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Abstract Visual analytics has been widely studied in the past decade. One key to make visual analytics practical for

both research and industrial applications is the appropriate definition and implementation of the visual analytics pipeline

which provides effective abstractions for designing and implementing visual analytics systems. In this paper we review the

previous work on visual analytics pipelines and individual modules from multiple perspectives: data, visualization, model

and knowledge. In each module we discuss various representations and descriptions of pipelines inside the module, and

compare the commonalities and the differences among them.
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1 Introduction

Nowadays the increasing availability of massive

datasets has raised a revolution of data gathering, sto-

rage and analysis. It becomes difficult and gradually in-

feasible to apply standard tools for data analysis, which

are widely utilized during the past decades by business

analysts, scientists and government employees for in-

sight gaining and decision making.

In many fields such as biological computation, busi-

ness intelligence and online transaction analysis, auto-

mated data analysis approaches such as machine learn-

ing and data mining are commonly deployed to extract

patterns from existing data. The patterns are repre-

sented as the high-level abstraction of insights from the

data and then transformed into knowledge[1]. Visuali-

zation, from the perspective of human vision, provides

another scheme for analysts to enhance the ability of

understanding and exploring datasets. Usually visuali-

zation methods employ visual channels to represent

and transform raw datasets into various visual rep-

resentation forms, and thereby human intelligence is

incorporated into the data analysis process via intui-

tive interactive interface. In the past decade, the the-

ory of “visual analytics” (or visual analysis) has been

widely studied by combining automated data mining

techniques and visualization methods. Visual analytics

“integrates the capability of computer and the abilities

of the human analyst”[2] to empower the control of the

entire analysis and decision-making process. In fact,

pioneers provide a few valuable literatures. Keim et

al.[2-3] gave a general introduction of visual analytics.

In addition, some scholars summarize the state-of-the-

art part in the field of visual analytics, for instance,

Zhang et al.[4] focused on advanced commercial sys-

tems and Sun et al.[5] generalized cutting-edge research

and future challenges from the perspective of analytics

space.

The purpose of this paper is to bring visual analy-

tics into the limelight. We review a set of literatures on

visual analytics and propose a summarization of visual

analytics pipelines that cover automated data process-
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ing, visualization and human interactions. The main

methodology in this survey is a categorization of multi-

ple levels that are included in the visual analytics loop

which is considered as a global picture of the entire

framework, and the detailed analysis of each module

to present specific techniques in the processing steps.

Furthermore, for specific modules in the visual analy-

tics loop, we compare several different representations

of pipelines proposed in history, especially the entire

evolutionary process and the shared steps exist in all

pipelines. The comparison is specifically designed to

clarify the commonalities and differences among multi-

ple pipeline presentations.

The paper is organized as follows. Section 2 intro-

duces a conventional visual analytics pipeline that is

widely adopted in the community. Sections 3∼6 ex-

pand the modules described in Fig.1. Finally, we give

a conclusion in Section 7.

Visual Data Exploration

User Interaction

Mapping
Visualization

Automated Data Analysis

Feedback Loop

Transformation

Data

Data
Mining

Model
Building

Model
Visualization Knowledge

Parameter
Refinement

Models

Fig.1. Visual analytics pipeline proposed by Keim et al.[2]

2 Conventional Visual Analytics Pipeline

The visualization pipeline illustrates the process of

transforming data to visual representations, which com-

prises the key structure extracted from massive visuali-

zation systems[6]. A visual analytic process emphasizes

on analytical reasoning as well as decision making with

interactive visual interfaces. Countless research studies

in the field of visual analytics have been performed,

and most of them follow a conventional visual analy-

tics pipeline presented by Keim et al.[2] as shown in

Fig.1. We describe several other pipelines in Sections

3∼6 about their focuses. The representative pipeline

from Keim et al. is introduced in this section. This

conventional pipeline guides visual analytics processes

as an abstract outline, including four major stages and

significant relationships between them.

Beginning with raw data, either structured or un-

structured, it is essential to employ a series of data

pre-processing steps, like data transformation. Raw

data may contain a variety of errors and invalid items.

The data pre-process procedure is used not only to re-

move the redundancy, errors and invalid items of the

raw data, but also to provide analysts with data in the

exact form they need.

After the data pre-process procedure, both visual

exploration and automatic analysis methods are availa-

ble. Visual data exploration methods offer an inte-

ractive visual interface to display transformed data in a

visual mapping way, while automatic analysis methods

require analysts to generate or select appropriate mod-

els based on data features, by applying different data

mining methods. However, models generated in the au-

tomatic analysis process may contain their own draw-

backs and therefore need to be validated and refined.

Fortunately, visualization allows analysts to participate

in the model generation and modification process by

refining parameters or selecting another model. Actu-

ally, many analysis missions are too complex for compu-

ters to complete on their own, making the position of

visualization irreplaceable. As we can figure out, visua-

lization is not only expected to help the model build-

ing process with generated hypotheses and insights, but

also expected to evaluate the results and the findings

of models by model visualization.

It is natural to draw the conclusion that analysts are

able to gain knowledge using visual data exploration

or automatic analysis methods, or even a combination

suite of both of them. Knowledge generation, however,

does not necessarily put an end to this conventional vi-

sual analytics pipeline. For those complicated visual

analytics missions, the knowledge gained at the first

time may not be adequate for the analysts and thus it

is fundamental to refine the data pre-process methods

in order to carry out the whole process again and again

to receive satisfying results. This is the way in which

the feedback loop works.

As previously stated, this conventional pipeline only

shows an abstract overview of the entire visual analy-

tics process which contains more specific steps in each

stage. Based on Keim et al.’s work[2] and more recent

literatures, we drill down to each specific stage so as

to give a more detailed and practical description of the

conventional pipeline.
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3 Data

Everyday, massive raw data is collected through sen-

sors, experiments, questionnaires, network, etc. With

the increasing variety of available data and the facili-

tation of data collection, the application domain of vi-

sual analysis keeps expanding. We collect some litera-

tures and classify them by data category. As a matter

of fact, a majority of visual analytic systems are task-

driven[7-9]. However, tasks are specific and distinctive

from each system in most instances, thus classifying vi-

sual analytic systems depending on tasks is quite chal-

lenging. Rather than classifying methods with tasks,

data-based classification[10] can not only be general but

also reflect the applications[5], which is shown in Table 1

and the related applications are listed in the last col-

umn. With the obtained raw data, data pre-processing

needs to be done. Routinely, there are many differences

between the raw data and the data used in the visuali-

zation module and the model module in that raw data

could be incomplete, noisy or inconsistent[52]. In order

to eliminate these differences and meet the needs for the

next steps, some procedures called data pre-processing

have to be executed. Data pre-processing is a flexible

process, which depends on the raw data. The common

data pre-processing procedures comprise of[53]:

Data Integration : combine data from different

sources based on a global schema and provide a uni-

form interface of these data[54-55].

Data Cleaning : detect the data quality problems by

data profiling and data mining, and resolve them[56].

Data Transformation : convert data from one for-

mat to another format. A representative transforma-

tion is the data normalization.

Data Reduction : remove useless data to improve the

efficiency of operations.

In addition, some analysis missions involve several

heterogeneous data sources or confidential data. For

the purposes of facilitation and security, they also need

a systematic and effective data management.

4 Visualization

Human eyes can not only quickly accept a huge

amount of visual signals, but also process information

in parallel[57]. Taking advantage of visual channels,

visualization accelerates the human acceptance of infor-

mation and enhances the efficiency of the analysis. As

shown in Fig.2, a variety of studies about visualization

pipeline have been done. In this section, we compare

four typical visualization pipelines in Subsection 4.1.

We give the specific pipeline of the visualization module

in accordance with the common parts of those pipelines

and some practical examples of visualization, as shown

in Fig.3. The description of our visualization pipeline

can be found in Subsection 4.2.

4.1 Typical Visualization Pipelines and

Comparison

Fig.2(a) is an overview of data state model proposed

by Chi and Riedl in 1998[58]. Its taxonomy can be found

in [59]. The process contains four stages (dark parallelo-

grams in Fig.2(a)). The operator for each stage repre-

sents a kind of interaction. When the results obtained

are unsatisfactory or not able to meet the needs of the

next stages, visualization can provide users chances to

interactively re-select parameters or approaches and re-

run this stage. Meanwhile, all steps between two stages

are regarded as a kind of transformation. In the en-

tire process, visualization transformation connects two

parts: the data space controlled by system (the half

above the dotted line) and the view space controlled

by users (the half below the dotted line) via converting

analytical abstraction like metadata into visualizable

information, and visualization abstraction.

Table 1. Data Classification and Related Applications

Data Type Data Main Application

One-dimensional
data

Signal record data[11], comments amount[12] Trend research, prediction

Two-dimensional
data

Vector data[13-14] Physical

Multi-dimensional
data

Movement data and trajectory data[15-20], utility services[9], mobility
data[21], boundary changes[22], social media[23], personal data[24-28], car
data[29], movie genres[30], OECD countries data[31] , climate data[32],
weather data[33], resource data[34-36], eye tracking data[37]

Environmental protection,
behavior analysis, city
planning, evaluation and
intelligence analysis

Text data Document data[38-39], news[40-42], wikipedia articles[43], poem[44], litera-
ture, dictionary[45], opinion[46]

Sociology, journalism, litera-
ture

Networks Social network data[47], biological data[48-49], molecular structure[50],
network[51]

Supervision, psychology, bio-
chemistry, sociology
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Fig.2. Typical visualization pipelines. (a) Information visualization data state reference model[58-59] proposed by Chi and Riedl in
2000. (b) Generic visualization model[61] proposed by Van Wijk in 2005. (c) Reference model[60] presented by Card et al. in 1999. (d)
Nested model of visualization creation[62] presented by Munzner in 2009.
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Fig.3. Specific visualization pipeline.



Xu-Meng Wang et al.: A Survey of Visual Analytic Pipelines 791

The pipeline from Card et al.[60] has two parts like-

wise (see Fig.2(c)). One part is data and the other part

is visual form. The main difference between these two

pipelines is that the one in [60] emphasizes on human

interactions. From Fig.2(b), we can see that all the in-

teractions are carried out according to the task. Com-

pared with Chi and Riedl’s data state model[58-59], this

one emphasizes the purposes of the visualization and

the role of human.

In 2005, Van Wijk gave a model[61] with precise

description using merely mathematical notation. Be-

sides, there are two circulations in the model. They

represent the output and the input of visualization

respectively. The circulation of P → K → P is

about knowledge accumulation, and the circulation of

V → P → K → E → S → V means interactions. Users

perceive the information from visualization and convert

the information into knowledge. If the knowledge is not

adequate, users will explore more based on knowledge

acquired through changing the specification including

hardware and algorithms. The resultant specification

leads to a new visualization, from which the knowledge

is gained.

The nested model[62] in Fig.2(d) was presented by

Munzner in 2009 by taking a different perspective to

visualization design and creation. The first stage of

this model is different from the above ones. This

process starts from domain problem characterization

rather than data. Designers must clearly understand

the system requirements including tasks and data, and

every other step is based on the output of the previous

one. Although a nested model implies a design order,

the temporal sequence is not always carried out strictly

and the refinements should not be limited in the cur-

rent stage[62]. When designers have better understand-

ing about a previous step, the process may restart from

it, yielding a so-called iterative refinements process.

4.2 Common Steps

Visualization transforms data abstraction to visual

abstraction and combines visual abstractions into a

group of views. To help human explore those views,

visualization responds to human requests. This process

is called interaction shown in Fig.3.

4.2.1 Visual Mapping

Visual mapping is a kind of transformation that con-

verts the data abstraction (output of data module) into

the visual abstraction. Visual abstraction refers to the

elements that are displayed on the screen and convey

information to human by the sense of sight. Common

visual channels, which can be used to encode informa-

tion, include position, size, shape, direction, hue, sat-

uration, brightness, etc. A record of data may have

many attributes, and similarly, each visual abstraction

can have several visual channels as well. The relation-

ship between data attributes and visual channels can

be not only one-to-one but also one-to-many. Every vi-

sual channel has a threshold value, and only when the

difference exceeds the threshold value can most peo-

ple make a distinction. Some important and accurate

attributes should be represented with more than one vi-

sual channel in order to allow users to get information

easily and clearly. Unfortunately, the total number of

visual channels is limited. Besides, using many visual

channels can lead to mutual interferences so that users

can hardly get meaningful information. Therefore, it is

unwise to use too many visual channels simultaneously

(for high-dimensional data, data pre-processing always

includes dimension reduction). Some recommendations

about how to select visual channels can be found in

Fig.4.

Visualization scholars have designed numerous clas-

sical visual mapping methods, such as parallel coordi-

nates, force-directed graph, chord graph, scatter ma-

trix and so on. Besides, numerous literatures give

assessments[64-67] and improvements[68-72] to existing

methods.

4.2.2 View Generation and Coordination

Views deliver information between users and the

system, and hence they play a significant role in visuali-

zation. In this stage, visual abstractions are rendered

systematically on the screen. Except for the visual ab-

stractions, menus and specifications like captions and

legends can also be found on some views. The func-

tion of menus is offering diverse selections of interaction,

and thereby users can explore more information on the

views. In addition, necessary specifications can intro-

duce visual mapping designs to users directly so that

they will not feel strange or confused.

Using a single complex view may be stressful for

users to cognize information, and multiple views can

be employed in a “divide and conquer” fashion[73]. The

system in Fig.5 is an appropriate example to prove

that[74]. Thus, it is inevitable to use multiple dis-

tinct views when the dataset contains a variety of

data or when data is complex. However, the multi-

ple views increase the users’ learning costs and dis-
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Fig.4. Visual channels: expressiveness types and effectiveness ranks[63].

Fig.5. Visualization system with multiple views[74].

tract users’ attention, and thus applying multiple views

blindly is not desirable. Coordinating views is the key

of using multiple views effectively. Above all, design-

ers must clearly understand the relationship between

views. Roberts et al.[75] presented six variants of side-

by-side views. Among them, overview+detail[76-77]

and small-multiples[26,36] are frequently used. Then,

the problem to be solved is how to respond to the up-

date of other views. The types of responses are sum-

marized as replacements, replications and overlays[78].

Note that the view will discard the original things if re-

placements occur. Replications often mean that a new
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view will be generated and used to show new contents,

and overlays add new information to the original con-

tents. Designers usually choose one response from them

according to analytic tasks or let users decide which re-

sponse should be used.

4.2.3 Interaction

Interaction brings vitality to visualization. With-

out interaction, visual representations are merely some

static images[79]. To complete tasks, users need to ex-

plore the visualization system based on existing know-

ledge so that interaction is indispensable to the explo-

ration process. The interaction of visualization is a

kind of human-computer interaction. We may consider

interaction as a process that a computer responds to

the information input by a user. Chuan and Roth[80]

classified basic visualization interaction (BVI) by out-

put states, while Yi et al.[79] proposed a more de-

tailed classification of interaction from the perspective

of users’ demands. In the work of Chuah and Roth,

the categories comprise graphical operations, data ope-

rations and set operations[80]. The three operations af-

fect graphical representations, data state and control

state respectively. Actually, graphical representations

also change correspondingly when the other two are

changed. On the other hand, with the classification

of Yi et al., interaction includes selecting, exploring,

reconfiguring, encoding, abstracting/elaborating, filter-

ing and connecting[79]. There is no doubt that diverse

interaction allows users to operate freely. But inte-

raction designs may also have to pay[81]. For instance,

as the amount of interactive selections increases, users

need to spend more time on understanding the entire

system. Furthermore, too many interactive selections

always lead to confusion.

5 Model

Once data are pre-processed or transformed, ana-

lysts are supposed to decide to apply either visual meth-

ods or automatic analysis methods. Automatic analy-

sis allows analysts to apply data mining methods to

generate models[2], and therefore achieves the goal of

transferring information from pre-processed data and

helping users gain knowledge in distinct areas. Witten

and Frank[82] classified machine learning models into

eight basic kinds, according to the simple structures

exhibited by datasets. For example, statistical models,

such as Bayesian models for document classification, are

more suitable for the datasets whose attributes might

contribute independently and equally to the final out-

come, while unsupervised clustering models are used to

divide instances into natural groups without providing

class values.

There are situations, however, when automation

processes are not able to satisfy users. Since the exis-

tence of the users’ needs to visually understand, explore

and optimize the datasets and the computation process,

visualization-driven data mining is gaining increasingly

attention nowadays[83-86]. Unlike automatic analy-

sis methods mentioned above, it is a semi-automatic

method, which combines visualization with data mining

in order to create a win-win situation for visual analy-

tics processes. The pattern-searching model presented

by Palomo et al.[19] is based on interactive visuali-

zation, which clearly identifies spatio-temporal patterns

for transportation schedules. And Klemm et al.[87] em-

ployed an adjustable regression model to build a 3D

heat map visualization, in order to support hypothesis

generation of epidemiological studies.

Most analytics processes, no matter automatic or

semi-automatic, are carried out in relatively conven-

tional ways. Many studies have been done to reveal

a generalized pipeline, displaying biased results with

similar steps shared. We discuss two pipelines and then

present a conventional pipeline generalized from them.

5.1 Existing Pipelines

Han et al.[88] presented a complete pipeline of the

knowledge discovery in database (KDD) process as

shown in Fig.6, in which data mining acts as an in-

termediate step to apply intelligent methods for the

purpose of extracting data patterns. The entire frame-

work can be divided into three major parts: data pre-

processing, data mining and pattern evaluation, and

knowledge presentation. In this subsection, we focus on

the data mining and pattern evaluation stage. Han et

al.[88] suggested that data characterization and discrim-

ination can be useful in data mining, by summarizing

and comparing the general features of the target class

of data objects. With features characterized, intelligent

methods can be applied to reveal the patterns of data.

However, patterns generated by a data mining system

are not always potentially useful and need to be evalu-

ated by interactively filtering. Han et al.[88] noted that

the evaluation process ought to be carried out during

data mining in order to make the data mining process

more sufficient.

A more specific pipeline has been presented by Lu et

al.[89] targeting at predictive visual analytics as shown
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Fig.6. Data mining as a step in the process of knowledge discovery[88].

in Fig.7. Different form Han et al.’s work[88], they

explained the data mining process in a detailed way

by emphasizing the significant roles played by model,

visualization and adjustment in the entire pipeline.

They are fully convinced of the necessity of model selec-

tion, training and validation in knowledge generation

when features are selected. Visualization is optional

during each of these phases to enhance comprehensibil-

ity as well as effectiveness, and the adjustment loop en-

sures the involvement of human knowledge in all stages

of predictive analysis.

Visualization

Adjustment Loop

Model
Training

Feature Selection
and Generation

Model Selection
and Validation

Data
Preprocessing

Fig.7. Predictive visual analytics pipeline[89].

Though these two pipelines may seem different in

form, they share the same idea which includes data

mining in the analytics process and both mention the

importance of feature selection and result validation.

As a result, it alleviates the difficulty in our work for

generalizing a conventional pipeline in analytics pro-

cesses.

5.2 Generalized Pipeline

In accordance with the pipelines described previ-

ously, we present a general pipeline in Fig.8. It mainly

consists of three major steps: feature selection and

generation, model building and selection, and model

validation. Each step is strongly connected with each

other.

5.2.1 Feature Selection and Generation

Served as an essential stage in model design, feature

selection aims at reducing the cost of recognition by

only keeping the most expressive features of data that

are used to build models[90]. Dash and Liu[91] gave
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a definition of feature selection as an attempt to se-

lect the minimally-sized subset of features, by following

two criteria: not significantly decreasing the accuracy

of classification, and maintaining the original class dis-

tribution as much as possible.

Visualization

Data

Feature 
Selection

and 
Generation

Model
Building

and
Selection

Model
Validation

Knowledge

Fig.8. Our proposed model design driven pipeline.

Classical techniques such as clustering, ranking

and sorting work well for feature selection. Dy and

Brodley[92] introduced a wrapper framework for per-

forming feature subset selection, using EM clustering

method. The rank-by-feature framework provided by

Seo and Shneiderman[93] applies user-chosen ranking

criteria to present low dimensional projections in an

ordered manner. The INFUSE system developed by

Krause et al.[94] eases the feature selection process in a

visualization way of grouping and ranking the results

of various feature selection algorithms.

Apart from the above classical techniques, analysts

have also proposed algorithms for automatic feature

generation. These algorithms use limited low-level fea-

tures to build new features, which significantly increases

the classification accuracy[95]. Schuller et al.[96] em-

ployed feature generation methods to expand the fea-

ture space while doing speech emotion recognition re-

searches. In the work of Zahálka and Worring[97], two

pipelines for high-level extraction of semantics from

multimedia data are described.

Unfortunately, we have to admit that automatic fea-

ture selection and generation methods sometimes come

up with inevitable subtle mistakes of feature identifica-

tion or classification. As a result, analysts have been

trying to develop integrated feature selection and gene-

ration tools that involve both human knowledge and

automatic algorithms. Users are expected to interact

with the developed tool. Interactions make it possible

for users to examine the accuracy as well as the ratio-

nality of the results obtained from the computer (and

refine them if possible), or even to guide the entire selec-

tion and generation process. For example, Lu et al.[12]

built predictive models of social media data with the

implementation of interactive components, which allow

users to modify and explore various features in order to

receive better box-office predictions. Janetzko et al.[98]

incorporated a user-configurable classifier to interac-

tively assist the feature selection process when dealing

with soccer data, and therefore make it possible to dis-

cover further events of potential interests. FeatureIn-

sight, presented by Brooks et al.[45], is another example

of visual tools designed to support feature selection and

generation. Users are enabled to interactively add new

features and modify or delete automatically generated

ones, which makes the results more interpretable.

5.2.2 Model Building, Selection and Validation

Feature selection and generation identify the most

expressive features with which analysts are supposed

to generate appropriate models. They attempt to se-

lect the most salient model from various existing ones,

including statistical models, physical models, data min-

ing models, etc. There are times, however, when exist-

ing models are not able to meet the needs of the ana-

lysts due to the specificity of their task and they have

to build novel models based on existing relevant ones.

Once models are selected or built, prediction results are

acquired from the trained model, accompanying with

validation processes to examine the performance of the

generated model.

Indeed, model validation is embedded in model

building and selection in most situations, enhanced

by interactive visual tools. For example, PEARL

is an interactive visual analytic tool that aids users

in revealing personal emotion style from social media

text data, developed by Zhao et al.[99] It adopts two

well-known psychological models to capture emotion

styles and makes further progress by deploying an im-

proved lexicon-based model in multi-dimensional emo-

tion analytics. Another example is the model created

by Kay and Heer[100], used to rank the precision of visu-

alizations for estimating correlation. Taking the model

of Harrison et al.[101] as a beginning point, they took

four more steps to refine it: incorporation of individual

differences, log transformation, censoring and Bayesian

modeling. And each refinement is presented under the

guidance of visual assistance.

Besides the model building methods mentioned

above, analysts have also been developing visualization

tools for model selection. Bögl et al.[102] implemented

model selection processes that deal with time series

data by using a visualization system called TiMoVA

which combines automated computation with human
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intelligence. Their work presents a description of visual

analytics process for model selection, as shown in Fig.9.

Based on input data and prior analyses, users interact

with the visual interface to analyze the resulting model

using their domain knowledge in order to eventually get

a most adequate model for the given dataset. Alexan-

der and Gleicher[7] explored task-centric topic models

comparison with a novel visualization called buddy plot

for distance comparing. In this way of validating mod-

els interactively, users may have a better understanding

of the advantages as well as the shortcomings of each

topic model when tackling different tasks.

Prior Analyses Hypotheses

Insights
Interactive

Visual Interfaces

Domain
Knowledge

Data

Input Models

Area of User Interaction

Model That
Fits the 

Data“Best”

Kt

Kp

Km

Di

Vd

Vt

Ai

Ad Ap

Iv

Bm Ih

Im

Fig.9. Visual analytics process for model selection presented by
Bögl et al.[102]

Insights can be gained through the process of model

building, selection and validation, and in the meantime

they provide the guidance for the improvement of the

feature selection and generation process. The looping

back makes sure that the entire analysis process is able

to refine itself and provide analysts with the most ade-

quate model to gain knowledge.

6 Knowledge

Knowledge is the externalized awareness or under-

standing of something, which is acquired from and

in return applied to the process of knowledge gene-

ration. In this paper, we focus on knowledge gene-

ration instead of knowledge because it is the ulti-

mate goal of visual analytics. Knowledge generation

is the process of generating a conclusion which ei-

ther accepts or denies the hypothesis. In the litera-

ture of visual analytics and cognitive science, alterna-

tive terms of knowledge generation include intelligence-

gaining, sense-making, decision-making and concept-

building[103]. Ware[103] gave two approaches of forming

knowledge: the Bayesian approach and the physicalist

theory. The Bayesian approach takes knowledge as “re-

peated associations” or “repeated co-occurrences”, and

to generate knowledge is to build connections between

events or things. On the other hand, the physicalist

theory takes knowledge as “the sensory modality of the

formative experiences”, and the generation process is

“an approximate modeling based on everyday physics”.

Both approaches describe the process as the generali-

zation of findings, either from repeated associations or

from everyday physics.

6.1 Knowledge Generation Pipelines

Knowledge can be gained from both computational

models mentioned in Section 5 and visual models. In

the scope of this paper, we focus on knowledge from vi-

sual models. Several pipelines[61,104-107] that describe

the knowledge process have been proposed. We analyze

two of them in details and briefly introduce others.

6.1.1 Sense-Making Pipeline

The sense-making process[104] (see Fig.10) is a cog-

nitive task analysis diagram including six analytical no-

tions and the transformations among them: external

data sources, shoebox, evidence file, schema, hypoth-

esis and presentation. The transformations for data

processing construct a foraging loop while the transfor-

mations for reasoning construct a sense-making loop.

In the foraging loop, the external data sources contain

complete and raw data collections and serve as data

provenance sources. The shoebox collects processed in-

formation from the external data sources. The data in

the shoebox is cleaned, organized and ready for use.

An example might be an organized (by time, topic,

etc.) collection of newspapers. The evidence files are

useful fragments extracted from shoebox, such as clip-

pings of news related to a certain topic. The foraging

loop describes the flow of step-by-step refinement of

raw data to evidence snippets, while the sense-making

loop builds concepts based on the evidence snippets.

In this loop, the schemas are organized evidences, from

which hypotheses are proposed and verified. Finally, a

presentation which accepts or denies the hypotheses is

delivered to the analysts or to a wider audience. It is

also noteworthy that the presentation not only draws

the conclusion but also describes the evidences and the

reasoning logics that help reach the conclusion.

Knowledge generation with the sense-making model

can be carried out via two processes: a bottom-up pro-

cess and a top-down process. Following the bottom-up
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Fig.10. Sense-making model[104].

process, the analysts first put cleaned raw data into

a shoebox and extract the evidence from the shoebox.

They then organize the evidence into schemas and build

a hypothesis. Decisions made for the hypothesis are fi-

nally presented. Following the top-down process, the

analysts first propose a hypothesis (mostly based on

prior knowledge) and search for schemas that support

the hypothesis and then the evidences that support

the schemas. To consolidate the conclusion, the ana-

lysts can look for the data provenance from the shoe-

box and further the raw data contributes the founda-

tion of reasoning. Although not explicitly described

in the paper[104], we think the bottom-up process and

the top-down process correspond to the two reasoning

principles: inductive reasoning and deductive reason-

ing, respectively. Similar to the bottom-up process,

inductive reasoning builds generalized concepts (con-

clusions) from cases (evidences). Likewise, similar to

the top-down process, deductive reasoning starts with

statements (hypotheses) and searches for evidences that

either support or oppose the statements.

6.1.2 Knowledge Generation Pipeline

The knowledge generation model for visual

analytics[105] (see Fig.11) is composed of two parts: a

system part that consists of data, model and visuali-

zation; and a human part that consists of action, find-

ing, hypothesis, insight and knowledge. Also starting

from data and ending with knowledge, this pipeline

describes the knowledge generation process from the

visual analytics perspective. Models are often au-

tomatic models, but sometimes can also be descrip-

Computer

Data

Visualization

Model

Action

Human

Hypothesis

Knowledge

Knowledge
Generation

Loop
Verification

LoopExploration
Loop

Insight
Finding

Fig.11. Knowledge generation model[105].
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tive statistics, configurable models, or visual models.

Visualization is built on the models or built to explain

the models, e.g., an open-box visualization of support

vector machine[106]. Actions cover all interactions in

visualization (referring to Subsection 4.2.3). Findings

are the observed snippets or schemas extracted from the

visualized models and data. Insights are collected when

the analysts are able to interpret the findings, and fur-

ther form the foundation for hypotheses. Insights are

accumulated until it is reliable enough to wrap up as

knowledge.

The human part is further decomposed into three

loops as shown in Fig.11: the exploration loop, the ver-

ification loop and the knowledge generation loop, corre-

sponding to the following three levels of analytical ope-

rations respectively. The exploration loop, containing

action and finding, describes the process of the analysts

manipulating the visualization via interactions. More-

over, the verification loop is accomplished based on the

basis of the exploration loop and describes the process

of the analysts proposing and verifying hypotheses. Fi-

nally, the analysts extract the findings and hypotheses

from the verification loop and generate knowledge.

Sacha et al. applied and enriched the model to

evaluate the role of uncertainty and trust in visual

analytics[107]. Uncertainty is propagated through the

visualization pipeline in the system part, while trust is

built progressively when the analysts explore the sys-

tem, extract insights from visualization and gain know-

ledge.

6.1.3 Other Pipelines

Other knowledge models[61,108-110] elaborate the

knowledge generation process in various perspectives.

The human cognition model (see Fig.12) proposed by

Green et al.[108] describes the process revolving around

human discovery. Computer and human collaborate

in the model to explore examples and patterns from

visualization. Hypotheses are generated and analyzed

via the analytical process of competing hypotheses:

generating hypotheses — listing evidences — prov-

ing/disproving — creating the matrix of hypotheses

and evidences — drawing conclusions — reanalyzing

conclusion based on evidences. Dykes et al.[109] prac-
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ticed several paths of the nexus of activities comprising

the scientific process. Fig.13 depicts a path: data —

hypothesis — theory — explanation, linking the core

activities (in medium grey). Dark grey entries indi-

cate inputs and outputs, while light grey entries in-

dicate the knowledge provided by the analysts. Van

Wijk integrated knowledge generation in his visuali-

zation model[61] (see Fig.2). Knowledge (K) is gained

through the perception (P ) of visualization (V ) images,

the exploration (E) and specification (S) of visuali-

zation (V ). The knowledge gained is quantified by

the function dK/dt = P (I,K) = P (V (D,S, t),K),

which indicates that gaining knowledge with visuali-

zation over time depends on data (D), algorithm and

hardware specification (S) as well as the prior know-

ledge (K) of the analysts. Klein et al.’s data/frame

theory of sense-making[110] elaborates the sense-making

process with two components: data and frame (see

Fig.14). The analysts explore the data with a frame: a

metaphor representing the “perspective, viewpoint, or

framework”. Starting with a frame, the analysts either

preserve and elaborate the frame, or decline and rebuild

the frame.

6.2 Induction and Deduction

Although there are several knowledge generation

pipelines, the reasoning logics behind are the same:

new knowledge is transformed from either inductive

reasoning or deductive reasoning[111]. In inductive rea-

soning, the analysts build concepts from observations

or schemas. However, the analysts with various prior

knowledge would have different concepts based on the

same observations or schemas. The bottom-up pro-

cess in the sense-making model[104], the exploration-

verification-knowledge path from the loop in the know-

ledge generation model[105], the generation of hypothe-

ses in the human cognition model[108], the data to con-

cept to theory path in the knowledge model[109], the

exploration to knowledge process in the visualization

model[61] and the preserving-elaborating path from the

data/frame theory of sense-making[110] are the practices

of inductive reasoning. On the other hand, in deductive

reasoning, the analysts search for evidences that either

confirm or deny the initialized hypotheses. And start-

ing with the same hypotheses, the analysts normally

reach the same conclusion. Similarly, the top-down

process in the sense-making model[104], the knowledge-

verification-exploration path from the loop in the know-

ledge generation model[105], the analysis of hypothe-

ses process in the human cognition model[108], the

knowledge to exploration process in the visualization

model[61] and the reframing path of the data/frame the-

ory of sense-making[110] are the practices of deductive

reasoning. The two reasoning processes can also be

performed in an alternating way. Knowledge generated
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in the inductive reasoning is applied to the deductive

reasoning. Alternatively, the verification of knowledge

may result in new hypotheses. That is how knowledge

is accumulated.

6.3 Guidelines

Based on the discussion of the knowledge generation

pipelines, we propose four guidelines for good analytical

system design.

Enable Induction and Deduction. To enable both

induction and deduction is to enable both bottom-up

reasoning and top-down reasoning. The analysts should

be able to generate knowledge from data or verify the

hypotheses with data.

Enable Knowledge Externalization. Because the an-

alysts proceed inductive reasoning and deductive rea-

soning iteratively in the visual analytical process, know-

ledge is better to be externalized (e.g., as attached

notes[112]) so that they can be referred to anytime.

Enable Data Provenance. To enable data prove-

nance is another aspect of enabling deductive rea-

soning because it facilitates bottom-up reasoning.

VisTrails[113] captures data provenance with a history

management interface.

Enable Uncertainty-Aware Knowledge Generation.

In the knowledge generation process, uncertainties are

propagated from data to visualization[109]. The ana-

lysts need to be aware of the uncertainty before they

can generate reliable knowledge.

7 Conclusions

In this survey we presented a comprehensive sum-

marization of visual analytics pipelines. We reviewed

the classic visual analytics feedback loop proposed by

Keim et al.[2] Furthermore, we described individual

stages in the loop and discussed detailed pipelines. Ad-

ditionally, we discussed the commonality and the differ-

ence of various pipeline representations in each stage.

For most of the visual analytics system, all the stages

are contained in the analysis pipeline with different

functionalities and implementations, and thus in our

summarization we took several existing visual analy-

tics systems as examples and assigned their analysis

pipelines into corresponding stages. The visual analy-

tics pipeline can be used as a guideline for structuring

and developing visual analytics systems in real life.
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