
Bao YG, Wang S. Labeled von Neumann architecture for software-defined cloud. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 32(2): 219–223 Mar. 2017. DOI 10.1007/s11390-017-1716-0

Labeled von Neumann Architecture for Software-Defined Cloud

Yun-Gang Bao, Member, CCF, ACM, IEEE, and Sa Wang, Member, CCF

State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of

Sciences, Beijing 100190, China

University of Chinese Academy of Sciences, Beijing 100049, China

E-mail: {baoyg, wangsa}@ict.ac.cn

Received November 25, 2016; revised February 15, 2017.

Abstract As cloud computing is moving forward rapidly, cloud providers have been encountering great challenges: long

tail latency, low utilization, and high interference. They intend to co-locate multiple workloads on a single server to improve

the resource utilization. But the co-located applications suffer from severe performance interference and long tail latency,

which lead to unpredictable user experience. To meet these challenges, software-defined cloud has been proposed to facilitate

tighter coordination among application, operating system and hardware. Users’ quality of service (QoS) requirements could

be propagated all the way down to the hardware with differential management mechanisms. However, there is little hardware

support to maintain and guarantee users’ QoS requirements. To this end, this paper proposes Labeled von Neumann

Architecture (LvNA), which introduces a labelling mechanism to convey more software’s semantic information such as QoS

and security to the underlying hardware. LvNA is able to correlate labels with various entities, e.g., virtual machine, process

and thread, and propagate labels in the whole machine and program differentiated services based on rules. We consider

LvNA to be a fundamental hardware support to the software-defined cloud.
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1 Introduction

It has been a few years since cloud computing[1]

emerged and hit the IT industry. At the beginning,

cloud computing referred to the new term for the long-

held dream of computing as a utility. With the help

of virtualization, cloud providers like Amazon, could

abstract their underlying hardware into a shared pool

of configurable computing resources. Customers (also

called tenants) just need purchase a bulk of instances

(virtual machines) to deploy their applications without

concerning about underlying hardware resource mana-

gement. Computing resources in cloud can be elasti-

cally provisioned and released. We consider this is the

first generation of cloud, denoted as virtualized cloud.

Virtualized cloud just provides best-effort service with

unpredictable performance.

As the data on Internet massively increased, paral-

lel data processing framework, e.g., Hadoop[2], Spark[3],

PowerGraph[4], became another kind of mainstream ap-

plications in cloud. In order to prevent performance

interference caused by virtualization and maintain the

ease of operations, different applications were separated

into isolated clusters. One physical cluster serves only

one type of workload. This is the second generation

of cloud, denoted as partitioned cloud. As a matter

of price, the resource utilization of partitioned cloud is

inevitably low.

As the workload grew up and cloud computing

moved forward rapidly, the huge market demand urged

IT companies to keep ramping up their investment in

data center. On the other hand, the resource utiliza-

tion of these data centers is much lower than expected.

According to reports from Gartner 1○ and Kaplan et
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al.[5], CPU usage of most data centers in the world

was around 6%∼12%. Even for the world biggest pub-

lic cloud, Amazon EC2, their CPU usage was merely

7%∼17%[6], which was far from efficiency and resulted

in a great loss to the IT companies. Recently, indus-

try and academia both attempted to develop the third

generation of cloud, shared cloud, which co-locates

different workload onto the same underlying hardware

to improve the resource utilization while guaranteeing

user experience. Shared cloud poses great challenges to

cloud providers.

• Long Tail Latency. Tail latency was first proposed

by Google researchers[7] and instantly attracted much

attention. They found that rare high latency in indi-

vidual components may come to dominate the whole

service performance at large scale. Variability in the

latency distribution of individual components was am-

plified in service level by scale. In order to guarantee

user experience in shared cloud, the first challenge is

to curb latency variability. However latency variability

can arise for many reasons, including concurrent locks

inside application, disordered resource sharing in cache

and memory bandwidth, queuing in various resource

levels, and so on.

• Low Utilization. To reduce latency variability,

cloud providers either employ experienced engineers

and take every effort to optimize their cloud applica-

tions carefully, or leverage over-provisioning to guaran-

tee the resource utilization of applications. Both meth-

ods bring huge cost and little effect. Meanwhile, over-

provisioning can make the resource utilization of data

centers rather low. Shared cloud encounters this crucial

trade-off between low utilization and tail latency.

• High Interference. The basic idea of shared cloud

is locating different workload together on the same

physical servers. Different applications sharing the

same hardware resource can cause performance inter-

ference to each other. With the development of dis-

tributed processing framework, the execution time of

single task reduces to hundreds of milliseconds, which

makes the performance interference more severely and

hard to locate.

To overcome these challenges, software-defined

cloud[8] has emerged, which borrows the wisdom of

software-defined network and facilitates tighter coordi-

nation among application, operating system, virtuali-

zation and hardware. The QoS requirement and iden-

tification of upper applications could be propagated all

the way down to the underlying hardware effectively.

When the performance of certain application violates

its QoS requirement, the whole system could coordinate

to identify, protect or accelerate the application, such as

assigning more cache capacity to corresponding applica-

tions, throttling other applications with high CPU uti-

lization. Industry and research communities have taken

a lot of effort to optimize the full software stack, from

virtualization, operating system to distributed system

architecture, as illustrated in Table 1. After 10 years’

effort, Dick Sites, Google senior engineer, admitted it

was really hard to enforce performance isolation among

different applications in shared environments and ad-

vocated that more hardware support is needed 2○.

Table 1. Contention Identified in Prior Work

Software Layer Contention Point

Data center Global file system[7]

Application Background deamon[7],

maintenance activities[7], backup jobs[9]

Network stack Small packets triggered Nagle’s algorithm[9],

limited buffers[9],

delayed ACK results in RTO[9],

TCP congestion control[10-11],

packet scheduling[12-15],

kernel sockets[16]

Kernel Lock contention[17-20],

context switch[16],

kernel scheduling overhead[16,21-23],

SMT load imbalance[16,24-27],

IRQ imbalance[16,28]

Power C-State[16],

DVFS[16]

Hypervisor Virtual machine scheduling[9,21,29-33],

network isolation[29-30,34-35]

2 Background and Motivation

The von Neumann architecture is a classical model

for a stored-program digital computer, which was pro-

posed in 1945 by the mathematician and physicist John

von Neumann. As illustrated in Fig.1, it consists of a

processing unit containing an arithmetic logic unit and

processor registers, a control unit containing an instruc-

tion register and a program counter, a memory to store

both data and instructions, external mass storage, and

input and output mechanisms.

The von Neumann architecture is elegant, but far

from perfect. In John Backus’s 1977 ACM Turing

Award lecture, he pointed out that the data trans-

fer between CPU and memory would become the very

2○https://www.cs.wisc.edu/events/1887, Feb. 2017.
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bottleneck of von Neumann architecture. As John

Backus predicted, the performance gap between CPU

and memory became larger and larger due to Moore’s

law, resulting in the “Memory Wall” problem. To deal

with the gap, architects had to add more cache layers,

as shown in Fig.2.
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Fig.1. von Neumann architecture.
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Fig.2. Increasing memory hierarchy.

After the 2000s, thank to the advent of multicore

processors, the memory hierarchy was gradually parti-

tioned into two categories: on-core and un-core. The

on-core resource, like L1 and L2 cache, is considered

as private resource to each core’s own; the un-core re-

source including last level cache (LLC) and memory

is shared by multiple cores. In this scenario, if two

cores running two separate applications with different

latency sensitivities both issue a request to shared LLC,

the LLC cannot figure out which request is more criti-

cal and should be handled first. Therefore, the requests

could be handled in an indeterminate order. We con-

sider this phenomenon as unmanaged sharing problem.

All shared memory hierarchies suffer from unmanaged

sharing problem.

Unmanaged sharing is the root cause of performance

interference, which leads to the “Noisy Neighbor” prob-

lem in the cloud. In a multicore processor, if an appli-

cation is running alone, it could load all of its working

set into LLC. However, if it is running with other appli-

cations, they could compete with each other in the LLC

instead. Experimental results on Intel Xeon processor

show that the interference caused by unmanaged shar-

ing reduces the performance by more than three times.

Therefore, new architectural mechanisms are needed to

deal with these unmanaged chaos.

3 Labeled von Neumann Architecture

In this work, we propose a new computer architec-

ture, Labled von Neumann Architecture (LvNA), which

is a traditional von Neumann architecture enhanced

with fine-grained hardware resource management mech-

anism as illustrated in Fig.3. Like labeled networking,

LvNA could correlate labels with virtual machine, pro-

cess and thread, etc., and propagate labels within a

whole machine. We also integrate a programmable cen-

ter control plane to provide differentiated services based

on different label-indexed rules.

Memory Unit

OutputCentral Control PlaneInput

Central Processing Unit

Fig.3. Labeled von Neumann Architecture.

In theory, we can simplify LvNA into a queuing

model with multiple priorities. According to queuing

theory, the service time of high priority request will not

be disturbed by other requests. Based on the LvNA,

the data center can achieve both resource efficiency

and user experience. The programmable center control

plane exposed to the software level can provide more

flexibility for software-defined cloud.

However, the LvNA still leaves several open prob-

lems.

• Theory. What is the impact of LvNA on RAM,

PRAM, LogP models? To elaborate, theoretically we

can throttle all of the requests with low priority to pro-

vide absolute QoS guarantee; however, this will hurt

utilization and overall throughput. Queuing and prio-

rities must be carefully considered to achieve balance

between tasks.
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• Hardware/Architecture. How to implement LvNA

in CPU, memory, storage, networking? The LvNA re-

quires precise label control over the flow of all of the

requests inside the whole system; however, industry de-

signs pervasively use buffers, out-of-order processing on

CPU, cache memory hierarchy and a line of other sub-

systems. It would be disastrous if all those requests are

mis-labeled.

• Programing Model and Compilers. How to ex-

press users’ requirements and propagate to the hard-

ware via labels? How to make compilers support labels?

Compilers have semantic information that is hard to re-

trieve on hardware. Compilers can pass important per-

formance and usage pattern hints to hardware, which

would be highly valuable to guide hardware resources

allocation.

• OS/Hypervisor. How to correlate labels with

VMs, containers, processors, threads? How to abstract

programming interfaces for labels? OS/hypervisor does

task scheduling. A label mechanism that permits the

storage of related information of ready task as well as

fast label context switching between running tasks is

necessary to keep label information persistent during

task scheduling cycles.

• Distributed Systems. How to correlate labels with

distributed resources? How to manage distributed sys-

tems with label mechanisms? A distributed task with

hundreds or even thousands of threads running on a

line of servers surely poses many challenges on how to

propagate and manage labels.

• Measurement/Audit. How to leverage labels to

gauge and audit resource usages? For example, the

labels flow on system memory can be discontinuous

since system memory has to serve requests from mul-

tiple sources. Besides that, labels’ origin can also be

vague on system memory, since “write to memory” re-

quests from cache are largely caused by cache evictions

of dirty blocks, and the eviction may be invoked by

cache read miss requests with different labels. There-

fore one sometimes would be forced to gauge and audit

resource usage on such a difficult scenario.

4 Conclusions

In this paper, we first discussed the major issue in

today’s data center, resource efficiency. The CPU us-

age of most data center hovers around 6%∼12%. In-

creasing the resource utilization will cause user experi-

ence degraded severely. Then we recalled the develo-

pment of computer architecture and found the root

cause was unmanaged sharing among memory hierar-

chy. Finally, We borrowed the wisdom in labeled net-

working and presented LvNA, a fine-grained hardware

resource management mechanism. We correlated la-

bels with resource and propagated labels in the whole

machine. LvNA still left several open problems to be

overcome.
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