
Huang J, Zhang C. Debugging concurrent software: Advances and challenges. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 31(5): 861–868 Sept. 2016. DOI 10.1007/s11390-016-1669-8

Debugging Concurrent Software: Advances and Challenges

Jeff Huang 1 and Charles Zhang2, Member, ACM, IEEE

1Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, U.S.A.
2Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China

E-mail: jeff@cse.tamu.edu; charlesz@cse.ust.hk

Received May 18, 2016; revised July 7, 2016.

Abstract Concurrency debugging is an extremely important yet challenging problem that has been hampering developer

productivity and software reliability in the multicore era. We have worked on this problem in the past eight years and

have developed several effective methods and automated tools for helping developers debugging shared memory concurrent

programs. This article discusses challenges in concurrency debugging and summarizes our research contributions in four

important directions: concurrency bug reproduction, detection, understanding, and fixing. It also discusses other recent

advances in tackling these challenges.

Keywords debugging, concurrency, record and replay

1 Introduction

Detecting and repairing software defects, or bugs,

have been the most expensive parts of the software de-

velopment process[1]. In many real-world software sys-

tems, new bugs are typically being reported faster than

developers can handle them, and many known bugs are

never fixed due to the lack of human resources[2]. How-

ever, over the past decade, the debugging crisis has been

exacerbated by the multicore revolution, which has dra-

matically increased the number of developers who face

the challenge of debugging concurrent software.

Concurrent software is notoriously difficult to debug

because of the complexity in reasoning about concur-

rency. Due to the fact that computations from concur-

rent threads can interleave with each other, developers

can no longer reason in a sequential way but have to

reason about the often astronomically large thread in-

terleaving space. The number of different thread inter-

leavings is typically exponential in both the number of

threads and the length of program execution. If any

of the interleaving corner cases are missed (e.g., not

tested), the bugs may be triggered in unfortunate sit-

uations and may lead to fatal failures. What is worse

is that thread interleavings are often non-deterministic.

Due to the scheduling non-determinism and the timing

differences between different hardware cores, multiple

runs of a concurrent program on the same machine with

the same input can exhibit different behaviors. Conse-

quently, Heisenbugs[3] such as race conditions widely

plague concurrent software systems and complicate de-

bugging, because they may “disappear” when develop-

ers want to understand them.

The concurrency debugging challenge has attracted

significant research attention in the past few years,

and researchers have proposed a wide spectrum of ap-

proaches to help developers debugging concurrent soft-

ware and to improve the overall software safety and re-

liability. In the past eight years, we have worked on this

problem and developed several effective approaches and

automated tools for concurrency debugging. This arti-

cle discusses challenges in debugging concurrent soft-

ware with examples and presents our research contri-

butions in these areas as well as other recent advances

in concurrency debugging.

Survey

Special Section on Software Systems 2016

This work is supported by the United States NSF CAREER Award under Grant No. CCF-1552935 and a Google Faculty Research
Award to Jeff Huang, and the Hong Kong SAR RGC/GRF under Grant Nos. 622909 and 621912 to Charles Zhang.

©2016 Springer Science +Business Media, LLC & Science Press, China

862 J. Comput. Sci. & Technol., Sept. 2016, Vol.31, No.5

2 Challenges

Concurrency Bugs Are Difficult to Reproduce.

When a failure occurs, developers first need to repro-

duce it in order to understand the bug. However, the

non-deterministic interleaving makes reproducing con-

currency bugs extremely difficult. Consider a simple

multithreaded example in Fig.1. There are two threads

T1 and T2 accessing two different shared variables x

and y, and there is an error at line 4. Because these

two threads can execute concurrently on different cores,

their execution order may follow different interleav-

ing sequences. For example, execution may follow ei-

ther the interleaving A or B, represented by the state-

ment line numbers 1-2-6-7-3-4 and 1-2-3-5-6, re-

spectively. If the program execution follows the inter-

leaving A, the error at line 4 is triggered. However, if

it follows the interleaving B, the error does not man-

ifest. To reproduce this bug, not only the same pro-

gram input, but also the same thread interleaving is re-

quired. Unfortunately, it is very challenging to capture

thread interleavings on multicore computers. Record-

ing thread interleavings at runtime inevitably hampers

the execution parallelism, often incurring unacceptable

program slowdown and is hard to deploy in production.

Thread T1

Interleaving A: 1→5→2→6→7→3→4

Thread T2

1: x/
5: y/

7: x/֓3: if (x<↽

6: if (y==↽

4: ERROR

2: y/

Thread T1

Interleaving B: 1→2→3→5→6

Thread T2

1: x/ 5: y/

7: x/֓
3: if (x<↽

6: if (y==↽

4: ERROR

2: y/

(a)

(b)

Fig.1. The same program exhibits different behaviors with diffe-
rent thread interleavings. The error at line 4 manifests with (a)
the interleaving A but not (b) the interleaving B.

This problem is further complicated by the fact

that most modern hardware can re-order instructions,

which may make the bugs disappear while trying to cap-

ture them. Consider the two assertions 1○assert and

2○assert in Fig.2. On the sequential consistency (SC)

model[4], 1○assert will be violated if the two threads

execute following the annotated interleaving. However,

2○assert will never be violated under SC, but can be

violated under the partial store order (PSO) model[5],

which allows the reordering of writes to different mem-

ory addresses. For example, suppose lines 4 and 5 are

re-ordered, 2○assert will be violated following the in-

terleaving shown in Fig.2(b). To reproduce this PSO

bug, having a small runtime perturbation with reliable

bug reproducibility is very challenging. For instance,

there are at least 12 race pairs in this program that

need to be tracked. A more subtle but critical point

is that the PSO bug might never be captured if locks

are used to track the interleaving. The memory fencing

effect of locks can prevent the reordering to happen in

test runs. And, if the tracking is disabled in production

runs, the bug will re-appear.

Thread T1 Thread T2

 Initially x==y==

1 a/x

2 x/

4 y/a⇁,

5 x/a⇁,

7 y/,

8 x/,

3 if (y<↽

9 assert (x==y↽,

6 else

Thread T1 Thread T2

 Initially x==y==

1 a/x

2 x/

4 y/a⇁,

5 x/a⇁,

7 y/,

8 x/,

3 if (y>↽

9 assert (x==y↽,

6 else

10 b/y

11 y/

13 x/b⇁,

14 y/b⇁,

16 x/,

17 y/,

12 if (x>↽

18 assert (x<=y↽,

15 else

10 b/y

11 y/

13 x/b⇁,

14 y/b⇁,

16 x/,

17 y/,

12 if (x>↽

18 assert (x<=y↽,

15 else

(a)

(b)

1 2

1 2

Fig.2. Concurrency errors on (a) sequential consistency and (b)
partial store order memory models.

Concurrency Bugs Are Difficult to Detect. Due to

the astronomically large number of thread interleav-

ings, detecting concurrent bugs is challenging. Tradi-

tional program testing techniques for sequential pro-

grams do not work well for concurrent programs be-

cause they do not take the interleaving into account.

Moreover, as the interleaving space is huge, testing is

Jeff Huang et al.: Debugging Concurrent Software: Advances and Challenges 863

often far from sufficient to cover the entire interleav-

ing space. It is hard for static program analysis or

model checking techniques to explore all thread inter-

leavings in real-world programs, because there are just

too many interleavings. Traditional dynamic analyses

do not work well because only a limited size of paths

and schedules are observed. Furthermore, traditional

program analyses tend to report quite a large number

of false alarms, further impeding the debugging process.

Concurrency Bugs Are Difficult to Understand.

Typical executions of real-world concurrent programs

often contain a large number of threads, thread inter-

leavings, shared-memory dependencies and thread syn-

chronizations. Even if a concurrency bug can be re-

produced deterministically, it is still very challenging

for developers to locate and understand the cause of

the bug. Moreover, the performance of replay is of-

ten significantly slower than native execution. For long

running programs, the bug reproduction process may

take a long time. Furthermore, the bug reasoning pro-

cess based on the trace often involves frequent context

switches between the executions of different threads.

These frequent context switches can significantly im-

pair the effectiveness of concurrent program debugging,

because developers can no longer reason sequentially to

understand a concurrency bug.

Concurrency Bugs Are Difficult to Fix. After un-

derstanding a concurrency bug, fixing the bug is still

challenging. Empirical studies[6-7] show that 39% of

patches to concurrency bugs in operating systems are

incorrect, and it takes more than two months on average

to correctly fix a concurrency bug. A common way to

fix concurrency bugs is to add the synchronization that

prohibits the erroneous thread interleavings. However,

facing the huge interleaving space and the large num-

ber of thread contexts, it is usually difficult to find the

proper type of synchronizations and the proper location

to place the synchronization. The improper placement

of synchronization can not only incur prohibitive pro-

gram slowdown, but also introduce new bugs such as

deadlocks. Moreover, even if the proper synchroniza-

tion is placed at the right location to rule out the man-

ifested erroneous interleavings, it does not necessarily

guarantee that the bug is fixed. Because the interleav-

ing space is enormous, it is possible that some other

unmanifested interleavings which can still trigger the

bug are not forbidden by the added synchronization.

Consequently, to validate the fixes, developers attempt

to create thousands of threads and run tests millions of

times — a tedious and ineffective practice.

3 Advances

Fig.3 shows an overview of our work. Our research

has made contributions in four directions to make con-

currency debugging easier: multiprocessor determinis-

tic replay to reproduce concurrency bugs, predictive

trace analysis to detect concurrency bugs, static and

dynamic trace simplifications to help in understanding

concurrency bugs, and data sharing reduction and syn-

chronization verification to help in fixing concurrency

bugs.

3.1 Concurrency Bug Reproduction

The technique of deterministic replay is one of the

most important techniques for program understanding

and debugging. We developed a lightweight record and

replay system, called LEAP[8-9], that supports the de-

terministic replay of concurrent programs in general

multicore and multiprocessor environments. LEAP is

fast, portable, and deterministic. As long as a Heisen-

bug manifests once, LEAP is able to deterministically

reproduce it in every subsequent execution. Moreover,

underpinned by a new local-order based replay theorem,

LEAP is able to deterministically reproduce errors in

parallel programs with much lower overhead compared

with previous approaches. LEAP is the first public

available deterministic replay system for multithreaded

Detection

PECAN

Predictive Trace Analysis

Reproduction

Multiprocessor

Deterministic Replay

Fixing

Data Sharing

Reduction &

Validation

Diagnosis

Trace Simplification

TraceFilter

LEAP

CLAP

LEAN

SimTrace

Privateer

SWAN

Fig.3. Overview of our work on concurrency debugging.

864 J. Comput. Sci. & Technol., Sept. 2016, Vol.31, No.5

Java programs and has been used by several research

groups worldwide.

We use the example in Fig.1 to illustrate the key

idea of LEAP. Intuitively, we can record Interleaving A

and use it to re-execute the program to reproduce the

error at line 4. However, this is at the cost of seven

global synchronization operations. In LEAP, we ob-

serve that thread accesses to different shared variables

need not to be tracked together. Instead of recording a

global interleaving, it is sufficient to record the thread

access order that each shared variable sees. Specifi-

cally, we use two access vectors (x.vec and y.vec) for

shared variables x and y and record < t1, t2, t1> and

< t2, t1, t2> respectively. During replay, we associate

x and y with condition variables to enforce the access

order of threads to be identical to what is recorded in

their respective access vectors. This guarantees to re-

produce the error, but it requires zero global synchro-

nization and only two groups of local synchronizations

executed in parallel. We refer interested readers to [8-

9] for the detailed design and implementation of LEAP

that uses static analysis and bytecode instrumentation

to transparently provide the capability of deterministic

replay for Java programs.

One of the most important applications of replay

is to reproduce program failures. However, for pro-

grams with heavy shared-memory dependencies, large

runtime recording overhead (e.g., >6X by LEAP) is still

incurred due to the challenging problem of using the

synchronization on multiprocessors. How to achieve

low overhead is critically important and challenging.

CLAP[10] is a technique that leverages thread local path

profiling[11] and constraint solving[12] to compute bug

reproducing schedules. CLAP does not use any syn-

chronization at runtime, and does not log any thread

interleaving or any program state. As path profil-

ing is featherweight (even less than 1% with hardware

approaches[13]), CLAP is significantly more efficient

than previous approaches that track shared-memory

dependencies at runtime. Moreover, CLAP works not

only for sequentially consistent executions, but also for

a range of relaxed memory models such as PSO illus-

trated in Fig.2.

As illustrated in Fig.4, CLAP has two key phases.

1) Monitoring an instrumented execution of the pro-

gram. Unlike most dynamic techniques that collect a

global trace, this phase records only the local control-

flow choices of each thread. In threads that exhibit

bugs, these local traces lead to the occurrence of the

bug.

2) Assembling a global execution that exhibits the

bug. This phase in turn has several key steps.

• Find all the possible shared data access points

(called SAP — a read, write, or synchronization) on the

thread local paths that may cause non-determinism, via

a static escape analysis.

• Compute the path conditions for each thread with

symbolic execution. Given the program input, the path

conditions are all symbolic formulae with the unknown

values read by the SAPs.

• Encode all the other necessary execution con-

straints — i.e., the bug manifestation, the synchroniza-

tion order, the memory order, and the read-write con-

straints — into a set of formulae in terms of the sym-

bolic value variables and the order variables.

• Use an SMT solver to solve the constraints, which

computes a schedule represented by an ordering of

all the SAPs, and this schedule is then used by an

application-level thread scheduler to deterministically

reproduce the bug.

CLAP achieves several important advances over pre-

vious approaches.

1) CLAP obviates the logging of shared memory de-

pendencies and program states, and completely avoids

adding extra synchronizations. This not only sub-

stantially reduces the logging overhead compared with

shared memory recorders such as LEAP, but also min-

imizes the perturbation that extra synchronizations

Offline

Solving

Thread Local Paths

A Global Schedule

Path Constraints
Read-Write Constraints

Intra-Thread Order Constraints

Synchronization Constraints

Constraint

Solver

An Ordering of

Shared Variable

Accesses

Path

Monitoring

P
ro

g
ra

m

T

T

Tn

Fig.4. CLAP technical overview.

Jeff Huang et al.: Debugging Concurrent Software: Advances and Challenges 865

foreclose certain racy behaviors.

2) CLAP works not only for sequential consistent

executions, but also for a range of relaxed memory mod-

els such as TSO and PSO[5]. We show that the memory

order constraints between SAPs can be correctly mod-

eled to comply with the memory model relaxation. This

is of tremendous importance, because it makes CLAP

applicable for the real production setting on commodity

multiprocessors that allows the reordering of instruc-

tions.

3) CLAP can produce simpler bug-reproducing

schedules than the original one. We are able to en-

code preemption bounding constraints over the order

of shared data accesses to always produce a schedule

with the minimal number of thread context switches.

With this property, it becomes much easier to under-

stand how the bug occurs due to the prolonged sequen-

tial reasoning. Moreover, through preemption bound-

ing, the complexity of constraint solving is dramatically

reduced from exponential to polynomial with respect to

the execution length.

4) The constraint solving in CLAP is much easier

to scale. The solver does not need to directly solve the

complex path constraints (such as non-linear arithmetic

or string constraints), but only to find a solution for

the order variables that satisfies the path constraints.

Thus, the solving task can be divided into two parts:

generating candidate schedules (that comply with the

memory order) and validating them (using the other

constraints). The first part (which is searching possi-

ble executions) does not have complex constraints, and

the second part (which does have complex constraints)

is focused on a single execution. Moreover, generat-

ing and validating multiple candidate schedules can be

done in parallel, which theoretically scales CLAP to

programs with arbitrary execution length when there

are sufficient computation cores.

Experimental results show that CLAP is effective in

reproducing concurrency bugs, incurring only 10%∼3X

runtime overhead on real-world systems with inten-

sive shared-memory dependencies. Additionally, the

computed schedules by CLAP typically contain less

than three preemptive thread context switches, which

is much easier to reason about for diagnosing the bug.

3.2 Concurrency Bug Detection

It is always preferable to detect software defects

early. Predictive trace analysis (PTA)[14-17] is such a

powerful technique that can predict concurrency bugs

from normal executions. Generally speaking, a PTA

technique records a trace of execution events, statically

(often exhaustively) generates other permutations of

these events under certain scheduling constraints, and

exposes concurrency bugs unseen in the recorded exe-

cution. Compared with dynamic analysis, it is capable

of exposing bugs in unexercised executions and, com-

pared with static analysis, it incurs much fewer false

positives because its analysis is based on the dynami-

cally collected traces. Moreover, when used for software

assurance, it is able to prevent software failures by pre-

dicting and fixing them before they occur.

PECAN[14] is a PTA system that predicts concur-

rency access anomalies such as data races and serializ-

ability violations in Java programs, from normal exe-

cutions, with the appealing feature that it can not only

predict those Heisenbugs, but also generate concrete ex-

ecutions that deterministically expose the bugs. With

PECAN, developers are provided with the full execu-

tion history and context information to understand the

bug, which dramatically expedites the debugging pro-

cess. PECAN has revealed several serious and previ-

ously unknown bugs in large open source concurrent

systems.

PTA in general faces considerable challenges in scal-

ing to large traces because of the state space explosion

problem and the algorithmic complexity of detecting

concurrency errors. Nevertheless, often a large percent-

age of events in the trace are redundant for presenting

useful analysis results to the end user, and those re-

dundant events can be safely removed without affect-

ing the trace analysis results. TraceFilter[15] is a sys-

tem that automatically removes such redundant events

for detecting concurrency access anomalies based on

a trace redundancy theorem, while guaranteeing the

redundancy-removed trace produces the same analysis

result as that from the original trace. TraceFilter im-

proved the scalability of PTA by orders of magnitude

in many real-world concurrent systems.

Data races are among the most common bugs in

modern concurrent software. Although there exist nu-

merous race detection tools, all techniques suffer from

either the unsoundness (we mean that the techniques

may produce false alarms) or the incompleteness (miss

real races). RVPredict[16] is a sound dynamic race de-

tection technique that is provably complete with re-

spect to the observed dynamic execution trace, i.e., it

never misses any data race that can be found by other

sound techniques based on the same trace. RVPredict

is underpinned by a sound and maximal causal model

866 J. Comput. Sci. & Technol., Sept. 2016, Vol.31, No.5

with the inclusion of a novel control-flow event, and

leverages existing advancements of theorem provers and

decision procedures to explore the causal traces and

prove the existence of data races. RVPredict has been

shown to detect significantly more races than previ-

ous techniques, and it scales to executions of real-world

concurrent applications with tens of millions of critical

events. RVPredict has also revealed many previously

unknown races in real systems (e.g., Eclipse) and has

been adopted by Eclipse developers.

In addition to detecting data races and ac-

cess anomalies, we have also developed a system

GPredict[17] that further generalizes PTA to han-

dle high-level generic concurrency property violations.

GPredict allows the users to define arbitrary ordering

properties over the execution events, such as, “a re-

source must be authenticated before use” and “a col-

lection cannot be modified if it is being iterated over”,

with a pattern specification language, and to predict

violations of the specified properties from normal ex-

ecutions. By uniformly formulating the property vi-

olations and a sound causal model as first-order logic

constraints, GPredict is able to predict all property vio-

lations captured by the causal model using off-the-shelf

SMT solvers.

3.3 Concurrency Bug Understanding

To address the difficulty of diagnosing concurrency

bugs on a reproducible buggy trace, we have developed

static and dynamic trace simplification techniques[18-19]

that effectively reduce the complexity of the buggy

trace and shorten the replay time without losing the de-

terminism in reproducing concurrency bugs. A simpli-

fied trace with smaller size and fewer context switches

greatly lessens the debugging effort by prolonging the

sequential reasoning of concurrent program execution

and reducing the number of places in the trace where

we need to look for the cause of the bug. We next

describe the key ideas and characteristics of our tech-

niques SimTrace[18] and LEAN[19]. We refer our readers

to the full papers[18-19] for detailed examples.

SimTrace[18] is a static technique that dramatically

improves the efficiency of trace simplification through

reasoning about the computation equivalence of traces

offline. By constructing a dependence graph that en-

codes all the dependence relations between events in the

trace, SimTrace reduces the trace simplification prob-

lem to a graph merging problem, of which the objective

is to minimize the graph size. By merging consecu-

tive nodes from the same thread that have no inter-

thread dependencies, and by performing a topological

sort on the reduced dependence graph, SimTrace gener-

ates a simplified trace with much fewer thread context

switches compared with the original trace. Moreover,

SimTrace scales linearly in the trace size and quadratic

in the dependence graph size, making it attractive for

practical use with traces containing millions of critical

events.

LEAN[19] is a dynamic trace simplification tech-

nique that, building on top of a record and replay sys-

tem, significantly reduces the complexity of the buggy

replay trace and speeds up the replay process without

losing the replay determinism. Based on a redundancy

criterion that characterizes the redundant computation

in a buggy trace, LEAN is able to simplify the buggy

trace beyond data and control dependencies by effec-

tively identifying and removing redundant threads and

instructions that are not essential for understanding the

bug. On several large systems, LEAN reduces the num-

ber of threads and thread context switches in the trace

by 90%, and shortens the size of the replay trace and

the length of replay time by as large as 300x.

3.4 Concurrency Bug Fixing

Recent research has developed a few effective con-

currency bug fixing approaches[20-22] through inserting

proper synchronizations that eliminate erroneous in-

terleavings. Nevertheless, synchronizations are neither

necessary nor sufficient for fixing concurrency bugs. In

practice, many concurrency bugs are fixed through pri-

vatization, i.e., changing thread-shared data to private

data. In Privateer[23], we observe and also formally

prove that for a vast category of concurrent programs,

called scheduler-oblivious programs, whose computa-

tion result is expected to be always deterministic re-

gardless of the thread scheduling, it is safe and theoret-

ically sound to privatize a subset of shared data accesses

for repairing concurrency errors without using synchro-

nization. Leveraging the privatizability property, Pri-

vateer is able to soundly eliminate false and unnecessary

data sharing in concurrent programs that are expected

to be scheduler-oblivious, and isolate all the potential

erroneous interleavings on the privatized data without

adding any synchronization. Privateer has fixed several

real concurrency bugs without impairing the execution

parallelism. Moreover, for a few benchmarks, Privateer

improves the program performance by as large as 12%,

because after privatization the heap accesses become

local stack operations.

Jeff Huang et al.: Debugging Concurrent Software: Advances and Challenges 867

A key component missing in most bug fixing tech-

niques is that, except repeated testing, there exists no

systematic way to validate the correctness of the fixes.

However, for a fix to be correct, not only the observed

buggy interleaving, but all the other buggy interleav-

ings should be eliminated. SWAN[24] is a technique

that helps in validating the fixes of atomicity viola-

tions through constraint solving and replay. It encodes

the buggy trace into a set of constraints according to a

maximal causal model (MCM)[16], generates additional

events for the fixes, such as lock acquire and release,

and formulates them as additional constraints. If the

additional constraints conjoined with the MCM con-

straints cannot be satisfied, then the bug is fixed for

at least a large set of interleavings captured by MCM.

However, if there still exists any solution to the new

formed constraints, then the fix is incorrect. Moreover,

a buggy execution can be created to demonstrate the

incorrect fix by decoding the buggy schedule from the

solution and replaying it in the re-execution.

4 Other Important Directions

Stateless Model Checking. An alternative way that

can eliminate concurrency bugs is to exhaustively verify

the interleaving space with model checking. Stateless

model checking (SMC) is a technique that explores the

state-space systematically by driving concrete program

executions via a dynamic scheduler without storing any

states. Since the pioneering work of VeriSoft[25] and

CHESS[26], SMC has been successfully applied in real-

world programs and found many deep bugs through

optimization techniques such as partial order reduction

(POR)[27] and context (or preemption) bounding[26]. A

key challenge in SMC is how to avoid redundant explo-

rations of the same program state. Maximal causality

reduction (MCR) is a recent technique that achieves

a significant advance in SMC over POR and context

bounding. MCR takes into account the value of reads

and writes and exploits the maximal causality between

redundant executions that lead to equivalent states by

encoding them into first-order logical constraints. By

solving the constraints together with new state-change

constraints, MCR can generate new interleavings that

drive the program to reach new program states. And

by ensuring that in every explored execution there ex-

ists at least one read that reads a different value (from

that in all the other executions), MCR minimizes the

number of executions that are needed to explore for

verifying concurrent programs.

Deterministic Multithreading. In contrast to detect-

ing and fixing concurrency bugs under random sched-

ules, deterministic execution techniques pioneered by

DMP[28], DThreads[29], and Parrot[30] aim to make the

execution deterministic by default, such that Heisen-

bugs either manifest themselves, or do not, on every

execution. This approach if successful is promising to

reduce the difficulty of concurrent software debugging

since bugs become deterministic. A key challenge is

how to minimize the performance degradation. Ex-

isting deterministic execution techniques usually incur

large runtime overhead in order to enforce the deter-

minism. Another practical challenge is how to identify

those events that may introduce non-determinism. If

those events are missed or not instrumented, determin-

istic execution may fail.

5 Conclusions

As long as the shared memory model continues to

stay in the main stream for concurrent programming,

the programmers will continue to demand high-quality

techniques and tools to tackle the challenges in writing

correct concurrent programs, understanding the errors

they make, and tolerating the faults caused by these

errors. Our effort was focusing on taming the inter-

leaving complexities by making randomization deter-

ministic, by the automated reasoning of interleaving

behaviors, and by the semantic-preserving removal of

interleavings. While many of our techniques are effec-

tive, there are still many obstacles caused by the per-

formance requirement and the heterogeneity of today’s

complex systems. The road to bring these techniques

to practice is still long. We are optimistic about that

with advances of hardware-based debugging utilties and

static program analysis, we can fully unleash the poten-

tial of these ideas and significantly improve the power of

these tools to make programming concurrent programs

more productive.

AcknowledgmentWe thank the anonymous JCST

reviewers for their comments on an initial version of this

paper.

References

[1] Britton T, Jeng L, Carver G et al. Reversible debugging

software. Technical Report, Judge Business School, Univer-

sity of Cambridge, 2013.

[2] Guo P, Zimmermann T, Nagappan N et al. Characterizing

and predicting which bugs get fixed: An empirical study of

868 J. Comput. Sci. & Technol., Sept. 2016, Vol.31, No.5

Microsoft windows. In Proc. the 32nd ACM/IEEE Inter-
national Conference on Software Engineering, May 2010,
pp.495-504.

[3] Gray J. Why do computers stop and what can be done
about it? In Proc. the 5th Symp. Reliability in Distributed
Software and Database Systems, Jan. 1986, pp.3-12.

[4] Lamport L. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Trans.
Comput., 1979, 28(9): 690-691.

[5] Weaver D, Germond T (eds.). The SPARC Architecture
Manual, Version 9. SPARC International, Inc., 1994.

[6] Lu S, Park S, Seo E et al. Learning from mistakes: A com-
prehensive study on real world concurrency bug character-
istics. In Proc. the 13th ASPLO, Mar. 2008, pp.329-339.

[7] Yin Z, Yuan D, Zhou Y et al. How do fixes become bugs?
In Proc. the 19th ACM SIGSOFT Symp. the Foundations
of Software Engineering and the 13th European Software
Engineering Conference, Sept. 2011, pp.26-36.

[8] Huang J, Liu P, Zhang C. LEAP: Lightweight determinis-
tic multi-processor replay of concurrent Java programs. In
Proc. the 18th ACM SIGSOFT FSE, Nov. 2010, pp.207-
216.

[9] Huang J, Liu P, Zhang C. LEAP: Lightweight determinis-
tic multi-processor replay of concurrent Java programs. In
Proc. the 18th ACM SIGSOFT FSE, Nov. 2010, pp.385-
386.

[10] Huang J, Zhang C, Dolby J. CLAP: Recording local exe-
cutions to reproduce concurrency failures. In Proc. ACM
PLDI, June 2013, pp.141-152.

[11] Ball T, Larus J R. Efficient path profiling. In Proc. the 29th
IEEE/ACM MICRO, Dec. 1996, pp.46-57.

[12] de Moura L M, Bjørner N. Z3: An efficient SMT solver. In
Proc. the 14th TACAS, March 29-April 6, 2008, pp.337-340.

[13] Vaswani K, Thazhuthaveetil M J, Srikant Y N. A pro-
grammable hardware path profiler. In Proc. the 3rd
IEEE/ACM CGO, Mar. 2005, pp.217-228.

[14] Huang J, Zhang C. PECAN: Persuasive prediction of con-
currency access anomalies. In Proc. the 20th ISSTA, July
2011, pp.144-154.

[15] Huang J, Zhou J, Zhang C. Scaling predictive analysis of
concurrent programs by removing trace redundancy. ACM
Trans. Softw. Eng. Methodol., 2013, 22(1): Article No. 8.

[16] Huang J, Meredith P O, Rosu G. Maximal sound predictive
race detection with control flow abstraction. In Proc. ACM
PLDI, June 2014.

[17] Huang J, Luo Q, Rosu G. GPredict: Generic predictive
concurrency analysis. In Proc. the 37th ICSE, May 2015,
pp.847-857.

[18] Huang J, Zhang C. An efficient static trace simplification
technique for debugging concurrent programs. In Proc. the
18th SAS, Sept. 2011, pp.163-179.

[19] Huang J, Zhang C. LEAN: Simplifying concurrency bug
reproduction via replay-supported execution reduction. In
Proc. the 27th OOPSLA, Oct. 2012, pp.451-466.

[20] Jin G, Song L, Zhang W et al. Automated atomicity-
violation fixing. In Proc. PLDI, June 2011, pp.389-400.

[21] Jin G, Zhang W, Deng D. Automated concurrency-bug fix-
ing. In Proc. the 10th OSDI, Oct. 2012, pp.221-236.

[22] Liu P, Zhang C. Axis: Automatically fixing atomicity viola-
tions through solving control constraints. In Proc. the 34th
ICSE, June 2012, pp.299-309.

[23] Huang J, Zhang C. Execution privatization for scheduler-
oblivious concurrent programs. In Proc. OOPSLA, Oct.
2012, pp.737-752.

[24] Shi Q, Huang J, Chen Z et al. Verifying synchronization
for atomicity violations. IEEE Trans. Software Eng., 2016,
42(3): 280-296.

[25] Godefroid P. Software model checking: The VeriSoft ap-
proach. Formal Methods in System Design, 2005, 26(2):
77-101.

[26] Musuvathi M, Qadeer S, Ball T et al. Finding and re-
producing Heisenbugs in concurrent programs. In Proc. the
8th USENIX Symposium on Operating Systems Design and
Implementation, Dec. 2008, pp.267-280.

[27] Flanagan C, Godefroid P. Dynamic partial-order reduction
for model checking software. In Proc. the 32nd ACM POPL,
Jan. 2005, pp.110-121.

[28] Devietti J, Lucia B, Ceze L et al. DMP: Deterministic
shared memory multi-processing. In Proc. the 14th ASPLO,
Mar. 2009, pp.85-96.

[29] Liu T, Curtsinger C, Berger E D. Dthreads: Efficient de-
terministic multithreading. In Proc. the 33rd ACM SOSP,
Oct. 2011, pp.327-336.

[30] Cui H, Simsa J, Lin Y H et al. Parrot: A practical runtime
for deterministic, stable, and reliable threads. In Proc. the
24th ACM SOSP, Nov. 2013, pp.388-405.

Jeff Huang received his Ph.D.

degree in computer science from Hong

Kong University of Science and Tech-

nology, Hong Kong, and is currently an

assistant professor in the Department of

Computer Science and Engineering at

Texas A&M University, College Station.

His research focuses on developing

techniques and tools for improving software performance

and reliability based on fundamental program analyses and

programming language theory. He has published at pre-

mium conferences and journals such as PLDI, OOPSLA,

ICSE, FSE, IEEE TSE and ACM TOSEM. His research

has won awards including ACM SIGSOFT Outstanding

Dissertation Award, SIGPLAN PLDI Distinguished Paper

Award, SIGPLAN Research Highlights, Google Faculty

Research Award, and NSF CAREER Award.

Charles Zhang is an associate pro-

fessor and director of the Cybersecurity

Lab in the Department of Computer

Science and Engineering, Hong Kong

University of Science and Technology,

Hong Kong. His major research in-

terest is the use of program analysis

techniques to improve software quality.

He has published extensively at premium conferences

and journals of programming languages and software

engineering. He has served on many organizational and

technical committees of international conferences. He is

currently an associate editor of IEEE TSE. His research

received many awards including PLDI Distinguished Paper

Award, ACM SIGSOFT Doctoral Dissertation Award,

and IBM Ph.D. fellowships. His research is supported by

Research Grant Council, Innovation and Technology Fund,

and grants from Microsoft and IBM. Charles obtained

his Ph.D., M.S., and B.S. degrees with honours, all in

computer science from University of Toronto.

