datasets to evaluate our index behavior. They confirm that it steadily provides a search performance proportional

to the two disk accesses necessary to obtain the posting lists. This makes our structure a choice of interest for the class of

applications that require very fast lookups in large textual databases. We describe the index structure, our use of algebraic

signatures, and the search algorithm. We discuss the operational trade-offs based on the parameters that affect the behavior

of our structure, and present the theoretical and experimental performance analysis. We next compare the AS-Index with

the state-of-the-art alternatives and show that 1) its construction time matches that of its competitors, due to the similarity

of structures, 2) as for search time, it constantly outperforms the standard approach, thanks to the economical access to

data complemented by signature calculations, which is at the core of our search method.

Keywords full text indexing, large-scale indexing, algebraic signature

1 Introduction

Databases increasingly store data of various kinds

such as text, DNA records, and images. This data is

at least partly unstructured, which creates the need

for full text searches (or pattern matching)[1]. In main

memory, matching a pattern P against a string S runs

in O(|S|/|P |) at best[2]. Searching very large datasets

requires a disk-resident index, involving some storage

overhead and a possibly long index construction time.

We address the problem of searching arbitrarily long

strings in external memory. We assume a database

D = {R1, R2, · · · , Rn} of records, viewed as strings over

an alphabet Σ. The database supports record insertion,

deletion and update, as well as the search on any sub-

string, called pattern, of the records’ contents.

Currently deployed systems for textual documents

use almost exclusively inverted files indexing words for

keyword search. However, our need for full pattern

matching in records where the concept of word may

not exist rules out this solution. Suffix trees and arrays

form a class of indexes for pattern matching. Suffix

trees work best when they fit into RAM. Attempts to

create versions that work from disks are recent and ex-

perimental. They raise difficult technical issues[3-4] due

to a bad locality of reference, a necessarily complex
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paging scheme, and structural deterioration caused by

inserts into the structure. A suffix array stores pointers

on a list of suffixes sorted in lexicographic order, and

uses binary search for pattern matching. However, a

standard database architecture stores records in blocks

and supports dynamic insertions and deletions, which

makes the maintenance of sequential storage difficult.

A suffix array search needs O(log2 N) block accesses,

where N is the size (number of characters) of D. We

are not aware of a generic solution to these difficulties

in the literature, and without one, these costs disqualify

suffix arrays for our needs.

Two approaches that explicitly address disk-based

indexing for full pattern-matching searches are the

String B-Tree[3] and n-gram inverted index[5-6]. The

String B-Tree is basically a combination of B+-Tree

and Patricia Tries. The global structure is that of

a B+-Tree, where keys are pointers to suffixes in the

database. Each node is organized as a Patricia Trie,

which helps guide the search and insert operations. A

String B-Tree finds all occurrences of a pattern P in

O(|P |/B + logB N) disk accesses, where B is the block

size. Another direction for text search needs is indexes

inverting n-grams (n consecutive symbols) instead of

entire words. They are “disk friendly” in that they

rely on fast sequential scans, provide a good locality of

reference, and easily adapt to paging and partitioning.

However, the search cost is linear in both the size of the

database and the size of the pattern.

In the present paper, we introduce a new data struc-

ture for index-based full-text search called Algebraic

Signature Index (AS-Index). It follows the path of

an inverted file based on n-grams, and combines stan-

dard database large-scale indexing (namely hashing)

with a new hash calculus based on algebraic signatures

(ASs)[7]. The main originality of our approach is to

take advantage of the interpretation of characters as

symbols in a mathematical structure. The operations

in this structure (a Galois field) contribute to develop

new computational techniques that identify the result

items of a search in constant time. As a result, our in-

dex structure enjoys the attractive property, unique at

present to our knowledge, of performing records lookup

with a constant number of disk accesses, independent

from both the size of the database and the length of the

pattern.

Our experiments show AS-Index is a very fast solu-

tion to pattern searches in a database. AS-Index search

only needs two disk lookups when the hash directory fits

in main memory. In our experiments, it proves to be

up to one order of magnitude faster than n-gram index

and twice faster than the String B-Tree. Although the

AS-Index is probabilistic by nature and could return

some false positives, we analytically demonstrate, and

confirm by our experiments, that they are very unlikely.

The basic variant of AS-Index has a storage overhead

of about 5∼6. A variant of our scheme only indexes se-

lective n-grams and has lower storage overhead at the

cost of slower search time and higher rate of false pos-

itive. All these properties make AS-Index a practical

solution for text indexing.

This paper extends [8] by proposing a complete

theoretical analysis of the expected AS-Index perfor-

mance and of the probability of false positive. It also

introduces a non-dense indexing variant. This extended

version includes a detailed description of our implemen-

tations for the different structures, incorporating data

compression, and a large revisited experimental section

with larger datasets (20 GB versus 100 MB in [8], with

the support of the data compression), a study of false

positive, and the evaluation of the non-dense indexing

variant.

The paper is organized as follows. Section 2 gives

an overview of the AS-Index basic principles. Section 3

recalls the theory of algebraic signatures. We then dis-

cuss the AS-Index structure in Section 4 and the search

algorithm in Section 5. Section 6 analyzes the scheme’s

behavior, especially collision and false positive proba-

bility, as well as performance, and Section 7 presents

the variants. Section 8 explains the details of our im-

plementation of String B-Trees, n-gram index and AS-

Index, and experiments. We review related work in

Section 9. Finally, we summarize and give future re-

search directions in Section 10.

2 AS-Index Overview

AS-Index is a classical hash file with variable length

disk-resident buckets (see Fig.1). Buckets are pointed

to by the hash directory. Simplicity and performance of

such files have attracted countless applications. Their

main advantage is a constant number of disk accesses,

independent of the file and pattern size. Constant num-

ber of disk accesses is not possible for a tree/trie access

method. Each bucket stores a list of entries, and each

entry indexes some n-gram in the database. The basic

variant of AS-Index is dense, indexing every n-gram.

The hash function providing the bucket for an entry

uses the n-gram value as the hash key. The hash func-

tion is particular: it relies on algebraic signatures of
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n-grams, to be described in the next section. In what

follows, we only deal with the static AS-Index, but the

hash structure may use standard mechanisms for dy-

namicity, scalability and distribution.

Pattern P

Sp

h↼S↽

H
a
sh

 D
ir
e
c
to

ry

e

AS↼e֒ e֒ Sp↽

Success

Failure

e
h↼S↽

SS

Fig.1. Matching attempt with AS-Index.

In overview, a search for a pattern P proceeds as

follows (Fig.1). First, we preprocess P for three signa-

tures: 1) of the initial n-gram S1, 2) of the final n-gram

S2, and 3) of the suffix Sp of P after S1 (and includ-

ing S2). Hashing on S1 locates the bucket with every

entry e1 indexing an n-gram in the database with the

same signature as S1. Likewise, hashing on S2 locates

the bucket with every entry e2 indexing an n-gram with

the signature of S2. We only consider pairs of entries

that are in the same record and at the right distance

among them. We thus locate any string S matching P

on its initial and terminal n-gram, at least by signature.

Finally, an algebraic calculation AS(e1, e2, Sp) de-

termines whether Sp matches the suffix of S as well.

This calculation is made possible by the specific proper-

ties of the signatures that allow to check some semantics

properties (e.g., string matching) in spite of their very

compact representation, something which could not be

achieved with standard hash functions. The method is

probabilistic in nature, with low chances of false posi-

tives. We can avoid even a minute possibility of a false

match by a symbol for the symbol comparison between

the pattern and the relevant part of the record.

By limiting disk accesses to the two buckets asso-

ciated to the first and the last n-grams of P , AS-Index

search runs independently from P ’s size. The cost of

the search procedure outlined above is reduced to that

of reading two buckets. The hash directory itself can of-

ten be cached in RAM, or needs at most two additional

disk accesses, as we will show. With an appropriate

dynamic hashing mechanism that evenly distributes the

entries in the structure and scales gracefully, the bucket

size is expected to remain uniform enough to let the

AS-Index run in constant time, independently of the

database size.

Table 1 compares the analytical behavior of AS-

Index with those of two competitors (String B-Tree[3]

and n-gram index[5-6]) and summarizes its expected ad-

vantages. The size of all structures is linear in the size

|D| of the database. The ratio directly depends on the

size of index entries. We mention in Table 1 the ratio

obtained in our implementation, before any compres-

sion. The asymptotic search time in the database size

is linear for n-gram index, logarithmic for String B-

Tree, and constant for AS-Index. Moreover, once the

pattern P has been pre-processed, AS-Index runs in-

dependently of P ’s size, whereas n-gram index cost is

linear in |P |.

Table 1. Disk-Based Index Structures for Searching a

Pattern P in a Database D

String B-Tree n-Gram AS-Index

Construction O(|D| × logB |D|) O(|D|) O(|D|)

Storage O(|D|) O(|D|) O(|D|)

(ratio) (∼6 or 7) (∼6) (∼5 or 6)

Pre-processing None O(|P |) O(|P |)

Search O(|P |/B + logB |D|) O(|D| × |P |) O(1)

Note: B is the block size.

In summary, AS-Index efficiently identifies matches

with only two disk lookups, whatever the pattern

length. This efficiency is achieved through the exten-

sive use of properties of algebraic signatures, described

in the next section. It also relies on the robustness

of signatures to skewed distributions, analyzed in Sec-

tion 6.

3 Algebraic Signatures

We use a Galois field (GF) GF (2f ) of size 2f . The

elements of GF are bit strings of length f . Selecting

f = 8 deals with ASCII records and f = 16 with Uni-

code records. We recall that a Galois field is a finite

set that supports addition and multiplication. These

operations are associative, commutative and distribu-

tive, having neutral elements 0 and 1, and there exist

additive and multiplicative inverses. In a Galois field

GF (2f ), addition and subtraction are implemented as

the bitwise XOR. Log/antilog tables usually provide the
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most practical method for multiplication[7]. We adopt

the usual mathematical notations for the operations in

what follows. We use a primitive element α of GF (2f ).

This means that the powers of α enumerate all the non-

zero elements of the Galois field. It is well known that

there always exist primitive elements.

Let R = r0r1 · · · rM−1 be a record with M symbols.

We interpret R as a sequence of GF elements. Identify-

ing the character set of the records with a Galois field

provides a convenient mathematical context to perform

computations on record contents.

Definition 1. The m-symbol algebraic signature

(AS) of a record R is a vector ASm(R) with m coordi-

nates (s1, s2, . . . , sm) defined by















































s1 = r0 + r1 × α+ r2 × α2 + . . .+ rM−1 × αM−1,

s2 = r0 + r1 × α2 + r2 × α4 + . . .+ rM−1×

α2(M−1),
...

sm = r0 + r1 × αm + r2 × α2m + . . .+ rM−1×

αm(M−1).

(1)

We refer readers to [7] for more details about defi-

nitions and properties of algebraic signatures.

In our examples, we represent the m-symbol AS

of R as the concatenation of the values sm, · · · , s1
in hexadecimal notation. For instance, if s1 = #34

and s2 = #12, then we write the 2-symbol AS as

s2s1 = #1234.

We use different partial algebraic signatures of pat-

tern and database records, as we now explain.

Definition 2. Let l ∈ [0,M − 1] be any posi-

tion (offset) in R. The cumulative algebraic signa-

ture (CAS) at l, CASm(R, l), is the algebraic signa-

ture of the prefix of R ending at rl, i.e., CASm(R, l) =

ASm(r0 . . . rl).

The partial algebraic signature (PAS) from l′ to l is

the value PASm(R, l′, l) = ASm(rl′rl′+1 · · · rl), with

0 6 l′ 6 l. Finally, we most often use the PAS of

substrings of length n, i.e., of n-grams.

Definition 3. The n-gram algebraic signature

(NAS) of R at l is NASm(R, l) = PASm(R, l − n +

1, l), for l > n− 1. In other words:

NASm(R, l) = (rl−n+1 + · · ·+ rl × αn−1,

rl−n+1 + . . .+ rl × α2(n−1),

...

rl−n+1 + . . .+ rl × αm(n−1)). (2)

In all the definitions, we may drop R whenever it is

implicit for brevity’s sake. Fig.2 shows the respective

parts of the record that define CAS, PAS and NAS at

offset l. The following simple properties of algebraic

signatures, expressed for coordinate i, 1 6 i 6 m, are

useful for what follows. We note the i-th symbol of a

CAS at l as CASm(l)i and proceed similarly for NAS

and PAS.

CASm(l)i = CASm(l − 1)i + rl × αil, (3)

NASm(l)i =
NASm(l − 1)i − rl−n

α
+ rl × αi(n−1), (4)

NASm(l)i =
CASm(l)i − CASm(l − n)i

αi(l−n+1)
, (5)

CASm(l)i = CASm(l′)i + αi(l′+1)PASm(l′ + 1, l)i,

CASm(l)i =0 6 l′ < l. (6)

rl֓n⇁rl'r rM֓

CAS↼l↽ PAS↼l'֒ l↽ NAS↼l↽

Record RM

rl

Fig.2. Computing CAS(l), PAS(l′, l) and NAS(l) in record
RM .

Formulas (3) and (4) let us incrementally calculate

next CAS and NAS while scanning an input record or

the pattern, instead of recomputing the signature en-

tirely. This speeds up the process considerably. (5)

also speeds up the pattern preprocessing, as it will be

shown in the following. (6) finally is fundamental for

the match attempt calculus. Table 2 summarizes the

symbols used in the paper.

Table 2. Symbols Used in the Paper

Symbol Interpretation

f Size (in bits) of a GF element in
GF (2f ) (f = 8 or f = 16)

n Size of n-grams

m Size of signature vectors, m 6 n

M Size of records

K Size of patterns, K > n

L Number of lines in the AS-Index

r0, r1, · · · , rM−1 Record characters/symbols

s1, · · · , sm One-symbol signatures

S1, · · · , Sm One-symbol n-gram signatures

4 Structure

Our database consists of records that are made up of

a record identifier (RID) and some non-key field. (Ex-
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tensions to databases with more than one key and/or

non-key field are straight-forward.) We assume that

the non-key field consists of strings of characters inter-

preted as symbols from our Galois field. Our search

finds all occurrences of a pattern in the non-key field of

any record in the database. When we talk about offsets

and algebraic signatures, we only refer to the non-key

field. If R is such a field and ri a character (Galois field

element) in R, then we call i the offset. An n-gram

G = rl−n+1 · · · rl is any sequence of n consecutive sym-

bols in R. By extension, we then call l the offset of the

n-gram.

An AS-Index consists of entries.

Definition 4. Let G be an n-gram at offset o in

R. The entry indexing G, denoted as E(G), is a triplet

(rid, o′, c) where rid is the RID of R, c is CAS1(R, o),

and o′ is o modulo 2f − 1.

We assure the constant size of the entries by taking

the remainder. The choice of the modulus is justified

by the identity χ2f−1 = χ for all Galois field elements

χ.

The indexing is “dense”, i.e., every n-gram in the

database is indexed by a distinct entry. To construct

the index, we process all n-grams in the database.

AS-Index is a hash file, denoted as D[0...L−1], with

directory length L = 2v being a power of 2 (Fig.3). Ele-

ments of D refer to buckets or lines of variable length,

each containing a list of entries. Lines are of variable

length to accommodate a possible uneven distribution

of n-gram values. Each D[i] contains the address of the

i-th bucket.

Buckets

↼r֒ l֒ c↽ ⊲⊲⊲

Entries for CAS c

↼ri֒ li֒ c'↽

Entries for CAS c'

Structure of a Bucket

e e
↼r֒ l֒ c↽

H
a
sh

 D
ir
e
c
to

ry
 D

L֓



Ci

CL֓

C

⊲⊲⊲

D DD

Fig.3. Structure of the AS-Index.

All together, the AS-Index line structure is simi-

lar to a posting list in an inverted file, except for the

presence of the CAS c in each entry and a specific rep-

resentation of the offset l. Since we use a hash file, lines

should have a collision resolution method such as clas-

sical separate chaining that uses pointers to an over-

flow space. Such a technique accomodates moderate

growth, but if we need to accomodate large growth,

then we need a dynamic hashing method such as linear

hashing.

We now describe how to calculate the index i of the

line for an entry E(G) = (rid, o, c). We calculate i from

the m-symbol NAS NASm(G) = (s1, . . . , sm). The co-

ordinates of the NAS are bit strings. By concatenating

them, we obtain a bit string S = smsm−1 . . . s1 that we

interpret as a large, unsigned integer. The index i is:

i = hL(S) = S mod L.

Since L = 2v, this amounts to extracting the last v bits

of S. It is easy to see that m should be such that m 6 n

and m > ⌈v/f⌉. The choice of AS-Index parameters m,

n and L will be further discussed in Section 6.

Example 1. Consider a 100-GB database with byte-

wide symbols (f = 8). For the sake of example, let

L = 230, leading to buckets with ⌈1011/230⌉ = 93 en-

tries on average. Let n = 5 and m = 4. To calculate

line index i of n-gram G, we thus concatenate s4...s1 of

NAS4(G). Then we keep the last 30 bits.

Now, consider the record with RID 73 and non-key

field “University Paris Dauphine”. Assume that

NAS4(“Unive”, 4) is #3456789a. Since this is the

first 5-gram, CAS1(73, 4) has the same value as the

first component, i.e., #9a. For subsequent 5-grams,

the first coordinates of the NAS and the CAS usually

differ. The entry is E = (73, 4,#9a). Its line index

is #3456789a mod 230 = #3456789a (we remove the

leading 2 bits).

5 Pattern Search

Let P = p0 . . . pK−1 be the pattern to match. AS-

Index search delivers the RID of every record in the

database that contains P . The search algorithm first

prepocesses P , and then retrieves (possible) matching

thanks to AS-Index.

5.1 Preprocessing

The preprocessing phase computes three signatures

from the pattern P :

1) the m-symbol AS of the 1st n-gram in P , called

S1;

2) the 1-symbol PAS of the suffix of P following the

1st n-gram, Sp = PAS1(P, n,K − 1);

3) the m-symbol AS of the last n-gram in P , called

S2.

Observe that we use an m-symbol AS for the n-

grams to obtain a large range of hash values that fit
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the directory length, while we compute a 1-symbol PAS

since for reducing storage costs, we store 1-symbol CAS

values in entries. There are several ways to compute

these signatures. For instance, one may compute S1,

then Sp, and then calculate the m-symbol value of S2

thanks to (5).

Fig.4 shows the parts of the pattern that determine

the signatures S1, S2 and Sp on our running example.

Recall that n = 5 and m = 4. We preprocess the pat-

tern P = “University Paris Dauphine” and obtain

1) S1 = NAS4(P, 4) (for 5-gram “Unive”);

2) S2 = NAS4(P, 24) (for 5-gram “phine”);

3) Sp = PAS1(P, 5, 24).

This information is used to find the occurrences of

the pattern in the database.

l/l⇁K−n

NAS S

PAS  S
p

l

CAS cCAS c

Record R

Pattern P

NAS S

Conference at the University Paris Dauphine

 

University Paris Dauphine

Fig.4. Search algorithm.

5.2 Processing

Let i = hL(S1) and i′ = hL(S2). Every entry

(R, l1, c1) in bucket D[i] indexes an n-gram G in a

record R whose NAS SG is such that hL(SG) = hL(S1).

Likewise, every entry (R′, l2, c2) in bucket D[i′] indexes

an n-gram G′ such that hL(G
′) = hL(S2). Up to possi-

ble collisions, G and G′ correspond to the first and the

last n-grams in P respectively.

We only consider pairs (G,G′) that possibly cha-

racterize a matching string S = P . This involves the

additional constraints R′ = R and l2 = (l1 + K − n)

mod (2f − 1). The last component in G′, c2, has to

match the value computed from c1 and Sp thanks to

(6), namely:

c2 = c1 + αl1+1 × Sp. (7)

Fig.5 illustrates the process. By hashing on S1 =

“Unive”, we retrieve the bucket D[i] which contains,

among others, the entries indexing all occurrences of

“Unive” in the database. Similarly, we retrieve the

bucket D[i′] which contains entries for all the oc-

currences of the n-gram “phine”. A pair of entries

[ei(r1, l1, c1), e
′

i(r1, l4, c4)] in (D[i], D[i′]) represents a

substring s of r1 that begins with “Unive” and ends

with “phine”. Checking whether s matches P involves

two tests: 1) we compute c1 + αl1+1 × Sp and compare

it with c4 to check whether the signatures of the mid-

dle parts match, and 2) we verify as discussed whether

l1 matches l2 given K, i.e., S and P have the same

length. If both tests are successful, we report a prob-

able match. The next attempt will consider (r3, l2, c2)

in D[i] and (r3, l6, c6) in D[i′]. Note that (r2, l5, c5) in

D[i′] is skipped because there is no possible match on

r2 in D[i]. The pseudo-code of Algorithm 1 is given

below.

Algorithm 1. AS-Search

Input: a pattern P = p0 . . . pK−1, the n-gram size n

Output: the list of records that contain P

begin

// Preprocessing phase
S1 := NASm(P, n− 1)
S2 := NASm(P,K − 1)
Sp := PAS1(P, n,K − 1)
i := hL(S1) // i is the first line index
i′ := hL(S2) // i′ is the second line index
// Processing phase
for each entry E(R, l1, c1) in D[i]

c2 = c1 + αl1+1
× Sp

l2 = (l1 +K − n) mod (2f − 1)
if (there exists an entry E′(R, l2, c2) in D[i′]) then

Report success for R
endif

endfor

end

Check CAS

H
a
sh

 D
ir
e
c
to

ry
 D

L֓



i'

i ↼r֒ l֒ c↽

↼r֒ l֒ c↽ ↼r֒ l֒ c↽

⊲⊲⊲

⊲⊲⊲

↼r֒ l֒ c↽

↼r֒ l֒ c↽

↼r֒ l֒ c↽

Bucket for NAS(‘‘ Unive’’)

Bucket for NAS(‘‘ phine’’)

and Positions

Fig.5. Using AS-Index for a search.

The selectivity of the process relies on its ability

to manipulate three distinct signatures, S1, S2 and Sp.

Therefore the pattern length must be at least n+ 1.

5.3 Collision Handling

As hashing in general, our method is subject to col-

lisions delivering false positives. To eliminate any col-

lisions, it is necessary to post-process AS-Search by at-

tempting to actually find P in every R identified as
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a match. This requires a symbol by symbol compari-

son between P and its presumed match location. It

will appear however that AS-Search should typically

have a negligible probability of a collision. Hence post-

processing may be left to presumably rare applications

needing full assurance. It is also RAM-based and there-

fore typically negligible with respect to the disk search

time.

6 Analysis

We now present a theoretical analysis of the ex-

pected AS-Index performance.

6.1 Hash Uniformity

Algebraic signature values tend to have a more uni-

form distribution than character values, due to the mul-

tiplications by powers of α in their calculations. How-

ever, the total number of strings or n-grams in a dataset

gives an upper bound for the number of algebraic signa-

tures calculated from them. Biological databases often

store DNA strings in an ASCII file, encoded with only

four characters “A”, “C”, “G”, and “T”. There are only

46 ≈ 4K different 6-grams in the file and the number

of different NASs of these signatures cannot exceed this

value. Increasing the number of coordinates in the NAS

beyond five symbols is not going to achieve a better uni-

formity. This caution applies only to files using a small

alphabet.

Let us consider the more classical setting and natu-

ral language encoding. We choose a list of English

words (209 881 words — 2.25 MB) of six or more chara-

cters, taken from a word list used to perform a dictio-

nary attack on a password file (by an administrator

trying to weed out weak passwords). We calculate the

3-symbol 3B signature of all possible words with more

than five characters (65 536 words) and calculated the

number of words that correspond to each signature

as well as this number for a perfect hash function (Ta-

ble 3). Therefore, e.g., we see that only 1 297 signatures

Table 3. Actual and Expected Number of Collisions

Using a 3B Signature on a Dictionary of 209 881

Moderately Sized English Words

Number of Collisions Taken Expected

> 0 16 568 642 16 568 642.300 000 0

> 1 16 207 274 16 207 272.000 000 0

> 2 16 561 293 16 561 296.470 000 0

> 3 16 568 647 16 568 645.406 240 0

> 3 16 568 640 16 568 640.016 907 9

reveal a collision for 2 words, and only 7 signatures for

3 words. The χ2 value of 0.479 166 shows a very close

agreement. When repeating the test using the 2-symbol

2B signatures, we obtained χ2 = 0.21. A much smaller

set had χ2 = 4.797 42, but there were less signatures

attained by a high number (> 5) of words. These re-

sults give experimental verification for the “flatness” of

signatures.

6.2 Storage and Performance

• Index Construction Time. Formulas (2)∼(6) of al-

gebraic signatures allow us to calculate all entries with

a linear sweep of all records. We need to keep a pointer

to the symbol just beyond the current n-gram and to

the first symbol of the current n-gram. Using (3) and

(4), we can then calculate the NAS of the next n-gram

from the old one and update the running CAS of the

record. Since creating the entry for an n-gram and in-

serting it into the index take constant time, building

the index takes time linear to the size of the database.

• Storage Costs. The storage complexity of AS-

Index is O(N) for N indexed n-grams. The actual size

of an RID should be 3∼4 bytes since 3 bytes already

allow a database with 16M records. The actual storage

per entry should be about 5∼6 bytes, which results in a

storage overhead of about (5∼6)N . We can lower this

storage overhead, e.g., to 125%, by non-dense indexing

at the expense of a proportional increase in search time,

see Section 7.

Example 2. We still consider a 100-GB database

with 8B symbols. Assuming an average record size of

100 symbols, we have 1G records and our record iden-

tifier needs to be 4B long. We previously set the size of

the CAS to 1B. With the 1B offset into the record, the

entry is 6B. AS-Index should use about 6 times more

space than the original database. Now assume records

of 10KB each. The record identifiers can be 3B long.

This gives a total entry size of 5B or a storage factor of

5.

Each element of the hash directory stores a bucket

address with at least ⌈log2(L)⌉ bits. In the case of our

large 100 GB database, with L = 230, choosing 4 bytes

for the address leads to the required storage of 4.1 GB,

smaller than the current data servers standard capacity.

In most cases, D is expected to fit in main memory.

• Pattern Preprocessing. To preprocess the pattern,

we need to calculate a PAS and two NASs. We calculate

both in a similar manner as above and obtain prepro-

cessing time linear in the size of the pattern. Since the
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result depends on all symbols in the pattern, we cannot

do better.

• Search Speed. We assume that entries are close

to uniformly distributed. The search algorithm picks

up two cells in the hash directory, in order to obtain

the number of entries and the bucket references of D[i]

and D[i′], respectively. Then the buckets themselves

must be read. Each of these accesses may incur a ran-

dom disk access, hence a (constant) cost of at most

four disk reads. If the hash directory resides in main

memory, the cost reduces to loading the two buckets.

The main memory cost is an in-RAM join of the

two buckets. With l denoting the expected line length,

and assuming the lines are ordered on document ID

and then on the position in the document, the average

complexity of this phase is (under our uniformity as-

sumption) 2l while the worst case is O(l2). Observe

that the worst case is highly unlikely as all the entries

on both lines should fit into the same record. The op-

tional collision resolution (symbol-to-symbol) test adds

O(|P |). This test is typically performed in RAM and

makes only a negligible contribution to the otherwise

constant cost. Altogether, the search cost is

S = Chash + Cbuck + Cram + Cpost,

where Chash represents the hash directory access cost,

Cbuck the bucket access cost, Cram the RAM processing

cost and Cpost the post-processing.

We now evaluate the actual search time that may

result from the above complexity figures. We take as

a basis the characteristics of the current popular hard-

ware shown in Table 4 (see also [9] for a recent analysis).

Table 4. Hardware Characteristics

Device Access Time

Processor speed 2∼3 Gz per core

RAM speed 100 ns

Flash disk access 0.4∼0.5 ms

Magnetic disk 5∼7 ms

Disk transfer rate 300 MB/s

Chash is the cost of fetching two elements in the hash

directory. The transfer overhead is negligible, and the

(worst-case) cost is therefore in the range [10, 14] ms

for magnetic disks. The bucket access cost Cbuck is

similar to Chash regarding random disk accesses, but

we fetch far more bytes per access. We need to transfer

2l entries. Table 4 suggests that we can transfer up to

300 KB per ms (flash transfer rate is similar). Since

the size of an entry is typically 5∼6 bytes, each search

loads 10l∼12l. It follows that for l = 1K, the line trans-

fer cost is negligible. For l = 16K, 160∼200 KB must be

transferred. The cost is about 0.5∼0.7 ms. This is still

negligible with respect to disk accesses for AS-Index on

magnetic disk, but not on solid one. In the latter case,

the transfer cost is equivalent to an additional disk ac-

cess.

The basic formula (average cost) for Cram, the in-

RAM join of the two lines, is 2l×E where E is a visited

entry processing cost. In detail, we have two RAM ac-

cesses to RIDs. In this, test is successful, and we need

two additional accesses to CASs, two to offsets o and

one to the log table for algebraic computations. A con-

servative evaluation of E = 250 ns seems fair. The cost

of the in-RAM join can thus be estimated as 100 µs for

l = 200, 500 µs for l = 1 000, and 8 ms for l = 16K.

The first cost is negligible whatever the storage media

is; next one is so for disk, but not for flash; the latter

is not for either.

Finally, the postprocessing cost P can be estimated

based on a unit cost of 100 ns per symbol. Even for

a 1 000 symbols long pattern, the postprocessing costs

100 µs, which remains negligible for both magnetic disk

and flash memories. Its importance also depends on the

number of matches, of course.

6.3 Choice of File Parameters

The previous analysis leads to the following con-

clusions regarding the choice of AS-Index parameters.

As a general rule of thumb, one must choose parame-

ter L so as to maintain the hash directory D in RAM.

Caching D in RAM, whenever possible, saves two disk

access on four. Setting a limit on Lmay lead to increase

the average line length l, but our analysis shows that

this remains beneficial even when l reaches hundreds

or even thousands of entries. Under our assumptions,

l should reach 16K to add the equivalent of one ran-

dom access to the search cost, at which point one may

consider enlarging the hash directory beyond the RAM

limits.

Large values for l may also be beneficial with re-

spect to other factors. First, larger lines accommodate

a larger database for a fixed n. Second, we may choose

a smaller n, with a smaller minimal size of n + 1 for

patterns.

Let us illustrate this latter impact. We continue

with our running example of a 100 GB database with

byte-wide symbols (f = 8), L is 230, and an average
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load of l = ⌈1011/230⌉ = 93 entries per line. This im-

plies the choice ofm, which must be such that 2mf > L,

i.e., m > (log2 L)/f . In our example, the line index i

needs to consist of at least 30 bits. Correspondingly,

NASm needs to be at least that long. Since each co-

ordinate of NASm consists of 8 bits, the value for m

needs to be at least 4. Each NAS then contains at least

32 bits.

The n-grams used need to contain at least m sym-

bols. Otherwise, the range of n-gram values is smaller

than L and certain lines will not contain any entries.

If the n-grams are reasonably close to uniformly dis-

tributed, the range of values is 256n and we can pick

n = m. Still referring to our example with L = 230, we

can choose n = 4.

However, the actual character set used is most often

smaller than 256, or only a fraction of the characters

appear frequently. This requires a larger n, since the

range of possible n-grams must contain at least L val-

ues. Let v be the number of values we expect per sym-

bol. In a simple ASCII text, the number of printable

character codes is v = 96. DNA encoding represents

an extreme case with v = 4. The n-gram size must

be such that vn > L. With v = 96 (simple ASCII

text) and L = 230, n must be set to 5, the smallest

value, such that 96n > L, to generate all required NAS

values. These parameter values were actually used for

example 1.

Consider now the case of a DNA database where

only four of the possible 256 ASCII characters appear

in records. We need to set n = 15 in order to obtain

the 230 possible signatures. n + 1 is the minimal pat-

tern length we allow to search for. Such limit should

not be nevertheless a practical constraint for a search

over a small alphabet. The need there is rather for long

patterns[10]. If nevertheless it was a concern, one may

choose a smaller n at the price of fewer, hence longer,

lines. For instance, choosing n = 10 and L = 220 for

our DNA database results in the average of 95K entries

in each line. The minimal pattern size decreases by 5,

i.e., to n+ 1 = 11 symbols.

6.4 Selectivity

We now evaluate how AS-Index performs with re-

spect to searching random patterns in random files. If

our scheme diagnoses a match at a given offset within

a given record, we call this a diagnosed match. We

now calculate how often we should have diagnosed

matches and later deduce from this value the chance

for false positives in searches for patterns that exist in

the database. We first assume that the non-key fields

for the records are smaller than 2f − 1. The conditions

for a diagnosed match are then:

1) the m-symbol NAS of the first n-gram in the

pattern matches the NAS of the first n-gram in the

substring;

2) the m-symbol NAS of the last n-gram in the pat-

tern matches the NAS of the last n-gram in the sub-

string;

3) the 1-symbol algebraic signatures of pattern and

substring match.

We further assume that the length of the pattern is

greater than 2n. As functions, NAS and PAS are linear

over our Galois field GF (2f ) and — a fortiori — over

the trivial Galois field {0, 1}. We can therefore express

the diagnosed matching of a substring to a given, fixed

pattern P as an inhomogeneous system of linear equa-

tions in the bits of the substring as unknown. If x is

the bit pattern written as a vector over GF (2) = {0, 1}

and p similarly a vector representing the pattern, then

x constituting a diagnosed match is equivalent to the

validity of

M · x = M · p. (8)

In this equation, the matrix M has the form

M =









C 0 0

0 0 C

0 A1 A2









.

Here, C is a matrix with nf columns and mf rows

that corresponds to taking the m-dimensional NAS (a

string of size mf) of the n symbol (= nf) bits n-gram.

Recall that we choose m > n. The algebraic properties

of signatures imply that the rank of C is min(mf, nf).

Similarly, matrix (0,A1,A2) encapsulates the calcula-

tion of the algebraic signature between the two n-grams.

(Implementations will differ in how we ascertain (3)

without affecting our argument here.) Its rank is f .

The event that a substring at a random offset within a

random record consisting of random symbols is a dia-

gnosed match for any fixed pattern is the event that

a random vector x satisfies (8). The rank of M is

(2n + 1)f . The number of possible values for M · x is

2(2n+1)f . The probability that it is equal to the given

value M · p is hence 2−(2n+1)f .

Example 3. We continue with our previous exam-

ple. Recall that we chose n = 5 for our 100 GB database

with f = 8. Hence, the chance of a random diagnosed
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match is 2−88. Even if we throw away all but the trail-

ing 34 bits, we obtain a chance of a random diagnosed

match of 2−76. Since the database contains less than

237 (≈ 100G) substrings, the probability of a random

diagnosed match is 2−51.

We can also estimate the chance of a false posi-

tive assuming that we are looking for an existing pat-

tern. Assume that the pattern occurs only once. If the

probability of a random diagnosed match is p, then the

probability that a diagnosed match is a true positive is

1/(1 + p).

We now deal with the possibility of additional false

diagnosed matches that may occur when we store only

the offset of an n-gram modulo 2f − 1. If on average

the record size is larger than or equal to K(2f −1) with

integer K, then we have K more chances of a diagnosed

match for the first test and K more chances of a diag-

nosed match for the second test. The third test is not

affected. We therefore have to multiply our probability

with K2 to obtain p = K22−(2n+1)f as an upper bound

of the probability of a random diagnosed match.

7 AS-Index Variants

While our basic scheme performs well, a skewed dis-

tribution of the n-grams leads to very large AS-Index

buckets or oppositely to very small ones, with an obvi-

ous impact on the search performances regarding that

the search uses the former or the latter. On the other

hand, the storage overhead of about 500% might be

too high for some applications. We now describe two

variants that address these two issues.

7.1 Skewed n-Gram Signature Distribution

As previously observed, a skewed distribution can

lead to many entries in a single AS-Index bucket. We

now modify our search procedure as follows. In our pre-

processing phase, we choose a set of q n-grams (q > 2)

such that this set contains the starting and final n-

grams of the searched pattern. The simplest choice is

to have the n-grams evenly distributed over the pattern.

The search first determines the shortest bucket

length of all buckets indexed by any of the q n-grams.

If any of these buckets is empty, then we conclude that:

the pattern is not found in the database. If the short-

est bucket happens to be the one indexed by the initial

n-gram in the pattern, our processing remains the one

of the basic scheme. If it is the one indexed by the final

n-gram in the pattern, the calculation of the PAS still

uses (7) unchanged because subtraction and addition

are the same in the Galois field. Now c1 is the CAS in

the bucket indexed by the last n-gram and c2 the one

in the first bucket, while l does not change.

Otherwise, let a be the offset of the n-gram with

minimal count of entries and Sa its NAS. For each en-

try in bucketD[hL(Sa)], we search for a matching entry

in the bucket of the first or of the last n-gram in the

pattern, depending on which one has the smaller count.

This amounts to matching the part of the pattern be-

tween the selected n-gram and either the beginning or

the end of the pattern. If this succeeds, we continue to

use our calculus to match the other part of the pattern.

Since we eliminate most mismatches in the first step,

AS-Index will now come more quickly to a decision on

average.

7.2 Non-Dense Indexing

Our next variant lowers the storage overhead by

indexing only some instead of all n-grams. This re-

sults in significant gain for the storage, but implies

higher search costs, a larger minimal size for the pat-

terns that we can search for and a higher ratio of false

positives. Fig.6 shows the idea. Starting with the first

n-gram in a record, we only index the n-grams that are

t > 1 symbols apart, where parameter t is the indexing

rate. We thus index only n-grams starting at the offsets

0, t, 2t, · · · . The size of the index is now reduced by a

factor of about 1/t.

n

n

n

t

n n n

n n

Non-Aligned Pattern

t t

t t t

t t

(a↽

(b↽

(c↽

Fig.6. Non-dense AS indexing. (a) Overlapping n-grams,
1 < t < n. (b) Tiling n-grams, t = n. (c) Lossy n-grams,
t > n.
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We can distinguish three cases, lossless indexing if

n = t, lossy indexing if n < t, and overlapping indexing

if n > t (Fig.6). In all cases, trailing characters of the

pattern might not contribute to any indexed NAS.

The search procedure is the same in all the three

cases. It needs to be modified from the base procedure

because the occurrence of a pattern in a string might

not match the tiling of the records by the indexed n-

grams. Assume that the pattern is P = p0p1 . . . pK−1.

We define substrings Pi, i = 0, 1, . . . , t−1 of the pattern

as Pi = pi, pi+1, . . . , pi+lt+n−1 with l = ⌊(K − n)/t⌋.

Thus, P0 is the substring of the pattern that begins

with the first n-gram in P , ends with the last n-gram

in P starting at offset lt− 1, and contains all symbols

of P in between. P1 starts at the second character and

finishes with the last n-gram starting a multiple of t

characters after the first one, etc. Our search proce-

dure now first tries to match P0 in the database. More

precisely, we process the bucket indexed by the first

n-gram. For an occurrence, the last n-gram in the sub-

string matching the sub-pattern is also in AS-Index and

our matching will succeed. We then successively search

for sub-patterns P1, P2, . . ., Pt−1. This is guaranteed

to find any occurrence of the pattern in the database.

Since we actually match various subpatterns, a diag-

nosed match is not based on all symbols in the pattern

and we might need to verify that the pattern actually

occurred.

Consider the search for our pattern P =

“University Paris Dauphine”, in Fig.6. Let n = 4

and t = 4 (lossless indexing). Suppose the use of a

nondense tiling AS-Index (Fig.6(b)). The search be-

gins, as with the dense index, by attempting to match

S1 = “Univ”. The last n-gram S2 for the dense index

would be S2 = “hine”. Now, S2 = “phin”, in subpat-

tern P0. The matching n-gram “hine” in the visited

record cannot be indexed if “Univ” is. Provided the

match of P0 succeeds, we read the record and attempt

to match “e” to the symbol following P0 in the record

(provided it exists). Next, we attempt matching with

P1, using thus S1 = “nive” and S2 = “hine”. If this

attempt succeeds, we attempt to match “U” as above.

The matching attempts continue with P2 having S1 =

“ive” and S2 = “auph”. The completion requires find-

ing “Un” and “ine” in the record before and after the

P2 match in the record. The final round attempts to

match P3 with S1 = “vers” and S2 = “uphi” followed

by direct testing of “Uni” and of “ne”. The final result

is the union of all the successful matches.

Compared with dense indexing, the storage space of

this (tiling) AS-Index is reduced by factor of 4, e.g., falls

to (only) 125% of the database size. Likewise, this is

at least four times less than any alternative method we

discussed. In contrast, we need four times more disk ac-

cesses, i.e., 16 or 8 at best usually. Finally, the minimal

indexed pattern is in turn n = 8 symbols, instead of 5.

Clearly, many applications may gladly accept the dis-

cussed trade-offs. In particular, since smaller AS-Index

may then fit onto a flash disk. As this one is about

ten times faster than a magnetic one, all together the

AS-indexing gets actually about 2.5 times faster.

8 Experimental Evaluation

We describe in this section our experimental setting

and results. We implemented our AS structure as well

as a String B-Tree[3] and an n-gram index, based on in-

verted lists[11]. The rationale for String B-Tree, further

discussed in what follows, is that it appears attractive

for disk-based use and is among most recent proposals.

8.1 Implementation of n-Gram Index

We build the n-gram index in two steps. First, we

scan all record contents in order to extract all n-grams

with their position. For each n-gram, we obtain a triple

(n-gram, rid, offset), which we insert into a temporary

file. The second step sorts all triples and creates lists

of 8-byte entries (4B for the rid, 4B for the offset). The

final step builds the B+-Tree which allows to quickly ac-

cess a list given an n-gram. Our simple construction in

bulk is fast and creates a compact structure, illustrated

on Fig.7.

Structure of

an Entry

Inverted List

e e e

Rid OffsetB-Tree

Fig.7. Structure of the n-gram index.

We search for a pattern P with n-gram index in

the following manner. First, we tile P into n-grams

(g1, g2, · · · , gk). Let Li denote the list that stores the
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positions of n-gram gi. We then merge these lists, stop-

ping whenever the k entries refer to the same record.

We then compare the offsets for these records. A match

is found if for a tuple of offsets (l1, l2, · · · , lk), the rela-

tionships l1 = l2 − n = l3 − 2n = · · · = lk − (k − 1)n

hold. The merge continues until the smallest list has

been completely examined.

Assume we are searching the pattern “University

Paris Dauphine”, with n = 4. The tiling n-grams

are {“Univ”, “ersi”, “ty P”, “aris”, “Dau”, “phin”,

“hine”}. Note that the last n-gram partially covers the

previous one. This is necessary to ensure a full represen-

tation of the pattern content with fixed-size n-grams.

The merge combines seven lists, one for each 4-gram.

The search cost with the n-gram index is linear, both in

the size of the database and in the size of the pattern.

8.2 Implementation of String B-Tree

We implemented a String B-Tree structure[3], mak-

ing our best efforts to minimize the storage overhead.

Each node contains a compact representation of a Pa-

tricia Trie[12] as a list of entries (e0, e1, · · · , en). Each

entry ei refers to a string si (suffix in the String B-Tree

terminology) in the database, and is represented by a

triple (lcpi, lnci, addri). Here, lcpi is the length of the

longest common prefix between si and si−1 (2 bytes),

lnci is si[lcpi+1] (1 byte) and addri is the disk address

of si (8 bytes). The size of a leaf entry is 11 bytes.

The size of an internal node entry, which also stores

the sub-node address, is 19 bytes.

We construct a String B-Tree statically by first sort-

ing the list of suffixes in lexicographic order. From this

sorted list, the B-Tree is built bottom-up. In our imple-

mentation, a disk block occupies 4K, and we can store

at most 300 entries in each leaf.

We search for a pattern P with a standard top-down

traversal of the String B-Tree. At each node N , the

search procedure finds an entry ei. The string si asso-

ciated to ei is then loaded from the database, and the

relevant child of N is determined (see [12] for details).

Unlike traditional B-Trees, two look-ups are necessary

at each level: one for the B-Tree node, and the other

for loading si.

8.3 Implementation of AS-Index

Our implementation of AS-Index is static as well.

First, the n-grams are collected. For each n-gram at off-

set l in a record R, the hash key k = hL(NASm(R, l))

and the CAS c = CAS1(R, l) are computed. The

quadruplet (k, c, rid, l) is inserted in a temporary file.

Second, the temporary file is sorted on the hash key

k. This groups together entries which must be inserted

into the same bucket. An entry consists of a CAS (1

byte), a record ID (4 bytes) and an offset (4 bytes).

Using the CAS as a secondary sort key, one places the

entries into the required order for insertion into the

bucket.

This implements the basic AS-Index structure faith-

fully according to our description in Section 4. In order

to speed up the in-memory join of the two buckets, our

implementation proceeds as follows. Let i be the index

of the smallest bucket, and i′ the index of the greatest

one. We first load and scan the bucket D[i′] and cre-

ate an index of the CAS present in the bucket. The

index is a simple array of size 2f (at most) that gives,

for each possible CAS value c, the offset in D[i′] of the

sequence of entries with c (the offset is −1 if c does not

appear). The array allows us to access the entries that

correspond to a given c in constant time. The search

algorithm checks the size of the targeted buckets, and

chooses the smallest one for driving the search.

The search then proceeds by loading and scanning

the two buckets D[i] and D[i′]. For each entry (r, l, c1),

we compute the CAS c2 at position l+ |P |−n using (7),

look in D[i′] for entries with CAS c2, using the array on

CASs, as explained above, and search for a matching

entry.

8.4 Data Compression

For AS-Index and n-gram index, the entries which

are in the memory buckets are compressed before being

written to the disk. We use a variable length encod-

ing for each entry, which is an unsigned integer (4-byte

representation), into a succession of bytes in a binary

memory buffer that is further dumped to the disk. For

each byte of the encoding, we use 7 bits of data and 1

bit of overhead. This overhead is 0 for all bytes of the

encoded integer, except for the final byte, for which it

is set to 1.

Example 4. Consider for instance a key with value

2 509. Stored as a long integer, it requires 4 bytes:

00000000, 00000000, 000001001, 11001101. Using

variable length encoding, we can store this key using

only two bytes: 00010011 and 11001101. Observe that

the first bit of the first byte, in bold, is set to 0, which

means that the following byte must be considered for

the current key-value, while the first bit of the second

byte is set to 1, which means that the key-value ends

with this byte.
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Moreover, when possible, we reduce the storage

space by only encoding deltas instead of the whole inte-

ger, since our entries are kept ordered by document ID

and by entry offset. More precisely, for each entry in

AS-Index, we store its CAS (which is one byte long and

cannot be further reduced), and information on its doc-

ument ID and offset. Both ID and offset benefit from

delta encoding. This data compression achieves a 50%

space saving for a negligible decoding time overhead

(∼ 1 ms) during search execution.

8.5 Settings

We use four types of datasets with quite distinct

characteristics: alpha, dna, text and wikipedia.

The alpha(Σ) type consists of synthetic ASCII

records, with uniform distribution, ranging over an al-

phabet Σ which is a subset of the extended ASCII cha-

racters. We consider two alphabets: Σ26 with only 26

characters, and Σ256 with all the 256 symbols that can

be encoded with f = 8 bits. We call the resulting

datasets alpha(26) and alpha(256). For these types,

we composed datasets ranging from 20 MB to 20 GB,

each one compounded by 20 files. They allow us to

compare the behavior of our structure to the theoreti-

cal analysis in Section 6.

The second type, dna, consists of real DNA records

extracted from the UCSC database 1○. This dataset is

composed by 97 files whose size covers a large range,

from dozens of KB to hundreds of MB, or even several

GB (for two files). Its total size is 9.9 GB. The type

text consists of real text records created from ASCII

files of large English books extracted from the Guten-

berg digital library 2○. The typical size of a text record

is 0.5∼2 MB, and size distribution is almost uniform

and within that range. We created a 16.6 GB database

of 29 539 text files. Finally the last type, wikipedia,

consists of a dump of free encyclopedia Wikipedia 3○.

This dump appends all XML records from Wikipedia

into a single XML record whose size is 24 GB. To limit

collisions for the n-gram signature due to the alphabet-

size, we set the n-gram size to 8 for DNA files, 6 for

wikipedia and 4 for the other datasets.

8.6 Space Occupancy and Build Time

The size of the AS-Index is the sum of the size of

cells and the directory which stores the number of en-

tries for each bucket. The size of the n-gram index is the

sum of the size of inverted lists and the directory. The

size of the String B-Tree is the size of the B+-Tree where

each node is a serialized Patricia Trie. Tables 5∼7 give,

for the three indexes, the index sizes (and its ratio w.r.t.

dataset size) for alpha(256), alpha(26) and our three

real datasets respectively. We also report the size of the

directory.

Table 5. Index Sizes (and Ratios) for alpha(256) Files

File Size Directory AS-Index n-Gram Index Str. B-Tree

(MB) Size (MB) (ρ) Size (MB) (ρ) Size (MB) (ρ)

20 MB 63.6 00 163 (8.14) 74 143 (7.14) 153 153 (7.64)

200 MB 64.0 01 092 (5.46) 74 892 (4.46) 151 532 (7.66)

2 GB 64.0 09 582 (4.79) 77 540 (3.77) 115 264 (7.63)

20 GB 64.0 94 535 (4.73) 74 034 (3.70) 153 009 (7.65)

Table 6. Index Sizes (and Ratios) for alpha(26) Files

File Size Directory AS-Index n-Gram Index Str. B-Tree

(MB) Size (MB) (ρ) Size (MB) (ρ) Size (MB) (ρ)

20 MB 7.0 81 100 (5.00) 61 080 (4.00) 147 148 (7.37)

200 MB 7.0 81 818 (4.09) 61 618 (3.09) 611 473 (7.37)

2 GB 7.0 88 170 (4.08) 66 120 (3.06) 614 761 (7.38)

20 GB 7.0 81 503 (4.07) 61 003 (3.05) 147 334 (7.37)

Table 7. Index Sizes in MB for dna, text and

wikipedia Datasets

Data- File Directory AS-Index n-Gram Index Str. B-Tree

set (GB) (MB) Size(MB) (ρ) Size(MB) (ρ) Size(MB) (ρ)

dna 09.9 64.0 35 857 (3.62) 25 814 (2.61) 173 022 (7.37)

text 16.6 36.7 50 028 (2.94) 33 008 (1.94) 139 938 (8.43)

wiki- 24.0 64.0 83 298 (3.47) 54 495 (2.27) 204 482 (8.52)

pedia

The storage efficiency of these indexes heavily de-

pends on the distribution of n-grams. If the distribu-

tion is uniform, the number of n-gram values can be-

come very high, and this severely impacts the storage

efficiency. The alpha(256) dataset shows this beha-

vior (Table 5). With n = 4, we obtain 2564 = 4.3× 109

distinct n-grams. For the 20 MB and 200 MB datasets,

each list in the n-gram index consists of only one entry

for a given file (i.e., it is very unlikely to find twice a

same n-gram in the same file), which explains the im-

portant size of the indexes, 7.14 and 4.46 times of the

1○http://hgdownload.cse.ucsc.edu/, Nov. 2014
2○http://www.gutenberg.org/, Nov. 2014.
3○http://dumps.wikimedia.org/, Nov. 2014.
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dataset size respectively. When the size of the (uni-

formly generated) dataset reaches the possible number

of distinct n-grams, all lists contain at least an entry for

a given file and the growth of the index becomes linear

in the size of the dataset (see the index whose size is 3.7

times the size of the dataset for both 2 GB and 20 GB

datasets). The same remark holds for the AS-index.

We observe that the AS-Index requires around 25% ad-

ditional space compared with n-gram index. This cor-

responds to the extra-information needed for the struc-

ture, namely the CAS, that is not affected by com-

pression (thus one additional byte for GF 8). A näıve

implementation (without clustering entries from a list

with the same document ID and without compression)

would exhibit an n-gram (resp. AS) index 8 (resp. 9)

times larger than the dataset. Finally we observe a

constant size for the directory. Indeed, the number of

lists is bound by the number of possible n-grams, the

number ofm-symbol NAS possible and the L factor (see

Section 4). Here m is set to 3, which means three signa-

tures of one byte concatenated, i.e., 224 possible index

lists. Moreover we have 2564 = 4.3 109 distinct possi-

ble n-grams and L is set to 222. Thus this latter limits

the number of lists. Since the hash directory needs for

each list 16 bytes to store a pointer and the list size (re-

quired for the data management on disk), the maximal

directory size is 222 × 16 = 64 MB. Thus, as expected

for our different datasets and uniform distribution, all

lists are non-empty and we observe a 64 MB directory.

The String B-Tree requires more space (regarding the

dataset which is between 7.3 or 8.5 times the data in-

dexed) with 11B entries in the leaves and 19B entries for

internal nodes. Moreover String B-Tree cannot benefit

from compression techniques, which leads to the more

important storage overheads.

We continue to consider a uniform distribution of

characters, but now use a smaller alphabet Σ26 (Ta-

ble 6). The number of possible 4-grams decreases to

264 = 456 976. m-symbol NAS size and L are un-

changed. Consequently the number of lists is now

bound by the number of n-grams possible which leads

to a 456 976× 16 = 7 MB directory. The size for both

indexes also decreases. The reason is that in all lists

we find for all documents several entries, due to the li-

mited number of possible n-grams. As a consequence,

the compression technique is particularly efficient, es-

pecially for n-gram index.

For real datasets, either dna, text, or wikipedia,

the distribution is far from being uniform. Table 8

shows the distribution of the number of entries from

these real databases. The average number of entries is

2 508 for the dna database, 7 422 and 6 050 for text and

wikipedia database respectively, with an important

variance. In the worst case (text files), the largest list

has 712 735 151 entries. This fully justifies our choice

of storing the number of entries in the directory, and of

using this information to scan the smallest list during

a search operation.

Table 8. Distribution of Entries for

the Real and Synthetic Datasets

File Average Min. Max. Standard Deviation

dna 2 508 4 491 242 951 376 212 375.6

text 7 422 4 491 712 735 151 214 988.3

wikipedia 6 050 4 422 303 119 079 215 556.5

alpha(26) 6 388 4 276 242 951 463 214 952.8

alpha(256) 5 111 4 497 242 955 717 214 115.0

However, the indexes for the three real datasets ex-

hibit some differences. For dna, the size of indexes is

smaller than the one for uniform datasets: e.g., 3.62

for AS-Index versus 4.73 (resp. 4.07) for alpha(256)

(resp. alpha(26)). Here the compression technique

fully benefits from the number of distinct n-grams, since

for our 8-grams, only 48 = 65 536 values are possible.

Consequently lists are larger, with several occurrences

inside each file leading to a better compression. For

text dataset, there exist potentially 2564 = 232 dis-

tinct 4-grams. In fact, all the ASCII symbols are not

used within this collection and the number of distinct

symbols is close to 128, so 228 possible n-grams. How-

ever, most of these n-grams do not correspond to an

existing n-gram in the language of choice (e.g., qmgw,

uaio). Consequently, the real number of buckets with

entries is not that large. Moreover, Table 8 shows that

there is a large discrepancy in the bucket size due to the

well-known Zipf-distribution of words (and character-

sequences) in common languages[13]. Therefore, the

number of occurrences for frequent words is several or-

ders of magnitude larger than that for other words.

These two phenomena result in a high compression rate

of these large lists and the n-gram (resp. AS) index size

is only twice (resp. three times) the size of the dataset.

Finally the XML syntax of the wikipedia dataset (with

tags, parameter names and values, etc.) and the pre-

sence of dozens of hundreds of authors’ names allow

more possible n-gram than text. This explains poorer

compression ratios.

Table 9 exhibits the impact of different parameters,

namely n-gram size, Galois field size and L value, on
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the AS-Index size for the wikipedia dataset. Using

GF 16 produces sensibly larger index: 96.6 GB (resp.

104.8 GB) versus 69.8 GB (resp. 83.3 GB) for GF 8 and

4-gram (resp. 6-gram). The difference is mainly due to

the CAS stored for each entry that requires now 2 bytes

instead of 1 byte. Since our dataset is 24 GB large,

and the CAS stored in each entry is not subject to any

compression mechanism, the index size is expected to

increase by 24 GB (one byte per entry). The index size

is, however, not exactly enlarged by 24 GB (+27 GB

for 4-gram and +22 GB for 6-gram), since modifying

signatures also impacts entries distribution and conse-

quently compression.

Table 9. AS-Index Sizes in MB for wikipedia

Datasets and Different Settings

n-Gram GF Size Hash Directory AS-Index (ρ)

4 GF 80 222 042.9 069 850.6 (2.90)

4 GF 16 222 042.9 096 610.2 (4.03)

6 GF 80 222 064.0 083 298.3 (3.47)

6 GF 16 222 064.0 104 808.5 (4.36)

6 GF 80 224 256.0 084 150.4 (3.51)

For a same GF size, both directory and index size

increase with the size of the n-gram: e.g., for GF 8,

the directory size is 42.9 MB for 4-gram and 64 MB for

6-gram, and meanwhile the index size increases from

69.8 GB to 83.3 GB. Same result holds for GF 16. In-

deed, 6-gram provide more combinations (up to 2566)

than 4-gram, therefore more distinct signatures. With

6-gram, the directory reaches 64 MB, which is the max-

imal size for the directory (L = 222, thus maximal size

is 222 × 16 B = 64 MB). As a consequence, lists are

larger with 4-gram than with 6-gram. This allows bet-

ter compression rate and a smaller size for the index.

Finally we see that the value of the L parameter only

impacts the directory size rather than the index size.

With L = 224, the maximal size for the directory, when

all buckets are not empty, is 224 × 16 B = 256 MB.

The building time varies with the size of the index

but remains in a range of 600 KB∼1 400 KB per second.

Our structures are built in bulk after sorting all n-gram

entries in a temporary file. This leads to comparable

performances. On our machine, the building time for

a 20 GB file is about 28 000 s, and the building rate is

about 756 KB/s in Table 10. Index construction also

includes compression computation both for temporary

files, and then for the final index. A comparison of dy-

namic builds remains for future work. For AS-Index,

this would reduce mostly to the standard technique of

maintaining a dynamic hash file. The String B-Tree

exhibits the highest building time, due to a larger stor-

age overhead (thus more time to write the index on

disk). However, its indexing speed in KB/s is higher

since there is no compression computation.

Table 10. Building Time for alpha(26) Files

File Size AS-Index n-Gram Index String B-Tree

Time Speed Time Speed Time Speed

(s) (KB/s) (s) (KB/s) (s) (KB/s)

20 MB 00 031 0 661 00 031 0 661 00 041 484

200 MB 00 178 1 150 00 170 1 205 00 341 587

2 GB 01 572 1 334 01 681 1 248 0 3 817 524

20 GB 27 721 0 756 17 022 1 232 36 832 543

8.7 Search Time

For search experiments, we extracted the patterns

from the files to guarantee that at least one result is

found. Pattern sizes range from 25 symbols to 200

symbols. To avoid initialization costs and side effects

such as CPU or memory contention from other OS pro-

cesses, we performed each search repeatedly until the

search times stabilized. We report the average search

time over a run of 500 search operations.

We report the results on search time in ms, in Ta-

bles 11∼ 15 (with 20 GB for the two last datasets).

As expected, the String B-Tree (Str. BT) and the

AS-Index (AS) behavior are constant regardless of the

length of the pattern, while n-gram index performance

degrades linearly with this length.

For our 20 GB files, the height of the String B-Tree

is 5 independently of the alphabet size, for 20.109 in-

dexed substrings (recall that the fanout is 300, and

that our bulk insertion creates full nodes). The root

Table 11. Search Time in ms for dna Files

K AS n-Gram (Spd-Up) Str. BT (Spd-Up)

025 103 190 (1.84) 159 (1.54)

050 108 298 (2.76) 170 (1.57)

075 096 386 (4.02) 143 (1.49)

100 101 466 (4.61) 153 (1.51)

200 096 774 (8.04) 147 (1.53)

Table 12. Search Time in ms for text Files

K AS n-Gram (Spd-Up) Str. BT (Spd-Up)

025 667 02 293 (3.44) 974 (1.46)

050 659 03 876 (5.88) 942 (1.43)

75 677 05 973 (8.82) 995 (1.47)

100 643 07 507 (11.67) 971 (1.51)

200 652 16 102 (24.70) 958 (1.47)
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Table 13. Search Time in ms for wikipedia Files

K AS n-Gram (Spd-Up) Str. BT (Spd-Up)

025 175 0 716 (4.09) 291 (1.66)
050 188 1 383 (7.36) 320 (1.70)
075 172 2 639 (15.34) 296 (1.72)
100 188 3 480 (18.51) 314 (1.67)
200 181 5 930 (32.76) 304 (1.68)

Table 14. Search Time in ms for alpha(26) Files

K AS n-Gram (Spd-Up) Str. BT (Spd-Up)

025 66 0 186 (2.82) 150 (2.27)
050 68 0 314 (4.62) 147 (2.16)
75 68 0 467 (6.87) 147 (2.16)
100 68 0 615 (9.04) 152 (2.23)
200 68 1 195 (17.57) 151 (2.22)

Table 15. Search Time in ms for alpha(256) Files

K AS n-Gram (Spd-Up) Str. BT (Spd-Up)

025 36 097 (2.69) 88 (2.44)
050 40 163 (4.08) 91 (2.28)
075 38 202 (5.32) 90 (2.37)
100 38 259 (6.82) 89 (2.34)
200 37 505 (13.65) 92 (2.49)

is always in the cache, as well as a significant part of

the level below the root, depending on the indexed file

size. The String B-Tree traversal is generally reduced

to (5 − 2) = 3 disk accesses for loading a leaf node.

In addition, each lookup in a node requires an addi-

tional random disk access to the database in order to

fetch the full string. This leads to a final cost of 8∼9

physical disk accesses. The search time with String B-

Tree is independent of the size of the pattern and of the

size of the alphabet. Searching with the AS-Index takes

about 38 ms for alpha(256), 68 ms for alpha(26) files,

100 ms for dna files, 660 ms for text files and 180 ms for

wikipedia (real data). This is consistent with the ana-

lytical cost discussed in Section 6. The alpha datasets

are uniformly generated, and this results in an almost

constant number of entries per bucket. Accordingly,

the search is done in few operations. The difference be-

tween alpha(256) and alpha(26) is explained by the

size of the buckets which are larger for alpha(26), since

the n-gram values range over the set of 264 possibilities

compared to 2564 for alpha(256).

For real data (dna, text and wikipedia), buckets

are likely to be larger, either because the alphabet

is so small that the set of existing n-gram values is

bounded and cannot fully benefit from the hash func-

tion (see Subsection 6.1 for a discussion), or because

of non-uniformity. The former case corresponds to

the DNA, the latter to our real text and wikipedia

files. Table 8 shows that, on average, the number

of entries in a bucket is larger for dna (2 508 entries)

compared to alpha(256) (5 entries on average). The

cost of DNA search is accordingly higher (≈ 100 ms,

against ≈ 38 ms). The impact of the standard devia-

tion also explains the higher searching costs for text

and wikipedia files. Indeed, for these datasets, the

deviation is over 200 000, that is, two orders of magni-

tude higher than that for dna and three orders higher

than that for alpha(26) and alpha(256). Recall how-

ever that our algorithm chooses the smallest bucket for

driving the search, which limits the impact of skewed

datasets and the variance of search time. This explains

that the searching time for text and wikipedia files

is one order greater than that for alpha(256) while

the alphabet size is 256 for all these datasets. Finally

searching in wikipedia is faster than in text due to

the existence of larger buckets which leads to longer

searches. The ratio of search time, giving the speed-

up of AS-Index over respectively the n-gram index and

the String B-Tree also reported in Tables 11∼15 sum-

marizes the benefit of our proposal.

Table 16 shows that the search time with the String

B-Tree increases with the size of the file for alpha(256).

The theoretical logarithmic behavior of the String B-

Tree is almost blurred here, because of the large node

fanout (300). For the 20 MB file, its height is only 3,

while it reaches 4 for the 200 MB and 2 GB files, and

even 5 for the 20 GB file. An increase by one of the

height corresponds to two additional disk accesses on

average for a search. Even for a constant tree height of

4, the String B-Tree performs a search faster with the

smallest file (62 for the 200 MB file versus 67 for the

2 GB file). Indeed, the number of nodes increases with

the file size. This accounts for a lower probability of a

buffer hit during tree traversal and explains the search

time increase w.r.t. the file size.

Table 16. Index Comparison for Searching in

Varying File Size for alpha(256)

File Size AS n-Gram (Speed-Up) Str. BT (Speed-Up)

20 MB 24 56 (2.33) 41 (1.71)

200 MB 31 72 (2.32) 62 (2.00)

2 GB 34 87 (2.56) 67 (1.97)

20 GB 36 97 (2.69) 88 (2.44)

The search time evolves (sub)linearly for n-gram in-

dex, both in the size of the pattern and in the size of

the database. This is explained by the necessity to scan

a number of inverted lists which are associated with the

n-grams and their length is proportional to the size of
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the pattern. In addition, larger files imply larger lists,

and hence the behavior is illustrated in Table 16. How-

ever, the cost remains sublinear (the cost for 20 GB is

only three times higher than the cost for 20 MB). This

is due to 1) the merge process which stops when the

smallest list has been fully scanned, thereby avoiding a

complete access to all lists, and 2) the data compression

that is more efficient for large datasets since more en-

tries with the same signature are found within a given

document.

Oppositely, AS-Index exhibits an almost constant

behavior (appr. 25∼35 ms), even when searching in

large files (20 GB). This observation is confirmed by

Fig.8 which shows the evolution of search time as the

size of the database increases from 20 MB to 20 GB.

Each curve represents the results for a given alpha-

bet, with patterns consisting of 25 symbols. Search

time becomes constant for large databases. Indeed, a

search corresponds to two disk accesses plus the sig-

natures computation and comparisons for all entries.

The difference between alpha(256) and alpha(26) is

explained by the size of the buckets due to different n-

gram value ranges (264 possibilities for alpha(26) vs

2564 for alpha(256), thus potentially 84 more entries

for alpha(26), leading to potentially (84)2 times more

comparisons). Small databases benefit from caching

and a reduced number of computations and compari-

sons.
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Fig.8. Search time with AS-Index for varying file size.

8.8 Non-Dense Indexing and False Positives

We study in this subsection the non-dense index

proposed in Section 7. Our experiments reveal, as ex-

pected, that the gain is significant for the space oc-

cupancy. Tables 17∼21 report a gain for space occu-

pancy around 48% when saving one n-gram on two n-

grams whatever the alphabet is. When skipping 2 or

3 symbols, the memory gain is around 64% and 73%

respectively. Oppositely, the matching time increases

with the size of the skip for most of the alphabets.

There are two phenomena in competition: for t sym-

bols skipped when indexing, we perform 2t searches

when matching instead of 2 for the basic version (i.e.,

t = 1); however, as observed, the size of the index,

and consequently of the buckets, also decreases with t

which reduces the processing time since less combina-

tions have to be tested. Thus for synthetic datasets

(Tables 17 and 18), the matching time increases; but

for t = 2, it is not twice the time required for the ba-

sic version of the AS-Index. Same observation holds

for real datasets. For wikipedia files (Table 21), the

matching time overhead diminishes with i from t = i

to t = i+ 1. For dna dataset (Table 19), the matching

time even decreases from t = 2 to t = 3 and t = 4, since

the index could almost be totally cached.

Table 17. Non-Dense Index Characteristics for alpha(26) Files

Index Size (GB) Matching Spd-Up False
Time (ms) Positive (%)

n-Gram 59.5 181 – –
AS t = 1 79.5 66 2.74 0.1
AS t = 2 40.9 68 2.68 0.2
AS t = 3 28.1 75 2.41 0.4
AS t = 4 21.6 84 2.15 0.5

Table 18. Non-Dense Index Characteristics

for alpha(256) Files

Index Size (GB) Matching Spd-Up False
Time (ms) Positive (%)

n-Gram 72.2 97 – –
AS t = 1 92.2 36 2.69 0.0
AS t = 2 48.0 48 2.02 0.0
AS t = 3 32.5 64 1.52 0.0
AS t = 4 24.6 65 1.49 0.0

Table 19. Non-Dense Index Characteristics for dna Files

Index Size (GB) Matching Spd-Up False
Time (ms) Positive (%)

n-Gram 25.2 190 – –
AS t = 1 35.0 103 1.84 0.2
AS t = 2 18.3 145 1.31 14.8
AS t = 3 12.4 127 1.50 25.5
AS t = 4 9.4 119 1.60 43.5

Table 20. Non-Dense Index Characteristics for text Files

Index Size (GB) Matching Spd-Up False
Time (ms) Positive (%)

n-Gram 25.2 2 293 – –
AS t = 1 35.0 667 3.44 0.2
AS t = 2 18.3 838 2.74 9.6
AS t = 3 12.4 873 2.63 21.2
AS t = 4 9.4 949 2.42 29.9



164 J. Comput. Sci. & Technol., Jan. 2016, Vol.31, No.1

Table 21. Non-Dense Index Characteristics for wikipedia Files

Index Size (GB) Matching Spd-Up False

Time (ms) Positive (%)

n-Gram 53.2 716 – –

AS t = 1 81.3 175 4.09 4.1

AS t = 2 43.0 329 2.18 20.7

AS t = 3 29.6 390 1.86 33.8

AS t = 4 22.7 442 1.62 42.6

Non-dense indexing offers consequently an impor-

tant space saving for a moderate increase of the match-

ing time. However it is expected to produce more

false positives. For synthetic datasets with a uni-

form distribution, the false postives are uncommon:

less than 0.05% for alpha(256) and less than 0.5%

for alpha(26). For real datasets, the number of false

positives is limited for the basic AS-Index version for

(i.e., t = 2): 0.2% for dna and text files. wikipedia

dataset provides more false positives, due to the tag-

nature of its content. Indeed, when searching a pattern

that starts or ends with a tag, the bucket that corre-

sponds to the n-gram in this tag is very large and does

not filter out as expected. These results are coherent

with our analysis in Subsection 6.4. Non-dense indexing

leads to a significant number of false positives: around

15% for t = 2 and more than 40% for t = 4 (see Ta-

bles 19∼21). Indeed, a higher t value leads to a higher

number of matching attempts, and thus a more impor-

tant probability to retrieve false positives. For synthetic

datasets (see Table 17 and Table 18), the uniform dis-

tribution guarantees a low false positive rate even for

the tiling indexing (here for 4-grams it means t = 4).

For real data, among t consecutive n-grams, we have

a non-negligible probability which increases with t, to

have a frequent n-gram, and thus a higher probability

of retrieving false positives. For text, the probability

to retrieve a large bucket is lower since there exist less

large buckets with this distribution (but existing ones

are larger than those with other distributions). Conse-

quently this dataset produces less false positives than

other real datasets on average.

9 Related Work

Finding patterns in a large database of sets is a fun-

damental problem in computer science and its applica-

tions such as bioinformatics. [14] presents a compari-

son of tree-based and hash-based solutions for n-gram

indexing. The theoretically best algorithms and data

structures allow the linear construction of the index

in the database, have low storage overhead, and allow

searches that are processed in time linear on the size of

the pattern. Among the many algorithms, those based

on suffix trees[15] have received much attention. Re-

cent work by Kurtz[16], and Tata et al.[17] among others

tries to make the theoretically optimal behavior of suf-

fix trees practical. A great part of the problem is caused

by the blow-up of the index size over the database size,

typically 10∼20 times[16]. Related data structures such

as Manber and Myer’s suffix arrays[18], Kärkkäinen’s

suffix cactus[19], or Anderson and Nilsson’s[20] suffix

try lower storage overhead at the cost of an increase

in search time. Dementiev et al.[21] gave methods to

make suffix arrays effective and efficient for truly large

files. A survey of full-text substring indexes in external

memory is presented in [22].

Suffix arrays and suffix trees are static indexes, de-

signed to index a single file content. If we create such

an index for every record, then search time will de-

pend on the size of the database. If we, however, create

the index for a collection of records — as we obviously

should — then deleting and inserting records become

very difficult, and it is unclear how we can adapt the

binary search of suffix arrays to the indirection mecha-

nism used by the storage engine. Life is much simpler

if the database consists of words and we restrict our-

selves to word indexes that can be stored much more

compactly[11].

Signatures files were proposed in [23] and shown to

be inferior to inverted indexing in [24]. Some other

attempts for indexing sequences are the ed-tree[25] for

DNA files, and the q-gram index[26]. Both focus on

the specific problem of homology search in genomic

databases.

Our method is predominantly based on previous

work on n-gram based inverted file indexing. The tech-

nique has been advocated for string search in larger,

hence naturally disk based, partly or totally unstruc-

tured files or databases (full-text, hypertext, protein,

DNA). In bioinformatics, Cafe prototype uses n = 3

for protein and n = 9 for DNA string search, and is

reported several times faster than previous systems[27].

All these systems use the basic n-gram index for many

GB disk-resident datasets.

The latest attempt of using n-grams for a large,

(hence diskbased) database, is reported in [6,28]. In

[6], similar to our work, it improves storage overhead

and, especially, search time, over the basic n-gram

scheme. The n-Gram/2L uses a “normalized” repre-

sentation with two indexes: 1) one n-gram index on
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the subsequences of size m indexing the n-grams found

in each subsequence and 2) one n-gram-index index-

ing the subsequences found in the files. The two in-

dexes are smaller than the original index and though a

search needs to use both indexes, it can use less look-

up. If AS-Index saved the storage for larger alphabets,

it appears to be slightly less efficient for small ones

compared with n-Gram/2L. However, like n-gram in-

dex, this structure offers a search proportional to the

database size and to the query size opposite to our con-

stant time claim. [28] presents a system named Maguro

for an efficient search in very large (Web) collection of

texts. It indexes all atoms (n-grams, words or tuples)

through a distributed structure. Moreover, it exploits

the long tail distribution of the atoms in Web document

thanks to a two-level hash-structure: popular atoms

being stored in DRAM while less popular being stored

on HDD. Observe that our AS-Index could also benefit

from this two-level hash-structure (and conversely AS-

Index could be used to improve Maguro’s performance).

10 Conclusions

We presented a novel approach to string search in

databases, based on algebraic signatures and algebraic

computations. The contribution of our paper is a sim-

ple and fast search algorithm which finds a pattern of

arbitrary length in a database of arbitrary size in con-

stant time. We showed through analysis and experi-

ments that our technique outperforms other disk-based

approaches. To our knowledge, our work constitutes

an original approach to indexing, which takes advan-

tage of the interpretation of character as symbols in a

mathematical structure to develop new computational

techniques.

Scalable and distributed AS-Index constitutes a

promising research direction that we plan to investi-

gate.

References

[1] Margaritis G, Anastasiadis S V. SeFS: Unleashing the

power of full-text search on file systems. In Proc. the 5th

USENIX Conf. File and Storage Technology, Feb. 2007, Ar-

ticle No. 12.

[2] Crochemore M, Lecroq T. Pattern matching and text-

compression algorithms. ACM Computing Surveys, 1996,

28(1): 39-41.

[3] Ferragina P, Grossi R. The String B-tree: A new data struc-

ture for string search in external memory and its applica-

tions. J. ACM, 1999, 46(2): 236-280.

[4] Phoophakdee B, Zaki M J. Genome-scale diskbased suf-

fix tree indexing. In Proc. Int. Conf. Management of Data

(SIGMOD), June 2007, pp.833-844.

[5] Miller E, Shen D, Liu J, Nicholas C. Performance and scal-

ability of a large-scale n-gram based information retrieval

system. Journal of Digital Information, 2000.

[6] KimM S, Whang K, Lee J G, Lee M J. n-Gram/2L: A space

and time efficient two-level n-gram inverted index struc-

ture. In Proc. the 31st Int. Conf. Very Large Data Bases

(VLDB), Aug. 2005, pp.325-336.

[7] Litwin W, Schwarz T. Algebraic signatures for scalable dis-

tributed data structures. In Proc. the 20th Int. Conf. Data

Engineering (ICDE), March 2004, pp.412-423.

[8] du Mouza C, LitwinW, Rigaux P, Schwarz T J E. AS-index:

A structure for string search using n-grams and algebraic

signatures. In Proc. the 18th Int. Conf. Information and

Knowledge Management (CIKM), Nov. 2009, pp.295-304.

[9] Gray J, Fitzgerald B. Flash disk opportunity for server ap-

plications. ACM Queue, 2008, 6(4): 18-23.

[10] Charras C, Lecroq T, Pehoushek J D. A very fast string

matching algorithm for small alphabets and long patterns.

In Proc. the 9th Int. Symp. Combinatorial Pattern Match-

ing (CPM), July 1998, pp.55-64.

[11] Witten I, Moffat A, Bell T. Managing Gigabytes: Com-

pressing and Indexing Documents and Images (1st edition).

Morgan-Kaufmann, 1999.

[12] Na J C, Park K. Simple implementation of String B-Tree.

In Proc. the 11th Int. Conf. String Processing and Infor-

mation Retrieval (SPIRE), Oct. 2004, pp.214-215.

[13] Baeza-Yates R, Ribeiro-Neto B. Modern Information Re-

trieval. Addison-Wesley, 1999.

[14] Robenek D, Platoš J, Snášel V. Efficient inmemory data
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