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Abstract The computer graphics and computer vision communities have been working closely together in recent years,

and a variety of algorithms and applications have been developed to analyze and manipulate the visual media around us.

There are three major driving forces behind this phenomenon: 1) the availability of big data from the Internet has created

a demand for dealing with the ever-increasing, vast amount of resources; 2) powerful processing tools, such as deep neural

networks, provide effective ways for learning how to deal with heterogeneous visual data; 3) new data capture devices, such

as the Kinect, the bridge between algorithms for 2D image understanding and 3D model analysis. These driving forces

have emerged only recently, and we believe that the computer graphics and computer vision communities are still in the

beginning of their honeymoon phase. In this work we survey recent research on how computer vision techniques benefit

computer graphics techniques and vice versa, and cover research on analysis, manipulation, synthesis, and interaction. We

also discuss existing problems and suggest possible further research directions.
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1 Introduction

Computer graphics and computer vision begin with

inverse problems. Traditional computer graphics starts

with geometric models and produces photorealistic im-

ages, with emphasis on interaction, synthesis, etc. As

illustrated in Fig.1, traditional computer vision starts

with input image sequences and produces geometric

models, with emphasis on semantic understanding,

matching, etc. The trend that these two fields are

converging has been noticed since the 1990s[1]. More

and more researchers of computer graphics are trying to

use vision techniques to help create and manipulate vi-

sual scenes as efficiently as possible[2]. Using computer

graphics techniques to help solving vision problems is

also becoming popular[3-5].

To date, billions of Internet images, videos and

3D models have been created and are shared on the

Internet everyday[6]. Such big visual data have has-

tened a variety of image/video/geometry analysis and

manipulation applications, by providing ever existing

vast amount of resources which enable novel applica-

tions that are otherwise impossible by traditional meth-

ods. On one hand, enabling smart computer graph-

ics tools to intelligently create compelling results with

minimal user interaction requires computer vision tech-

niques to extract semantic components and knowledge

from the huge volume of available data, e.g., deep con-

volutional neural networks[7] continually boost state-

of-the-art performance for a wide range of tasks, but

typically rely on expensive, large-scale, human-labeled

data to learn from. To overcome this bottleneck com-

puter graphics, techniques can be developed to auto-

matically help learning algorithms to collect training
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Fig.1. Graphics and vision spectrum: traditional graphics starts on the right with more geometry based, while traditional vision starts
from more images based on the left. Currently, graphics and vision tend to fuse together, with an emphasis on interaction and semantics
understanding respectively.

examples. The bond between computer graphics and

computer vision has been further blurred by the emer-

gence of RGBD image capturing devices, such as Mi-

crosoft Kinect, Intel RealSense, Apple PrimSense, and

so on. The RGBD images directly associate image and

geometry processing algorithms, making the productive

collaboration between computer graphics and computer

vision much easier.

In this paper, we survey recent research on how com-

puter vision techniques benefit computer graphics tech-

niques and vice versa. These topics include saliency

aware media processing (Section 2), content under-

standing for smart image manipulation (Section 3),

depth estimation and 3D modeling (Section 4), and

data synthesis for visual learning (Section 5). We also

discuss existing problems and suggest possible further

research directions (Section 6).

2 Saliency Aware Media Processing

The concept of saliency originates in the study of

human perception, and relates to how some parts of

the scene appear to be more important than others.

The computation of saliency is normally considered to

be primarily a bottom-up (and therefore general pur-

pose) process, based on local image features such as

colour and contrast[8-11]. Computer vision widely uses

saliency, as it provides a lightweight means to identify

the most informative and important areas in a scene,

such as the foreground objects. Another category of the

use of saliency is to help analyze the quality of images

generated by image and video compression and pro-

cessing algorithms. For instance, the artifacts created

by compression need to be quantified in a perceptually

aware manner, and so saliency is used as a convenient

proxy[12]. Many algorithms have been developed for

salience detection, and readers are referred to the re-

cent surveys for more details[13-14].

There are also many instances in graphics that can

benefit from employing saliency to predict human per-

ception. One category is the set of applications which

manipulate an image or 3D model, and incur some er-

rors during the process, e.g., image resizing[15] or mesh

simplification[16]. Better results will be obtained if the

errors can be restricted to the non-salient parts of the

data rather than the salient parts. Another category

is when some part of the data is to be enhanced by

amplification, e.g., boosting image intensities[17] or sur-

face curvature[18]. Restricting the amplification to the

salient regions tends to produce less confusing and more

attractive results.

2.1 Content Aware Resizing

When displaying image content at different sizes

and aspect ratios, content distortion is a common phe-

nomenon. A smart way for enhancing the user experi-

ence is to make sure that prominent objects should be

kept similar to their original contents and any distor-

tion should be restricted to less important regions.

The seam carving approach[19] was an early clas-

sic work in content aware image resizing. It works

by greedily removing/inserting one-dimensional seams

passing through regions which are estimated, via

saliency detection, to be of less importance. Wang

et al.[20] further improved the speed issue and over-

came jagged edges via continuous optimization in-

stead of discrete seam carving. Inspired by conformal

energy in geometry processing, Zhang et al.[15] pro-

posed a real-time convex optimization solution with

a closed form solution (see Fig.2(a)). Several au-

thors have extended the bottom-up salience mea-

sure to incorporate higher-level aspects, e.g., object

semantics[23] and symmetry[24]. Image re-targeting has

also been extended to deal with image enlarging[25],
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stereo images[26], video sequences[27] and stereoscopic

3D video[28].

(a)

(b) (c)

Fig.2. Saliency aware media processing. Images are reproduced
from the corresponding references. (a) Resizing[15]. (b) View
selection[21]. (c) Visualization[22].

Resizing 3D models, while requiring the important

structure of the underlying models to be retained as

much as possible, is of great importance. Significant

research effort has gone into this area in order to eas-

ily place 3D models into different scenes. Miao and

Lin[29] constructed a quadratic energy function to help

guide salient feature-preserving model resizing, with

an edge sensitivity measure during resizing. Jia et

al.[30] designed a region-based descriptor to compute

the saliency of each region based on its contrast to

neighboring regions and a hierarchical method for com-

puting saliency. They showed that by optimizing a

global energy function on the mesh, visually appealing

mesh resizing results can be obtained.

2.2 Shape Simplification and Enhancement

Mesh saliency was first introduced by Lee et al.[21],

and used a center-surround operator on Gaussian-

weighted mean curvatures at multiple scales. They used

a weighting map derived from the computed saliency

map to guide the order of vertex pair contractions to

produce mesh simplification, and showed their superi-

ority to other methods (see Fig.2(b)).

Song et al.[31] also proposed a mesh saliency method

for mesh simplification, which incorporated the condi-

tional random field (CRF) framework with a saliency

detection process. In this approach, a multi-scale repre-

sentation for meshes is first generated and then a CRF

is adopted to detect saliency regions using neighbor-

hood consistency. Zhao and Liu[16] provided an al-

ternative approach for mesh simplification using mesh

saliency[31]. They produced a saliency map by diffus-

ing the shape index field with the non-local means fil-

ter. Recently, Castelló et al.[32] presented a view-based

method for surface simplification using mesh saliency.

They first defined a new simplification error metric to

improve the visual quality of the simplified models and

then used viewpoint saliency as a weighting factor of

the quality of the viewpoint.

Enhancing shape signatures so that important fea-

tures could be highlighted for viewing and artistic rea-

sons also requires the estimation of mesh saliency. In

[33], Miao et al. developed a saliency guided shad-

ing scheme for shape depiction by incorporating the

visual saliency measure of a polygonal mesh into the

normal enhancement operation. Due to the introduc-

tion of the visual saliency measure of the 3D shape,

this approach can adjust the illumination and shad-

ing to enhance the geometric salient features of the

underlying model by dynamically perturbing the sur-

face model. In [18], Miao et al. presented a visual

saliency based shape depiction scheme for relief sur-

face. They combined three different bottom-up feature

maps and defined a new multi-channel salience mea-

sure. By incorporating this salience measure into an

exaggeration operation, a saliency-guided shape depic-

tion scheme was developed. Understanding salient fea-

tures have also been used to preserve important shape

features during mesh deformation[34].

2.3 Visualization

Visualization aims to guide the observer’s attention

to the relevant aspects of the representation. There-

fore, it is important to model aspects of the human

visual system, and saliency provides a simple approach

to doing so.

Kim and Varshney[22] designed a visual saliency

based operator to help enhance selected regions of a

volume (see Fig.2(c)). They plugged the operator into

an existing visualization pipeline and showed that based

on the center-surrounded mechanisms of the human vi-

sual system, the saliency-guided enhancement for vol-

ume visualization was effective and could be applied

in several contexts. Besides, Jänicke and Chen[17] pro-

posed a metric to measure the quality of a visualization.

They believed that the distribution of saliency over a

visualization image could be thought of as an important

measure of the quality of the visualization. Meanwhile,

they provided an approach to compute such a metric

for a visualization image in the context of a dataset.
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Semmo et al.[35] used salience to control the use of

different graphic styles and levels of detail for visua-

lizing a given view of a 3D city model, in order to di-

rect the viewer’s gaze to the most important informa-

tion. Salient regions were rendered with photorealistic

graphics, while non-salience regions were rendered with

non-photorealistic graphics, which provided image ab-

straction. Different rendering styles were combined in

a seamless manner using alpha blending.

2.4 3D Printing

3D printing as an additive manufacturing work re-

cently has been applied to a wide range of applications

on account of its ability to facilitate the rapid fabrica-

tion of objects of any shape. Therefore, without doubt,

it is one of the hot topics in graphics.

Song et al.[36] presented a voxelization-based

method for 3D printing which dispenses with connec-

tors, glue, and screws while proposing to connect the

printed 3D parts by 3D interlocking. The object is de-

composed into a set of initial 3D interlocking parts. To

improve their aesthetic property, these cutting seams

are refined by swapping voxels among adjacent 3D parts

so as to avoid putting cutting seams across salient parts.

The salience of boundary voxels is estimated via a 3D

mesh salience[19] measure.

In [37], Wang et al. presented an adaptive width

slicing scheme for 3D printing systems. In order to

reduce the printing time while at the same time main-

taining the visual quality of the printing results, they

optimised a cost function involving these two factors.

Visual quality of the printing results is maintained

with the help of saliency estimation. Furthermore,

they gained greater efficiencies by developing a saliency

based segmentation approach to partition an object

into subparts, and then optimize the slicing of each sub-

part separately.

3 Content Understanding for Smart

Manipulation and Synthesis

While most existing computer graphics tools, e.g.,

Adobe PhotoShop and Autodesk Maya, mainly sup-

port low-level operations and are typically employed for

touch-up or local enhancement of visual content[38-39],

high-level image editing techniques that allow users

to specify large-scale meaningful changes using sim-

ple interactions have recently gained great research

attention[40-43]. Psychologists believe that humans pro-

cess and organize visual information based on relations

between scene structures[44]. Allowing the user to ma-

nipulated the content at the level of objects in the scene,

while being aware of scene structure, is an attractive

editing modality that is aligned with our mental data

representation.

However, to mimic real-world user experience with

physical environments and to enable object-level ma-

nipulation, we need to understand the content in the

visual data and overcome four major challenges: 1) vi-

sual data are composed of ungrouped elements, e.g.,

pixels and polygons, rather than semantic objects; 2)

recovering geometry information about how objects are

arranged in 3D is often an ill-posed problem and un-

likely to be solved in the near future; 3) correlations

between objects are hard to infer but are critical to

maintain realism during the editing processing; 4) se-

mantic constraints about how objects should behave af-

ter user adjustments require not only information about

the target being manipulated, but also prior knowledge

that exists in human experience and big Internet data.

3.1 Smart Manipulation

With an increased level of content understanding

provided by computer vision techniques, visual media

manipulation tools could more intelligently infer user

intentions, thus reducing the requirement of precise user

input and tedious interactions.

In [45], the RepFinder system detects approxi-

mately repeated objects and builds dense correspon-

dences between them, to enable object-level manipu-

lation whilst preserving correlations among the repe-

titions (see Fig.3(a)). Goldberg et al.[46] proposed a

data-driven approach to interactively manipulating ob-

jects in a photograph using related objects obtained

from Internet images (see Fig.3(b)). By matching the

candidate object with user input strokes, the system

automatically finds candidate objects from the Inter-

net, enabling a range of novel editing experiences that

is impossible with low-level operations (e.g., removing

part of an object to reveal its interior). Lu et al.[48]

further enabled object-level manipulation for timeline

editing of video contents.

Understanding object shapes and their perspective

relations is also crucial for high-level image manipu-

lation experience. Zheng et al.[49] explored user inte-

raction to create partial scene reconstructions based on

cuboid-proxies structures. Such partial scene structure

allows a range of intuitive image edits, so that users only

need to provide high-level semantic hints and the sys-
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tem ensures plausible operations that mimic the real-

world behavior, which are otherwise difficult to achieve.

In [42], the 3-Sweep system further uses general cylin-

ders and cuboid structure to understand the compo-

nents of the shape, their projections, and relationships

(see Fig.3(c)). Besides object geometry, rough scene

geometry is also important for high-level image edit-

ing applications. Iizuka et al.[50] proposed a system in

which the user can move objects in an image whilst

ensuring that object size and object overlap are au-

tomatically adjusted. This is achieved by estimating

the perspective structure of the scene in a single image

with the assistance of user-drawn strokes. Estimating

object shape and scene geometry from a single image

is inherently an ill-posed problem. The success of these

methods such as [50-53] typically relies on user interac-

tions (e.g., strokes[53] and bounding boxes[54]) and sim-

plifying assumptions (e.g., cuboid-proxies[49] and gene-

ral cylinders[42]).

(a) (b)

(c) (d)

Race Horse

Seagull

Sailboat Sailboat

Sailboat

Wedding
Kiss

Sunset Beach

Fig.3. Content understanding for smart manipulation and syn-
thesis. Images are reproduced from the corresponding references.
(a) RepFinder[45]. (b) Object manipulation[46]. (c) 3-Sweep[42].
(d) Image montage[47] .

High-level graphics applications which rely on se-

mantic meanings[55] or scene geometry of complex

objects[43,56] often require the information that does

not explicitly exist in a single image. Knowledge ac-

quired from large collections of visual data is useful for

obtaining plausible results by resolving ambiguity and

uncertainty. In the ImageSpirit[55] system, Cheng et al.

proposed treating nouns as object labels and adjectives

as visual attribute labels. This allows novel verbal inte-

raction based on semantic knowledge learned from a set

of images with dense object class and attribute labels.

Kholgade et al.[43] proposed to leverage the structure

and symmetry in stock 3D models for estimating illu-

mination and completing the hidden parts of an object

seen in a single photograph. Huang et al.[56] jointly

analysed web images and shape collections for single

view reconstruction. Such joint analysis regularizes the

optimization formulation and stabilizes correspondence

estimation, thus enabling the reconstruction of different

objects using a smaller collection of existing 3D models.

3.2 Visual Content Synthesis

Chen et al.[47] developed an interesting system

named Sketch2Photo that was capable of automati-

cally converting a simple freehand sketch, along with a

few text label annotations, into a realistic picture (see

Fig.3(d)). Due to the fact that the pictures are found by

searching the Internet, many inappropriate results may

be produced. In order to overcome this drawback, a

filtering scheme is used to eliminate inappropriate im-

ages, and an image blending algorithm is adopted to

find an optimal combination of discovered images.

In [57], the PoseShop system was proposed for con-

structing a segmented human image database that was

used to synthesise personalized comic-strips. By em-

ploying computer vision techniques, only minimal man-

ual intervention was required. Segmentation followed

by further filtering[47] was able to produce 400 000 seg-

mented human characters of sufficient quality. The

images were analysed so as to automatically provide

clothes descriptions that can be used by the user along-

side the text attributes to query the database when

constructing the comic-strips. Tanahashi et al.[58] pro-

posed an efficient framework for storyline visualization

from streaming video data. Hasegawa and Saito[59] pre-

sented a method for synthesis stroboscopic image from

video sequence for sports analysis.

Lalonde et al.[60] developed a system that can in-

sert new objects into existing photographs. A new au-

tomatic algorithm is presented so as to improve the

object segmentation and blending, estimate true 3D

object size and orientation, and estimate scene light-

ing conditions. Moreover, an intuitive user interface is

provided, which is able to make object insertion much

faster.

In [61], Xu et al. presented a system that could

automatically convert a freehand sketch drawing con-

taining multiple objects into a semantically valid and

well-arranged scene composed of 3D models. By per-

forming co-retrieval and co-placement of 3Dmodels, the

amount of user intervention needed for sketch-based 3D

modeling is greatly decreased.

Chia et al.[62] designed a new colorization system

that can colorize grayscale photos with less manual la-

bor. The user provides a semantic text label and selects
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an automatically generated foreground object segmen-

tation, and this system can automatically download

and filter suitable relevant images using a new filter-

ing method. These then provide reference images that

are suitable for driving the colorization process.

4 Depth Estimation and 3D Modeling

Scene modeling from imagery data is one of the main

tasks of both computer vision and computer graphics,

and thus also the point at which the above two fields

merge or diverge. Many analysis methods which origi-

nate in the graphics domain, such as 3D geometry anal-

ysis, are introduced into depth estimation and 3D mod-

eling to produce much more accurate 3D geometric data

of the scenes. Thus, this section describes applications

in both graphics and vision that use techniques such

as structure from motion to recover geometry and also

synthesise imagery.

4.1 Modeling 3D Scenes

Unlike active scene modeling systems, such as struc-

tured light projectors, vision-based modeling aims at

creating a 3D model of the real world by simply tak-

ing its images mainly using stereo matching. Structure

from motion (SfM) is a passive modeling technique that

simultaneously estimates 3D scene structure and cam-

era poses from 2D image sequences. Although the prob-

lem of SfM was proposed several decades ago[63], it was

not until recently that progress became dramatic due

to the advances in computing performance. Applica-

tions based on SfM also occur in scene reconstruction

and 3D object modeling.

Snavely et al. developed a photo browser[64] which

takes unstructured collections of photos of sites as in-

put and computes the viewpoint of each photo as well

as a sparse 3D point cloud of the scene. The results en-

able the user to explore the photos in 3D space. Later

Agarwal et al. presented a system named “Building

Rome in a Day”[65] (see Fig.4(a)). The system can

handle an extremely large quantity of photos (e.g., the

results returned by Google when searching for a city).

Frahm et al.[67] introduced a dense 3D reconstruction

system which is able to deal with about 3 million In-

ternet images within the span of a day on a single

PC with a GPU. Recently, Fuhrmann et al. imple-

mented the “Multi-View Environment”[68], an end-to-

end image-based geometry reconstruction tool which

takes the photos of a scene as input and produces a

textured surface mesh as the result.

Various applications can be developed using vision-

based scene modeling and point cloud matching and

rendering. Ceylan et al.[69] coupled structure-from-

motion and 3D symmetry detection for urban facades.

The recovered symmetry information along with the 3D

geometry enables image editing operations maintaining

consistency across the images. Kopf et al.[70] proposed

an algorithm to create videos with smooth camera mo-

tion from first-person videos, which are captured during

sports and thus suffer from erratic camera shake. This

work employs SfM to estimate the camera pose for each

frame and re-renders the video using a smooth camera

path.

(a) (b)

Fig.4. Depth estimation and 3D modeling. Images are repro-
duced from the corresponding references. (a) Building Rome in
a day[65]. (b) Facial capture[66] .

Since SfM can recover the structure of large-scale

scenes, it can be exploited for positioning. Recent stu-

dies have developed algorithms to recognize the location

of the query image from the point cloud produced by

SfM. Tan et al.[71] presented a monocular SLAM (Si-

multaneously Localization and Mapping) system which

uses a special keyframe representation and updating

method to handle dynamic environment. Li et al.[72-73]

proposed an approach to use sparse transform to the

joint estimation of 3D shapes and motions, while using

wavelet basis to fit 3D shape trajectory. The system

demonstrated robust performance when handling non-

rigid target with occlusion.

4.2 Facial Performance

Facial expression plays a critical role in almost all

aspects of human interaction and face-to-face commu-

nication. As such, face and facial performance mod-

eling has long been considered as a grand challenge

in the field of computer graphics and vision. Using

special equipments, such as facial markers[74], camera

arrays[75], and structured light projectors[76], enables

the capture of high fidelity 3D facial geometry, which

is crucial to be captured especially in film and game

production.

Recently, techniques have been developed which

are more suitable for consumer-level capture approac-
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hes[77]. They do not require such special equipment,

but instead are based on the co-modeling of 3D ge-

ometry and 2D landmarks in videos of facial express-

ions. Cao et al.[78] presented a fully automatic approach

to real-time facial tracking and animation with a sin-

gle video camera, which can reach the same level of

robustness and accuracy as demonstrated in RGBD-

based algorithms. This method introduces a displaced

dynamic expression (DDE) model that simultaneously

represents the 3D geometry of the user’s facial expres-

sions and the 2D facial landmarks which correspond to

semantic facial features in video frames. By learning

a generic regression model from public image datasets,

this approach can be applied to arbitrary video cam-

eras to infer accurate 2D facial landmarks as well as

the 3D facial shape without any training. Cao et al.[66]

further developed facial tracking system that captures

human performance with high fidelity in real time, (see

Fig.4(b)).

4.3 Human Motion Capture

Motion capture is the process of recording the move-

ment of people (animals or jointed rigid structures in

general), which is one of the main demands of scene

modeling. It is mainly used in connection with captur-

ing large-scale body movements, which are the move-

ments of the head, arms, torso and legs. Motion capture

is widely used in education, training, sports and re-

cently computer animation for television, cinema, and

video games, virtual reality, which are mainly in the

graphics domain. Although traditional methods are of-

ten based on the capture and processing of active or

passive sensors, i.e., acoustic, inertial, LED, magnetic

or reflective markers, the vision-based approaches al-

low touch-free capture in principle and they have been

gradually introduced into graphics and VR applica-

tions. Recently, 4D performance capture (4DPC)[79]

has been introduced to capture the shape, appearance

and motion of the human body from multi-view videos.

It derives a sequence of reconstructed 3D meshes with

temporally consistent vertices and topology, which cap-

ture detailed surface dynamics plus associated videos

that can be projected onto the mesh. Making use of

4DPC data, Huang et al.[80] proposed a skeleton-driven

character animation by motion graph path optimization

and a learnt part-based Laplacian surface deformation

model.

Recent studies focus on motion and appearance con-

trol to reproduce character animations, and use ma-

chine learning. Xia et al.[81] presented a novel solution

for real-time generation of stylistic human motion that

automatically transforms unlabeled, heterogeneous mo-

tion data into new styles using an online learning al-

gorithm that automatically constructs a series of lo-

cal mixtures of autoregressive models (MAR) to cap-

ture the complex relationships between styles of mo-

tion. Pons-Moll et al.[82] proposed a new model called

Dyna that is learned from examples and is able to pro-

duce realistic soft-tissue motions for a wide range of

body shapes and motions.

5 Synthesizing Big Data for Visual Learning

In recent years there has been an increased demand

for data in computer vision. This is in part due to the

widespread use of machine learning, as well as the in-

creased emphasis within computer vision on large-scale,

rigorous testing. Consequently researchers are looking

for efficient means with which to acquire or generate

such large training and test tests.

Databases of 3D models provide examples from

which we can learn models of scenes. Such 3D models

provide rich information from which vision algorithms

can learn, such as shape, surface normal, materials,

lighting, viewpoint, perspective, and occlusions. The

problem is whether such synthesised data are of suf-

ficient quality to be useful for computer vision algo-

rithms, and so care needs to be taken to provide realis-

tic characteristics such as noise and natural variations.

This section provides three examples that use synthe-

sized data for visual learning.

5.1 Pose Recognition

Human pose recognition from videos and images has

been widely studied for decades. How to estimate hu-

man pose fast and reliably is challenging. This sub-

section will review some advanced pose recognition ap-

proaches using synthesized data.

Shotton et al.[3] proposed a real-time human pose

recognition approach that transforms the difficult pose

recognition task into a simple pixel-level classification

problem by presenting an intermediate representation

in terms of body parts (see Fig.5(a)). For training

data, they designed a randomized rendering pipeline

that randomly selects a set of parameters, such as

height, weight, and camera noise and then used com-

puter graphics methods to render depth and body part

images from 3D meshes. In the learning process, they

employed simple depth comparison features that were

3D translation invariant and used randomized decision
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Fig.5. Synthesizing big data for visual learning. Images are reproduced from the corresponding references. (a) Pose recognition[3]. (b)
Data augmentation[83] . (c) Shape manifold[5].

forests. With a huge database of synthesized image

pairs, very deep forests can be trained without overfit-

ting.

In [84], Shotton et al. introduced two efficient ap-

proaches, body part classification (BPC) and offset

joint regression (OJR), to predict the 3D positions of

body joints from a single depth image. A similar ren-

dering method as done in [3] was used for generat-

ing synthetic data that includes fully labeled training

data, alongside real hand-labeled depth images, and

test data. Both BPC and OJR use decision forests and

simple depth-invariant image features. But differently,

the BPC approach tries to infer a set of surface body

parts that are aligned with the joints of interest, while

the OJR approach tries to directly estimate the posi-

tions of interior body joints.

Rogez and Schmid[83] designed an image-based syn-

thesis engine that combines image regions from different

images to augment images and uses the resulting images

to train a CNN for 3D pose prediction (see Fig.5(b)).

Their image-based synthesis engine is composed of two

parts. A MoCop-guided image mosaicing is first used to

stitch images patches together and then a pose-aware

blending process is performed to improve the quality

and erase patch seams. With training data, an end-to-

end CNN is adopted for 3D body pose classification.

5.2 Object Detection

Object detection is one of the most challenging tasks

in computer vision, and has made great success in re-

cent years. Synthesized datasets from depth images

further promote its development.

Song and Xiao[85] proposed to use depth maps for

object detection. They developed a 3D detector to help

overcome various impediments to recognition, such as

the variations of texture, illumination, shape, clutter,

and so on. The training data is a collection of synthetic

depth maps that are obtained by rendering 3D CAD

models from hundreds of viewpoints. During depth ren-

dering, features are extracted from the 3D point cloud,

followed by an Exemplar-SVM classifier[86].

Peng et al.[87] used synthetic images to investigate

the invariance of deep CNNs to various low-level cues

and presented their own CNN for object detection.

Given some 3D CAD models for each object, a set of

synthetic 2D images are generated by simulating a va-

riety of low-level cues, including shape, surface color,

reflectance, location, etc. They showed that if a model

had been trained for detection task, it was unnecessary

to incorporate synthetic images with simulated cues.

In [88], Gupta et al. used semantically rich image

and depth features to do object detection. To gene-



118 J. Comput. Sci. & Technol., Jan. 2017, Vol.32, No.1

rate more data for training and fine-tuning their net-

work, they rendered the full 3D synthetic CAD ob-

ject models from various viewpoints to produce synthe-

sized scenes. At each pixel from the depth image, they

extracted three channels: horizontal disparity, height

above ground, and the angle with respect to gravity.

A modified R-CNN framework is used to produce rich

features and to perform object detection.

Zheng et al.[5] generated object detection proposals

by using compact 3D shape manifold. A low dimen-

sional Gaussian process latent variable shape space is

trained. Then, shape variations are sampled from this

manifold and then used for the training process (see

Fig.5(c)).

5.3 Object Recognition

2D object recognition has made great progress be-

cause of the development of deep networks. With the

appearance of advanced devices that produce 3D point

clouds, there is an increasing amount of studies[89-91]

that focus on developing 3D recognition using 3D con-

volutional networks.

Wu et al.[89] designed a convolutional deep belief

network to model the joint probabilistic distribution

over 3D voxel data. In order to train the deep network,

a large-scale 3D CAD model dataset is generated by

mapping each voxel to a binary tensor depending on

whether the voxel is inside the mesh surface.

Wohlhart and Lepetit[91] introduced the efficient

and scalable nearest neighbor search in a descriptor

space to perform object recognition. They used a mix-

ture of synthetic and real-world data for training. The

latter was created by regularly sampling viewpoints

over a half-dome over the object mesh, and render-

ing the object in RGBD an empty background using

Blender. A convolutional network is used to directly

map the raw image patch to a compact and discrimina-

tive descriptor. They also used the Euclidean distance

to evaluate the similarity between descriptors.

6 Discussion and Conclusions

We reviewed a variety of recent studies in which

computer graphics and computer vision techniques

benefit each other. On the one hand, advanced vi-

sion techniques provide powerful tools for understand-

ing and providing salient features, object segmentation,

3D geometry, scene perspective, semantic meanings,

etc. With an improved degree of scene understanding,

a number of image manipulation tools could be made

more intelligent, by being aware of important object

parts, being able to perform manipulations at the ob-

ject level, or being able to guess user intentions. We

note that there are still few large-scale benchmarks for

comparing the performance of different graphics appli-

cations that use vision techniques. This prevents the

systematic study and boosting of performance that is

often observed in pure computer vision work. With the

rapid development of vision techniques, especially re-

cent deep learning methods, we believe more and more

vision analyses will become robust enough to support

ever more vision applications.

On the other hand, graphics techniques have also

been explored for the synthesis of big visual data for

pose recognition, object detection, object recognition,

etc. There are also many analysis methods which orig-

inate in the graphics domain, such as 3D geometry

analysis, which have been introduced into depth estima-

tion and 3D modeling to produce much more accurate

3D geometric data of the scenes, or capture human mo-

tion and facial performance. However, although grow-

ing very quickly, the amount of graphics techniques that

have been used in vision is still much less than that in

the amount of vision techniques that have been used in

graphics. More research effort is required to assist the

creation of training data, the generation of candidate

detections, the modeling process, etc.

Both the graphics and vision communities require

total scene understanding for a variety of real-world

tasks. Such semantic understanding typically involves

various individual tasks, which are highly correlated.

To date, the majority of the research has been devoted

to research in one or two tasks. Although such research

is typically very deep, it is not broad enough to consider

many of the vision and graphics tasks jointly, which

would potentially enable a lot more cues to be exploited

than those used in a typical computer vision or graph-

ics system. Recently some pioneering work has jointly

explored 3D modeling, object segmentation, user inte-

raction, online learning, and camera localization[92-94].

Although these novel systems could only deal with sim-

ple visual scenes, and support a limited amount of scene

understanding, they lead the way to a bright future us-

ing total scene understanding via jointly discovering,

reconstructing, interacting and learning in the environ-

ment.
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visualization of generalized virtual 3D city models using

level-of-abstraction transitions. Computer Graphics Forum,

2012, 31: 885-894.

[36] Song P, Fu Z Q, Liu L G, Fu C W. Printing 3D objects

with interlocking parts. Computer Aided Geometric Design,

2015, 35/36: 137-148.

[37] Wang W M, Chao H Y, Tong J et al. Saliency-preserving

slicing optimization for effective 3D printing. Computer

Graphics Forum, 2015, 34(6): 148-160.
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