
Bao YG, Wang S. Labeled von Neumann architecture for software-defined cloud. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 32(2): 219–223 Mar. 2017. DOI 10.1007/s11390-017-1716-0

Labeled von Neumann Architecture for Software-Defined Cloud

Yun-Gang Bao, Member, CCF, ACM, IEEE, and Sa Wang, Member, CCF

State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of

Sciences, Beijing 100190, China

University of Chinese Academy of Sciences, Beijing 100049, China

E-mail: {baoyg, wangsa}@ict.ac.cn

Received November 25, 2016; revised February 15, 2017.

Abstract As cloud computing is moving forward rapidly, cloud providers have been encountering great challenges: long

tail latency, low utilization, and high interference. They intend to co-locate multiple workloads on a single server to improve

the resource utilization. But the co-located applications suffer from severe performance interference and long tail latency,

which lead to unpredictable user experience. To meet these challenges, software-defined cloud has been proposed to facilitate

tighter coordination among application, operating system and hardware. Users’ quality of service (QoS) requirements could

be propagated all the way down to the hardware with differential management mechanisms. However, there is little hardware

support to maintain and guarantee users’ QoS requirements. To this end, this paper proposes Labeled von Neumann

Architecture (LvNA), which introduces a labelling mechanism to convey more software’s semantic information such as QoS

and security to the underlying hardware. LvNA is able to correlate labels with various entities, e.g., virtual machine, process

and thread, and propagate labels in the whole machine and program differentiated services based on rules. We consider

LvNA to be a fundamental hardware support to the software-defined cloud.

Keywords software-defined cloud, von Neumann architecture, tail latency, performance interference

1 Introduction

It has been a few years since cloud computing[1]

emerged and hit the IT industry. At the beginning,

cloud computing referred to the new term for the long-

held dream of computing as a utility. With the help

of virtualization, cloud providers like Amazon, could

abstract their underlying hardware into a shared pool

of configurable computing resources. Customers (also

called tenants) just need purchase a bulk of instances

(virtual machines) to deploy their applications without

concerning about underlying hardware resource mana-

gement. Computing resources in cloud can be elasti-

cally provisioned and released. We consider this is the

first generation of cloud, denoted as virtualized cloud.

Virtualized cloud just provides best-effort service with

unpredictable performance.

As the data on Internet massively increased, paral-

lel data processing framework, e.g., Hadoop[2], Spark[3],

PowerGraph[4], became another kind of mainstream ap-

plications in cloud. In order to prevent performance

interference caused by virtualization and maintain the

ease of operations, different applications were separated

into isolated clusters. One physical cluster serves only

one type of workload. This is the second generation

of cloud, denoted as partitioned cloud. As a matter

of price, the resource utilization of partitioned cloud is

inevitably low.

As the workload grew up and cloud computing

moved forward rapidly, the huge market demand urged

IT companies to keep ramping up their investment in

data center. On the other hand, the resource utiliza-

tion of these data centers is much lower than expected.

According to reports from Gartner 1○ and Kaplan et

Short Paper

Special Section on MOST Cloud and Big Data

This work was supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000200
and the National Natural Science Foundation of China under Grant No. 61420106013.

1○http://www.gartner.com/newsroom/id/1472714, Feb. 2017.

©2017 Springer Science +Business Media, LLC & Science Press, China



220 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

al.[5], CPU usage of most data centers in the world

was around 6%∼12%. Even for the world biggest pub-

lic cloud, Amazon EC2, their CPU usage was merely

7%∼17%[6], which was far from efficiency and resulted

in a great loss to the IT companies. Recently, indus-

try and academia both attempted to develop the third

generation of cloud, shared cloud, which co-locates

different workload onto the same underlying hardware

to improve the resource utilization while guaranteeing

user experience. Shared cloud poses great challenges to

cloud providers.

• Long Tail Latency. Tail latency was first proposed

by Google researchers[7] and instantly attracted much

attention. They found that rare high latency in indi-

vidual components may come to dominate the whole

service performance at large scale. Variability in the

latency distribution of individual components was am-

plified in service level by scale. In order to guarantee

user experience in shared cloud, the first challenge is

to curb latency variability. However latency variability

can arise for many reasons, including concurrent locks

inside application, disordered resource sharing in cache

and memory bandwidth, queuing in various resource

levels, and so on.

• Low Utilization. To reduce latency variability,

cloud providers either employ experienced engineers

and take every effort to optimize their cloud applica-

tions carefully, or leverage over-provisioning to guaran-

tee the resource utilization of applications. Both meth-

ods bring huge cost and little effect. Meanwhile, over-

provisioning can make the resource utilization of data

centers rather low. Shared cloud encounters this crucial

trade-off between low utilization and tail latency.

• High Interference. The basic idea of shared cloud

is locating different workload together on the same

physical servers. Different applications sharing the

same hardware resource can cause performance inter-

ference to each other. With the development of dis-

tributed processing framework, the execution time of

single task reduces to hundreds of milliseconds, which

makes the performance interference more severely and

hard to locate.

To overcome these challenges, software-defined

cloud[8] has emerged, which borrows the wisdom of

software-defined network and facilitates tighter coordi-

nation among application, operating system, virtuali-

zation and hardware. The QoS requirement and iden-

tification of upper applications could be propagated all

the way down to the underlying hardware effectively.

When the performance of certain application violates

its QoS requirement, the whole system could coordinate

to identify, protect or accelerate the application, such as

assigning more cache capacity to corresponding applica-

tions, throttling other applications with high CPU uti-

lization. Industry and research communities have taken

a lot of effort to optimize the full software stack, from

virtualization, operating system to distributed system

architecture, as illustrated in Table 1. After 10 years’

effort, Dick Sites, Google senior engineer, admitted it

was really hard to enforce performance isolation among

different applications in shared environments and ad-

vocated that more hardware support is needed 2○.

Table 1. Contention Identified in Prior Work

Software Layer Contention Point

Data center Global file system[7]

Application Background deamon[7],

maintenance activities[7], backup jobs[9]

Network stack Small packets triggered Nagle’s algorithm[9],

limited buffers[9],

delayed ACK results in RTO[9],

TCP congestion control[10-11],

packet scheduling[12-15],

kernel sockets[16]

Kernel Lock contention[17-20],

context switch[16],

kernel scheduling overhead[16,21-23],

SMT load imbalance[16,24-27],

IRQ imbalance[16,28]

Power C-State[16],

DVFS[16]

Hypervisor Virtual machine scheduling[9,21,29-33],

network isolation[29-30,34-35]

2 Background and Motivation

The von Neumann architecture is a classical model

for a stored-program digital computer, which was pro-

posed in 1945 by the mathematician and physicist John

von Neumann. As illustrated in Fig.1, it consists of a

processing unit containing an arithmetic logic unit and

processor registers, a control unit containing an instruc-

tion register and a program counter, a memory to store

both data and instructions, external mass storage, and

input and output mechanisms.

The von Neumann architecture is elegant, but far

from perfect. In John Backus’s 1977 ACM Turing

Award lecture, he pointed out that the data trans-

fer between CPU and memory would become the very

2○https://www.cs.wisc.edu/events/1887, Feb. 2017.



Yun-Gang Bao et al.: Labeled von Neumann Architecture for Software-Defined Cloud 221

bottleneck of von Neumann architecture. As John

Backus predicted, the performance gap between CPU

and memory became larger and larger due to Moore’s

law, resulting in the “Memory Wall” problem. To deal

with the gap, architects had to add more cache layers,

as shown in Fig.2.

Input

Memory Unit

Output

Central Processing

Unit

Fig.1. von Neumann architecture.

1980 1985 1990

L1

L1

L2

L1

L2

L3

1995

Year

CPU: 50%

DRAM: 7%

Processor

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e

2000 2005 2010

105

104

103

102

101

100

Fig.2. Increasing memory hierarchy.

After the 2000s, thank to the advent of multicore

processors, the memory hierarchy was gradually parti-

tioned into two categories: on-core and un-core. The

on-core resource, like L1 and L2 cache, is considered

as private resource to each core’s own; the un-core re-

source including last level cache (LLC) and memory

is shared by multiple cores. In this scenario, if two

cores running two separate applications with different

latency sensitivities both issue a request to shared LLC,

the LLC cannot figure out which request is more criti-

cal and should be handled first. Therefore, the requests

could be handled in an indeterminate order. We con-

sider this phenomenon as unmanaged sharing problem.

All shared memory hierarchies suffer from unmanaged

sharing problem.

Unmanaged sharing is the root cause of performance

interference, which leads to the “Noisy Neighbor” prob-

lem in the cloud. In a multicore processor, if an appli-

cation is running alone, it could load all of its working

set into LLC. However, if it is running with other appli-

cations, they could compete with each other in the LLC

instead. Experimental results on Intel Xeon processor

show that the interference caused by unmanaged shar-

ing reduces the performance by more than three times.

Therefore, new architectural mechanisms are needed to

deal with these unmanaged chaos.

3 Labeled von Neumann Architecture

In this work, we propose a new computer architec-

ture, Labled von Neumann Architecture (LvNA), which

is a traditional von Neumann architecture enhanced

with fine-grained hardware resource management mech-

anism as illustrated in Fig.3. Like labeled networking,

LvNA could correlate labels with virtual machine, pro-

cess and thread, etc., and propagate labels within a

whole machine. We also integrate a programmable cen-

ter control plane to provide differentiated services based

on different label-indexed rules.

Memory Unit

OutputCentral Control PlaneInput

Central Processing Unit

Fig.3. Labeled von Neumann Architecture.

In theory, we can simplify LvNA into a queuing

model with multiple priorities. According to queuing

theory, the service time of high priority request will not

be disturbed by other requests. Based on the LvNA,

the data center can achieve both resource efficiency

and user experience. The programmable center control

plane exposed to the software level can provide more

flexibility for software-defined cloud.

However, the LvNA still leaves several open prob-

lems.

• Theory. What is the impact of LvNA on RAM,

PRAM, LogP models? To elaborate, theoretically we

can throttle all of the requests with low priority to pro-

vide absolute QoS guarantee; however, this will hurt

utilization and overall throughput. Queuing and prio-

rities must be carefully considered to achieve balance

between tasks.



222 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

• Hardware/Architecture. How to implement LvNA

in CPU, memory, storage, networking? The LvNA re-

quires precise label control over the flow of all of the

requests inside the whole system; however, industry de-

signs pervasively use buffers, out-of-order processing on

CPU, cache memory hierarchy and a line of other sub-

systems. It would be disastrous if all those requests are

mis-labeled.

• Programing Model and Compilers. How to ex-

press users’ requirements and propagate to the hard-

ware via labels? How to make compilers support labels?

Compilers have semantic information that is hard to re-

trieve on hardware. Compilers can pass important per-

formance and usage pattern hints to hardware, which

would be highly valuable to guide hardware resources

allocation.

• OS/Hypervisor. How to correlate labels with

VMs, containers, processors, threads? How to abstract

programming interfaces for labels? OS/hypervisor does

task scheduling. A label mechanism that permits the

storage of related information of ready task as well as

fast label context switching between running tasks is

necessary to keep label information persistent during

task scheduling cycles.

• Distributed Systems. How to correlate labels with

distributed resources? How to manage distributed sys-

tems with label mechanisms? A distributed task with

hundreds or even thousands of threads running on a

line of servers surely poses many challenges on how to

propagate and manage labels.

• Measurement/Audit. How to leverage labels to

gauge and audit resource usages? For example, the

labels flow on system memory can be discontinuous

since system memory has to serve requests from mul-

tiple sources. Besides that, labels’ origin can also be

vague on system memory, since “write to memory” re-

quests from cache are largely caused by cache evictions

of dirty blocks, and the eviction may be invoked by

cache read miss requests with different labels. There-

fore one sometimes would be forced to gauge and audit

resource usage on such a difficult scenario.

4 Conclusions

In this paper, we first discussed the major issue in

today’s data center, resource efficiency. The CPU us-

age of most data center hovers around 6%∼12%. In-

creasing the resource utilization will cause user experi-

ence degraded severely. Then we recalled the develo-

pment of computer architecture and found the root

cause was unmanaged sharing among memory hierar-

chy. Finally, We borrowed the wisdom in labeled net-

working and presented LvNA, a fine-grained hardware

resource management mechanism. We correlated la-

bels with resource and propagated labels in the whole

machine. LvNA still left several open problems to be

overcome.

References

[1] Mell P M, Grance T. SP 800-145, the NIST defini-

tion of cloud computing. Tech. Rep., Gaithersburg, MD,

United States, 2011. http:///www.nist.gov/node/568586,

Feb. 2017.

[2] Shvachko K, Kuang H, Radia S, Chansler R. The Hadoop

distributed file system. In Proc. the 26th IEEE MSST, May

2010.

[3] Zaharia M, Chowdhury M, Das T, Dave A, Ma J, Mc-

Cauley M, Franklin M J, Shenker S, Stoica I. Resilient

distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing. In Proc. the 9th USENIX

NSDT, April 2012, pp.15-28.

[4] Gonzalez J E, Low Y, Gu H, Bickson D, Guestrin C. Power-

graph: Distributed graph-parallel computation on natural

graphs. In Proc. the 10th USENIX OSDI, Oct. 2012.

[5] Kaplan J M, Forrest W, Kindle N. Revolutionizing data

center energy efficiency. Tech. Rep., McKinsey & Com-

pany, July 2008. http://pdfsr.com/pdf/revolutionizing-

data-center-energy-efficiency, Feb. 2017.

[6] Liu H. A measurement study of server utilization in public

clouds. In Proc. the 9th IEEE International Conference on

Dependable, Autonomic and Secure Computing, Dec. 2011,

pp.435-442.

[7] Dean J, Barroso L A. The tail at scale. Commun. ACM,

2013, 56(2): 74-80.

[8] Grandl R, Chen Y, Khalid J, Yang S, Anand A, Benson T,

Akella A. Harmony: Coordinating network, compute, and

storage in software-defined clouds. In Proc. the 4th Annual

Symposium on Cloud Computing, Oct. 2013, pp.53:1–53:2.

[9] Xu Y, Musgrave Z, Noble B, Bailey M. Bobtail: Avoiding

long tails in the cloud. In Proc. the 10th USENIX Confer-

ence on Networked Systems Design and Implementation,

Apr. 2013, pp.329-342.

[10] Alizadeh M, Greenberg A, Maltz D A, Padhye J, Patel P,

Prabhakar B, Sengupta S, Sridharan M. Data Center TCP

(DCTCP). In Proc. ACM SIGCOMM, Aug.30-Sept.3, 2010.

[11] Alizadeh M, Kabbani A, Edsall T, Prabhakar B, Vahdat

A, Yasuda M. Less is more: Trading a little bandwidth

for ultra-low latency in the data center. In Proc. the 9th

USENIX NSDI, April 2012, pp.253-266.

[12] Vamanan B, Hasan J, Vijaykumar T. Deadline-aware dat-

acenter TCP (D2tcp). In Proc. the ACM SIGCOMM

Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communication, Aug. 2012,

pp.115-126.

[13] Wilson C, Ballani H, Karagiannis T, Rowtron A. Better

never than late: Meeting deadlines in datacenter networks.

In Proc. the ACM SIGCOMM, Aug. 2011, pp.50-61.



Yun-Gang Bao et al.: Labeled von Neumann Architecture for Software-Defined Cloud 223

[14] Zats D, Das T, Mohan P, Borthakur D, Katz R. DeTail:

Reducing the flow completion time tail in datacenter net-

works. ACM SIGCOMM Comput. Commun. Rev., 2012,

42: 139-150.

[15] Hong C Y, Caesar M, Godfrey P B. Finishing flows quickly

with preemptive scheduling. ACM SIGCOMM Comput.

Commun. Rev., 2012, 42: 127-138.

[16] Leverich J, Kozyrakis C. Reconciling high server utiliza-

tion and sub-millisecond quality-of-service. In Proc. the 9th

European Conference on Computer Systems, Apr. 2014,

pp.4:1-4:14.

[17] Kapoor R, Porter G, Tewari M, Voelker G M, Vahdat A.

Chronos: Predictable low latency for data center applica-

tions. In Proc. the 3rd ACM Symposium on Cloud Com-

puting, Oct. 2012, pp.9:1-9:14.

[18] Sukwong O, Kim H S. Is co-scheduling too expensive for

SMP VMs? In Proc. the 6th Conference on Computer Sys-

tems, Apr. 2011, pp.257-272.

[19] Uhlig V, LeVasseur J, Skoglund E, Dannowski U. Towards

scalable multiprocessor virtual machines. In Proc. the 3rd

Conference on Virtual Machine Research and Technology

Symposium — Volume 3, May 2004, pp.43-56.

[20] Ding X, Gibbons P B, Kozuch M A, Shan J. Gleaner: Mit-

igating the blocked-waiter wakeup problem for virtualized

multicore applications. In Proc. the USENIX Annual Tech-

nical Conference, June 2014, pp.73-84.

[21] Kambadur M, Moseley T, Hank R, Kim M A. Measuring in-

terference between live datacenter applications. In Proc. the

International Conference on High Performance Comput-

ing, Networking, Storage and Analysis, Nov. 2012, pp.51:1-

51:12.

[22] Blagodurov S, Zhuravlev S, Fedorova A, Kamali A. A case

for NUMA-aware contention management on multicore sys-

tems. In Proc. the 19th International Conference on Paral-

lel Architectures and Compilation Techniques, Sept. 2010,

pp.557-558.

[23] Tam D, Azimi R, Stumm M. Thread clustering: Sharing-

aware scheduling on SMP-CMP-SMT multiprocessors. In

Proc. the 2nd ACM SIGOPS/EuroSys European Confer-

ence on Computer Systems, Mar. 2007, pp.47-58.

[24] Zhang Y, Laurenzano M A, Mars J, Tang L. SMiTe: Precise

QoS prediction on real-system SMT processors to improve

utilization in warehouse scale computers. In Proc. the 47th

Annual IEEE/ACM International Symposium on Microar-

chitecture, Dec. 2014, pp.406-418.

[25] Cazorla F J, Ramı́rez A, Valero M, Fernández E. Dynam-

ically controlled resource allocation in SMT processors. In

Proc. the 37th Annual International Symposium on Mi-

croarchitecture, Dec. 2004, pp.171-182.

[26] Choi S, Yeung D. Learning-based SMT processor resource

distribution via hill-climbing. In Proc. the 33rd Interna-

tional Symposium on Computer Architecture, June 2006,

pp.239-251.

[27] Eyerman S, Eeckhout L. Per-thread cycle accounting in

SMT processors. In Proc. the 14th International Confer-

ence on Architectural Support for Programming Languages

and Operating Systems, Mar. 2009, pp.133-144.

[28] Cheng L, Wang C L. vBalance: Using interrupt load bal-

ance to improve I/O performance for SMP virtual machines.

In Proc. the 3rd ACM Symposium on Cloud Computing,

Oct. 2012, pp.2:1-2:14.

[29] Wang G, Ng T S E. The impact of virtualization on network

performance of Amazon EC2 data center. In Proc. the 29th

Conference on Information Communications, Mar. 2010,

pp.1163-1171.

[30] Xu Y, Bailey M, Noble B, Jahanian F. Small is better:

Avoiding latency traps in virtualized data centers. In Proc.

the 4th Annual Symposium on Cloud Computing, Oct.

2013, pp.7:1-7:16.

[31] Chiang R C, Huang H H. TRACON: Interference-aware

scheduling for data-intensive applications in virtualized en-

vironments. In Proc. the International Conference for High

Performance Computing, Networking, Storage and Analy-

sis, Nov. 2011, pp.47:1-47:12.

[32] Nathuji R, Kansal A, Ghaffarkhah A. Q-clouds: Managing

performance interference effects for QoS-aware clouds. In

Proc. the 5th European Conference on Computer Systems,

Apr. 2010, pp.237-250.

[33] Mars J, Tang L, Hundt R, Skadron K, Soffa M L. Bubble-

up: Increasing utilization in modern warehouse scale

computers via sensible co-locations. In Proc. the 44th An-

nual IEEE/ACM International Symposium on Microarchi-

tecture, Dec. 2011, pp.248-259.

[34] Shieh A, Kandula S, Greenberg A, Kim C, Saha B. Sharing

the data center network. In Proc. the 8th USENIX Confer-

ence on Networked Systems Design and Implementation,

Mar.30-Apr.1, 2011.

[35] Cherkasova L, Gardner R. Measuring CPU overhead for I/O

processing in the Xen virtual machine monitor. In Proc. the

USENIX Annual Technical Conference, Apr. 2005, pp.387-

390.

Yun-Gang Bao received his B.S.

degree in computer science and technol-

ogy from Nanjing University, Nanjing,

in 2003, and Ph.D. degree in computer

science from Chinese Academy of

Sciences (CAS), Beijing, in 2008. He is

a professor in Institute of Computing

Technology, CAS, Beijing. From 2010

to 2012, he was a postdoctoral researcher in Depart-

ment of Computer Science, Princeton University, New

Jersey. His current research interests include computer

architecture, operating system, system performance mod-

eling and evaluation. He is a member of CCF, ACM, IEEE.

Sa Wang received his B.S. degree in

computer science and technology from

University of Science and Technology of

China, Hefei, in 2009, and Ph.D. degree

in computer science from Chinese

Academy of Sciences (CAS), Beijing,

in 2016. He is an assistant professor

in Institute of Computing Technology,

CAS, Beijing. His current research interests include

operating system, system performance evaluation and

optimization, and distributed system. He is a member of

CCF.


