
Lan HY, Wu LY, Zhang X et al. DLPlib: A library for deep learning processor. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 32(2): 286–296 Mar. 2017. DOI 10.1007/s11390-017-1722-2

DLPlib: A Library for Deep Learning Processor

Hui-Ying Lan 1,2,3, Lin-Yang Wu 1,2,3, Student Member, CCF, Xiao Zhang 1,2, Jin-Hua Tao 1,2, Xun-Yu Chen 1,2

Bing-Rui Wang 1,2,4, Yu-Qing Wang 1,2,4, Qi Guo 1,2, Member, CCF, and Yun-Ji Chen 1,2

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

Beijing 100190, China
2Microprocessor Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4Department of Computer Science, University of Science and Technology of China, Hefei 230026, China

E-mail: {lanhuiying, wulinyang, zhangxiao, taojinhua, chenxunyu, wangbingrui, wangyuqing, guoqi, cyj}@ict.ac.cn

Received November 2, 2016; revised February 13, 2017.

Abstract Recently, deep learning processors have become one of the most promising solutions of accelerating deep

learning algorithms. Currently, the only method of programming the deep learning processors is through writing assembly

instructions by bare hands, which costs a lot of programming efforts and causes very low efficiency. One solution is to

integrate the deep learning processors as a new back-end into one prevalent high-level deep learning framework (e.g., TPU

(tensor processing unit) is integrated into Tensorflow directly). However, this will obstruct other frameworks to profit from

the programming interface. The alternative approach is to design a framework-independent low-level library for deep learning

processors (e.g., the deep learning library for GPU, cuDNN). In this fashion, the library could be conveniently invoked in

high-level programming frameworks and provides more generality. In order to allow more deep learning frameworks to gain

benefits from this environment, we envision it as a low-level library which could be easily embedded into current high-level

frameworks and provide high performance. Three major issues of designing such a library are discussed. The first one

is the design of data structures. Data structures should be as few as possible while being able to support all possible

operations. This will allow us to optimize the data structures easier without compromising the generality. The second one is

the selection of operations, which should provide a rather wide range of operations to support various types of networks with

high efficiency. The third is the design of the API, which should provide a flexible and user-friendly programming model

and should be easy to be embedded into existing deep learning frameworks. Considering all the above issues, we propose

DLPlib, a tensor-filter based library designed specific for deep learning processors. It contains two major data structures,

tensor and filter, and a set of operators including basic neural network primitives and matrix/vector operations. It provides

a descriptor-based API exposed as a C++ interface. The library achieves a speedup of 0.79x compared with the performance

of hand-written assembly instructions.

Keywords deep learning processor, API, library, DLPlib

1 Introduction

Today, deep learning has been applied to solve vari-

ous tasks (e.g., image classification, object recognition,

speech recognition, natural language process). With

the model becoming more sophisticated, the computa-

tion workload is also increasing rapidly. Deep learning

processors have been proved to be a good solution ac-

celerating the computing processes. Right now, deve-

lopers program the deep learning processors through

writing assembly instructions by bare hands, which re-

quires large amount of workload and possible unnece-

ssary repeating implementation by different program-

mers. Therefore, a programming environment which

can make the development of deep learning processor

more productive, is imperative.

Regular Paper

This work is partially supported by the National Natural Science Foundation of China under Grant Nos. 61432016, 61472396,
61473275, 61522211, 61532016, 61521092, 61502446, 61672491, 61602441, and 61602446, the National Basic Research 973 Program of
China under Grant No. 2015CB358800, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant
No. XDB02040009.

©2017 Springer Science +Business Media, LLC & Science Press, China

Hui-Ying Lan et al.: DLPlib: A Library for Deep Learning Processor 287

One solution of designing such a programming inter-

face is to directly integrate the deep learning processors

as a new back-end device into one prevalent high-level

deep learning framework. This has proved to be a valid

solution: researchers at Google built the tensor pro-

cessing unit (TPU) that is an accelerator for machine

learning, integrated it as a back-end device into the

Tensorflow framework, and achieved an order of mag-

nitude improvement of performance. The drawback of

such a solution is that programmers can use the deep

learning processors through only one framework, Ten-

sorflow, and it is impossible for other frameworks to

obtain benefits from such programming interface. An

alternative approach is to design the programming in-

terface as a framework-independent low-level library as

the deep learning library cuDNN for GPUs. In this

fashion, it will be rather easy to integrate the hardware

into existing frameworks through calling functions of

the library to finish computations. As a programming

interface designed specific for deep learning processors

and aiming at releasing end-users from writing low-level

assembly instructions, we envision it as a low-level li-

brary instead of a back-end implementation of an ex-

isting framework.

To design such a library, we consider three major is-

sues. The first one is the design of data structures. The

library should include only a few data structures which

are capable of representing all types of data. Fewer data

structures make the optimization towards data struc-

tures easier; at the same time, we should make sure the

generality is not compromised. The second issue is the

selection of operations that is a trade-off between flexi-

bility and efficiency. And the third one is the design of

the API, which should support the data structures and

the operations in a flexible and easy-to-use fashion. In

addition, in order to allow popular frameworks to gain

benefits from our library, the API should make it easy

to be integrated into current mainstream frameworks

such as Caffe, Tensorflow, and MXNet.

In this work, we propose DLPlib, a low-level li-

brary for deep learning processors to bridge the gap be-

tween the hardware and the programmers. In DLPLib,

all data are represented as tensors or filters, and ope-

rators are considered as transformations of the ten-

sors. Operators include memory operators and com-

putational operators. The former is in charge of copy-

ing and allocating memories, and the latter includes a

set of deep learning primitives (e.g., convolution, pool-

ing) and common basic matrix/vector operations (e.g.,

matrix multiplication). We build the library on an

architecture similar to the recently proposed accelera-

tor, Cambricon-X. We achieve an average speedup of

0.79x on seven single-layer benchmarks and two en-

tire network benchmarks. Although the performance of

DLPlib is slightly slower than that of the hand-written

instructions, the library still achieves a speedup of 4.1x

compared with the GPU according to the comparison

of Cambricon-X and GPU[1].

The contributions of this paper are as follows.

• We design and implement a library specific for

deep learning processors. It is a tensor-filter-based li-

brary which includes a set of deep learning primitives

and vector/matrix operations.

• We design a descriptor-based API which provides

a flexible and easy-to-use programming model and al-

lows the library to be conveniently integrated into ex-

isting frameworks. And we provide an implementation

of integrating DLPlib into Caffe.

• We provide an experimental study which com-

pares the performance of hand-written assembly code

and the library on six single-layer benchmarks and two

entire network benchmarks. The library achieves 0.79%

performance of the hand-written code, which is much

better than GPU.

The rest of this paper is organized as follows. Sec-

tion 2 discusses the related work of deep learning al-

gorithms, accelerators, and deep learning libraries and

frameworks. Section 3 introduces the architecture

and major components of DLPlib. Section 4 demon-

strates the programming model of building a network

by DLPlib. In Section 5, the implementation of the

library is described. Section 6 presents the way of

integrating DLPlib into a very popular deep learning

framework, Caffe. In Section 7, the performance of the

library is evaluated. Finally, Section 8 makes the con-

clusion of this paper.

2 Related Work

2.1 Deep Learning Algorithms

In recent years, deep learning algorithms (i.e., deep

neural network algorithms) have achieved great suc-

cess in lots of fields[2-6]. There are two tendencies

of the development of neural networks. Firstly, the

networks are becoming more sophisticated and having

larger scales, which leads to a rapid increasing require-

ment of computational workloads. Such computation-

demanding tasks are the ground of the prevalence of

neural network accelerators. Another development ten-

dency of deep learning is that with more and more fields

288 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

starting adopting deep learning technology, more new

and unique algorithms are proposed. In addition to

visual tasks which achieved great success of applying

deep learning, other fields such as speech recognition

and natural language processing also began to adopt

deep learning techniques (e.g., RNN, LSTM), and ob-

tained rather promising results. This situation requires

the deep learning processors to fit in more complex and

various tasks. DLPlib is in the right position of enabling

the processor to have enough generality.

2.2 Deep Learning Processors

Conventionally, neural network algorithms are

implemented on general-purpose processors, e.g.,

GPUs/CPUs. However, there are special operations,

e.g., convolution, that are not fit for GPUs/CPUs. In

addition, today, the neural network models are be-

coming increasingly sophisticated, and the computa-

tional workloads are also increasing. All networks that

were introduced previously require large computational

workloads and thus usually take days or even weeks

to train by using GPUs/CPUs as back-ends. In order

to accelerate this process, researchers have begun to

explore the possibilities of using different hardware to

implement deep learning algorithms (e.g., FPGA[7-8],

ASIC[9-11]). Chakradhar et al.[12] proposed a dynami-

cally configurable coprocessor for convolution neural

networks, which supports various scales of network

through signals configuration. Chi et al.[13] designed

an architecture called PRIME, which adopts ReRAM

crossbar array as both the main memory and neural

network accelerators. Shafiee et al.[14] proposed an ar-

chitecture that uses crossbar array to not only store

input and weight but also perform dot-product ope-

rations.

Recently, the DianNao family[9-11,15], which is a se-

ries of architectures aiming to perform machine learn-

ing algorithms with higher efficiency and lower power,

has been proposed. DianNao[9] is an accelerator of

large-scale CNNs and DNNs with special considera-

tion of the impact of memory, performance and energy.

DaDianNao[10] was proposed as a multi-chip system,

which further improves the speed of processing even

larger scale models. ShiDianNao[15] designed an energy

efficiency architecture by explored the important pro-

perty of convolutional neural networks (CNNs) that a

lot of weights are shared among neurons. Chen et al.

proposed Cambricon[11], an instruction set architecture

(ISA) designed specific for implementing neural net-

work techniques, using matrix/vector/scalar operators

to implement different algorithms. Zhang et al.[1] de-

signed Cambricon-X, which is an accelerator for sparse

neural networks.

2.3 Deep Learning Frameworks and Libraries

With the thriving of deep learning, GPU has be-

come one of the most popular and efficient devices of

implementing neural network algorithms. In order to

further improve the performance of GPU-based deep

learning algorithms, NVIDIA (a GPU vendor), pro-

posed cuDNN[17], a library which includes a set of effi-

cient deep learning primitives (e.g., convolution, pool-

ing, LRN). It releases the researchers from implement-

ing and optimizing their own version of basic neural

network operations (e.g., Convolution). It provides a

flexible, easy-to-use C-language API for deep learning

workloads, and has been integrated into many popular

deep learning frameworks (e.g., Caffe, Tensorflow).

Abadi et al.[17] recently published a paper about the

prevailing machine learning system, Tensorflow, where

a custom designed ASIC known as the tensor process-

ing units (TPUs) is integrated as a computational back-

end into the system and achieves an order of magnitude

improvement in performance-per-watt. This shows the

great potential of deep learning processors: with a

proper programming interface, the power of deep learn-

ing processors will be fully released.

3 Library Design

3.1 Overview

There are two major components of DLPlib, data

structures and operators. In DLPlib, data is repre-

sented as a tensor or a filter, and operators are consi-

dered as the transformation of the tensors.

We design operators as a set of operations that can

be used to construct neural networks conveniently. In

DLPlib, a primitive (i.e., operator) is considered as an

independent operating unit. By calling a sequence of

operations one after another, a network is implemented.

All operations are executed linearly, the processor de-

votes its entire resources to performing one task, and

the later operation will not be invoked until the previ-

ous one is finished. This strict constraint makes sure the

correctness while the calls are getting more complex,

and allows us to focus on optimizing each operation.

Fig.1 represents the dataflow of a 3-layer network.

Tensors are initially stored on CPU (host), and copied

to the device before computation. Adjacent operations

share the same block of neurons as the output or input.

Hui-Ying Lan et al.: DLPlib: A Library for Deep Learning Processor 289

For example, the output neurons of Conv operation are

as the input neurons of the Pooling operation. Synapses

also need to be resident on the device while performing

the operation. When the computation of each layer in

the network is finished, the final output data (i.e., out-

put neurons of operation FC) should be copied back to

CPU as the result.

Neuron NeuronConv Pooling FCNeuron

Neuron Synapse

Synapse

Synapse

Synapse

Neuron

Neuron

Data on Host
Data on Device
Operations
Data Copy
Data Use

Fig.1. Dataflow of a 3-layer network.

Fig.2 demonstrates the overall flow of invoking the

library to perform the inference of one layer, i.e., con-

volution, on deep learning processors.

H
a
rd

w
a
re

D
ri
v
e
r

Inst

A
P
I

Neuron

SynapseD
a
ta

P
ro

g
ra

m

DLPlib

1

2

3

4

5

6

7

1. Call API
2. Use model parameters to generate instructions
3. Prepare data
4~6. Send instructions and data to hardware through
 the driver
7. Send the end signal back to host
8. Inform the library that execution is finished

8

(b)

(a)

Fig.2. (a) Overall flow of performing convolution by DLPlib.
(b) Descriptions of the operation steps of the overall flow.

1) The host program is called, and thus invokes the

library.

2) Through the API, a desired neural network model

is constructed and all relative information is packed for

instructions generation.

3) Instructions are generated by analyzing the pa-

rameters of the neural network model, and then sent to

the hardware by the driver.

4) By invoking memory interfaces, data, e.g., neu-

rons (including input and output) and synapses, are

prepared and copied to the accelerator memory by the

driver.

5) When the execution function is called, a start

signal is sent to the device. After receiving the signal,

instructions will be executed.

6) While the execution is done, an end signal will be

sent to the host. By then, the whole process is finished.

3.2 Data Structure

In DLPlib, there are two major data structures, ten-

sors and filters, which are derived from the two core

concepts, neurons and synaptic weights in the neural

network. Tensors refers to the input and output data

of operations (e.g., convolution, pooling). In many

frameworks (e.g., Tensorflow, Caffe), both neurons and

synaptic weights are encapsulated in the tensor struc-

ture. In DLPlib, only neurons are represented as ten-

sors, and synaptic weights are encapsulated as filters.

Many deep learning frameworks use one data structure

to represent both neurons and synaptic weights. For

example, in Caffe, both neurons and weights are en-

capsulated in the Blob structure. In DLPlib, we define

neurons and synaptic weights as two independent data

structures (i.e., tensors and filters) due to the special

architecture of the deep learning processor, Cambricon-

X. In Cambricon-X[1], neurons and synaptic weights

are stored in different buffers, neuron buffers (NBs)

and synapse buffers (SBs) respectively, and the data

arrangement and accessing pattern are very different.

For some operations (e.g., convolution, fully-

connected), input and output neurons are connected by

synaptic weights, which are learned through the train-

ing process. An operator takes a tensor as input and

produces a tensor as output.

Tensor. In DLPlib, we define a data structure,

tensor, which is a dense n-dimensional (n 6 4) ar-

ray, to represent neurons and bias (all data except for

synapses) in DLPlib. Elements in a tensor are stored

as a 1D-array (a sequence of memory), and the ten-

sor is treated as an n-dimensional array. For example,

convolutional operations take a 4D-tensor as input and

a 4D-tensor as output, and fully-connected operations

take a 2D-tensor as input and output a 2D-tensor.

Tensors are described by several attributes, and pa-

rameters of a 4D-tensor are showed in Table 1. N, C,

H, W represent the size of the four dimensions, which

denote the number of samples (mini-batch), the num-

ber of feature maps, the height of one feature map, and

290 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

the width of one feature map respectively. The data

format is an enumeration type variable used to indi-

cate the data layout of the tensor. The order of these

letters implies the data arrangement of the tensor. For

example, NCHW indicates that the W stride is 1, the

H stride is W, the C stride is H × W, and the N stride

is C×H×W. The data type indicates the data type of

elements in the tensor.

Table 1. Parameters of Tensor Structure

Parameter Description

N Number of samples

C Number of feature maps

H Height of sample

W Width of sample

Data format NCHW , NHWC

Data type Float32, Float16

For simplicity, we only provide a 4D-tensor data

structure. Tensors with less dimensions are also rep-

resented by the same set of parameters. For example,

a 2D-tensor can be regarded as a 4D-tensor which has

the parameters H and W of 1.

Filter. The synaptic weight is a unique concept

in neural networks. In DLPlib, synaptic weights are

represented as a filter, which represents the learned

synapses data of convolution and fully-connected ope-

rations. Similar to the tensor, the filter is also stored

as a 1D-array and treated as an n-dimensional array.

Table 2 shows the parameters of a convolutional filter.

The four dimensions, OC, IC, Kh and Kw are used to

indicate the number of output feature maps, the num-

ber of input feature maps, the height and the width of

the kernels respectively.

Table 2. Parameters of Filter Structure

Parameter Description

OC Number of output feature maps

IC Number of input feature maps

Kh Height of kernel

Kw Width of kernel

Data format NCHW , NHWC

Data type Float32, Float16

Although DLPlib has a host-called API, the input

and output data of computational functions should be

resident on the memory of the deep learning processor.

The memory management fashion is similar to cuDNN

and cuBLAS, i.e., tensors and filters are copied to the

device before computation. The copying process is per-

formed by explicitly calling the memory copy function

provided by the library.

3.3 Operators

Operators are the fundamental compute unit in

DLPlib. The design of operators is a trade-off between

the efficiency and the flexibility of programming. We

make selection by studying the current popular net-

works and picking the most commonly used operations,

which will help the users to build a network more easily.

In order to balance the flexibility, DLPlib also provides

basic vector/matrix computations which allow users to

implement new and more complex operations[18]. In

addition, DLPlib provides a series of functions to cate-

nate, split and reshape the data.

An operator takes m (m > 0) input tensors and n

(n > 0) output tensors. For some operators, a set of

attributes are provided to describe their computational

behavior (e.g., Conv., Pooling). We introduce several

representative operators and their attributes as follows.

Conv.. Convolution is the most important layer in

convolutional neural networks (CNNs). It takes a 4D-

tensor as input, and outputs a 4D-tensor. The out-

put is computed by using a set of filters convolving

across through the input. DLPlib supports the conven-

tional 2D-convolution operation[19], whose attributes

are listed in Table 3. Sh and Sw represent the slid-

ing strides of the height and the width directions re-

spectively. Ph and Pw indicate the padding sizes used

to adjust the height and the width of the input tensor

respectively. The output size is computed by (1).

Ho = ⌈
Hi −Kh + 1 + 2Ph

Sh
⌉, (1)

where Ho and Hi represent the output and the input

height respectively. The output width is computed fol-

lowing the same manner.

Table 3. Parameters of Different Operators

Operator Parameters

Conv. Ph, Pw, Sh, Sw

Pooling Kh, Kw, Ph, Pw, Sh, Sw, pool type

LRN k, N , α, β

Active Active func.

Pooling. Pooling layer is widely used in neural net-

works for reducing the size of feature maps by down-

sampling. In DLPlib, two types of down-sampling are

provided: max-pooling and avg-pooling. The output is

computed by performing the maximum or average ope-

ration to each local window of the input data. As listed

Hui-Ying Lan et al.: DLPlib: A Library for Deep Learning Processor 291

in Table 3, the Pooling operator has seven attributes,

Sh and Sw represent the size of strides, and Ph and Pw

represent the padding sizes, which are similar to the

convolution attributes. Kh and Kw indicate the height

and the width of the sliding window respectively, and

pool type indicates the operation to each window, maxi-

mum or average.

LRN. In neural networks, the local re-

sponse normalization (LRN) layer is used to aid

generalization[2,20-21]. The output is computed by

Noutix,y

= Nini
x,y/

k + α×

min(i−1,i+N/2)
∑

j=max(0,i−N/2)

(Ninj
x,y)

2

β

,

where Nini
x,y is the input neuron located at (x, y) on

input feature map i, Noutix,y is the output neuron lo-

cated at (x, y) on output feature map i, N is the number

of related input feature maps, and k, α, β are constant

parameters. Accordingly, k,N, α, β are the attributes

of LRN operators.

Active. Non-linear functions are used in neural net-

works to transform the output neurons to a certain

interval. DLPlib provides three most commonly used

active functions, Sigmoid, Tanh, and ReLU. Sigmoid

function applies f(x) = 1
1+e−x

to each neuron of in-

put. Tanh activates the input neurons by f(x) =
ex−e−x

ex+e−x
. ReLU is a recently increasing popular active

function for its outstanding performance. It applies

non-saturating nonlinear function f(x) = max(0, x) to

the input neurons. In DLPlib, an active operation is

treated as an independent operator instead of a part

of other operations in order to make the abstraction

clearer and the programming more flexible.

Vector/Matrix Operation. Due to the fact that

many neural network techniques can be decomposed

into matrix/vector operations[16], we provide a set of

basic vector/matrix operations to enhance the flexibi-

lity of DLPlib, including matrix multiply, element-wise

addition, subtraction, multiplication, etc. For example,

batch normalization operation[22], which has been used

in some state-of-the-art networks[23], can be performed

by addition and multiplication operators.

4 Implementation

We implement DLPlib as a C++-based library for

portability and efficiency. In this section, we discuss

the implementation of different modules of DLPlib.

In DLPlib, parameters of the tensor, filter and ope-

rator are all encapsulated in the descriptor structures.

A descriptor is implemented as a struct type which con-

tains all necessary parameters. Through these descrip-

tors, different structures can be easily described, e.g.,

a block of data can be described as a tensor by attach-

ing a tensor descriptor to it. Parameters of operators

are also encapsulated in the descriptor structures. Each

operator has a corresponding descriptor to store the re-

lated parameters, e.g., convolutionDescriptor for con-

volution operator.

The kernel component of DLPlib is the operator,

which performs the computation by generating instruc-

tions and invoking the device. The process of imple-

menting an operator is demonstrated in Fig.3. First,

the operator function takes the data pointers of input

neurons, optional synaptic weights, and output neu-

rons, and descriptors of the tensors, the filter, and the

operator to generate corresponding instructions. Then

these instructions are sent to the device through the

driver. After that, a signal is sent to the device to start

the computation. While the execution is finished, the

device sends a finish signal back to the CPU (host) to

create an interrupt. Finally, the CPU (host) processes

the interrupt and continues the execution.

Generate Instance

Call Device

Finish

...
...

Descriptors

Interrupt

Fig.3. Runtime of an operator.

Optimization is a very important issue while imple-

menting the library. For our deep learning processor,

the performance is primitively decided by the parallel

degree of computing and memory copying. The most

effective and straightforward approach of improving the

processing speed is to increase overlapping of computa-

tion and memory operations as much as possible. For

operations with high computational intensity, such as

convolution, the computation will take more time than

the memory accessing and therefore become the bottle-

neck of optimizing. In this case, the optimal solution is

that the time cost by memory accessing can be covered

292 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

entirely by the time cost by computation. And this is

the main idea of optimizing the library.

5 API and Programming Model

DLPlib has a descriptor-based API where both data

structures and operators are defined by the descriptors.

For example, a tensor is represented by a tensor descrip-

tor and a pointer to a block of memory.

As showed in Fig.4, the basic programming model

can be concluded as three steps: 1) initialization of

device, memory and operator, 2) the execution of all

operators, and 3) releasing resources.

Create
Handle

Descriptor

Operator

Handle

Memory

Create & Set

Descriptor

Release

Memory

Handle

Initialization

Execution

Release

Fig.4. Programming model of DLPlib.

Initialization. There are several things that need to

be initialized before calling the device. First, the device

is initialized by creating a deep learning processor han-

dle (dlpHandle), which is used to point to the hardware

and preserves the context of the library. The handle is

defined as a global variable, and the operator and mem-

ory management functions invoke it to use the proces-

sor. Second, all memories should be allocated in this

phase. In DLPlib, data is stored in the tensor and filter

structures (as described in Subsection 3.2). Parameters

of tensors or filters are encapsulated in descriptor struc-

tures, which are defined for storing attributes. DLPlib

provides create, set, get, destroy methods to manipu-

late the descriptors. Methods of memory management

are defined as member methods of class DDRManager,

which is contained in the global handle we previously

created.

Execution. After setting up with the data and de-

scriptors, we can simply call the operator to carry out

the computation. The operators are executed by the

calling sequence, in order to assure the correctness.

Releasing Resources. When the computation is fin-

ished, we need to release the resources we have used,

i.e., allocated memory, descriptors and the device han-

dle. DLPlib provides free functions for all resources,

and the programmers need to invoke these functions

manually to release allocated memory, thus preventing

memory leakage.

Example. We demonstrate an example of perform-

ing convolutional layer by using the DLPlib API. Fig.5

shows the example code of implementing the operation.

We omit the creation of descriptors and the specific pa-

rameters for simplicity, and describe the programming

process by presenting the functions calling. The handle

creation and memory copy happen before the computa-

tional function is called. And when the computation is

finished, programmers should invoke the release func-

tions (dlpFree, destroyDlpHandle) to free the memory

and device resources.

Fig.5. Example of convolution.

6 Integration with Caffe

Although CNN has been adopted to solve many

tasks, the programming is still a barrier. The deep

learning framework has been proposed as a solution to

reduce the cost of building a deep network model. As a

low-level library for a specific back-end device, DLPlib

is designed to be able to be integrated into existing

frameworks simply and elegantly.

Hui-Ying Lan et al.: DLPlib: A Library for Deep Learning Processor 293

Caffe is an extensively used deep learning frame-

work. In this section, we present the Caffe integration

with our library. For the high modularity of Caffe, it

is convenient to append new implementations to the

framework while retaining the core unaltered. The

modifications are mostly additive.

6.1 Framework Structure

Fig.6 shows a basic process of the inference exe-

cution of Caffe, which follows a two-step manner:

preparation and computation. In the first step, it builds

the whole neural network and prepares data and at-

tributes of each layer for the next step. In the second

step, the computations will be executed. The behavior

of step 2 is determined by step 1. We elaborate the

integration as follows.

F
C...

Prototxt caffemodel

Filter

Tensor Tensor

Prepare

Compute

Setup

Handle
Descriptor
Memory

Forward

Operators

...

Input

Data

O
u
tp

u
t

C
o
n
v
⊲

P
o
o
li
n
g

Fig.6. Integrating DLPlib into Caffe.

Preparation. Caffe uses a prototxt file to describe

the topology structure of the network, and a caffemodel

file to encapsulate the trainable parameters. The Neu-

ral network model is built according to the prototxt file.

For networks with branches, such as GoogLeNet, the

model will be parsed as a sequence of layers, which sati-

sfies topological ordering. Caffe uses a structure named

Blob as the interface to control storage and communi-

cation between the host and the device. A Blob holds

dimension parameters (N,C,H,W) and pointers refer-

ring to memory blocks of different back-ends. Trainable

parameters from caffemodel will be loaded into the Blob

structure of corresponding layers. Moreover, attributes

of each layer, such as the output dimensions, will also be

completed in this phase. According to these, Caffe will

allocate spaces on the host and the device (if needed)

for the input and the output neurons.

Computation. At the beginning of this step, the

whole model should have been completely prepared for

every aspect that might affect the computation. In this

step, Caffe will call the forward functions to perform

the computation and acquire the final results.

6.2 Integration

To integrate DLPlib into Caffe, we need to mod-

ify the proto file, expand the corresponding cases (e.g.,

layer factory) to alter the control flow, and add new

layers.

Prototxt. Proto file declares data structures that

hold attributes of all layers. DLPlib is added as a new

value of the enumeration type Engin, and goes along

with other engines, i.e., CUDNN and CAFFE.

Blob. Both tensors and filter data are encapsulated

in the Blob structure. We modify the Blob class by

adding a new pointer field referring to the data for DLP

and extending the memory copy function to support

data transfer between DLPlib devices and hosts.

Layer. Caffe encapsulates neural network operati-

ons, such as Conv., Pooling, in Layer. To add a new

implementation, we define new inherited layers, and

override the setup, Reshape and Forward functions.

As showed in Fig.2, in the setup function, we create

descriptors that would be used later, and in the Re-

shape function, set them up. For a convolution layer,

five descriptors will be needed, which are for the in-

put tensor, output tensor, filter, bias tensor and con-

volution operator. There are two approaches to com-

puting output dimensions, through the helper function

provided by DLPlib or using Caffe’s built-in function

computeOutputDim(), and either is workable for the

DLPlib.

In function Forward, we utilize operators provided

in DLPlib to perform the algorithm. For instance, to

implement a convolution layer, we adopt the convolu-

tion operator to get the final results. Since all data and

parameters are already set in previous steps, we can

simply feed the convolution operator with data and de-

scriptors, and invoke the function. For layers that do

not have a corresponding operator, we use combinations

of existing operators to achieve the same results.

The setup step prepares memory and attributes for

the next step while the forward step carries out the

computation. This two-step schema can be mapped

to DLP’s programming model. For DLPlib, descriptor

configuring and memory allocating can naturally fit into

the preparing step, and the operators are called in the

Forward function. Currently the library only supports

inference process. Hence we will bypass the Backward

function in this paper.

294 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

7 Experiment

In this section, we evaluate the performance of

DLPlib. We describe the comparative baselines and the

benchmarks, and then report the performance results.

7.1 Experimental Methodology

Baseline. We evaluate the performance of DLPlib

by comparing the performance before and after us-

ing DLPlib. In this experiment, we consider only the

speed to measure the performance of the library. Both

DLPlib and assembly instructions are executed on the

same back-end. The assembly instructions are written,

obeying the principle of optimization introduced in Sec-

tion 4, and the overlapping between computation and

memory accessing is fully considered while implement-

ing.

Benchmark. As shown in Table 4, seven single-

layer benchmarks and two entire-network benchmarks

are selected to evaluate the performance and also

demonstrate the flexibility of our library. The single-

layer benchmarks are extracted from existing network

models[2,24], and two entire networks are included,

AlexNet and VGG16, which are representative for their

heavy computational workloads and widely utilization

by various scenarios.

Back-End. In this experiment, we use an architec-

ture similar to Cambrian-X[11], which is implemented

in Verilog, compiled and simulated by Synopsys Verilog

Compiler Simulator (VCS). The accelerator includes 16

processing elements (PEs), each of which has 16 multi-

pliers, one 16-in adder-tree, and a synapse buffer (SB)

of 2 KB. It also includes two on-chip neural buffers

(NBin and NBout), each with 8 KB of memory. And

we achieve a frequency of 1 GHz.

7.2 Experimental Results

Results. We compare our library against the hand-

written assembly instructions on all networks and lay-

ers listed in Table 4. In Fig.7, all performance data

is normalized to that of DLPlib. As we can see, the

library achieves a speedup of 0.79x on average com-

pared with the hand-written assembly instructions. Re-

garding single layers, the library achieves a speedup of

0.77x∼0.93x, 0.89x∼0.9x, 0.56x∼0.81x, and 0.78x re-

spectively on convolution, fully-connected, pooling, and

LRN respectively. Regarding entire networks, the li-

brary achieves a speedup of 0.78x and 0.75x on AlexNet

and VGG respectively. And According to [11], the

hardware achieves a speedup of 5.2x compared with

Caffe-GPU. Therefore, the library is 4.1x faster than

the GPU.

Con
v1

Con
v2

Poo
l1
Poo

l2
FC1

FC2
LRN

SL
-M

ea
n

Alex
Net

VGG16

M
L-

M
ea

n
M

ea
n

Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
a
te

Fig.7. Speedup before and after using DLPlib.

Single-Layer Benchmarks. As we have discussed in

Section 4, the performance is mainly affected by how

much the computation is overlapped with the memory

accessing. Overlapping happens not only between but

also inside operations. For operations with large input,

output or weight size, e.g., Conv2 in Table 4, there

is no enough on-chip memory to load all neurons and

synaptic weights into the processor, and the computa-

tion needs to be split into several smaller computational

segments and therefore creates more overlapping issues.

The performance differences of the library and

hand-written assembly instructions are caused by the

different parallel degrees of computation and memory

accessing. For hand-written assembly instructions, it is

rather easy to process such overlapping between diffe-

rent segments; thus, they achieve better performance

than the library.

Table 4. Benchmarks

Operation In (Size@FM) Out (Size@FM) Kernel Stride Pad AlexNet VGG16

Conv1 112@96 112@384 3 1 1 conv(96,11,4)-lrn-pool- conv(64,3)-conv(64,3)-pool-conv(128,3)-

Conv2 112@96 112@256 3 1 1 conv(256,5)-lrn-pool- conv(128,3)-pool-conv(256,3)-conv(256,3)-

Pool1 55@96 27@96 3 2 0 conv(384,3)-conv(384,3)- conv(256,3)-conv(256,3)-

Pool2 224@64 112@64 2 2 0 conv(256,3)-pool- conv(256,3)-pool-conv(512,3)-conv(512,3)-

LRN 55@96 55@96 - - - fc(4096)-fc(4096)- -conv(512,3)-pool-conv(512,3)

FC1 1@4096 1@4096 - - - fc(1000) -conv(512,3)-conv(512,3)-

FC2 1@4096 1@1000 - - - pool-fc(4096)-fc(4096)-fc(1000)

Hui-Ying Lan et al.: DLPlib: A Library for Deep Learning Processor 295

Entire Network Benchmarks. As we can observe,

the library performs worse on entire networks than

single-layer benchmarks, i.e., 0.79x of single-layer and

0.77x of multi-layer on average. This is caused by

the overlapping of computation and memory access be-

tween different layers. For multi-layer networks, hand-

written instructions can hide the latency of memory

writing and reading between adjacent layers. For exam-

ple, while computing the last output of a convolutional

layer, synaptic weights or neurons of next layer can be

loaded into the memories at the same time, therefore

increasing the degree of parallel of computing and mem-

ory accessing. However, for the library, memory load-

ing will not start until the computation of the previous

layer finishes.

8 Conclusions

We described DLPlib, a library designed for bridg-

ing the gap between the deep learning processor and the

end-users. We also provided a programming model and

the Caffe integration of DLPlib. The library supports

the inference operations of mainstream neural network

techniques and a set of basic matrix/vector operations.

Through them, end-users are able to construct and per-

form their neural networks on the deep learning pro-

cessor. In addition, DLPlib can also be easily inte-

grated into deep learning frameworks, e.g., Caffe, thus

enabling end-users to employ the deep learning pro-

cessor by calling the Caffe interface. Our future work

includes improving the efficiency of our library by fur-

ther increasing the parallel degree, and providing more

operations to support more new networks.

References

[1] Zhang S J, Du Z D, Zhang L, Lan H Y, Liu S L, Li L, Guo Q,

Chen T S, Chen Y. Cambricon-X: An accelerator for sparse

neural networks. In Proc. the 49th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, Oct. 2016.

[2] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classifica-

tion with deep convolutional neural networks. In Proc. the

26th Annual Conference on Neural Information Processing

Systems, Dec. 2012, pp.1106-1114.

[3] Sun Y, Liang D, Wang X G, Tang X O. DeepID3:

Face recognition with very deep neural networks.

arXiv:1502.00873, 2015. http://arxiv.org/abs/1502.00873,

Feb. 2017.

[4] Karpathy A, Li F F. Deep visual-semantic alignments for

generating image descriptions. In Proc. IEEE Conference

on Computer Vision and Pattern Recognition, Jun. 2015,

pp.3128-3137.

[5] Eriguchi A, Hashimoto K, Tsuruoka Y. Tree-to-sequence

attentional neural machine translation. In Proc. the 54th

Annual Meeting of the Association for Computational Lin-

guistics, Aug. 2016.

[6] Ren S Q, He K M, Girshick R B, Sun J. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In Proc. Annual Conference on Neural Information

Processing Systems, Dec. 2015, pp.91-99.

[7] Farabet C, Poulet C, Han J Y, LeCun Y. CNP: An

FPGA-based processor for convolutional networks. In Proc.

the 19th International Conference on Field Programmable

Logic and Applications, Aug.31-Sept.2, 2009, pp.32-37.

[8] Zhang C, Li P, Sun G Y, Guan Y J, Xiao B J, Cong J.

Optimizing FPGA-based accelerator design for deep convo-

lutional neural networks. In Proc. the ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays,

Feb. 2015, pp.161-170.

[9] Chen T S, Du Z D, Sun N H et al. DianNao: A

small-footprint high-throughput accelerator for ubiquitous

machine-learning. In Proc. the 19th ACM Int. Conf. Lan-

guages and Operating Systems, Mar. 2014, pp.269-284.

[10] Chen Y, Luo T, Liu S et al. DaDianNao: A machine-

learning supercomputer. In Proc. the 47th Annual

IEEE/ACM Int. Symp. Microarchitecture, Dec. 2014,

pp.609-622.

[11] Liu S L, Du Z D, Tao J H et al. Cambricon: An in-

struction set architecture for neural networks. In Proc. the

43rd ACM/IEEE Annual Int. Symp. Computer Architec-

ture (ISCA), Jun. 2016, pp.393-405.

[12] Chakradhar S T, Sankaradass M, Jakkula V, Cadambi S. A

dynamically configurable coprocessor for convolutional neu-

ral networks. In Proc. the 37th International Symposium on

Computer Architecture, Jun. 2010, pp.247-257.

[13] Chi P, Li S C, Xu C et al. PRIME: A novel processing-

in-memory architecture for neural network computation in

ReRAM-based main memory. In Proc. the 43rd ACM/IEEE

Annual Int. Symp. Computer Architecture (ISCA), Jun.

2016, pp.27-39.

[14] Shafiee A, Nag A, Muralimanohar N et al. ISAAC: A con-

volutional neural network accelerator with In-Situ analog

arithmetic in crossbars. In Proc. the 43rd ACM/IEEE An-

nual International Symposium on Computer Architecture,

Jun. 2016, pp.14-26.

[15] Du Z D, Fasthuber R, Chen T S et al. ShiDianNao: Shifting

vision processing closer to the sensor. In Proc. the 42nd An-

nual Int. Symp. Computer Architecture, Jun. 2015, pp.92-

104.

[16] Chetlur S, Woolley C, Vandermersch P, Cohen J,

Tran J, Catanzaro B, Shelhamer E. cuDNN: Efficient

primitives for deep learning. arXin: 1410.0759, 2014.

http://arxiv.org/abs/1410.0759, Feb. 2017.

[17] Abadi M, Barham P, Chen J et al. Tensorflow: A sys-

tem for large-scale machine learning. In Proc. the 12th

USENIX Symp. Operating Systems Design and Implemen-

tation, Nov. 2016, pp.265-283.

[18] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based

learning applied to document recognition. Proceedings of

the IEEE, 1998, 86(11): 2278-2324.

[19] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convo-

lutions. In Proc. IEEE Conf. Computer Vision and Pattern

Recognition, Jun. 2015.

296 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

[20] Krizhevsky A. Cuda-convnet: High-performance

C++/CUDA implementation of convolutional neural

networks. https://code.google.com/p/cuda-convnet, Feb.

2017.

[21] Ioffe S, Szegedy C. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In

Proc. the 32nd Int. Conf. Machine Learning, Jul. 2015,

pp.448-456.

[22] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learn-

ing for image recognition. In Proc. IEEE Conf. Computer

Vision and Pattern Recognition, Jun. 2016, pp.770-778.

[23] Simonyan K, Zisserman A. Very deep convolutional net-

works for large-scale image recognition. arXiv: 1409.1556,

2014. http://arxin.org/abs/1409.1556, Feb. 2017.

Hui-Ying Lan received her B.E.

degree in software engineering from

Wuhan University, Wuhan, in 2012.

She received her Master’s degree from

School of Software and Microelectron-

ics, Peking University, Beijing, in 2015.

She is currently a Ph.D. student at

Institute of Computing Technology,

Chinese Academy of Sciences, Beijing. Her research

interests include computer architecture and computational

intelligence.

Lin-Yang Wu received his B.S.

degree in computer science from Uni-

versity of Science and Technology of

China, Hefei, in 2014. He is currently a

Ph.D. student at Institute of Comput-

ing Technology, Chinese Academy of

Sciences, Beijing. His research interests

include computer architecture and

computational intelligence.

Xiao Zhang received his B.S. degree

in communication engineering from

University of Science and Technology of

China, Hefei, in 2014. He is currently a

Ph.D. student at Institute of Comput-

ing Technology, Chinese Academy of

Sciences, Beijing. His research interests

include computer architecture and

computational intelligence.

Jin-Hua Tao received his B.S.

degree in statistics from University of

Science and Technology of China, Hefei,

in 2013. He is currently a Ph.D. student

at Institute of Computing Technology,

Chinese Academy of Sciences, Beijing.

His research interests include computer

architecture and computational intelli-

gence.

Xun-Yu Chen received his B.S.

degree in computer science from Univer-

sity of Science and Technology Beijing

(USTB), Beijing, in 2015. He is cur-

rently a graduate student at Institute of

Computing Technology (ICT), Chinese

Academy of Sciences (CAS), Beijing.

His research interests include computer

architecture and computational intelligence.

Bing-Rui Wang received his B.S.

degree in atomic and molecular physics

from School for the Gifted Young,

University of Science and Technology

of China (USTC), Hefei, in 2015. He

is currently a Ph.D. student at Depart-

ment of Computer Science of USTC,

Hefei. His research interests include

computer architecture and computational intelligence.

Yu-Qing Wang graduated from

University of Science and Technology

of China, Hefei, 2015. He is currently

a Ph.D. student at Department of

Computer Science of USTC, Hefei. His

research interests include computer

architecture and computational intelli-

gence.

Qi Guo received his B.E. degree

in computer science from Tongji Uni-

versity, Shanghai, in 2007, and his

Ph.D. degree in computer science from

Institute of Computing Technology

(ICT), Chinese Academy of Sciences

(CAS), Beijing, in 2012. He currently is

an associate professor at ICT, Beijing.

His research interests include computer architecture, VLSI

design and verification.

Yun-Ji Chen graduated from the

Special Class for the Gifted Young,

University of Science and Technology of

China, Hefei, in 2002. He received his

Ph.D. degree in computer science from

Institute of Computing Technology

(ICT), Chinese Academy of Sciences

(CAS), Beijing, in 2007. He is currently

a professor at ICT, Beijing. His research interests include

parallel computing, microarchitecture, hardware verifica-

tion, and computational intelligence.

