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Abstract Subgroup discovery is a data mining technique that discovers interesting associations among different variables

with respect to a property of interest. Existing subgroup discovery methods employ different strategies for searching, pruning

and ranking subgroups. It is very crucial to learn which features of a subgroup discovery algorithm should be considered for

generating quality subgroups. In this regard, a number of reviews have been conducted on subgroup discovery. Although

they provide a broad overview on some popular subgroup discovery methods, they employ few datasets and measures for

subgroup evaluation. In the light of the existing measures, the subgroups cannot be appraised from all perspectives. Our

work performs an extensive analysis on some popular subgroup discovery methods by using a wide range of datasets and

by defining new measures for subgroup evaluation. The analysis result will help with understanding the major subgroup

discovery methods, uncovering the gaps for further improvement and selecting the suitable category of algorithms for specific

application domains.
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1 Introduction

Data mining aims to discover knowledge from

databases and it has been defined as the non-trivial pro-

cess of identifying valid, novel, potentially useful, and

ultimately understandable patterns in data[1]. Data

mining techniques can be divided into descriptive and

predictive induction[2]. Predictive induction extracts

knowledge with an intent to predict the class value of

unknown examples whereas descriptive induction aims

to discover interesting knowledge from data as a form

of patterns.

Subgroup discovery (SD) is a descriptive induction

technique that extracts interesting relations among dif-

ferent variables with respect to a special property of

interest known as target variable. For example, an in-

stitute might be interested in knowing what are the

circumstances that lead students having a higher fai-

lure therefore to take necessary steps for reducing the

failure rate.

Subgroup discovery possesses a wide range of real-

world applications. Its applications in medical domain

include the detection of coronary heart disease[3] as

well as brain ischaemia[4-5]. It has numerous contribu-

tions in the marketing domain for analyzing financial[6]

and commercial[7] data. It is applicable in other areas

like learning[8], mining of census data[9] and vegetation

data[10] as well.

A number of subgroup discovery algorithms[11-15]

have been developed so far. They differ in the strate-

gies for searching candidates and in the measures for

ranking interesting subgroups. In view of the signifi-

cant number of existing subgroup discovery algorithms,

the need arises to examine the features of a subgroup

discovery algorithm to generate quality subgroups. To

meet up this requirement, a number of reviews[2,16]

have already been conducted on subgroup discovery.

Although these studies provide a broad overview on

some subgroup discovery methods by analyzing the

main properties, models and problems solved by the

methods, most of them are confined to only theore-

tical analysis. An application study[8] has conducted

experiments on several subgroup discovery methods.

Though this work provides an in-depth understanding

of some subgroup discovery algorithms, the experiments

are performed by employing only a single dataset and

the discovered subgroups are evaluated with respect to

few measures.

Survey
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Therefore, in this paper, we assess the performance

of several fundamental algorithms found in the litera-

ture by conducting extensive experiments on them.

The contributions of this work include:

1) providing an in-depth understanding of different

subgroup discovery algorithms by conducting an exten-

sive study on them;

2) evaluating existing algorithms, finding out their

gaps by performing an empirical analysis on them,

proposing three new measures, and also using some

other measures proposed by some popular SD ap-

proaches for assessing their performance;

3) providing some suggestions about which features

should be considered for domain specific subgroup dis-

covery.

To achieve the above goals, we conduct an extensive

survey of some popular subgroup discovery methods,

define new measures for subgroup evaluation, and em-

ploy a wide range of datasets for evaluating the perfor-

mance of the algorithms. We then conduct an in-depth

analysis of the results and provide recommendations

accordingly. The resulting analysis from the first two

objectives can serve as a broad area for the researchers

to develop a better subgroup discovery method. The

outcome of the third objective will aid the data mining

practitioners to choose a suitable method for applying

within a specific domain.

The paper is organized as follows. Section 2 in-

troduces some background knowledge on subgroup dis-

covery and the methodology. Section 3 reviews the

fundamental subgroup discovery algorithms and their

potential applications. Section 4 describes the evalua-

tion measures employed in the experiments. Section 5

presents an empirical analysis and interpretation of the

results, followed by Section 6 as concluding remarks.

2 Background

The following subsections describe the concept of

subgroup discovery with a simple illustrative example

and the methodology of subgroup generation.

2.1 What Is Subgroup Discovery

The notion of subgroup discovery has been defined

by Klösgen[17] and Wrobel[18] as:

“Given a population of individuals and a property of

those individuals that we are interested in, find popula-

tion subgroups that are statistically ‘most interesting’,

for example, are as large as possible and have the most

unusual statistical (distributional) characteristics with

respect to the property of interest.”

Subgroup discovery aims to extract relations among

different variables with respect to the property of inter-

est. These relations are represented in the form of rules

represented as follows:

Condition → Target,

where Target is a value for the property of interest and

Condition is a conjunction of attribute-value pairs rep-

resenting relations characterized by the value of Target.

Some possible relations among the above attributes

shown in Table 1 can be as follows:

S1: (Salary > 80K AND Education = University)

→ Approved = Yes;

S2: (Salary < 50K AND Children = Yes AND Edu-

cation = Secondary) → Approved = No.

Table 1. Example Dataset

Salary Children Education Approved

< 50K Yes Secondary No

> 80K No University Yes

> 80K Yes University Yes

50K∼80K No Secondary No

50K∼80K No University Yes

< 50K Yes Secondary No

50K∼80K Yes Secondary No

The first subgroup represents that people with

higher salary and education level have a higher proba-

bility for loan approval with respect to people with

lower salary and education level. The second subgroup

with lower salary and education level and having chil-

dren has a very high probability of loan disapproval.

2.2 Descriptive Versus Predictive Rule

Discovery

Data mining is the process of discovering knowl-

edge from databases in form of patterns or rules. Data

mining methods can be classified into two groups ac-

cording to their objectives — predictive and descriptive

induction[7]. The predictive induction methods such as

classification aims to predict or classify the unknown

object from the discovered knowledge while the descrip-

tive induction methods, e.g., association rule mining or

clustering, reveal interesting knowledge from the data.

Subgroup discovery is represented as a task at the

intersection of descriptive and predictive induction[17].
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However, subgroup discovery differs from descriptive

induction techniques as they attempt to extract rela-

tions between unlabelled objects while subgroup dis-

covery searches for relations with respect to a special

property of interest.

Although the predictive induction methods deal

with labelled data, they are different from subgroup dis-

covery in terms of the purpose of knowledge discovery

from databases. The goal of classification is to generate

a model for each class that contains rules representing

class characteristics regarding the descriptions of train-

ing examples. This model is used to predict the class

of unknown object. In contrast, subgroup discovery at-

tempts to discover interesting relations with respect to

the property of interest.

2.3 Subgroup Discovery Methodology

As illustrated in Fig.1, a subgroup discovery algo-

rithm consists of three major phases for extracting sub-

groups — candidate subgroup generation, pruning and

post-processing. In the following, we describe these

steps in detail.

 

Generating 

Candidates

Pruning (Optimistic
Estimate, Support or

Constraint) 

 Post-Processing
(Ranking

Subgroups)

Fig.1. Methodology for subgroup discovery.

2.3.1 Candidate Subgroup Generation

Each subgroup discovery algorithm uses a specific

strategy to search for the candidate subgroups. Such

strategy is very essential for extracting subgroups as

the volume of search space is exponential with respect

to the number of attributes and their values. The search

space is traversed by starting with simple descriptions

and processing them in a more general to specific man-

ner by adding up more attribute-value pairs. Different

search strategies have been employed so far for sub-

group discovery; among them, the most widely used

strategies are exhaustive search, beam search and ge-

netic algorithm (GA) based search.

Exhaustive Search. Exhaustive search is a very

popular problem solving technique which generates

all possible candidates and verifies whether each can-

didate satisfies some specific constraints. When

exhaustive search is feasible, depth first search is

generally employed. Depending on the possibility,

the anti-monotone property[19] or optimistic estimate

function[20] is used to restrict the search space[14]. The

cost of this type of search is proportional to the number

of generated candidates; hence exhaustive search is not

affordable when the search space is too huge.

Beam Search. When exhaustive search is not pos-

sible, beam search is the commonly used heuristic sub-

stitute. It implements a level-wise top-down approach

for extracting subgroups. In beam search, only a pre-

defined number (known as beam width bw) of the best

partial solutions are taken as candidates. At each level,

the bw highest ranked candidates are generated accord-

ing to the quality. The initial candidate is generated

from empty subgroup description. Beam search re-

stricts the memory usage by exploring part of the search

space; while it does not guarantee solution at the end.

Genetic Algorithm. Genetic algorithm (GA) is a

search heuristic that follows the process of natural evo-

lution; hence the methods implementing this search

heuristic are known as evolutionary methods. This

heuristic is used to extract solutions to different opti-

mization and search processes. According to GA, each

solution is composed of several variables and equipped

with a fitness score. The solutions with higher fitness

values are given the opportunity to evolve. GA pro-

vides significant benefits over other search strategies,

e.g., linear programming, depth-first search and breath-

first search.

2.3.2 Pruning

In the second phase, a subgroup discovery algorithm

needs to employ a pruning scheme for selecting only the

significant candidates. A number of pruning strategies

are used by different methods. The major types include

minimum support or coverage pruning, optimistic esti-

mate pruning, and constraint pruning. Minimum sup-

port pruning allows a subgroup discovery method to

select only those candidates that have a minimum oc-

currence frequency in the dataset. A number of popular

methods[11-13] implement this pruning technique. Some

subgroup discovery methods[20-21] implement the opti-

mistic estimate as a pruning criterion which has been

defined in [18] as follows

Definition 1 (Optimistic Estimate). An optimistic

estimate oe(s) for a given quality function q is a func-

tion that satisfies the following: ∀ subgroups s, s′. s′ ≻

s =⇒ oe(s) > q(s′). Here s′ represents the refine-

ment of subgroup s such that the subgroup description

sd = {i1, i2, . . . , in} of s is a subset of the subgroup

description sd′ = {i′1, i
′

2, . . . , i
′

n} of s′.



564 J. Comput. Sci. & Technol., May 2016, Vol.31, No.3

Quality constraint is also one of the widely

used pruning strategies for some subgroup discovery

methods[22-23]. These methods prune the candidates

that have a lower quality than a user-specified thresh-

old value.

2.3.3 Post-Processing

The final phase of subgroup discovery algorithm im-

plements a quality measure in the purpose of ranking

subgroups. These measures are very vital for evaluat-

ing subgroups as the interest attained directly relies on

them. It can be defined as follows.

Definition 2 (Quality Measure). A quality mea-

sure is a function ϕ which assigns a numeric value to

a subgroup S ⊆ D.

Different quality measures are used by diffe-

rent subgroup discovery algorithms. Among them,

unusualness[24] and Piatetsky-Shapiro[17] are the most

popular ones.

The pruning techniques and the quality measures

used by different methods are summarized in Table 2.

3 Subgroup Discovery

A number of subgroup discovery algorithms have

been proposed till now. The following subsections dis-

cuss some popular beam search based methods, exhaus-

tive search based methods, and genetic algorithm based

methods and their applications in different domains.

3.1 Existing Approaches

Existing subgroup discovery approaches can be

broadly classified into three major categories according

to the strategy for searching the candidates — beam

search based approaches, exhaustive search based ap-

proaches, and genetic algorithm based approaches.

3.1.1 Beam Search Based Algorithms

These algorithms generate a fixed number of candi-

dates (specified by beam width parameter) during each

iteration. At each level, a refinement operator gene-

rates candidates for the next level by searching from

the candidates contained in the beam. Though beam

search is faster as compared with other search strate-

gies, it only explores part of the search space and does

not guarantee an optimal solution. A number of beam

search based algorithms have been developed till now.

The most popular ones are described below.

SubgroupMiner[25]. This subgroup discovery system

provides the main ingredients for description languages,

search strategies and evaluation of hypothesis, visuali-

zation and causal subgroups. This method implements

binomial test[17] as quality measure. It can work on

both numeric and nominal target attributes.

SD[11]. SD is a heuristic beam search based algo-

rithm in which the final subgroup set is selected accord-

ing to the opinion of an expert instead of simply using a

measure for subgroup searching and selecting. The al-

gorithm generates subgroups according to a fixed beam

Table 2. Pruning Techniques and Quality Measures Used by Different Algorithms

Search Strategy Method Pruning Technique Quality Measure

Beam SubgroupMiner Minimum support Binomial test

SD Minimum support Generalization quotient

CN2-SD Constraint Unusualness

RSD Minimum support Unusualness, significance or coverage

DSSD Minimum coverage Unusualness, Chi-squared, mean test, or WKL

Exhaustive EXPLORA No pruning Generality, redundancy, or simplicity

MIDOS Minimum support and
optimistic estimate

Novelty or distributional unusualness

APRIORI-SD Minimum support Unusualness

SD-Map Minimum support and
coverage

Piatetsky-Shapiro, unusualness, or binomial test

DpSubgroup Tight optimistic estimate Piatetsky-Shapiro, or Pearson’s Chi-square

MergeSD Constraint pruning Piatetsky-Shapiro

Evolutionary SDIGA No pruning Confidence, support, unusualness, sensitivity, interest, significance

MESDIF No pruning Confidence, support, unusualness, sensitivity, significance

NMEEF-SD No pruning Confidence, support, unusualness, sensitivity, significance

CGBA-SD No pruning Confidence, support
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width. In each iteration of this algorithm, the subgroup

description is updated by adding up new attribute val-

ues. Discovered subgroups must maintain a minimum

frequency and should be relevant for acceptance.

CN2-SD[23]. CN2-SD is a subgroup discovery al-

gorithm. It is an extension of the popular classifica-

tion rule induction algorithm CN2[26]. Unlike the stan-

dard CN2 algorithm, it uses a modified unusualness[24]

for ranking subgroups. CN2-SD implements a different

covering scheme as compared with the standard CN2

algorithm. In CN2, when a new rule is found, all the

examples covered by the rule are removed to avoid gene-

rating the same rule again. In CN2-SD, the covered

examples are not eliminated from the training dataset;

rather a count is stored with each example indicating

the frequency the example has been covered so far. If

an example is covered by a rule, its weight decreases

and its rule quality is measured by considering the new

weight of this example.

RSD[27]. This method extracts subgroups from a

relational database by removing irrelevant features. It

implements modified weighted covering and weighted

WRAcc (Weighted Relative Accuracy) heuristic for ex-

tracting subgroups. It employs unusualness as the qua-

lity measure for ranking subgroups.

DSSD[14]. DSSD is a beam search based non-

redundant subgroup discovery algorithm. It imple-

ments three different heuristic selection strategies to

manage redundancy. DSSD assumes that in a non-

redundant subgroup set, all subgroup pairs should be

different in 1) subgroup description, 2) subgroup cover,

or 3) exceptional models. DSSD generates a large num-

ber of j subgroups in the initial phase. In the second

phase, these j subgroups are refined by incorporating

dominance pruning which removes the subgroup condi-

tion one by one if it does not decrease the quality of

this subgroup. In the final phase, a subgroup selection

strategy is used to select k best subgroups from the ini-

tially generated j subgroups. DSSD uses WRAcc, Chi-

squared[20], mean test[17], or WKL (Weighted Kullback-

Leibler Divergence)[14] to rank the subgroups.

Different types of heuristic are used by different

methods for extracting and evaluating subgroups. Sub-

groupMiner uses the binomial test for ranking sub-

groups, while SD employs generalization quotient for

evaluating them. Both CN2-SD and RSD implement

modified covering scheme and modified WRAcc for

generating and ranking subgroups, although CN2-SD

is a propositional subgroup discovery algorithm and

RSD is a relational subgroup discovery algorithm. In-

corporating the weighted covering scheme allows these

methods to manage redundancy to some extent and

increase diversity in the generated subgroups. DSSD

implements three subgroup selection strategies for re-

ducing the number of redundant subgroups.

3.1.2 Exhaustive Search Based Algorithms

These algorithms search for every possible candi-

date and prune the irrelevant subgroups according to

some constraints to reduce the hypothesis space. This

is a widely used search technique because of its ease

of implementation; still it is not feasible to use when

the number of candidate solution grows quickly with

the problem size. Some of the widely used exhaus-

tive search based subgroup discovery algorithms are de-

scribed below.

EXPLORA[17]. This is the first approach for sub-

group discovery. It implements decision trees for gene-

rating subgroups. The interestingness of rules is evalu-

ated by different statistical measures such as generality,

simplicity.

MIDOS[18]. This is the first subgroup discovery

method that extracts interesting subgroups from multi-

relational databases. For subgroup evaluation, this

method uses a function that combines both the un-

usualness and the size of a subgroup. This approach

implements both the minimum support pruning and

the optimistic estimate pruning for selecting candidate

subgroups.

APRIORI-SD[12]. APRIORI-SD is an extension of

the classification rule learning algorithm, APRIORI-

C[28]. Each subgroup must maintain a minimum sup-

port and confidence threshold to have their place in

the final result set. Discovered subgroups are post-

processed by using unusualness as the quality measure.

All the positive examples covered by a rule are not re-

moved from the training dataset, rather each time an

example is covered, and its weight decreases. An exam-

ple is removed only when its weight falls below a given

threshold or when an example has been covered more

than k times.

SD-Map[13]. SD-Map is an exhaustive subgroup dis-

covery method which is an extension of the popular Fre-

quent Pattern (FP) Growth[29] based association rule

mining method. It selects only those subgroups that

maintain a minimum support value within the dataset.

It implements a depth-first search for candidate gene-

ration and also is able to handle missing values for dif-

ferent domains. It uses several quality functions such

as Piatetsky-Shapiro[17], unusualness.
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DpSubgroup[20]. This subgroup discovery algorithm

implements an FP-tree based structure for generating

subgroups. It uses tight optimistic estimate pruning for

removing irrelevant subgroups. This algorithm incorpo-

rates the optimistic estimate for Piatetsky-Shapiro and

Pearson’s Chi-square test.

MergeSD[22]. This algorithm employs a depth-first

strategy for searching the candidate subgroups. It im-

plements constraint-based pruning on the subgroups

over overlapping intervals. This algorithm can work

on the datasets having numeric attributes by pruning

large part of search space by exploiting bounds among

related numeric subgroup descriptions.

MIDOS is an adaption of the EXPLORA approach

which aims to extract statistically unusual subgroups

in multi-relational databases. APRIORI-SD, SD-Map,

DpSubgroup, and MergeSD are the extensions of diffe-

rent association algorithms. APRIORI-SD is an adap-

tion for subgroup discovery from the classification rule

learning algorithm APRIORI-C[28] which is a modifi-

cation of the APRIORI[30] association rule learning al-

gorithm. It employs a candidate generation and test

strategy. SD-Map, DpSubgroup, and MergeSD are the

extensions of FP-growth[29] based methods which use

divide-and-conquer strategy for searching the hypothe-

sis space.

3.1.3 Genetic Algorithm Based Approaches

Genetic algorithm based approaches have been gain-

ing attention in recent days. This type of search heuris-

tic follows the process of natural evolution such as in-

heritance, mutation, selection and crossover. Genetic

algorithms belong to the larger class of evolutionary

algorithms which usually tackle the optimization prob-

lems. Some of the most recent evolutionary algorithms

are given below.

SDIGA[15]. This is an evolutionary fuzzy rule in-

duction algorithm. Fuzzy rules are implemented in dis-

junctive normal form (DNF) as description language

for representing subgroups. DNF fuzzy rules allow all

the variables to take multiple values and facilitate the

discovery of more general rules. It evaluates the rules

by performing a weighted average of some quality mea-

sures which may include confidence, support, and un-

usualness.

MESDIF[31]. This is a multi-objective genetic algo-

rithm for inducing fuzzy rules. This algorithm imple-

ments the SPEA2 (Strength Pareto Evolutionary Algo-

rithm 2)[32] approach and applies elitism for selecting

rules. It can employ several quality measures to eva-

luate the generated subgroups. These measures include

support, confidence, and unusualness.

NMEEF-SD[33]. This is an evolutionary multi-obje-

ctive fuzzy rule induction system. This algorithm in-

corporates the use of some special operators to generate

simple and high quality subgroups. This algorithm is

based on a non-dominated sorting approach NSGA-II

(Non-Dominated Sorting Genetic Algorithm II)[34]. For

the extraction and evaluation of subgroups, this method

may employ several quality measures, which may in-

clude confidence, support, and unusualness.

CGBA-SD[35]. This algorithm represents a gram-

mar guided genetic programming approach for sub-

group discovery. According to this method, each rule

is represented as a derivation tree that shows a so-

lution represented using the language denoted by the

grammar. The algorithm consists of the mechanisms to

adapt the diversity of the population by self-adapting

the probabilities of recombination and mutation.

The evolutionary algorithms developed so far im-

plement a hybridization of genetic algorithm and fuzzy

system, known as Genetic Fuzzy System (GFS). GFS

provides new and useful tools for analyzing patterns

and discovering useful knowledge.

3.2 Applications in Different Domains

Subgroup discovery possesses a wide range of appli-

cations in different fields where knowledge related to a

specific target value has higher interest. This subsec-

tion describes some significant applications of subgroup

discovery in different areas.

Medical Domain. In medical domain, subgroup dis-

covery has been widely applied to detect the risk groups

with coronary heart disease. In [3, 7, 36-37], some influ-

encing factors (such as high cholesterol level, density of

lipoprotein, and triglyceride) have been detected for the

patients at high risk. All these studies implement SD

algorithm for extracting the risk factors as the evalua-

tion of such properties needs the involvement of domain

experts for effectively searching the hypothesis space.

Several other studies[4−5] have detected some princi-

pal and supporting factors of the patients having brain

stroke. The goal of this type of work is to help these

patients by diagnosing and preventing the disease. The

significant subgroups are discovered by SD algorithm

with the help of human expert with an intent to select

a relatively small set of relevant hypotheses.

In this domain, another interesting work[38] has

been proposed, which discovers the subgroups of
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patients visiting the psychiatric emergency depart-

ment. This work implements an evolutionary algorithm

SDIGA to discover the fuzzy rule that states the rela-

tionship among the arrival time of different patients at

this unit. A fuzzy genetic algorithm has also been em-

ployed in [39] to address the problem of pathogenesis

of acute sore throat condition in human.

Bioinformatics. Subgroup discovery has addressed

different real-world problems in the bio-informatics do-

main. In [37, 40], relevant features are extracted by

implementing the SD subgroup discovery algorithm for

the detection of different cancer types. [41] employs

an SD approach SD4TS (Subgroup Discovery for Test

Selection) for breast cancer diagnosis. Some other

studies[42-43] have detected the groups of gene that

are highly correlated with the class of lymphoblastic

leukemia. They have employed the RSD algorithm for

inducing subgroups that characterize the genes in terms

of the knowledge extracted from gene ontologies and in-

teractions. In another work[44], the PET scan has been

analyzed for extracting the patient groups that have

similar features in brain metabolism. In this work, the

RSD algorithm is implemented to extract the relation-

ship and knowledge obtained from patients’ database

to identify who are unusual with respect to the images.

Marketing. Subgroup discovery also possesses sig-

nificant applications in the marketing domain. The

very first application[6] in this domain is an analysis

of financial market research with the help of the EX-

PLORA algorithm. In this application, data is collected

by interviewing persons about their behavior in the

market. This type of analysis may incur the missing

data problem and need sufficient prepossessing of the

collected data. A different type of market analysis has

been conducted in [36], which discovers the subgroups

of customers who are familiar with different market

brands. The features are extracted by using SD algo-

rithm. A similar type of analysis has been conducted in

[7], but here the subgroups of the potential customers

of different brands have been extracted by employing

the CN2-SD algorithm.

Spatial Data Analysis. Spatial data analysis has also

been achieved by subgroup discovery. In [9], the Sub-

groupMiner algorithm has been employed on UK census

data to extract the information of enumeration districts

with a high migration rate. Some influencing factors

such as the low rate of households with two cars, the

low rate of married people and the lower unemploy-

ment rate in some areas are considered for higher mi-

gration rate. In another work [25], mining from census

data has been conducted for extracting the possible ef-

fects on mortality by using SubgroupMiner algorithm.

Spatial data has been analyzed in [10] containing 132

vegetation records which describe the cites of various

plants. The main objective of this work is to evaluate

subgroups that are in favor of the existence of a plant

species.

Other Domains. The popularity of the web-based

education system has been on the hype in recent days.

Mining educational data possesses a wide range of ob-

jectives which commonly include analyzing students’

behavior, detecting vulnerable students, recommend-

ing relevant books and so on. Different subgroup dis-

covery algorithms have been compared in [8] by using

e-learning data obtained from the Moodle e-learning

system from the University of Cordoba. The aim is to

retrieve knowledge from usage data and improve stu-

dents’ performance by using it.

A study on traffic accidents has been conducted in

[45-46]. The first work conducted a comparison of the

extracted subgroups between the standard CN2 and the

CN2-SD method, and the second paper compares the

subgroups generated by SubgroupMiner and CN2-SD.

From the above discussion, it is observed that dif-

ferent algorithms have been implemented in individual

application domain. Hence each algorithm has their

own methodology for subgroup extraction. Since each

application area possesses some requirements with re-

spect to the discovered subgroups, it is very crucial to

learn the features that should be considered for a do-

main specific subgroup discovery.

4 Evaluation Measures

In this section, the definitions of different evaluation

measures are given. Several existing measures are used

in the experiments in this paper for evaluating the sub-

groups generated by different algorithms. At the same

time, three new measures have been proposed by this

work — overall coverage, overall support and redun-

dancy. Each of these measures has different objectives

in terms of evaluating the subgroups.

Preliminaries. Let D be a dataset. All the exam-

ples to be analyzed are represented by the set of k de-

scription attributes A (where A = {A1, A2, . . . , Ak})

and a single class attribute c. Each attribute Ai has

a domain of possible values Dom(Ai). Our dataset D

is now a collection of N examples over the set of at-

tributes (A and c). Subgroup S is a set of descrip-

tion attribute-value pairs contained in D such that
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S ⊆ {a1, a2, . . . , am|ai ∈ Dom(Ai)}. ϕ is a quality

measure that assigns a numeric value to subgroup S

such that Sc ⊆ Dc.

coverset(S) is the set of examples inD containing S.

Cov(S) represents the fraction of examples containing

coverset(S). supportset(S, c) is the set of examples in

D containing both S and c. Sup(S, c) is the fraction of

examples containing supportset(S, c). class represents

the set of examples containing the target attribute.

4.1 Measures of Complexity

These measures belong to the understandability of

the knowledge extracted from the subgroups. These

types of measures are as follows.

Number of Subgroups. It measures the number of

discovered subgroups. In a beam search based method,

the number of discovered subgroups is restricted by

beam width. In a top-k method, the number of gene-

rated subgroups is limited by the value of k.

Length of Subgroups. It measures the number of

variables contained in a subgroup. Subgroups with

larger number of attributes are more specific to a par-

ticular target class.

4.2 Measures of Generality

These measures are used to quantify the generality

of subgroups according to the individual patterns of

interest covered[16]. Within this group, the following

measures can be found.

Definition 3 (Average Coverage). It measures the

percentage of examples covered on average by a single

subgroup[7]. The average coverage is computed as

AvCov =
1

ns

ns∑

i=1

Cov(Si),

where ns is the number of subgroups of the induced sub-

group set.

Definition 4 (Overall Coverage). It measures the

fraction of examples covered collectively by a subgroup

set. Overall coverage is given by the following equation.

COV =
|(
⋃ns

i=1 coverset(Si))|

N
.

Although the average coverage measures the genera-

lity of a subgroup within the dataset, measuring overall

coverage is very crucial. The average coverage measures

the amount of examples to be covered on average by a

single subgroup whereas overall coverage gives us an

idea about what proportion of examples have been cov-

ered by the discovered subgroup set. Hence it truly

measures the generality of a subgroup set by counting

both the target and the non-target class examples which

belong to the subgroup of a rule set.

Definition 5 (Average Support). The support of

a subgroup measures the fraction of correctly classified

examples covered by that subgroup[12]. The average sup-

port of a single subgroup is given by the following equa-

tion,

AvSup =
1

ns

ns∑

i=1

Sup(Si, c).

Definition 6 (Overall Support). It measures the

percentage of target examples covered by a subgroup set.

Overall support can be represented as follows,

SUP =
|(
⋃ns

i=1 supportset(Si, c))|

N
.

Overall support of a subgroup set measures the pro-

portion of the target examples covered by the disco-

vered subgroup set. It measures the degree of specificity

of the subgroup set to a particular target class which

cannot be achieved by evaluating rules using average

support.

4.3 Measures of Precision

This category of measure evaluates the precision of

the subgroups. The following measure quantifies the

precision of the discovered subgroups.

Definition 7 (Average Confidence). It measures

the average frequency of target examples among those

satisfying only the antecedent[47]. The average confi-

dence of a subgroup is given by the following equation,

AvConf =
1

ns

ns∑

i=1

|supportset(Si, c)|

|coverset(Si)|
.

4.4 Measures of Interest

This measure is used for selecting and ordering in-

teresting subgroups. A measure for evaluating the in-

terestingness of the subgroups is as follows.

Definition 8 (Significance). This measure indicates

the level of significance of a finding. Average signifi-

cance is computed in terms of the likelihood ratio of a

subgroup[16-17]. The average significance of a subgroup

is as follows,

AvSig =
1

ns

ns∑

i=1

2

nc∑

k=1

|supportset(Si, c)|
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log
|supportset(Si, c)|

|classk|.Cov(Si)
,

where nc represents the value of target class variable.

4.5 Measure of Quality

This measure is used to evaluate the quality of the

discovered subgroups. The quality measure used in the

experiments is given below.

Definition 9 (Unusualness). This measure is iden-

tified as the weighted relative accuracy WRAcc of a

subgroup[48]. The unusualness of a subgroup can be con-

sidered as a tradeoff between the coverage and the ac-

curacy gain of a subgroup[7]. The average unusualness

of a subgroup is given by the following equation:

AvWRAcc =
1

ns

ns∑

i=1

Cov(Si)

(
|supportset(Si, c)|

|coverset(Si)|
−

|class|

N
).

4.6 Measure of Redundancy

This measure assesses the preciseness of an algo-

rithm by calculating to what extent a rule set contains

extraneous information. This measure is defined as fol-

lows.

Definition 10 (Redundancy). It measures the frac-

tion of redundant subgroups to the discovered subgroups.

A subgroup Sk is redundant if there is another subgroup

Sj such that

1) Sj ⊆ Sk, and

2) ϕ(Sj) > ϕ(Sk).

The percentage of redundancy is given by,

Redundancy(%) =
nred

ns

× 100,

where nred is the number of redundant subgroups.

As an example of redundancy,

Sk = {male, smoking, 40∼45→ disease},

Sj = {male, smoking → disease}.

When Sj has equal or higher quality than Sk, which

denotes that the conditions of Sj are sufficient to be

classified as disease, Sk is redundant.

5 Experiments

This section describes the datasets employed in

these experiments, the implementation, parameter set-

tings, and the results, including efficiency, the scalabi-

lity of some popular methods, and the evaluation of the

discovered subgroups by each of these methods.

5.1 Datasets

In the experiments, we used 13 different datasets

from UCI machine learning repository[49]. The data-

sets Hypothyroid and Sick are located at the directory

of Thyroid Disease dataset. The numeric attributes

have been removed from the Adult and Census-Income

dataset while they are discretized in the remaining

datasets by using MLC++[50]. A brief description of

the datasets can be found in Table 3. The minor class

was used as the property of interest.

Table 3. Datasets Used in the Experiments

Number Dataset Number of Number of Minor

Instances Attributes Class (%)

01 Adult 48 842 8 23.9

02 Breast Cancer
Wisconsin

699 9 34.5

03 Census Income 250 000 33 6.2

04 Diabetes 768 8 34.0

05 German Credit 1 000 15 30.0

06 Heart 270 13 44.0

07 Hypothyroid 3 163 23 4.8

08 Iris 150 4 34.0

09 Kr-vs-kp 3 196 36 47.8

10 Mushroom 8 124 22 48.2

11 Sick 2 800 26 6.1

12 Tic-Tac-Toe 958 9 34.7

13 Vote 435 16 38.6

5.2 Implementations

All the experiments have been conducted on a com-

puter with 8 processors (i7, 3.40 GHz), 16 GB RAM,

and 64-bit windows operating system. For SD, CN2-

SD and APRIORI-SD, we used the implementation by

Orange data mining software tool[51]; for SD-Map by

VIKAMINE[52], DSSD by DSSD software tools[14], and

NMEEF-SD has been implemented by KEEL[53].

5.3 Parameter Settings

The minimum coverage count is 10. The minimum

support is 1%. The maximum depth refers to the num-

ber of description attribute-value pairs of a subgroup

which has been set to 5. Beam width is set as 100. For

the top-k methods, k is fixed to 100.

5.4 Experimental Results

The experiments compare five subgroup discovery

methods, SD, CN2-SD, APRIORI-SD, SD-Map, and

DSSD, from each of the sub-categories. The experi-

ments compare the performance of the methods by 1)
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measuring their efficiency and scalability and 2) evalu-

ating the subgroups discovered by them.

5.4.1 Efficiency

The efficiency of the algorithms has been measured

in terms of the execution time (in second) and the peak

memory usage (in MB). According to these two measur-

ing parameters, DSSD is highly efficient as it takes less

time and memory for generating and storing subgroups.

The maximum allowed execution time for these experi-

ments is two hours. The execution time and memory

usage by different algorithms can be viewed from Ta-

ble 4 and Table 5. In the two tables, “-” represents

“out of memory” and “no” represents “no subgroup re-

turned” within two hours.

Datasets hypothyroid and Kr-vs-kp contain nearly

equal instances, but from Table 4, it can be seen that

Kr-vs-kp takes more time to generate subgroups and

also from Table 5, it is seen that it has higher memory

usage. The reason is that the Kr-vs-kp dataset pos-

sesses a large number of attributes; hence it takes more

time and space to generate and store the candidates.

A similar observation can be followed from the result

of the Mushroom and Sick datasets. The experiments

show that the average time and memory consumed with

the Mushroom dataset is lower as compared with that

of the Sick dataset, although the former dataset pos-

sesses a higher number of instances as compared with

the latter dataset.

5.4.2 Scalability

The scalability of the algorithms is evaluated in

terms of the execution time and peak memory usage

with different data sizes. From Fig.2, it is observed that

only SD-Map extracts subgroups within two hours with

100K samples while the other methods discover sub-

groups with up to 50K instances within two hours. It is

seen from Fig.2 and Fig.3 that DSSD is highly scalable.

NMEEF-SD shows better scalability as compared with

most other methods which shows that the growth of dis-

tribution function time is lower for NMEEF-SD than

the classical beam search and the exhaustive search

based method. APRIORI-SD exhibits lower scalabi-

lity as compared with all the other methods in terms

of both execution time and memory usage. It is be-

cause of the fact that it employs the exhaustive search

strategy for generating candidate subgroups. Although

SD-Map implements an exhaustive search strategy, it

Table 4. Execution Time (s)

SD CN2-SD APRIORI-SD SD-MAP DSSD NMEEF-SD

Adult 1 122 2 064 No 12 8 10
Bcw 10 26 8 8 3 4
Census-income - - - 180 - -
Diabetes 5 11 9 1 0 1
Germand 20 43 No 3 1 2
Heart 4 10 165 1 0 1
Hypothyroid 38 229 No 4 1 2
Iris 3 8 89 0 0 1
Kr-vs-kp 42 312 No 5 2 3
Mushroom 57 882 No 3 0 3
Sick 32 263 No 6 1 3
Tic-Tac-Toe 7 13 10 3 0 2
Vote 6 11 192 2 1 2

Table 5. Peak Memory Usage (MB)

SD CN2-SD APRIORI-SD SD-MAP DSSD NMEEF-SD
AdultAll 964.8 192.4 No 1 014.8 188.34 190.85
Bcw 31.4 23.9 34.8 212.2 22.37 23.90
Census-income - - - 5 043.4 - -
Diabetes 15.3 12.8 17.7 16.4 10.24 11.73
Germand 22.2 25.0 No 533.3 18.85 20.06
Heart 12.4 15.9 38.4 44.8 9.70 10.97
Hypothyroid 42.7 221.6 No 824.6 29.42 35.47
Iris 12.2 13.5 26.8 18.8 11.05 12.78
Kr-vs-kp 51.5 341.9 No 917.8 32.26 45.60
Mushroom 102.9 513.2 No 928.5 8.24 10.70
Sick 33.6 272.3 No 313.7 25.03 28.23
Tic-Tac-Toe 18.8 13.7 21.9 22.3 11.15 14.75
Vote 13.3 17.9 44.1 56.6 11.94 12.29
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shows better performance as compared with APRIORI-

SD since it uses a divide-and-conquer strategy while

APRIORI-SD uses the candidate-generation-and-test

strategy. This feature leads to the generation of expo-

nential number of candidates with the increase in data

size.
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Fig.2. Scalability in terms of execution time.
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Fig.3. Scalability in terms of peak memory usage.

5.4.3 Evaluation

The quality of subgroups generated by each algo-

rithm can be viewed from Table 6. The result can be

summarized as follows.

1) The subgroups generated by DSSD method have

the highest average coverage and support.

2) DSSD generated subgroups have the highest ave-

rage length.

3) DSSD induces better subgroups in terms of sig-

nificance which is computed in terms of the average

likelihood ratio of a subgroup.

4) Subgroups discovered by DSSD have the highest

quality (according to the unusualness measure).

5) APRIORI-SD generated subgroups have the low-

est redundancy and have the highest overall coverage

both within the class and the datasets.

The interpretation of the results is listed as follows.

1) In the first iteration of a standard beam search, a

predefined number (beam width, bw) of subgroups with

depth 1 are generated. In the next iteration, candidate

subgroups with depth 2 are generated from the previ-

ously generated depth 1 subgroups and bw subgroups

are selected according to the quality. Thus candidate

subgroups with depth n are generated from the sub-

groups of depth n− 1 in each level of beam search, and

among them, only bw subgroups are selected as qua-

lity basis. Hence, the incorporation of the beam width

parameter imposes a restriction on the number of gene-

rated subgroups; the discovered subgroup set suffers

from a loss of quality subgroups. The level of explo-

ration becomes limited in this type of search. On the

contrary, DSSD at first mines a large number of j sub-

groups (which include most of the subgroups with dif-

ferent depths according to quality) and there it selects

top-k. Moreover, this method employs both “=” and

“!=” parameters for subgroup refinement which allows

to cover on average a large number of examples within

the class and within the dataset.

2) For DSSD, the maximum depth of subgroup is

fixed as 5 which leads this method to have the longest

average subgroup length. Despite this character, DSSD

Table 6. Comparative Performance

Method Coverage Support Number of Length of Significance WRAcc Confidence Redundancy∗

Average Overall Average Overall Subgroups Subgroup (Average) Average Maximum (Average) (%)

SD 0.069 6 0.182 9 0.049 3 0.132 0 100 3.252 037.253 0 0.030 0 0.132 0 0.796 5 44.09

CN2-SD 0.078 1 0.285 9 0.068 7 0.101 0 100 3.248 138.743 0 0.044 9 0.162 3 0.802 3 76.79

APRIORI-SD 0.169 2 0.479 5 0.162 2 0.355 6 105 3.337 013.347 0 0.059 3 0.176 9 0.863 7 09.32

SD-Map 0.206 8 0.272 6 0.179 3 0.213 8 100 3.271 622.659 4 0.072 1 0.103 7 0.731 4 87.38

DSSD 0.318 9 0.422 2 0.2298 0.288 5 100 4.285 778.583 0 0.114 0 0.118 0 0.622 1 81.17

NMEEF-SD 0.282 3 0.451 2 0.182 9 0.344 6 095 4.060 711.560 0 0.107 0 0.172 0 0.854 6 39.96

Note: ∗: for evaluating the subgroups generated by DSSD, each of the subgroups is treated as individual rather than a set for the ease
of comparison.
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has the highest average coverage. This is due to the

fact that DSSD refines subgroups by employing both

“=” and “!=” operators while other subgroup disco-

very methods (only those used for experiments) only

use “=” operator for generating subgroups. This fea-

ture imposes multiple conditions on the same attribute

while removing a number of uninteresting tuples at the

same time; thus it allows to cover more examples as

compared with other methods.

3) The significance criterion evaluates a subgroup

by measuring its distributional unusualness unbiased

to any particular target class. The generality of DSSD

algorithm increases in the first two phases. In the first

phase, the subgroup selection strategy removes a sub-

group if it has the same quality as any of its gene-

ralization. In the second phase, a heuristic known

as dominance-based pruning is applied on the selected

subgroups of the previous phase. This heuristic con-

siders each of the conditions of a subgroup description

one by one and removes them if it does not decrease

the quality of the subgroup. The resulting subgroup

set is more general and hence covers a number of both

target and non-target class examples. Therefore DSSD

generated subgroups are highly significant.

4) DSSD post-processes the initially generated j

subgroups by implementing dominance-based pruning

which prune the condition of a subgroup description

if it does not decrease the subgroup’s quality. This

heuristic allows DSSD to have its subgroup description

simpler while increasing its average quality. Moreover,

the use of “!=” operator allows to cover a large number

of examples by a subgroup which essentially increases

the subgroup’s quality.

5) In APRIORI-SD, a restriction is imposed on simi-

lar subgroup generation by employing a new parame-

ter representing how many times an example can be

covered by a subgroup. Moreover, this algorithm im-

plements the weighted WRAcc heuristic which allows

decreasing the weight of an example when it is covered

by a subgroup and considering the new weight for mea-

suring the WRAcc for evaluating next subgroup. These

features allow this method to generate less redundant

subgroups by decreasing the chance to cover overlap-

ping examples. As a result, the generated subgroup sets

cover a large number of examples within the dataset.

In APRIORI-SD, candidate subgroups are initially se-

lected according to the minimum confidence threshold.

The confidence measures the fraction of a subgroup that

corresponds to a particular target class. From the re-

sult table, it is observed that the subgroups discovered

by APRIORI-SD have the highest average confidence

which clearly states that these subgroups are highly

specific to the target class. This is also apparent from

the amount of target coverage which is the highest for

this method.

Consider the following two graphs representing the

coverage and support of different methods used in the

experiments. These graphs depict rule coverage and

support by different SD methods which show that

APRIORI-SD has the highest difference between its

average and the overall coverage and support. This

finding is very obvious as this method has less redun-

dancy rate, and hence it has less number of overlapping

examples. In contrast, DSSD has the lowest difference

between its overall and average coverage and support

because of generating a high number of overlapping ex-

amples.

5.4.4 Comparison and Discussion

It is observed from the experiments that NMEEF-

SD is more efficient than the traditional beam search

based methods (SD and CN2-SD) and the exhaustive

search methods (APRIORI-SD and SD-Map) in terms

of execution time. This is due to the fact that the time

complexity of NMEEF-SD is proportional to the num-

ber of classes and instances of a dataset while for the

other methods, the complexity is related to the number

of variables and instances.

The experiments also follow that the exhaustive

search based methods have poorer scalability as com-

pared with the traditional beam search based methods

and evolutionary method. As for the exhaustive meth-

ods, a number of generated candidates grow exponen-

tially with the increase in the size of instances.

DSSD generated subgroups exhibit the highest ave-

rage support; still they have the lowest confidence. It

is because of the fact that DSSD generated subgroups

are more general. The average subgroup size is around

2 971 among which only 1 626 are covered by the target

class. Though DSSD generated j subgroups are specific

at the first phase, their generality increases by imple-

menting dominance pruning in the second phase of the

algorithm.

DSSD generates high quality subgroups, which is

evident from the fact that the average quality and the

maximum quality of subgroups (generated by DSSD)

are nearly equal. In the traditional beam search, a

maximum of bw subgroups can be generated and fi-

nally bw subgroups should be returned according to the

quality. For example, consider beam width is 20. In
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the first iteration of beam search, 20 subgroups will be

generated with depth 1. In the second iteration, an-

other 20 subgroups will be generated of depth 2 from

the subgroups of the first iteration. It is quite possi-

ble that if there was no restriction on the number of

generated solutions, in the first iteration, this method

would generate higher quality subgroups as compared

with those generated from the latter iterations.
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Although CN2-SD implements beam search for

generating candidates, it generates higher quality sub-

groups as compared with SD. This algorithm uses a

modified unusualness for extracting subgroups. This

strategy allows to decrease the weight of an example

when it is covered by any subgroup. The modified

weight of all the examples is taken into consideration

for measuring the unusualness of a subgroup.

APRIORI-SD generated subgroups are of higher

quality than those of CN2-SD. APRIORI-SD extracts

the subgroups having a minimum support and confi-

dence value in the initial phase of the algorithm, and

then post-processes the subgroups according to the

unusualness measure; whereas CN2-SD extracts sub-

groups using the unusualness measure at the very initial

stage and loses some quality subgroups.

NMEEF-SD generated subgroups are of higher qua-

lity than the generated subgroups of the standard beam

search based methods and the exhaustive search based

methods. This method does not use any pruning strat-

egy but lets the rule evolve, which has a minimum fit-

ness score.

As exhaustive search generates every possible candi-

date, it is better to use this strategy when the problem

size is smaller or when a problem-specific heuristic can

be employed to reduce the number of candidates. The

cost of this type of search is proportional to the num-

ber of generated candidates; hence beam search and ge-

netic algorithm based search are the alternative heuris-

tics for searching candidates when the search space is

very large. Different methods implement different mea-

sures for ranking subgroups. The interestingness of a

subgroup depends on its unusualness and size. That is

why the quality measure needs to combine both factors.

The weighted relative accuracyWRAcc takes these two

factors into consideration when ranking subgroups.

Different algorithms employ different strategies for

reducing the number of redundant subgroups. The al-

gorithms, CN2-SD, APRIORI-SD and RSD, implement

the weighted covering scheme for restricting the num-

ber of redundant subgroups. Although this strategy

imposes a restriction on a number of redundant sub-

groups, it is still not able to remove them completely.

Another non-redundant subgroup discovery algorithm

DSSD implements three non-redundant subgroup se-

lection strategies. According to these approaches, if a

subgroup has its generalization with the same quality

in the discovered subgroup set, it should be removed.

This may not be always feasible as in some applica-

tion domain the specific subgroups (as compared with

its generalization) may be preferred. For example, in

medical domain, suppose symptoms A and B diagnose

disease D, and again symptoms A, B and C diagnose

the same disease. Though both of the symptom groups

detect the same disease D, the severity of the disease

D may vary for each of the symptom groups, i.e., pa-

tients with symptoms A, B and C may have disease

D with higher severity. Therefore whether to choose

the most general or specific subgroups solely depends

on the application domain, and the method should be

chosen accordingly.

Incorporating domain knowledge in subgroup dis-

covery methods may be useful for extracting quality



574 J. Comput. Sci. & Technol., May 2016, Vol.31, No.3

subgroups with respect to a particular application area.

Using domain knowledge for discovering subgroups will

also be helpful for restricting the search space.

A number of challenges exist in the domain of sub-

group discovery. Major challenge lies on the perfor-

mance of each of the methods. From the result, we have

already seen that a method may have higher precise-

ness, i.e., lower redundancy, but may not be able to pro-

vide a high quality subgroup. This fact is depicted from

the performance of APRIORI-SD algorithm. Similarly,

a method may have higher generality and quality but

may generate the rule of lower confidence. However,

it is very vital to learn which features of an algorithm

should be considered for generating quality subgroups

for a specific application domain.

6 Conclusions

Different subgroup discovery approaches use dif-

ferent pruning techniques and measures for selecting

and ranking candidate subgroups. An efficient pruning

technique should not eliminate any significant candi-

dates. At the same time, a good measure should con-

sider both the unusualness and the size of the subgroups

for evaluation.

In this paper, we compared several subgroup dis-

covery approaches in terms of their efficiency, scalabi-

lity (with respect to execution time and peak memory

usage) and also evaluated the discovered subgroups by

employing several measures. This work has proposed

three new measures as it is not sufficient to evaluate

subgroups in the light of the existing measures. Fur-

thermore, the evaluation and comparison has been per-

formed by incorporating 13 different datasets from the

UCI machine learning repository which are diverse both

in the size of instances and the attributes. The inter-

pretation of the comparison allows to provide a detailed

understanding of different methods, to find out the gaps

of the existing methods and to give some suggestions

about the features that should be considered for do-

main specific subgroup discovery.

The experiments showed that the exhaustive search

based methods exhibit better performance compared

with other methods when the problem size is smaller.

Moreover, it is also evident from the experiments that

methods that employ the unusualness as the quality

measure perform well compared with other algorithms

as this measure considers both the unusualness and the

size of the subgroups. The resulting analysis will be

helpful in the future for developing an efficient subgroup

discovery method.

References

[1] Fayyad U, Piatetsky-Shapiro G, Smyth P. Knowledge dis-

covery and data mining: Towards a unifying framework.

In Proc. the 2nd International Conference on Knowledge

Discovery and Data Mining (KDD), Aug. 1996, pp.82-88.
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[12] Kavšek B, Lavrač N, Jovanoski U. APRIORI-SD: Adapting

association rule learning to subgroup discovery. In Proc. the

5th IDA, Aug. 2003, pp.230-241.

[13] Atzmueller M, Puppe F. SD-Map — A fast algorithm for

exhaustive subgroup discovery. In Proc. the 10th European

Conference on Principle and Practice of Knowledge Dis-

covery in Databases (PKDD), Sept. 2006, pp.6-17.

[14] Leeuwen M, Knobbe A. Diverse subgroup set discovery.

Data Mining and Knowledge Discovery, 2012, 25(2): 208-

242.
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[22] Grosskreutz H, Rüping S. On subgroup discovery in numer-

ical domains. Data Mining and Knowledge Discovery, 2009,

19(2): 210-226.
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[37] Carmona C J, González P, del Jesus M J, Nav́ıo-Acosta M,
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[51] Demšar J, Curk T, Erjavec A, Gorup C, Hočevar T, Mi-
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