
Liu Y, Zhang GF, Su ZP et al. Using computational intelligence algorithms to solve the coalition structure generation

problem in coalitional skill games. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 31(6): 1136–1150 Nov.

2016. DOI 10.1007/s11390-016-1688-5

Using Computational Intelligence Algorithms to Solve the Coalition

Structure Generation Problem in Coalitional Skill Games

Yang Liu 1, Guo-Fu Zhang 1,2,∗, Member, IEEE, Zhao-Pin Su 1,2, Member, IEEE, Feng Yue 1,3, and
Jian-Guo Jiang 1,2, Senior Member, CCF

1School of Computer and Information, Hefei University of Technology, Hefei 230009, China
2Intelligent Manufacturing Institute, Hefei University of Technology, Hefei 230009, China
3Department of Science and Technology Management, Hefei University of Technology, Hefei 230009, China

E-mail: liuyang@mail.hfut.edu.cn; {zgf, szp, yuefeng, jgjiang}@hfut.edu.cn

Received July 15, 2015; revised June 17, 2016.

Abstract Coalitional skill games (CSGs) are a simple model of cooperation in an uncertain environment where each

agent has a set of skills that are required to accomplish a variety of tasks and each task requires a set of skills to be

completed, but each skill is very hard to be quantified and can only be qualitatively expressed. Thus far, many computational

questions surrounding CSGs have been studied. However, to the best of our knowledge, the coalition structure generation

problem (CSGP), as a central issue of CSGs, is extremely challenging and has not been well solved. To this end, two

different computational intelligence algorithms are herein evaluated: binary particle swarm optimization (BPSO) and binary

differential evolution (BDE). In particular, we develop the two stochastic search algorithms with two-dimensional binary

encoding and corresponding heuristic for individual repairs. After that, we discuss some fundamental properties of the

proposed heuristic. Finally, we compare the improved BPSO and BDE with the state-of-the-art algorithms for solving

CSGP in CSGs. The experimental results show that our algorithms can find the same near optimal solutions with the

existing approaches but take extremely short time, especially under the large problem size.

Keywords coalitional skill game, coalitional structure generation, two-dimensional binary encoding, heuristic, individual

repair

1 Introduction

In recent years, coalition formation is seen as

a very important means of forming teams of au-

tonomous agents that have to cooperate to perform

certain tasks, and thus it has become a highly ac-

tive area of multiagent systems (MAS) and artificial

intelligence research[1-2]. Moreover, it has been suc-

cessfully applied in many fields, from political sciences

and economics[3-5], to operations research and com-

puter science[6-8].

It is notable that much of the existing re-

search on coalition formation, such as coalition

structure games[9-10], overlapping coalition formation

games[11-12], and coalitional resource games[13-14], as-

sumes that the values of potential coalitions can be

calculated with certainty[15-16], implying that the abi-

lities or resources of each agent are quantifiable. How-

ever, in many important real-world scenarios under

uncertainty[17-18], each agent has a set of skills that

are very hard to be quantified and can only be qualita-

tively expressed, that is, each agent does not know or

care about how strong each skill is[19-20].

With this in mind, Bachrach and Rosenschein[21]

presented coalitional skill games (CSGs). In CSGs,

each agent is endowed with a set of skills, each task re-

quires a set of skills in order to be completed, a coalition

can accomplish a task only if the coalition’s members

Regular Paper

This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 61573125 and 61371155,
and the Anhui Provincial Natural Science Foundation of China under Grant Nos. 1608085MF131, 1508085MF132, and 1508085QF129.

∗Corresponding Author

©2016 Springer Science +Business Media, LLC & Science Press, China

Yang Liu et al.: Using CI Algorithms to Solve CSGP in CSGs 1137

cover the set of required skills for the task, and the gain

for the coalition depends only on the subset of tasks it

can fulfill. Besides, they investigated the computational

complexity of several problems in CSGs, such as calcu-

lating the core, testing whether the core is empty, and

computing the Shapley value[22].

Thereafter, Aziz et al.[23] showed the equivalence be-

tween simple CSGs and a subclass of multiple weighted

voting games and analyzed the complexity of com-

puting the cost of stability and the core of a sim-

ple coalitional skill game with a constant number of

skills. Aziz and De Keijzer[24] proved that there exists

a polynomial-time algorithm that computes an optimal

partition for CSGs with a constant number of skills.

Tran-Thanh et al.[25] relaxed the assumption that the

dependence between skills and tasks is a binary rela-

tion and proposed a new coalitional skill vector model

as a generalization of CSGs. In the vector model, each

agent has a skill vector which consists of values that

reflect its level in different skills, and each goal has a

requirement expressed in terms of the minimum skill

level necessary to achieve it.

There is no doubt that CSGs are a very simple

model. Yet, they are quite expressive and can simu-

late many real-world scenarios. For example, in energy-

constrained wireless sensor networks[26-27], each sen-

sor node does not have other nodes’ energy informa-

tion, but forming coalitions for tasks to balance nodes’

energy consumption and increase the lifetime of the

whole network is often wise. Another example is agent-

based web services and virtual organizations[28-32], and

in these domains, intelligent agents form coalitions to

respond to market opportunities as soon as possible,

considering which service providers can provide relevant

requested services, even if they do not know how strong

the services of the providers are[33]. Additionally, such

uncertainty is also natural and common in wireless

communications[34-36], autonomous robotic systems[37],

and electricity markets[38].

However, to date, as a central issue in CSGs, the

coalition structure generation problem (CSGP) is ex-

tremely challenging and has not been well solved for

the reason that CSGP is NP-complete[39]. To sovle

CSGP, Bachrach et al.[39] proposed a fixed parame-

ter tractable algorithm (which is called FPTA) on the

basis of tree decomposition in hypergraph theory and

showed that FPTA can solve the problem in time poly-

nomial in the number of agents and skills, but expo-

nential in the number of tasks and in the treewidth

of skill-hypergraph. The main idea of FPTA can be

shown as follows: first of all, considering the problem

with a view to skills in CSGs and introducing hyper-

graph to describe the corresponding skill graph; sec-

ond, implementing a tree decomposition of the given

skill-hypergraph; and finally, coloring the agent in the

tree and outputting the corresponding coalition struc-

ture, where all agents with the same color form a coali-

tion. However, FPTA is extremely complicated and

needs to consume a great deal of time, especially under

large numbers of agents, skills, and tasks. In addition,

FPTA is not often efficient in practice. The reason

is that FPTA colors the tree nodes by backing-track

coloring strategy which is a typical greedy strategy,

while the greedy strategy makes a choice only accord-

ing to the previous information, and once it has made a

choice, this choice will not change no matter what the

future outcome is. Therefore, FPTA cannot often get

the global optimum solutions, but usually can obtain

only the near optimal solutions. In particular, no any

numerical result of FPTA has been provided in [39].

Recently, Nguyen[40] formulated the CSGP in CSGs

as a complete set packing problem and used CPLEX

to find the optimal coalition structure in the weighted

CSGs. To realize the fast solution, Nguyen[40] proposed

a fast approximation algorithm (henceforth called FAA)

to reduce the dimensionality of CSGP as an integer pro-

gramming problem. Beyond that, Nguyen[40] simplified

the problem by the relaxation strategy. The empirical

results show that FAA can find near optimal solutions.

However, Nguyen[40] only performed numerical tests on

CSGP with different numbers of agents, but did not

evaluate the performance of FAA with different num-

bers of tasks and skills.

It is well known that the total number of coalitions

is exponential with the number of agents[24]. Hence, as

the search space complexity grows up, the cost of those

algorithms (e.g., FPTA and FAA) can increase expo-

nentially, making the search of a solution not feasible.

Another way to tackle these problems is to find a sub-

optimal solution in a reasonable time, and moreover, in

some cases, we may even find the optimal solution to

the problem. In such techniques, computational intel-

ligence (CI) algorithms, which are nature-inspired and

population-based stochastic search techniques through

the reproduction of generations, are becoming increas-

ingly important and popular for solving computation-

ally hard coalition formation problems[41-43]. Hence, in

the present paper we intend to investigate the useful-

ness of binary particle swarm optimization (BPSO)[44]

and binary differential evolution (BDE)[45] (see Section

1138 J. Comput. Sci. & Technol., Nov. 2016, Vol.31, No.6

3 for more details) in CI techniques and adopt BPSO

and BDE to find suboptimal solutions in a reasonable

time.

The remainder of this paper is structured as follows.

Section 2 presents an overview of the CSGP in CSGs.

In Section 3, we recall BPSO and BDE in CI technolo-

gies. After that, we show our algorithms to solving the

CSGP in detail in Section 4, while, in Section 5, we

measure the performance of the proposed algorithms

in comparison with FPTA and FAA. Finally, Section 6

concludes the paper and presents future work.

2 Problem Formulations

Given the notations in Table 1, the model for CSGs

in [21] can be recalled as follows. In a skill domain,

there are a set of n agents, A = {a1, · · · , an}, a set

of m tasks, T = {t1, · · · , tm}, and a set of r skills,

S = {s1, · · · , sr}.

Table 1. Notations Used in the Model of CSGs

Variable Definition

n Number of agents

m Number of tasks

r Number of skills

A Set of n agents

T Set of m tasks

S Set of r skills

ai The i-th agent

tj The j-th task

Si Set of skills of ai

C Set of member agents

S(C) Set of skills of C

T (C) Set of tasks that C can perform

u(T (C)) Value of T (C)

Each tj ∈ T (j ∈ {1, · · · ,m}) requires a set of

skills S(tj) ⊂ S, where S(tj) 6= ∅. Each ai ∈ A

(i ∈ {1, · · · , n}) has a set of skills Si ⊂ S.

A coalition C, C ⊆ A and C 6= ∅, is a set of member

agents. C also has a set of skills S(C) which is a union

of all the available skills that members can contribute

to C, that is, S(C) =
⋃

ai∈C

Si. In addition, C can per-

form task tj only if every skill required to accomplish

tj is owned by members in C, namely, S(tj) ⊆ S(C).

It should be noted that C may fulfill many different

tasks in T , and thus we denote the set of all the tasks

that C can perform as T (C) = {tj ∈ T |S(tj) ⊆ S(C)}.

Because the value of C, v(C), is closely associated with

the potential tasks that C will perform, in [39] a task

value function maps a subset of the tasks that C can

achieve to a real value, namely, u : 2T → R, where u is

monotone (if T1 ⊂ T2 ⊆ T , u(T1) 6 u(T2)) and satisfies

u(∅) = 0.

Formally, a coalitional skill game is a (n +m + 4)-

tuple given by

Γ = (A, T, S, u, S1, · · · , Sn, S(t1), · · · , S(tm)),

where the characteristic function of a coalition C is

the value of the tasks that C can perform, namely,

v(C) = u(T (C)).

In CSGs, CSGP is a central issue which aims to

find the coalition structure (CS) with the maximal so-

cial welfare[39]. A CS is simply a partition of all the

agents into several disjoint coalitions that work simulta-

neously. For example, CS = (C1, · · · , Ce) is a coalition

structure over A only if
e
⋃

x=1
Cx = A and Cx∩Cy = ∅ for

all x 6= y and x, y ∈ {1, · · · , e}. Besides, the value of

CS is given by v(CS) =
∑

C∈CS

v(C). Let CS(A) denote

a set of all the possible coalition structures on A, in

general, the optimal coalition structure CS∗ ∈ CS(A)

in a given coalitional skill game Γ is the partition of

A which maximizes the social welfare, that is, for any

other CS ∈ CS(A), we have v(CS) 6 v(CS∗).

Consider the following example.

Example 1. Consider the following coalitional skill

game. There are four agents, A = {a1, a2, a3, a4},

with two possible tasks, T = {t1, t2}, and three skills

S = {s1, s2, s3}. The skill sets owned by each agent

are S1 = {s1, s2}, S2 = {s2, s3}, S3 = {s1, s3}, and

S4 = {s3}. The skill sets required by each task are

S(t1) = {s1, s2} and S(t2) = {s2, s3}. To simplify

the calculation of coalition value, Bachrach et al.[39]

expressed the value of a coalition C as the number of

tasks that C can accomplish, implying that the weight

of each task is one. Then, CSGs can be called as task

count skill games (TCSG). Considering the above case,

we can easily find CS∗ = {{a1, a4}, {a2, a3}} is the op-

timal coalition structure and its value v(CS∗) = 4.

3 BPSO and BDE

CSGP is aimed at selecting a partition of the set of

agents, and thus CSGP is a combinatorial optimization

problem. There have been some techniques to solve

simple CSGP, such as FPTA and FAA. As the search

space complexity grows up, the cost of those algorithms

can increase hugely (see Section 5 for more details),

making the search of solutions infeasible. Particularly,

Yang Liu et al.: Using CI Algorithms to Solve CSGP in CSGs 1139

in a large number of coalition formation based practi-

cal applications[26-38], such as energy-constrained sen-

sor networks, agent-based web services and virtual or-

ganizations, and wireless communications, finding the

optimal solution is impossible under the real-time re-

quirements, and an acceptable routine is to obtain a

suboptimal solution in a reasonable time. For exam-

ple, binary-encoding or integer-encoding based discrete

computational intelligence (CI) algorithms, such as ge-

netic algorithm[41-42] and simulated annealing[43] have

been successfully applied in coalition formation.

In recent years, two new discrete computational in-

telligence algorithms BPSO and BDE have been be-

coming increasingly attractive. The reason is that,

first, they have good exploration ability that has been

experimentally verified in a wide variety of successful

applications[46-50], and second, they have few parame-

ters to be adjusted and are simple and quick.

In the domain of computational intelligence, BPSO

and BDE are nature-inspired and population-based

stochastic optimization techniques through the repro-

duction of generations. More specifically, the algo-

rithms first initialize every individual to create the

original population, use an evaluation function (or fit-

ness function) to determine how good (or fit) each indi-

vidual is, and then execute evolutionary operations to

modify and update each individual to create the next

generation. The algorithms will repeat the above steps

to continue the evolution of every individual until a ter-

mination criterion is met (e.g., the maximal generation

number reached or a solution with adequate objective

function value found).

BPSO and BDE often perform well approximat-

ing solutions to many complex combinatorial optimiza-

tion problems[46-50], especially when the search space

is too large to search exhaustively, because they ide-

ally do not make any assumption about the underlying

fitness landscape in contrast with deterministic search

approaches[41-43].

For further illustration, we recall BPSO and BDE

in the following two subsections.

3.1 Binary Particle Swarm Optimization

The basic particle swarm optimization[51] often has

a population (which is called a swarm) of candidate

solutions (which are called particles). Let np be the

number of particles in the swarm, each particle s ∈

{1, · · · , np} has a position vector xs in the search-space

and a velocity vector vs. These particles are moved and

guided by their own best known position ps as well as

the entire swarm’s best known position g according to

the following simple formulae:

vs = ωvs + c1r1(ps − xs) + c2r2(g − xs),

xs = xs + vs,

where ω is a time-varying inertial weight and usually

varies from 0.9 at the beginning to 0.4 toward the end

of the optimization; c1 and c2 are two social parameters

and usually both set to 2.0; r1 and r2 are two positive

random numbers drawn from a uniform distribution be-

tween 0.0 and 1.0.

When improved positions are being discovered, ps

or g will be updated to guide the movements of the

swarm. The process will be repeated until a satisfac-

tory solution is discovered.

BPSO[44] is a discrete version of the original parti-

cle swarm optimization and uses the concept of velocity

as a probability that a bit takes on “1” or “0”. For

more details, please check the following description of

the procedure.

1) For each particle s = 1, · · · , np do:

• initialize the particle’s position xs in the search-

space;

• evaluate the fitness of the particle;

• initialize the particle’s best known position to its

initial position: ps ← xs;

• if ps is better than g, update the swarm’s best

known position: g ← ps;

• initialize the particle’s velocity vs;

2) Until a termination criterion is met, repeat:

for each particle s = 1, · · · , np do:

• pick random numbers: r1, r2, r3∼U(0, 1);

• update the particle’s velocity: vs ← ωvs + c1r1

(ps − xs) + c2r2(g − xs);

• update the particle’s position (assume that xd
s and

vds are a bit in xs and vs, respectively):

xd
s ←

{

1, if r3 < 1

1+e−vd
s

,

0, otherwise;

• evaluate the fitness of the particle;

• if xs is better than ps, update the swarm’s best

known position: ps ← xs;

• if ps is better than g, update the swarm’s best

known position: g ← ps;

3) Output g which holds the best found solution.

3.2 Binary Differential Evolution

The standard differential evolution[52] explores the

search space by three basic operations: mutation,

1140 J. Comput. Sci. & Technol., Nov. 2016, Vol.31, No.6

crossover, and selection. At each iteration, new can-

didate solutions (called donor vector) are created by

the combination of individuals randomly chosen from

the current population according to the simple muta-

tion formulae. After that, the created new candidate

solutions are mixed with a predetermined target vector,

which is called crossover and produces the trial vector.

Finally, the trial vector will be accepted for the next

generation by selection operation if it has an advantage

in the value of the objective function.

Differential evolution is simple and has few parame-

ters, and it has good convergence in solving many con-

tinuous optimization problems. In order to apply dif-

ferential evolution to solve problems defined for binary

spaces, Pampará et al.[45] implemented the angle mod-

ulation approach within the standard differential evolu-

tion, as a mechanism to map a continuous-valued search

space to a binary-valued search space.

The bit generating function in BDE is

g(x) = sin(2π(x − a)× b× cos(2π(x− a)× c)) + d,

where x is a single element from a set of evenly sepa-

rated intervals determined by the required number of

bits that need to be generated (i.e., the dimension of

the original, binary valued space), a represents the hori-

zontal shift of the generating function, b represents the

maximum frequency of the composed sin function, c

represents the frequency of the composed cos function,

d determines the vertical shift of the generating func-

tion.

Usually, the default coefficient values in BDE are set

to a = 0, b = 1, c = 1, d = 0. More detailed descriptions

of BDE are given below.

1) Set values of the control parameters:

• the mutation factor F ∈ [0.4, 1],

• the crossover rate Cr ∈ [0, 1],

• the population size np;

2) Initialize each individual with random positions

in the search-space;

3) Until a stopping condition is met, repeat the fol-

lowing:

for each individual (with binary string xs) s =

1, · · · , np, do:

• pick from the population at random three indi-

viduals r1, r2, r3∼U [1, np], which are distinct from each

other as well as from s;

• generate a donor vector corresponding to the s-th

target vector xs: ys ← xr1 + F (xr2 − xr3);

• pick a random number r4∼U(0, 1);

• generate a trial vector for the s-th target vector:

zs ←

{

ys, if r4 6 Cr,

xs, otherwise;

• generate bit string by g(zs) and pass it to the

fitness function;

• if zs is better than xs, update the target vector:

xs ← zs;

4) Pick the individual from the population which

has the best fitness.

4 Method of Solution

Although BPSO and BDE use easy one-dimensional

binary encoding and are characterized by the fast work-

ing, they cannot be directly adopted to solve the CSGP

in CSGs because one-dimensional binary encoding can

produce only a coalition rather than a coalition struc-

ture. Hence, in the next three subsections, we will try

to answer the following questions: How to represent a

coalition structure? How to repair infeasible individu-

als? Is the proposed heuristic workable?

4.1 Encoding Scheme and Population

Initialization

Fig.1 shows a 0-1 binary matrix of (n+m)×n, rep-

resenting a two-dimensional binary encoding. In the

preceding n columns, each column denotes an agent,

while in the residual m columns, each column denotes

a task. On the other hand, each row represents a pos-

sible coalition and its satisfied task set. Note that

there are at most n rows in the encoding, because

there are at most n disjoint coalitions in a coalition

structure with n agents. Let x ∈ {1, · · · , n} refer to

a row and y ∈ {1, · · · , (n + m)} refer to a column,

then δx,y denotes a bit in this encoding. For each

y ∈ {1, · · · , n}, if δx,y = 1, ay will join Cx. For each

y ∈ {n+ 1, · · · , n+m}, if δx,y = 1, ty−n is in the task

set that will be handled by Cx. It is clear that, the

last m columns can be used to represent the value of

the evaluated coalition structure easily, because we just

need to count the number of bit “1” in them.

In the beginning, as Fig.2 indicates, the initial popu-

lation can be produced according to the constraint that

each agent can join only a single coalition at any time.

In Fig.2, rand[1, n] represents an integer created ran-

domly over the range [1, n] and rand[0, 1] denotes an

integer generated randomly from {0, 1}. More specifi-

cally, in the y-th column, if the x∗-th row is selected

Yang Liu et al.: Using CI Algorithms to Solve CSGP in CSGs 1141

with δx∗,y ← 1, all the other bits in column y must be

set to “0”.

Agent Task

a

C

Cn

an t tm

... ...

...

...

... ...

...

...

..
.

..
.

..
.

..
.

..
.

Fig.1. Two-dimensional binary encoding for an individual.

Each encoding is generated as follows:
for y := 1 to n do

x∗ ← rand[1, n]
δx∗,y ← 1
for x := 1 to n do

if x 6= x∗ then

δx,y ← 0
end if

end for

end for

for y := n+ 1 to n+m do

for x := 1 to n do

δx,y ← rand[0, 1]
end for

end for

Fig.2. Pseudo-code for initializing individuals.

Consider the following example.

Example 2. Let us recall TCSG in example 1 and

assume an individual is initialized as follows.

1 0 1 0 1 1
0 1 0 0 0 1
0 0 0 1 0 0
0 0 0 0 0 0

This individual denotes the coalition structure CS =

{{a1, a3}, {a2}, {a4}} and its value v(CS) = 2+1+0 =

3.

4.2 Heuristic for Individual Repairs

In CSGP, an agent can join only a single coalition

at any time, while with the evolution of population, an

individual is also in constant change and such situation

may bring two problems that we summarize as follows.

• If ∃y ∈ {1, · · · , n} satisfies
n
∑

x=1
δx,y > 1, ay has

joined several different coalitions at the same time,

which is contrary to the basic requirements of CSGP.

Hence, whether an individual is feasible or not is closely

related to the members in the coalition structure.

• If ∃x ∈ {1, · · · , n} and ∃y ∈ {n + 1, · · · , n + m}

satisfy δx,y = 1 but S(ty−n) * S(Cx), ty−n cannot be

satisfied by Cx and thus Cx is infeasible. Hence, the

feasibility of an individual is also inexorably linked to

the task set of each coalition.

In fact, as long as either of the problems shown

above occurs, an individual is just infeasible, which

consumedly debases the availability of the population.

Therefore, we develop a heuristic for individual repairs,

which is illustrated in Fig.3, to ensure that each indi-

vidual at every generation is feasible before they are

passed to the fitness function.

for y ∈ {1, · · · , n} do
Enumerate the bit “1” in column y

if no bit “1” in column y then

Select randomly a row x∗ and set δx∗,y ← 1
end if

if more than a bit “1” in column y then

Select randomly a bit “1” to be maintained and set
other bits “1” to “0”

end if

end for

for x ∈ {1, · · · , n} do
for y ∈ {1, · · · , n} do

if δx,y = 1 then

Cx ← Cx + {ay}
S(Cx)← S(Cx) ∪ Sy

end if

end for

if Cx = ∅ then
for y ∈ {n+ 1, · · · , n+m} do

if δx,y = 1 then

δx,y ← 0
end if

end for

else

for y ∈ {n+ 1, · · · , n+m} do
if S(ty−n) ⊆ S(Cx) and δx,y = 0 then

δx,y ← 1
end if

if S(ty−n) * S(Cx) and δx,y = 1 then

δx,y ← 0
end if

end for

end if

end for

Fig.3. Heuristic for individual repairs.

A brief description of the main stages of the heuris-

tic is shown as follows.

• Initializing. Here, we give the original values of

Cx and S(Cx). For each x ∈ {1, · · · , n}, Cx ← ∅ and

S(Cx)← ∅.
• Checking Columns. We should ensure that each

agent does join only a single coalition. Thus, for each

y ∈ {1, . . . , n}, if there is no bit “1” in column y,

namely, ay does not join any coalition, we select ran-

domly a row x∗ and set δx∗,y ← 1 to let ay join Cx∗ ,

1142 J. Comput. Sci. & Technol., Nov. 2016, Vol.31, No.6

because each agent has to join a coalition. On the other

hand, if column y contains more than one bit “1”, we

select randomly a bit “1” to be maintained and set all

the other bits “1” to “0”.

• Checking Rows. When checking a row x, we

first evaluate and record each member in Cx. For

each y ∈ {1, · · · , n}, if δx,y = 1, Cx ← Cx + {ay}

and S(Cx) ← S(Cx) ∪ Sy. If Cx = ∅, namely, no

agent joins Cx, Cx cannot satisfy any task, and thus

we clear the corresponding task set, that is, for each

y ∈ {n+1, · · · , n+m}, if δx,y = 1, δx,y ← 0. If Cx 6= ∅,

we should evaluate the possible target set that Cx can

satisfy, and thus for each y ∈ {n + 1, · · · , n + m}, if

S(ty−n) ⊆ S(Cx), namely, ty−n can be satisfied by Cx,

δx,y ← 1, but if S(ty−n) * S(Cx), Cx cannot satisfy

ty−n, and thus we set δx,y ← 0. Note that here each

ty−n that can be satisfied will be selected, even if the

original δx,y is “0”. The reason is that CSGP requests

the evaluated coalition structure can satisfy as many

tasks as possible.

It can be observed that the individual repair tech-

nique seems quite ad-hoc where the infeasible solution

is repaired randomly. The reason is that CI algorithms,

such as BPSO and BDE, are easy to fall into local opti-

mum, especially dealing with huge amount of data. Re-

pairing infeasible solutions randomly can create the di-

versity in the population and make the algorithm strive

to escape from the local optima and mine the solutions

as fully as possible. To further illustrate the heuristic,

we consider the following example.

Example 3. Let us recall the TCSG in example 1.

Table 2 shows an infeasible individual.

Table 2. Infeasible Individual

a1 a2 a3 a4 t1 t2

1 1 0 0 1 1

0 1 0 1 1 1

1 0 0 1 0 0

0 0 0 1 0 0

First, we check each column. In column 1, there are

two bits “1”, thus δ3,1 is selected to be maintained and

δ1,1 ← 0. Similarly, in column 2 δ2,2 is selected to be

maintained and δ1,2 ← 0. Because column 3 does not

have bit “1”, row 3 in column 3 is randomly selected

and repaired to “1”, namely, δ3,3 ← 1. In column 4,

there are three bits “1”, and thus δ2,4 is randomly se-

lected to be maintained but δ3,4 ← 0 and δ4,4 ← 0.

Last, the individual is repaired as shown in Table 3.

Table 3. Repairs on Columns

a1 a2 a3 a4 t1 t2

0 0 0 0 1 1

0 1 0 1 1 1

1 0 1 0 0 0

0 0 0 0 0 0

Then, we check each row. In row 1, since C1 = ∅,

δ1,5 ← 0 and δ1,6 ← 0. In row 2, C2 = {a2, a4} and

S(C2) = {s2, s3}. Because S(t1) * S(C2), δ2,5 ← 0,

while S(t2) ⊆ S(C2), thus δ2,6 = 1 is maintained. Simi-

larly, in row 3, C3 = {a1, a3} and S(C3) = {s1, s2, s3},

because S(t1) ⊆ S(C3) and S(t2) ⊆ S(C3), δ3,5 ← 1

and δ3,6 ← 1. In addition, there is no bit “1” in row 4.

Finally, the individual is repaired as shown in Table 4.

Table 4. Repairs on Rows

a1 a2 a3 a4 t1 t2

0 0 0 0 0 0

0 1 0 1 0 1

1 0 1 0 1 1

0 0 0 0 0 0

In the repaired individual, the coalition structure

CS = {{a2, a4}, {a1, a3}} and its value v(CS) = 1+2 =

3. As shown in the example, each ai ∈ A can only join

a single coalition and each formed coalition can per-

form its tasks, which can ensure the feasibility of the

individual.

It is natural to ask how hard it is to repair an indi-

vidual and whether an individual can be repaired into

a feasible one. We have the following results.

Proposition 1. The worst case complexity of the

heuristic for individual repairs is O(n × (n+m)× r).

Proof. In the heuristic, firstly, the previous n

columns in an individual should be checked to let

an agent only join a single coalition. Once column

y is selected, at most n − 1 bits “1” in column y

should be revised to “0”. Thus, the number of ope-

rations required to let each column contain a bit “1”

is O(n × n) = O(n2). Secondly, all the n rows in

the individual should be checked to create the coali-

tion structure. When checking a row x, there are at

most n bits “1” in the previous n columns. For each

member ay in Cx, at most r skills should be memorized

to calculate S(Cx), and thus the number of operations

required to evaluate each member in Cx is O(n × r).

Then, if Cx = ∅, the target set should be cleared, that

is, the residual m bits should be repaired to “0” and

Yang Liu et al.: Using CI Algorithms to Solve CSGP in CSGs 1143

the number of required operations is O(m). However,

if Cx 6= ∅, at most m tasks should be evaluated to de-

termine the Cx’s target set, while for each task ty−n, at

most r skills should be travelled to determine whether

S(ty−n) is a subset of S(Cx), and thus the number

of operations required to determine Cx’s target set is

O(m× r). Hence, the number of operations required to

check rows is O(n×(n×r+m×r)) = O(n×(n+m)×r).

To sum up, the worst-case complexity of the heuristic

is O(n2 + n× (n+m)× r) = O(n× (n+m)× r). �

Proposition 2. Each nonempty coalition Cx in a

repaired individual can certainly satisfy its correspond-

ing nonempty task target set T (Cx).

Proof. In the heuristic, if Cx 6= ∅, we evaluate

each bit in the back m columns according to S(Cx)

and S(ty−n). More specifically, if S(ty−n) ⊆ S(Cx),

δx,y ← 1 and ty−n can be concluded into T (Cx). On

the other hand, if S(ty−n) * S(Cx), δx,y ← 0 and ty−n

cannot be thrown into T (Cx). Therefore, if T (Cx) 6= ∅,

we have for each ty−n ∈ T (Cx), S(ty−n) ⊆ S(Cx), that

is, each nonempty coalition in a repaired individual can

certainly satisfy its nonempty target set. �

4.3 Fitness Function

We define the fitness function f(·) to determine how

good a potential individual is and guide the search of

population, satisfying

f(·) = max

n
∑

x=1

n+m
∑

y=n+1

δx,y,

where f(·) is the number of tasks that the coalition

structure CS in the individual can accomplish, that is,

the value of CS. It is clear that, the bigger f(·) is, the

more excellent an individual is, and thus the better the

CS is.

5 Performance Evaluation

In order to demonstrate the performance of our

heuristic-based BPSO and BDE, we have compared

them with the existing state-of-the-art algorithms

FPTA and FAA.

All the numerical tests that appear in this sec-

tion are performed on a personal computer, Intelr

Pentiumr Dual 1.60 GHz with 2 GB of RAM and under

the Windows 7 operating system. The code was written

and tested on Visual Studio 2010. Following the exist-

ing work[39-40], all the datasets are randomly generated

based on the given numbers of agents, tasks, and skills.

The created S(tj) or Si is a binary string in which “1”

denotes that tj or Si requests or has the corresponding

skill and “0” means that tj or Si does not need or does

not have the corresponding skill. Each dataset is run

for 50 independent trials with different random seeds.

Additionally, based on the existing literature[46-50] and

our testing on CSGP, we selected a group of appropri-

ate experimental parameters for BPSO and BDE that

are shown as follows.

• In BPSO, the population size is 20, the maximal

generation number is 500, and c1, c2 are both set to 2.0.

• In BDE, the population size is 20, the maximal

generation number is 500, the mutation factor is 0.8,

and the crossover rate is 0.93.

5.1 Different nnn

In the first experiment, we tested the performance of

BDE, BPSO, FPTA, and FAA with different numbers

of agents (i.e., n, ranging from 5 to 30) with the fixed

numbers of tasks and skills (i.e., m = 2 and r = 5).

Fig.4 shows the average coalition structure values

obtained by the four algorithms. It can be observed

that with the increase of n, the coalition structure val-

ues of all the algorithms are on the rise. The reason

for this is that new agents have available skills and

thus the given tasks can be satisfied more easily. Next,

BPSO, BDE, and FPTA have obtained better coalition

structure values than FAA on each test instance. When

n is small, BPSO, BDE, and FPTA can get the same

coalition structure values, but the situation changes

when n is big. For example, when n = 23, the coalition

structure value of FPTA is 11, but BPSO and BDE get

5 10 15 20 25 30
4

6

8

10

12

14

16

Number of Agents

A
v
e
ra

g
e
 C

o
a
li
ti
o
n
 S

tr
u
c
tu

re
 V

a
lu

e

BPSO

BDE

FPTA

FAA

Fig.4. Average coalition structure value for different n.

1144 J. Comput. Sci. & Technol., Nov. 2016, Vol.31, No.6

the value 12. This indicates that FPTA is also easy to

fall into local optimum and can only get the near op-

timal solutions in large domains because of the greedy

backing-track coloring strategy in FPTA. In brief, when

n is large, BPSO and BDE perform better than FPTA

and FAA. Note that in Fig.4, we do not give the re-

sults of FPTA when n increases from 24 to 30. This

is because when n > 23, FPTA is extremely slow and

cannot output any solution within an acceptable time

(see Table 5 for more details).

Table 5 shows the time required for the four algo-

rithms with different numbers of agents. To make sta-

tistical inferences and powerful statements from the ex-

perimental data, here, we calculate the standard error

of the mean, as well as the 95% confidence intervals[53]

for the results of each algorithm on every test instance.

With the increase of n, the average running time of the

four algorithms has an increasing trend. When n is

small, the difference among the four algorithms is not

too big, but when n increases very much, BPSO and

BDE are significantly faster than FPTA and FAA. For

example, given n = 23, BPSO and BDE only took less

than 0.02% of the time consumed by FPTA and 8.27%

of the time consumed by FAA, and moreover, when

n > 23, FPTA cannot obtain any solution in a reason-

able time. The reason for this is that FPTA has to

travel almost all the coalitions to maximize the coali-

tion structure value, while there are 2n coalitions at

total for n agents. As for FAA, although the approxi-

mation method reduces the solution space and does not

need to evaluate all the possible coalitions, it does cal-

culate a large number of coalitions, especially when n is

big. On the contrary, BPSO and BDE are population-

based stochastic optimization techniques and thus they

just need to evaluate a few coalitions by updating gene-

rations. The above results indicate that FPTA and

FAA are more sensitive to the number of agents than

BPSO and BDE.

Table 5. Total Execution Time Required (in Seconds) for BPSO, BDE, FPTA, and FAA on CSGP with Different n

(Regarding the Standard Error of the Mean and the 95% Confidence Intervals)

n BPSO BDE FPTA FAA

05 0.19±3.52% 0.21±0.18% 0.07±0.76% 0.56±1.90%

06 0.29±0.81% 0.36±0.67% 0.24±0.87% 0.37±2.29%

07 0.33±0.92% 0.46±1.62% 0.28±1.32% 0.64±3.17%

08 0.36±0.83% 0.44±1.16% 0.29±0.94% 1.70±7.28%

09 0.39±0.39% 0.48±1.42% 0.34±1.15% 1.66±2.25%

10 0.43±1.13% 0.47±0.67% 0.36±1.05% 1.72±4.20%

11 0.65±4.27% 0.69±1.57% 7.05±31.77% 1.75±6.35%

12 0.66±1.10% 0.71±1.26% 7.84±14.30% 1.81±3.96%

13 0.68±0.73% 0.75±1.32% 9.71±73.81% 1.96±5.74%

14 0.74±0.89% 0.82±1.48% 10.70±29.09% 4.27±13.69%

15 0.85±3.78% 0.87±0.99% 13.39±86.40% 4.70±9.95%

16 1.01±1.34% 1.11±2.34% 264.93±555.58% 6.15±12.98%

17 1.09±0.94% 1.15±1.58% 312.30±281.21% 9.25±16.35%

18 1.13±1.26% 1.21±1.59% 320.59±1 175.03% 8.97±11.87%

19 1.26±5.52% 1.30±0.96% 380.43±2 336.05% 8.50±14.08%

20 1.31±4.42% 1.34±2.54% 396.46±2 972.13% 12.79±14.99%

21 1.69±6.84% 1.68±3.13% 6 905.55±5 751.22% 12.68±27.05%

22 1.70±2.27% 1.70±1.42% 8 278.21±20 627.85% 13.09±20.15%

23 1.74±1.32% 1.79±1.42% 9 944.05±21 283.06% 21.65±40.69%

24 2.13±5.10% 2.16±5.57% − 16.54±38.44%

25 2.21±4.62% 2.23±2.45% − 20.79±30.90%

26 2.28±5.51% 2.28±5.89% − 20.79±30.35%

27 2.60±8.48% 2.69±2.86% − 23.09±42.88%

28 2.88±5.64% 2.79±4.84% − 23.60±18.14%

29 2.91±10.73% 2.90±6.32% − 27.98±42.70%

30 3.35±7.57% 3.23±2.11% − 27.05±28.34%

Yang Liu et al.: Using CI Algorithms to Solve CSGP in CSGs 1145

5.2 Different mmm

In this experiment, given different numbers of tasks

(i.e., m, ranging from 2 to 22), we evaluate the four

algorithms with the fixed numbers of agents and skills

(i.e., n = 5 and r = 5). Note that here n is small, be-

cause FPTA and FAA are sensitive to n according to

the results in the first experiment, and too big n is not

beneficial for the analysis of the impact of parameter

m.

Fig.5 shows the average coalition structure value for

different m. As it depicts, with the increase of m, the

coalition structure values of all the algorithms also in-

crease, and moreover, BPSO, BDE, and FAA have ob-

tained the same values. This is because the solution

space with n = 5 is extremely small for the three algo-

rithms, and meanwhile, the new added tasks with re-

quested skills can be easily satisfied by the existing five

agents. Note that in Fig.5, we do not give the results

of FPTA when m > 7, because FPTA cannot output

a solution in an acceptable time (see Table 6 for more

details).

The total execution time of each algorithm for diffe-

rent m is shown in Table 6. As can be seen, the average

running time of BPSO, BDE, and FAA increases ex-

tremely slowly, and FAA spends a bit more time than

2 4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

Number of Tasks

A
v
e
ra

g
e
 C

o
a
li
ti
o
n
 S

tr
u
c
tu

re
 V

a
lu

e

BPSO

BDE

FPTA

FAA

Fig.5. Average coalition structure value for different m.

BPSO and BDE on almost each test instance, but the

difference among the three algorithms is not too big

even if m is very large, which forms a sharp contrast

with the results in the first experiment. In contrast, the

average running time of FPTA increases greatly, which

coincides with the previous results. Given m = 6, for

example, BPSO and BDE only took less than 0.000 8%

of the time consumed by FPTA and 55.38% of the time

Table 6. Total Execution Time Required (in Seconds) for BPSO, BDE, FPTA, and FAA on CSGP with Different m

(Regarding the Standard Error of the Mean and the 95% Confidence Intervals)

m BPSO BDE FPTA FAA

02 0.19±2.16% 0.22±0.30% 0.07±0.87% 0.56±1.65%

03 0.22±0.85% 0.26±0.26% 1.16±3.45% 0.49±1.88%

04 0.26±1.32% 0.32±1.88% 35.85±39.52% 0.48±2.03%

05 0.29±0.69% 0.33±0.37% 1 390.53±2 466.88% 0.48±1.36%

06 0.33±0.78% 0.36±0.35% 48 973.83±199 526.10% 0.65±2.64%

07 0.35±0.67% 0.38±0.94% − 0.65±2.99%

08 0.38±0.88% 0.43±1.22% − 0.60±2.70%

09 0.42±0.67% 0.45±0.38% − 0.64±2.60%

10 0.40±0.53% 0.48±0.29% − 0.67±4.68%

11 0.46±1.76% 0.53±1.29% − 0.64±3.47%

12 0.46±0.75% 0.54±0.24% − 0.83±4.13%

13 0.49±0.39% 0.60±1.57% − 0.80±2.77%

14 0.52±0.61% 0.61±1.02% − 0.80±2.14%

15 0.54±0.83% 0.64±0.75% − 0.80±1.76%

16 0.57±0.71% 0.70±1.22% − 0.80±2.14%

17 0.59±0.67% 0.72±1.95% − 0.83±1.88%

18 0.62±0.83% 0.73±0.37% − 0.80±1.91%

19 0.66±2.31% 0.81±1.17% − 0.80±2.26%

20 0.69±0.52% 0.81±0.55% − 0.81±1.83%

21 0.74±2.29% 0.83±1.53% − 0.84±2.10%

22 0.73±0.63% 0.92±3.33% − 0.79±6.93%

1146 J. Comput. Sci. & Technol., Nov. 2016, Vol.31, No.6

consumed by FAA, and moreover, when m > 7, FPTA

cannot get any solution in a reasonable time. The rea-

son is that the number of possible coalitions has noth-

ing to do with the number of tasks and is extremely

small under small n, and thus BPSO, BDE, and FAA

just need to evaluate a few coalitions to calculate the

coalition structure value. However, although FPTA

also needs to evaluate a few coalitions, it has to travel

and evaluate all the possible subsets of T to maximize

the value of achievable candidate task solutions for a

given coalition structure, and thus with the increase of

m, FPTA has to face and explore a huge search space,

which results in a large amount of time consumption.

The above results indicate that FPTA is extremely sen-

sitive to the number of tasks, while BPSO, BDE, and

FAA are not sensitive to m.

5.3 Different rrr

In this experiment, we measure the four algorithms

based on different numbers of skills (i.e., r, ranging from

5 to 30) and the fixed numbers of agents and tasks (i.e.,

n = 5 and m = 2). Note that based on the previous

experiments, we know FAA is sensitive to n and FPTA

is sensitive to both n and m, thereby here we select

small n and m to make the comparisons as fair as pos-

sible.

Fig.6 shows the average coalition structure value for

different r. It can be observed that with the increase

of r, the four algorithms can get the same values, but

the coalition structure value of each algorithm does not

increase. The reason is that the solution space under

n = 5 and m = 2 is extremely small, and meanwhile,

the new added skills cannot change the numbers of pos-

sible coalitions and target sets, and thus the whole solu-

tion space for the four algorithms is fixed and extremely

limited.

Table 7 illustrates the total execution time of each

algorithm for different r. It can be seen that with

the growing r, the average running time of the four

algorithms increases extremely slowly, and FAA takes

slightly more time than BPSO, BDE, and FPTA on

each test instance, but the difference among the four

algorithms is not too big, which is significantly different

from the empirical results in the previous experiments.

Given r = 30, for example, BPSO and BDE are a lit-

tle slower than FPTA but only take less than 62.97%

of the time consumed by FAA. The reason is that in

this experiment n and m are extremely small for fair

comparison and the possible coalitions and target sets

5 10 15 20 25 30
3

4

5

Number of Skills

A
v
e
ra

g
e
 C

o
a
li
ti
o
n
 S

tr
u
c
tu

re
 V

a
lu

e

BPSO

BDE

FPTA

FAA

Fig.6. Average coalition structure value for different r.

Table 7. Total Execution Time Required (in Seconds) for

BPSO, BDE, FPTA, and FAA on CSGP with Different r

(Regarding the Standard Error of the Mean and the 95%

Confidence Intervals)

r BPSO BDE FPTA FAA

05 0.17±3.51% 0.22±0.22% 0.07±0.81% 0.56±1.29%

06 0.19±1.00% 0.24±0.26% 0.10±0.99% 0.53±3.25%

07 0.19±1.11% 0.25±0.65% 0.10±0.86% 0.57±1.87%

08 0.19±0.78% 0.25±0.27% 0.11±0.77% 0.54±2.41%

09 0.20±1.68% 0.26±0.64% 0.12±0.70% 0.56±2.08%

10 0.20±3.09% 0.27±0.64% 0.12±1.08% 0.57±2.59%

11 0.20±0.48% 0.27±0.96% 0.13±0.75% 0.59±3.21%

12 0.20±1.94% 0.28±2.10% 0.13±0.78% 0.56±2.70%

13 0.20±2.47% 0.29±1.59% 0.15±0.99% 0.58±5.47%

14 0.21±2.30% 0.28±0.56% 0.14±0.88% 0.53±1.76%

15 0.20±0.59% 0.30±1.70% 0.15±1.41% 0.56±2.22%

16 0.20±0.64% 0.31±1.33% 0.15±0.73% 0.57±2.00%

17 0.21±1.08% 0.29±0.18% 0.16±0.90% 0.55±1.72%

18 0.21±0.34% 0.31±2.05% 0.16±0.86% 0.56±2.35%

19 0.20±0.54% 0.31±1.02% 0.17±0.95% 0.56±1.71%

20 0.21±0.75% 0.33±4.17% 0.17±0.90% 0.57±2.42%

21 0.21±0.67% 0.31±0.59% 0.18±1.01% 0.56±2.38%

22 0.21±1.20% 0.32±0.74% 0.19±1.18% 0.57±1.64%

23 0.22±1.43% 0.31±0.51% 0.18±1.01% 0.52±2.55%

24 0.22±0.74% 0.32±0.67% 0.18±0.99% 0.56±2.08%

25 0.21±0.65% 0.33±0.83% 0.19±0.99% 0.57±2.34%

26 0.23±0.74% 0.33±0.56% 0.20±1.68% 0.54±1.80%

27 0.21±0.47% 0.33±0.86% 0.23±1.24% 0.56±2.14%

28 0.21±0.78% 0.34±0.84% 0.21±1.18% 0.58±2.65%

29 0.23±1.37% 0.34±0.89% 0.21±1.10% 0.54±3.14%

30 0.22±0.35% 0.34±0.53% 0.21±1.02% 0.54±2.85%

are extremely limited. In this case, BPSO, BDE, and

FPTA just need to explore an extremely small solution

Yang Liu et al.: Using CI Algorithms to Solve CSGP in CSGs 1147

space. On the contrary, executing the dimensionality

reduction and relaxation in such a small solution space

is complete waste of effort and time for FAA. The above

results indicate that all the four algorithms are not sen-

sitive to the number of skills.

5.4 Discussion

The reliability and the effectiveness of the proposed

computational intelligence algorithms BPSO and BDE

are validated from the results of statistical analysis

based on 50 independent runs of each algorithm and

different numbers of agents, tasks, and skills. We find

that CSGP in CSGs is closely related to the numbers of

agents and tasks, but has little relation with the num-

ber of skills.

Our heuristic-based BPSO and BDE are efficient no

matter how parameters n, m, and r change, which justi-

fies the utility of computational intelligence algorithms

in practice, especially in large domains. Specifically,

when the number of agents n is big, BPSO and BDE are

far more effective than FPTA and FAA in terms of both

the coalition structure value and the time consumption,

which may indicate that the proposed heuristic for in-

dividual repairs can support strong heuristic informa-

tion to guide the evolution of population. Additionally,

BPSO is a little faster than BDE because unlike BDE,

BPSO has no evolution operators such as crossover and

mutation.

FAA is sensitive to parameter n. When there are

too many agents, the performance of FAA will decrease

much. Yet, one bright spot for FAA is that it is not

affected by the growing number of tasks. Hence, FAA

is feasible in scenarios where there are a large number

of tasks but few agents.

As for FPTA, its performance is greatly restricted

by parameters n and m. When the number of agents

or tasks is big, FPTA performs extremely poorly and

cannot give any solution in a reasonable time. Accord-

ingly, FPTA is serviceable only in scenarios where there

are a large number of skills but few agents and tasks.

The above observations indicate that BPSO and

BDE are more feasible and robust for CSGP in large

domains. Hence, computational intelligence algorithms

are powerful and promising tools for solving compli-

cated and hard computing problems related to coali-

tion formation. In particular, the two-dimensional bi-

nary encoding not only is easy to comprehend, but also

fits well with the combinational characteristic of CSGP.

Moreover, there are at most n rows in an individual for

a coalition structure contains at most n coalitions; thus

the evaluation space in computational intelligence al-

gorithms is extremely limited, which further supports

their potential utility in other cooperative games, such

as weighted voting games[54], graph games[55-57], and

network flow games[58-59].

Weighted voting games[54] are games where each

agent has a weight, and a coalition of agents wins if

the total weight of its members meets or exceeds a cer-

tain threshold and loses otherwise. The CSGP in these

games is making the winning coalitions in a coalition

structure as many as possible. Graph games are games

played over a graph in which agents are the vertices

and each edge has a weight. The value of a coalition

is the total weights of all the valid edges connected by

its members. The CSGP in graph games is just finding

a partition of agents to maximize the total weights of

all the valid edges in a coalition structure. It is clear

that a coalition structure in the above games can also

be represented by the two-dimensional binary encod-

ing, but different games may need different heuristics

for individual repairs.

Network flow games are also games played over a

directed network flow graph in which each edge has

a capacity and is controlled by an agent. A coalition

of agents wins if it can send a flow that is above the

threshold value from a source vertex to a target ver-

tex, and loses otherwise. Unlike CSGs, weighted vot-

ing games, and graph games, the solution to a network

flow problem influences the value of a coalition, thereby

one of the challenges is finding a coalition rather than

a coalition structure to achieve the maximal flow be-

tween the given source vertex and the target vertex.

For this problem, we can also use computational in-

telligence algorithms, such as one-dimensional binary

encoding based BPSO and BDE, or integer encoding

based ant colony optimization that has been success-

fully applied in searching for an optimal coalition for

the given task[60].

6 Conclusions

This paper’s methodology provides computational

intelligence algorithms for solving CSGP in CSGs. The

proposed framework includes a two-dimensional binary

encoding scheme and a heuristic for individual repairs

that corrects the infeasibility in the matrices created

in the process of population evolution. To benchmark

the effectiveness of our algorithms, we tested the pro-

posed algorithms based on two popular discrete compu-

tational intelligence algorithms BPSO and BDE, and

1148 J. Comput. Sci. & Technol., Nov. 2016, Vol.31, No.6

compared their performance with that of the exist-

ing state-of-the-art algorithms FPTA and FAA. The

empirical results in terms of the coalition structure

value and running time showed that our heuristic-based

BPSO and BDE are more efficient and effective than

FPTA and FAA, especially when the problem size is

large. For example, for the case of 23 agents, the solu-

tions determined by BPSO and BDE are more precise

than those by FPTA and FAA, and meanwhile, BPSO

and BDE took less than 0.02% of the time consumed

by FPTA and 8.27% of the time consumed by FAA,

respectively.

However, we did not imply in this paper that our al-

gorithms are always superior to FPTA and FAA. From

a more practical viewpoint, this work can be seen as an

initial step toward a reasonable guide for solving CSGP

from the perspective of CI techniques, which may be

helpful for solving practical coalition formation prob-

lems in large domains. This work still has some limi-

tations to be improved: these algorithms (i.e., BPSO,

BDE, FPTA, and FAA) are not evaluated on real-world

test instances; the strengths and the weaknesses of these

algorithms are not studied on CSGP in comparison with

alternative CI algorithms. Additionally, it would be

interesting to investigate the serviceability of CI algo-

rithms in other cooperative games.

Acknowledgements The authors would like to

thank the editors and anonymous referees for their in-

sightful comments and suggestions.

References

[1] Khan M A, Turgut D, Bölöni L. Optimizing coalition forma-

tion for tasks with dynamically evolving rewards and non-

deterministic action effects. Autonomous Agents and Multi-

Agent Systems, 2011, 22(3): 415-438.

[2] Ye D, Zhang M, Sutanto D. Self-adaptation-based dynamic

coalition formation in a distributed agent network: A mech-

anism and a brief survey. IEEE Transactions on Parallel

and Distributed Systems, 2013, 24(5): 1042-1051.

[3] Li C, Sycara K, Scheller-Wolf A. Combinatorial coalition

formation for multi-item group-buying with heterogeneous

customers. Decision Support Systems, 2010, 49(1): 1-13.

[4] Liao S S, Zhang J D, Lau R et al. Coalition formation based

on marginal contributions and the Markov process. Decision

Support Systems, 2014, 57(1): 355-363.

[5] Ke G Y, Bookbinder J H, Kilgour D M. Coordination of

transportation and quantity discount decisions, with coali-

tion formation. International Journal of Production Re-

search, 2014, 52(17): 5115-5130.

[6] Saad W, Han Z, Başar T et al. Hedonic coalition formation

for distributed task allocation among wireless agents. IEEE

Transactions on Mobile Computing, 2011, 10(9): 1327-

1344.

[7] Guerrero J, Oliver G. Multi-robot coalition formation in

real-time scenarios. Robotics and Autonomous Systems,

2012, 60(10): 1295-1307.

[8] Liu A, Li Q, Huang L et al. Coalitional game for

community-based autonomous web services cooperation.

IEEE Transactions on Services Computing, 2013, 6(3):

387-399.

[9] Service T C, Adams J A. Constant factor approximation

algorithms for coalition structure generation. Autonomous

Agents and Multi-Agent Systems, 2011, 23(1): 1-17.

[10] Rahwan T, Michalak T, Wooldridge M et al. Anytime coali-

tion structure generation in multi-agent systems with posi-

tive or negative externalities. Artificial Intelligence, 2012,

186: 95-122.

[11] Zick Y, Chalkiadakis G, Elkind E. Overlapping coalition

formation games: Charting the tractability frontier. In

Proc. the 11th International Conference on Autonomous

Agents and Multiagent Systems, June 2012, pp.787-794.

[12] Zick Y, Markakis E, Elkind E. Arbitration and stability in

cooperative games with overlapping coalitions. Journal of

Artificial Intelligence Research, 2014, 50: 847-884.

[13] Dunne P E, Kraus S, Manisterski E et al. Solving coalitional

resource games. Artificial Intelligence, 2010, 174(1): 20-50.

[14] Chitnis R, Hajiaghayi M, Liaghat V. Parameterized comple-

xity of problems in coalitional resource games. In Proc. the

25th AAAI Conference on Artificial Intelligence, August

2011, pp.620-625.

[15] Rahwan T, Jennings N R. An algorithm for distributing

coalitional value calculations among cooperating agents.

Artificial Intelligence, 2007, 171(8/9): 535-567.

[16] Airiau S, Sen S. A fair payoff distribution for myopic ratio-

nal agents. In Proc. the 8th International Joint Conference

on Autonomous Agents and Multiagent Systems, May 2009,

pp.1305-1306.

[17] Chalkiadakis G, Markakis E, Boutilier C. Coalition for-

mation under uncertainty: Bargaining equilibria and the

Bayesian core stability concept. In Proc. the 6th Interna-

tional Joint Conference on Autonomous Agents and Mul-

tiagent Systems, May 2007, pp.412-419.

[18] Chalkiadakis G, Boutilier C. Sequentially optimal repeated

coalition formation under uncertainty. Autonomous Agents

and Multi-Agent Systems, 2012, 24(3): 441-484.

[19] Kenari S M S, Jahan M V, Jalali M. Multi-skill agents

coalition formation under skill uncertainty. In Proc. Inter-

national Symposium on Artificial Intelligence and Signal

Processing, June 2011, pp.89-96.

[20] Sridhar U, Mandyam S. Capability-weighted group uti-

lity maximizer for network coalitional games under uncer-

tainty. In Proc. IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining, August

2012, pp.613-617.

[21] Bachrach Y, Rosenschein J S. Coalitional skill games. In

Proc. the 7th International Conference on Autonomous

Agents and Multiagent Systems, May 2008, pp.1023-1030.

[22] Bachrach Y, Parkes D C, Rosenschein J S. Computing coop-

erative solution concepts in coalitional skill games. Artificial

Intelligence, 2013, 204: 1-21.

[23] Aziz H, Brandt F, Harrenstein P. Monotone cooperative

games and their threshold versions. In Proc. the 9th Inter-

national Conference on Autonomous Agents and Multia-

gent Systems, May 2010, pp.1107-1114.

Yang Liu et al.: Using CI Algorithms to Solve CSGP in CSGs 1149

[24] Aziz H, De Keijzer B. Complexity of coalition structure

generation. In Proc. the 10th International Conference on

Autonomous Agents and Multiagent Systems, May 2011,

pp.191-198.

[25] Tran-Thanh L, Nguyen T D, Rahwan T et al. An efficient

vector-based representation for coalitional games. In Proc.

the 23rd International Joint Conference on Artificial Intel-

ligence, August 2013, pp.383-389.

[26] Wu D, Cai Y, Wang J. A coalition formation framework for

transmission scheme selection in wireless sensor networks.

IEEE Transactions on Vehicular Technology, 2011, 60(6):

2620-2630.

[27] Akkarajitsakul K, Hossain E, Niyato D. Coalition-based co-

operative packet delivery under uncertainty: A dynamic

bayesian coalitional game. IEEE Transactions on Mobile

Computing, 2013, 12(2): 371-385.

[28] Blankenburg B, He M, Klusch M et al. Risk-bounded forma-

tion of fuzzy coalitions among service agents. In Proc. the

10th International Workshop on Cooperative Information

Agents, September 2006, pp.332-346.

[29] Wei G, Vasilakos A V, Zheng Y et al. A game-theoretic

method of fair resource allocation for cloud computing ser-

vices. The Journal of Supercomputing, 2010, 54(2): 252-

269.

[30] Niyato D, Vasilakos A V, Zhu K. Resource and revenue

sharing with coalition formation of cloud providers: Game

theoretic approach. In Proc. the 11th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing,

May 2011, pp.215-224.

[31] Huang B, Gao C, Chen L. Partner selection in a virtual en-

terprise under uncertain information about candidates. Ex-

pert Systems with Applications, 2011, 38(9): 11305-11310.

[32] Rahimi M R, Venkatasubramanian N, Vasilakos A V. Mu-

SIC: Mobility-aware optimal service allocation in mobile

cloud computing. In Proc. the 6th IEEE International Con-

ference on Cloud Computing, June 28-July 3, 2013, pp.75-

82.

[33] Sheng Q Z, Qiao X, Vasilakos A V et al. Web services com-

position: A decade’s overview. Information Sciences, 2014,

280: 218-238.

[34] Khan M A, Tembine H, Vasilakos A V. Game dynamics

and cost of learning in heterogeneous 4G networks. IEEE

Journal on Selected Areas in Communications, 2012, 30(1):

198-213.

[35] Duarte P B F, Fadlullah Z M, Vasilakos A V et al. On the

partially overlapped channel assignment on wireless mesh

network backbone: A game theoretic approach. IEEE Jour-

nal on Selected Areas in Communications, 2012, 30(1): 119-

127.

[36] Wang C Y, Ko C H, Wei H Y et al. A boting-

based Femtocell downlink cell-breathing control mech-

anism. IEEE/ACM Transactions on Networking, 2016,

24(1): 85-98.

[37] Dutta A, Dasgupta P, Baca J et al. SearchUCSG: A fast

coalition structure search algorithm for modular robot re-

configuration under uncertainty. Robotica, 2014, 32(2): 225-

244.

[38] Roh J H, Shahidehpour M, Wu L. Market-based generation

and transmission planning with uncertainties. IEEE Trans-

actions on Power Systems, 2009, 24(3): 1587-1598.

[39] Bachracht Y, Meir R, Jung K et al. Coalitional structure

generation in skill games. In Proc. the 24th AAAI Confer-

ence on Artificial Intelligence, July 2010, pp.703-708.

[40] Nguyen T D. A fast approximation algorithm for solving the

complete set packing problem. European Journal of Oper-

ational Research, 2014, 237(1): 62-70.

[41] Sen S, Dutta P. Search for optimal coalition structures. In

Proc. the 4th International Conference on Multi-Agent Sys-

tems, July 2000, pp.287-292.

[42] Yang J, Luo Z. Coalition formation mechanism in multi-

agent systems based on genetic algorithms. Applied Soft

Computing, 2007, 7(2): 561-568.

[43] Keinänen H. Simulated annealing for multi-agent coalition

formation. In Proc. the 3rd KES International Symposium

on Agent and Multi-Agent Systems-Technologies and Ap-

plications, June 2009, pp.30-39.

[44] Kennedy J, Eberhart R C. A discrete binary version of

the particle swarm algorithm. In Proc. IEEE International

Conference on Systems, Man, and Cybernetics, October

1997, pp.4104-4108.

[45] Pampará G, Engelbrecht A P, Franken N. Binary differen-

tial evolution. In Proc. IEEE International Conference on

Evolutionary Computation, July 2006, pp.1873-1879.

[46] Pedrasa M A A, Spooner T D, MacGill I F. Scheduling

of demand side resources using binary particle swarm op-

timization. IEEE Transactions on Power Systems, 2009,

24(3): 1173-1181.

[47] Cao R F, Wang X C, Wu Z K et al. A parallel Markov

cerebrovascular segmentation algorithm based on statisti-

cal model. Journal of Computer Science and Technology,

2016, 31(2): 400-416.

[48] Du H Z, Xia N, Jiang J G et al. A Monte Carlo enhanced

PSO algorithm for optimal QoM in multi-channel wireless

networks. Journal of Computer Science and Technology,

2013, 28(3): 553-563.

[49] He R J, Yang Z Y. Differential evolution with adaptive mu-

tation and parameter control using Lévy probability distri-

bution. Journal of Computer Science and Technology, 2012,

27(5): 1035-1055.

[50] Lu X F, Tang K. Classification- and regression-assisted dif-

ferential evolution for computationally expensive problems.

Journal of Computer Science and Technology, 2012, 27(5):

1024-1034.

[51] Kennedy J, Eberhart R C. Particle swarm optimization. In

Proc. IEEE International Conference on Neural Networks,

November 1995, pp.1942-1948.

[52] Storn R, Price K. Differential evolution — A simple and

efficient heuristic for global optimization over continuous

spaces. Journal of Global Optimization, 1997, 11(4): 341-

359.

[53] Altman D G, Machin D, Bryant T N et al. Statistics with

Confidence: Confidence Intervals and Statistical Guide-

lines. London, England: BMJ Books, 2000.

[54] Elkind E, Chalkiadakis G, Jennings N R. Coalition struc-

tures in weighted voting games. In Proc. the 18th European

Conference on Artificial Intelligence, July 2008, pp.393-

397.

1150 J. Comput. Sci. & Technol., Nov. 2016, Vol.31, No.6

[55] Deng X, Papadimitriou C H. On the complexity of coop-

erative solution concepts. Mathematics of Operations Re-

search, 1994, 19(2): 257-266.

[56] Voice T, Polukarov M, Jennings N R. Coalition structure

generation over graphs. Journal of Artificial Intelligence

Research, 2012, 45(1): 165-196.

[57] Bachrach Y, Kohli P, Kolmogorov V et al. Optimal coalition

structure generation in cooperative graph games. In Proc.

the 27th AAAI Conference on Artificial Intelligence, July

2013, pp.81-87.

[58] Kalai E, Zemel E. Totally balanced games and games of

flow. Mathematics of Operations Research, 1982, 7(3): 476-

478.

[59] Bachrach Y, Rosenschein J S. Power in threshold network

flow games. Autonomous Agents and Multi-Agent Systems,

2009, 18(1): 106-132.

[60] Xia N, Jiang J, Hu C. Solution to agent coalition problem

using improved ant colony optimization algorithm. In Proc.

IEEE/WIC/ACM International Conference on Intelligent

Agent Technology, September 2004, pp.475-478.

Yang Liu received his B.S. degree

in communication engineering and his

M.S. degree in electronic information

engineering from Hefei University of

Technology, Hefei, in 2005 and 2008,

respectively. He is currently pursuing

his Ph.D. degree in information and

communication engineering at the School of Computer

and Information, Hefei University of Technology, Hefei.

His research interests include modeling and simulation

of complex systems, image processing, and distributed

artificial intelligence.

Guo-Fu Zhang received his B.S.

and Ph.D. degrees in computer science

from Hefei University of Technology,

Hefei, in 2002 and 2008, respectively.

He is currently an associate professor of

the Agents, Coalition, Decision Group,

the School of Computer and Informa-

tion, Hefei University of Technology, Hefei. His research

interests include evolutionary computation, intelligent

agents, and search-based software engineering.

Zhao-Pin Su received her B.S. and

Ph.D. degrees in computer science from

Hefei University of Technology, Hefei,

in 2004 and 2008, respectively. She is

currently an associate professor of the

Agents, Coalition, Decision Group, the

School of Computer and Information,

Hefei University of Technology, Hefei. She is interested

in agent-based simulation, coalition formation for disaster

response, and collaborative decision support systems for

disaster response management.

Feng Yue received his B.S., M.S.,

and Ph.D. degrees in computer science

from Hefei University of Technology,

Hefei, in 2004, 2009, and 2015, respec-

tively. He is currently an associate

researcher at the Department of Science

and Technology Management, Hefei

University of Technology, Hefei. His research interests

include automatic control, image processing, and software

engineering.

Jian-Guo Jiang received his M.S.

degree in signals, circuits, and systems

from Hefei University of Technology,

Hefei, in 1989. He is currently a

professor of the School of Computer

and Information, Hefei University of

Technology, Hefei. He is the head

of the Texas Instruments — Hefei

University of Technology DSPS Laboratory. His research

interests include automatic control, image processing, and

multi-agent systems.

