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Abstract The power and area optimization of Reed-Muller (RM) circuits has been widely concerned. However, almost

none of the exiting power and area optimization approaches can obtain all the Pareto optimal solutions of the original

problem and are efficient enough. Moreover, they have not considered the don’t care terms, which makes the circuit

performance unable to be further optimized. In this paper, we propose a power and area optimization approach of mixed

polarity RM expression (MPRM) for incompletely specified Boolean functions based on Non-Dominated Sorting Genetic

Algorithm II (NSGA-II). Firstly, the incompletely specified Boolean function is transformed into zero polarity incompletely

specified MPRM (ISMPRM) by using a novel ISMPRM acquisition algorithm. Secondly, the polarity and allocation of don’t

care terms of ISMPRM is encoded as chromosome. Lastly, the Pareto optimal solutions are obtained by using NSGA-II,

in which MPRM corresponding to the given chromosome is obtained by using a chromosome conversion algorithm. The

results on incompletely specified Boolean functions and MCNC benchmark circuits show that a significant power and area

improvement can be made compared with the existing power and area optimization approaches of RM circuits.

Keywords power and area optimization, Reed-Muller (RM) circuit, Pareto optimal solution, don’t care term, chromosome

conversion

1 Introduction

Digital logic functions can be expressed in either

AND/OR/NOT based Boolean logic or AND/XOR or

OR/XNOR based Reed-Muller (RM) logic. For some

circuits, such as the arithmetic circuits, parity check

circuits, and communication circuits, the RM repre-

sentation is more efficient than the Boolean represen-
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tation in power, area, speed and testability[1-2]. No-

tably, functions which do not produce efficient so-

lutions in Boolean representation can often be rea-

lized efficiently in RM representation[3]. Recently,

RM logic has attracted wide attention, and many

synthesis methods of RM circuits have been pro-

posed. They can be mainly classified into polarity

conversion[4-7], polarity searching[8-10], and circuit per-

formance optimization[11-14].

With the advent of the era of deep sub-micron inte-

grated circuit (IC) and the feature size of chip shrinking

to nanometers, the fast-growing power and area has be-

come the main bottleneck restricting the development

of IC. At present, the IC design has changed from

uniform pursuit to high-density and high-performance

to consider the power and area together. Accord-

ingly, many power and area optimization approaches

of RM circuits have been proposed. However, almost

all of them are based on weighted sum method (WSM).

WSM suggests converting the multi-objective optimiza-

tion problem to a single-objective optimization problem

by emphasizing one particular compromise solution at

a time, and it needs to be run many times according

to the different weights set by the designer. Addition-

ally, it is difficult to determine the weight coefficients in

practice. Most notably, the WSM has two fatal flaws.

It cannot obtain the Pareto optimal solutions in the

non-convex regions of Pareto front and uniform dis-

tributed Pareto optimal solutions[15]. Therefore, the

existing WSM-based power and area optimization ap-

proaches cannot obtain all the Pareto optimal solutions

and are not efficient enough. Moreover, researches have

shown that the RM circuits can be further optimized

by using the don’t care terms properly[16-17]. However,

few researches use the don’t care terms to optimize the

power and area of mixed polarity RM circuits.

In this paper, we propose an NSGA-II (non-

dominated sorting genetic algorithm II)[18] based power

and area optimization approach (NSGA-II-PAOA) of

MPRM (mixed polarity RM expression) for incom-

pletely specified Boolean functions. Compared with

existing power and area optimization approaches, our

main contributions are as follows.

1) We propose a power and area optimization ap-

proach of mixed polarity RM circuits. It fully makes

use of the advantage of don’t care terms in optimiz-

ing circuit performance and NSGA-II in solving multi-

objective optimization problem. Moreover, it can be

extended to optimize the power and area of fixed po-

larity RM logic circuits.

2) We propose an incompletely specified MPRM

(ISMPRM) acquisition algorithm that can transform

the incompletely specified Boolean function into the

zero polarity ISMPRM. It enables to treat the incom-

pletely specified Boolean functions efficiently without

any constraints on the number of variables.

3) We encode the polarity and allocation of don’t

care terms as chromosome and propose a chromosome

conversion algorithm that can convert the zero polar-

ity ISMPRM to the MPRM corresponding to the given

chromosome.

4) We compare NSGA-II-PAOA with the existing

power and area optimization approaches on incom-

pletely specified Boolean functions and MCNC bench-

mark circuits. Experimental results show that NSGA-

II-PAOA outperforms the existing power and area op-

timization approaches in terms of the number of Pareto

optimal solutions and solving efficiency.

The rest of the paper is organized as follows. Section

2 provides related work. A power and area optimization

approach of MPRM for incompletely specified Boolean

functions is described in detail in Section 3. Experi-

mental results are presented in Section 4. Conclusions

are drawn in Section 5.

2 Related Work

2.1 Power and Area Optimization Approaches

of RM Circuits

Recently, much work has been carried out in power

and area optimization of RM circuits. Almost all of

them are based on WSM (e.g., [19-23]). To get power-

area trade-off, these approaches allocate the weights for

the power and area cost functions in the fitness function

design, which can be defined as follows:

fitness(i) = α/Powercos t(i) + (1− α)/Areacos t(i),

where fitness(i) represents the fitness value corre-

sponding to chromosome i, α represents the weight,

0 6 α 6 1, Powercos t(i) and Areacos t(i) represent the

power and the area corresponding to chromosome i re-

spectively.

However, the WSM-based power and area optimiza-

tion approach cannot obtain all the Pareto optimal so-

lutions of the original problem due to that WSM cannot

obtain the Pareto optimal solutions in the non-convex

regions of Pareto front, which can be illustrated by the

trigonometric linear combinations (TLC) problem. The
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TLC problem can be represented as follows:

F (x) =
cos θ

sin θ + cos θ
f1(x) +

sin θ

sin θ + cos θ
f2(x),

where θ ∈ [0, π2 ]. As shown in Fig.1(a), a value of θ

corresponds to a Pareto optimal solution. Under the

condition that the value of θ is determined, to minimize

F (x) is to search the coordinate points with minimum

f2 intercept. Since the intercept d1 of points A and

C is less than the intercept d2 of point B, the Pareto

solutions in non-convex regions (such as B) cannot be

obtained, as shown in Fig.1(b).

f

f

f

f

d

d

Pareto Solution

.
(a)

(b)

 

.
.
.A
B

C

θ

Fig.1. Demonstrating the TLC problem.

2.2 Optimization Approaches of RM Circuits

Considering the Don’t Care Terms

Researches have shown that using the don’t care

terms properly could simplify the expression and op-

timize the circuit performance[24-25]. Recently, many

researchers have shown interest in using the don’t care

terms to optimize RM circuits (e.g., [24-28]).

However, almost all of the existing optimization ap-

proaches considering the don’t care terms focused on

the minimization of RM expressions and polarity con-

version, without using the don’t care terms to optimize

the power and the area of RM circuits simultaneously.

Although there was a power and area optimization ap-

proach considering the don’t care terms[20], it only ap-

plies to fixed polarity RM circuits.

3 Power and Area Optimization Approach of

MPRM for Incompletely Specified Boolean

Functions

In this section, we introduce a novel optimization

approach called NSGA-II-PAOA to obtain the mixed

polarity RM expressions (MPRMs) with lower power

and smaller area. Firstly, the incompletely specified

Boolean function is transformed into zero polarity ISM-

PRM by using a novel ISMPRM acquisition algorithm.

Secondly, the polarity and allocation of don’t care terms

is encoded as a chromosome. Finally, the Pareto op-

timal solutions (chromosomes) are generated by using

NSGA-II, in which MPRM corresponding to the given

chromosome is obtained by using a chromosome con-

version algorithm.

The ISMPRM acquisition algorithm, chromosome

encoding scheme, chromosome conversion algorithm,

power and area fitness functions, and crossover and

mutation operations are discussed in details as follows.

Due to space constraints, the roulette wheel selection,

fast non-dominated sorting and calculation of the crow-

ing distances will not be covered again here.

3.1 ISMPRM Acquisition Algorithm

In order to transform the incompletely specified

Boolean function into the zero polarity ISMPRM,

we propose an ISMPRM acquisition algorithm (IAA),

which is an extension to the tabular technique[29]. It is

summarized in Algorithm 1. The minterm or product

term is represented by the row of the table. Moreover,

Algorithm 1. IAA

Input: an n-variable incompletely specified Boolean function

with t don’t care terms

Output: zero polarity ISMPRM

1: Represent the incompletely specified Boolean function us-
ing the tabular notation

2: Set the flag f of minterms to 1 and the flag f of don’t care
terms to di, 1 6 i 6 t

3: Let j = n

4: If any row of the table satisfies < cn...cj+10cj−1...c1f >,
generate the new row < cn...cj+11cj−1...c1f >

5: If the newly generated row is equal to any existing row
except for the flag, we perform the following operations:

1) Performing the XOR operation on the flags of the two
rows

2) Assigning the operation result to the flag of already ex-
isting row

3) Deleting the newly generated row

Otherwise, put the newly generated row into the trail of
the original table

6: If j > 1 then let j = j− 1, go to step 4. Otherwise, output
the zero polarity ISMPRM
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the column of the table denotes the variable of Boolean

function or MPRM. Each cell of the table is either 0 or

1, which represents the state of each variable in minterm

or product term. The above description is illustrated

in example 1.

Example 1. Given a 4-variable incompletely spec-

ified Boolean function with four don’t care terms

f(x4, x3, x2, x1) = Σm(1, 5, 11, 14)+Σd(2, 7, 10, 12), the

zero polarity ISMPRM can be obtained by the following

steps.

Step 1: construct a table representing the incom-

pletely specified Boolean function.

x x x

                             

                             

                             

                             

                             d

                             d

                             d

                             d

x Flag

Step 2: for x4, if there are rows < 0c3c2c1 > in the

table, generate new rows < 1c3c2c1 >.

                         

                        

                        

                        

                        

                        

                        







                        

                        

                        

                        



Boolean function Generated terms

⇀

⇀

                         

Flag

x

x

d

d

d

d

d

d

x x x Flagx x x x

Step 3: perform the XOR operation on the flags

of the identical two rows and add any remaining new

rows to the foot of the table; for x3, if there are

rows < c40c2c1 > in the table, generate new rows

< c41c2c1 >.

Flagx xx x Flagx xx

x

x

 

0        0        0      1 1

1        0        0      1 1

1        1        1      1

1

1        1        0      1

Transformed Function Generated Terms

*1
*1

*2

*3
*3

1

*4

0        1        0      1 1

*4

1        0        1      1 1

1        1        1      0 1

0        0        1      0

0        1        1      1

d⊕d

d⊕d1        0        1      0

1        1        0      0

1        1        0      1 1

*2

0        1        1      0

0        1        0      1

1        1        1      0

1        1        1      1

1
d

d

d

d

d

Step 4: Perform the XOR operation on the flags

of the identical two rows and add any remaining new

rows to the foot of the table. For x2, if there are

rows < c4c30c1 > in the table, generate new rows

< c4c31c1 >.

Flagx xx x Flagx x

x

x x

d⊕d

d⊕d

d

d

d

d

d

d

 

0
0        0        1      1
0        1        1      1

1        0        1      1

Transformed Function Generated Terms

*1

*1

*2

*2

*3

1

*4 1        1        1      1

0        0        0      1 1

*3

0        1        0      1

*4

1        0        1      1

11        1        1      0

1

0        0        1      0

0        1        1      1

1        0        1      0

1        1        0      0

1        0        0      1
1        1        0      1

1        1        1      1

1        1        1      0
0
1

0

0        1        1      0

0

Step 5: perform the XOR operation on the flags

of the identical two rows and add any remaining new

rows to the foot of the table; for x1, since there are

rows < c4c3c20 > in the table, generate new rows

< c4c3c21 >.

x

1        1        1  d d⊕d

0        0        1      d

1        1        0        d

Transformed Function Generated Terms

*1

*2

*2

*3

*5

0        1        1        d

0        0        0       1

*3
0        1        0       0

*4

1        0        1       0

1        1        1  d d⊕d

0        0        1       d

0        1        1       d

1        0        1    d⊕d

1        1        0       d

1        0        0       1

1        1        0        0

1        1        1       d

1        0        1     d⊕d

0        1        1       d

0        0        1       1

*1

*4
*5

Flagx xx x Flagx xx x

-

- -

-

-

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                      

                      

                      

                      

                      

Step 6: perform the XOR operation on the flags of

the identical two rows and add any remaining new rows

to the foot of the table; the zero polarity ISMPRM can

be represented as below.

Flagx xx x

d⊕d

d⊕d

d⊕d

d d⊕d

d

d

d

d

d

0        0        0      1 1

0        1        0      1

1        0        1      1

1        1        1      0

1

0        0        1      0

0        1        1      1

1        0        1      0

1        1        0      0
1        0        0      1

1        1        0      1

1        1        1      1

0

0        1        1      0

0        0        1      1

d⊕(d d⊕d)

- -

- - -

-
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3.2 Chromosome Encoding Scheme

The polarity and allocation of don’t care terms is

encoded as chromosome due to the fact that both the

polarity and the allocation of don’t care terms could af-

fect the circuit performance. Since the polarity denotes

the appearance form of variable in MPRM, the first

half (polarity) of chromosome is represented in ternary

form. Furthermore, since the allocation of don’t care

terms indicates whether or not each don’t care term is

to be written to the expression, the second half (alloca-

tion of don’t care terms) of chromosome is represented

in binary form. The above description is illustrated in

example 2.

Example 2. Given a 4-variable ISMPRM with four

don’t care terms, the polarity and the allocation of

don’t care terms of the ISMPRM can be encoded as

8-bit chromosome, as shown in Fig.2.

 Polarity Allocaiton of Don’t Care Terms 

2 2 01 1 1 01

Ternary Binary

Chromosome (8-bit) 

bit 0 bit 3 bit 4 bit 7

Fig.2. Details of chromosome for example 2.

Fig.2 shows that bit 0∼bit 3 denote polarity

(2120)3 = (69)10. Bit 4∼bit 7 denote the allocation

of don’t care terms, namely, the fourth don’t care term

is abandoned, whereas the remaining three don’t care

terms are written to the expression.

3.3 Chromosome Conversion Algorithm

In this subsection, we describe a chromosome con-

version algorithm (CCA) to transform the zero polarity

ISMPRM into MPRM corresponding to the given chro-

mosome, so as to calculate the fitness value of chromo-

some. The main idea behind CCA is that: firstly, the

flag in each row is calculated according to the allocation

of don’t care terms in given chromosome; secondly, the

zero polarity MPRM is obtained by removing a row

whose flag is zero; lastly, the zero polarity MPRM is

converted into MPRM corresponding to the given chro-

mosome according to the polarity in given chromosome.

The above description is illustrated in example 3.

Example 3. The zero polarity ISMPRM obtained by

step 6 in example 1 is served as the given zero polarity

ISMPRM. The chromosome “21201110” in example 2 is

served as the given chromosome, and the corresponding

MPRM can be obtained by the following steps.

Step 1: since the allocation of don’t care terms in

given chromosome is “1110”, the flags of don’t care

terms d1, d2, d3, d4 are: d1 = 1, d2 = 1, d3 = 1, d4 =

0, respectively.

Step 2: calculate the flag in each row based on d1,

d2, d3, d4.

0        0        0      1 1

0        1        0      1

1        0        1      1
1        1        1      0

0        0        1      0

0        1        1      1

1        0        1      0

1        1        0      0
1        0        0      1

1        1        0      1

1        1        1      1

0

0        1        1      0

0        0        1      1

0
1

1

0

0

0
1

0

1

1

0

x x xx Flag

Step 3: obtain the zero polarity MPRM by removing

a row whose flag is 0.

0        0        0      1

1        1        1      0

0        0        1      0

1        0        0      1

1        1        1      1

0        1        1      0

(x)

(xxx)

(x)

(xx)

(xxxx)

(xx)

x x xx

The zero polarity MPRM can be expressed as fol-

lows:

f(x4, x3, x2, x1) = x1 ⊕ x4x3x2 ⊕ x2 ⊕ x4x1 ⊕

x4x3x2x1 ⊕ x3x2.

Step 4: the zero polarity MPRM is converted to the

MPRM corresponding to polarity “2120” by using the

mixed polarity conversion algorithm[29]. Due to space

constraints, the polarity conversion process will not be

covered again here. MPRM that corresponds to chro-

mosome “21201110” is:

x x xx

(xxx)

(xx)

(xxx)

(xxx)

0        1        0      1

1        1        1      0

1        0        1      0

1        1        1      1

- -

-

The resulting MPRM is presented by the following

equation:

f(x4, x3, x2, x1) = x4x2x1 ⊕ x4x2 ⊕ x4x3x2 ⊕ x4x2x1.
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3.4 Power and Area Fitness Functions

3.4.1 Power Fitness Function

With the rapid development of semi-conductor

technology and the continuous improvement of integra-

tion, power has become a major bottleneck which re-

stricts the development of IC. Power in CMOS circuits

can be broadly divided into two categories: dynamic

power and leakage power.

Dynamic Power Fitness Function. Dynamic power

results mainly from the charging and discharging of the

load capacitances[30], which can be expressed as follows:

p = 0.5V 2
ddfclk

n∑

i=1

Ci
LSW

i,

where Vdd is the supply voltage, fclk is the clock fre-

quency, Ci
L is the load capacitance at the output of

gate i, and SW i (referred to as switching activity) is

the number of transitions per cycle at gate i. Power

consumption in a logic circuit can be best modeled by

the switching activity on the circuit nodes. Therefore,

we use the switching activity to estimate the power.

The power estimation model[13] considering temporal

correlations is used to estimate the circuit power accu-

rately. Since the lower the power, the better the quality

of chromosome, the dynamic power fitness function is

defined:

fitnessdynamic power(i) = 1/SW (i),

where SW (i) represents the switching activity corre-

sponding to chromosome i.

Leakage Power Fitness Function. At present, the

feature size of transistors has advanced to the deep

sub-micron and the leakage power has made a signif-

icant contribution to the total power. However, few re-

searches have focused on optimizing the leakage power

of RM circuits. To the best of our knowledge, [31] is

the only work to consider the leakage power of RM cir-

cuits, which is used to estimate the leakage power of

RM circuits. Accordingly, the leakage power is defined

as:

Leakage(i) = ANDleakage(i) +XORleakage(i),

where Leakage(i) represents the leakage power of chro-

mosome i. ANDleakage(i) andXORleakage(i) denote the

leakage power of all the AND gates and XOR gates

corresponding to chromosome i respectively. For more

information about the calculation of leakage power of

AND gates and XOR gates, please refer to [31]. Simi-

larly, the smaller the leakage power, the better the qual-

ity of chromosome. Therefore, the leakage power fitness

function is defined as:

fitnessleakage power(i) = 1/Leakage(i).

3.4.2 Area Fitness Function

The multi-input AND gates and XOR gates need

to be decomposed into two-input AND gates and XOR

gates to estimate the power[19]. Therefore, the area is

quantified in terms of the total sum of the number of

two-input AND gates and XOR gates, which is defined

as follows:

Area(i) = Num AND(i) +Num XOR(i),

where Area(i) represents the area corresponding to

chromosome i. Num AND(i) and Num XOR(i) rep-

resent the number of AND gates and XOR gates cor-

responding to chromosome i respectively. Since the

smaller the area, the better the quality of chromosome,

the area fitness function is defined as:

fitnessarea(i) = 1/Area(i).

3.5 Crossover and Mutation Operations

3.5.1 Crossover Operation

The one-point crossover is used to produce offspring.

It is worthwhile to note that if the crossover point ap-

pears at the polarity (allocation of don’t care terms) in

parent chromosomes, the one-point crossover does not

work for the allocation of don’t care terms (polarity)

in children chromosomes, which can be illustrated by

Fig.3 and Fig.4.

2 2 01 1 0 10 1

1 0 22 0 0 01 1

Parent 1

Parent 2

Polarity
Allocation of Don’t

Care Terms 

Crossover Point

2 0 21 0 0 01 1

1 2 02 1 0 10 1

Child 1

Child 2

Remains Unchanged

Fig.3. When the crossover point appears at polarity, the alloca-
tion of don’t care terms will remain unchanged after one-point
crossover.
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2 2 01 1 0 10 1

1 0 22 0 0 01 1

Parent 1

Parent 2

Polarity

Crossover Point

2 2 01 1 0 00 1

1 0 22 0 0 11 1

Child 1

Child 2

Remains Unchanged

Allocation of Don’t
Care Terms 

Fig.4. When the crossover point appears at the allocation of
don’t care terms, the polarity will remain unchanged after one-
point crossover.

In order to make the one-point crossover do work for

the polarity as well as the allocation of don’t care terms,

we perform the one-point crossover on the polarity and

allocation of don’t care terms, which is illustrated by

example 4.

Example 4. Suppose the two parent chromosomes

selected for crossover are “parent 1” and “parent 2” as

shown in Fig.5.

2 2 01 1 0 10 1Parent 1

Polarity

1 0 22 0 0 01 1Parent 2

Allocation of Don’t Care Terms 

Fig.5. Two parent chromosomes selected for crossover.

As shown in Fig.6, firstly, the crossover points 1

and 2 for the polarity and the allocation of don’t care

2 2 01 1 0 10 1

1 0 22 0 0 01 1

Parent 1

Parent 2

Polarity

Crossover Point 1 Crossover Point 2

2 0 21 1 0 00 1

1 2 02 0 0 11 1

Child 1

Child 2

Changed Changed

Allocation of Don’t Care Terms 

Fig.6. Example demonstrating one-point crossover.

terms are randomly generated; secondly, the children

chromosomes are generated by performing the one-

point crossover on the polarity and the allocation of

don’t care terms. Fig.6 shows that the one-point

crossover does work for the polarity as well as the allo-

cation of don’t care terms.

3.5.2 Mutation Operation

The simplest bit mutation is used to maintain ge-

netic diversity in population[32]. Similarly, in order to

make the bit mutation do work for the polarity as well

as the allocation of don’t care terms, we perform the

bit mutation on the polarity and allocation of don’t

care terms, respectively. Since the allocation of don’t

care terms is encoded as binary, if the original value of

selected gene is 0, then we change it to 1; if the original

value of selected gene is 1, then we change it to 0. It

should be noted that the polarity is encoded as ternary.

Therefore, the bit mutation for the polarity needs to be

modified, namely, if the original value of selected gene

is 0, then we change it to 1; if the original value of se-

lected gene is 1, then we change it to 2; if the original

value of selected gene is 2, then we change it to 0.

3.5.3 Algorithm Description

Based on the above description, NSGA-II-PAOA is

illustrated in Algorithm 2, in which “popsize” repre-

sents the size of population, “2popsize” represents the

size of combined population, “iteration” represents the

current number of iteration, and “Maxiteration” repre-

sents the maximum number of iteration.

4 Experimental Results

NSGA-II-PAOA had been implemented in C lan-

guage, and the programs were compiled by the GNU

C complier. The results were obtained by using a

PC with Intel Core i7 3.40 GHz with 4 G RAM un-

der Linux. In order to validate the effectiveness of

NSGA-II-PAOA in optimizing power and area, firstly,

we compared NSGA-II-PAOA with the area and power

optimization approach[20] (APOA) which searches the

best polarity and then searches the best allocation of

don’t care terms; secondly, we compared NSGA-II-

PAOA with the WSM-based power and area optimiza-

tion approach[19] (WSM-PAOA) which also considers

the don’t care terms.
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Algorithm 2. NSGA-II-PAOA

Input: incompletely specified Boolean function

Output: Pareto optimal solutions

1: IAA(incompletely specified Boolean function);

2: Encode the polarity and the allocation of don’t care terms
as chromosome;

3: Establish the dynamic power, leakage power and area fit-
ness functions;

4: Initialize the parameters;

5: Randomly generate the initial population;

6: for i = 1 to popsize do

7: CCA(zero polarity ISMPRM);

8: Dynamic-power-fitness(MPRM);

9: Leakage-power-fitness(MPRM);

10: Area-fitness(MPMR);

11: end for

12: Non-dominated-sorting(initial population);

13: Roulette wheel selection;

14: One point crossover;

15: Bit mutation;

16: for iteration = 1 to Maxiteration do

17: Combine(parent population, child population);

18: for i = 1 to 2popsize do

19: CCA(zero polarity ISMPRM);

20: Dynamic-power-fitness(MPRM);

21: Leakage-power-fitness(MPRM);

22: Area-fitness(MPMR);

23: end for

24: Fast non-dominated sorting;

25: Calculate the crowding distance;

26: Form parent population;

27: Roulette wheel selection;

28: One point crossover;

29: Bit mutation;

30: end for

31: Output the Pareto optimal solutions

4.1 Comparison of NSGA-II-PAOA and

APOA

In order to calculate the switching activity accu-

rately, 11 input signal probabilities were generated un-

der the random function, which are 0.64, 0.03, 0.17,

0.91, 0.35, 0.57, 0.85, 0.15, 0.48, 0.53, 0.24, respectively.

For different input variables, the input signal probabi-

lities were chosen from the left to the right in above

list. For example, for 3-variable incompletely specified

Boolean function f(x3, x2, x1), signal probabilities for

x3, x2, x1 were 0.17, 0.03, 0.64, respectively. More-

over, we ran NSGA-II-PAOA and APOA 10 times and

took the best obtained results as experimental data.

To guarantee the fairness of experiment, the parame-

ters were set based on [20], which are shown in Table 1.

Table 1. Parameters of NSGA-II-PAOA and APOA

Parameter NSGA-II-PAOA APOA
Population size 100.00 100.00
Maximum number of iteration 200.00 200.00
Local number of iteration - 20.00
Weight in fitness function - 0.50
Crossover probability 0.90 -
Maximum crossover probability - 0.80
Minimum crossover probability - 0.40
Mutation probability 0.01 -
Maximum mutation probability - 0.10
Minimum mutation probability - 0.01
Maximum local search value - 1.10
Minimum local search value - 1.01
Local search crossover probability - 0.10
Local search mutation probability - 0.40

The comparison between NSGA-II-PAOA and

APOA is listed in Table 2. In this table, f(n, t, d, s) rep-

resents n-variable function with t minterms and d don’t

care terms, where s represents the seeds for the func-

tion generator. Columns 2∼4 show the area, switch-

ing activity (SW) and leakage power (microwatts) ob-

tained by APOA, respectively. Column 5 shows the

average time (in seconds) for generating MPRM us-

ing APOA. Column 6 shows the Pareto optimal solu-

tions obtained by NSGA-II-PAOA, where “A” repre-

sents the solution with minimum area, “S” represents

the solution with minimum switching activity, and “L”

represents the solution with minimum leakage power.

Columns 7∼9 show the area, switching activity and

leakage power (microwatts) corresponding to the Pareto

optimal solutions, respectively. Column 10 shows the

average time for generating the Pareto optimal solu-

tions using NSGA-II-PAOA. Columns 11∼14 denote

the percentage of area saved (Savearea), switching ac-

tivity saved (Savesw), leakage power saved (Saveleak)

and time saved (Savetime), which are defined as:

Savearea =
APOAarea −NSGAIIPAOAarea

APOAarea

,

Savesw =
APOAsw −NSGAIIPAOAsw

APOAsw

× 100%,

Saveleak =
APOAleak −NSGAIIPAOAleak

APOAleak

× 100%,

Savetime =
APOAtime −NSGAIIPAOAtime

APOAtime

× 100%,

where APOAarea and NSGAIIPAOAarea represent

the area obtained by APOA and NSGA-II-PAOA

respectively, APOAsw and NSGAIIPAOAsw rep-

resent the switching activity obtained by APOA

and NSGA-II-PAOA respectively, APOAleak and

NSGAIIPAOAleak represent the leakage power ob-

tained by APOA and NSGA-II-PAOA respectively, and
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Table 2. Comparison of NSGA-II-PAOA and APOA

f(n, t, d, s) APOA NSGA-II-PAOA Save (%)
Area SW Leak Time (s) C Area SW Leak Time (s) Area SW Leak Time (s)

6, 12, 40, 50 51 5.82 10.24 7.16 A 35 4.93 11.80 5.27 35.37 15.29 −15.23 26.40
S 53 4.11 9.09 −3.92 29.38 11.23
L 46 5.85 8.72 9.80 −0.52 14.84

7, 20, 90, 5 86 5.53 15.22 9.43 A 36 5.48 15.29 6.60 58.14 0.90 −0.46 30.01
S 69 3.11 16.60 19.77 43.76 −9.07
L 88 5.60 12.64 2.33 −1.27 16.95

8, 8, 240, 60 17 1.94 9.50 17.38 A 16 2.05 8.37 12.54 5.88 −5.67 11.89 27.85
S 47 1.47 9.56 −176.47 24.23 −0.63
L 23 1.66 6.44 −35.29 14.43 32.21

8, 25, 220, 50 73 4.86 75.12 23.49 A 45 3.40 76.17 16.31 38.36 30.04 −1.40 30.57
S 91 3.23 85.99 −24.66 33.54 −14.47
L 76 5.08 74.82 −4.11 −4.53 0.40

8, 100, 90, 10 291 13.27 114.55 21.20 A 225 13.76 146.03 15.43 22.68 −3.69 −27.48 27.22
S 248 12.26 152.80 14.78 7.61 −33.39
L 291 13.27 114.55 0.00 0.00 0.00

9, 200, 100, 5 639 33.78 94.61 48.97 A 516 36.29 107.67 26.70 19.25 −7.43 −13.80 45.48
S 585 31.13 95.04 8.45 7.84 −0.45
L 653 43.60 93.52 −2.19 −29.07 1.15

9, 250, 70, 5 1 053 56.92 174.66 68.49 A 1 047 54.29 175.34 31.16 0.57 4.62 −0.39 54.50
S 1 133 49.86 170.25 −7.60 12.40 2.52
L 1 063 58.27 161.89 −0.95 −2.37 7.31

10, 300, 150, 10 1 401 112.79 281.63 223.90 A 1 392 112.37 286.20 120.51 0.64 0.37 −1.62 46.18
S 1 546 99.08 257.26 −10.35 12.16 8.65
L 1 670 112.84 246.35 −19.20 −0.04 12.53

10, 500, 70, 25 2 147 195.48 130.65 379.22 A 1 972 210.04 128.26 162.04 8.15 −7.45 1.83 57.27
S 2 148 194.53 131.17 −0.05 0.49 −0.40
L 2 076 199.10 126.38 3.31 −1.85 3.27

11, 1000, 80, 1 4 058 264.66 348.62 951.43 A 3 670 271.51 354.24 375.60 9.56 −2.59 1.61 60.52
S 4 058 264.66 348.62 0.00 0.00 0.00
L 3 815 302.11 322.31 5.99 −14.15 7.55

APOAtime and NSGAIIPAOAtime represent the ave-

rage time spent on APOA and NSGA-II-PAOA respec-

tively.

From the simulation results on 10 randomly gener-

ated incompletely specified Boolean functions, we can

find that both the NSGA-II-PAOA and APOA can

generate the Pareto optimal solutions. Since these

Pareto optimal solutions are incomparable, there is

no comparison between NSGA-II-PAOA and APOA in

terms of solution quality. Additionally, we found that

the number of Pareto optimal solutions obtained by

NSGA-II-PAOA is larger than that obtained by APOA.

Therefore, compared with APOA, NSGA-II-PAOA can

provide the designer more options. Moreover, it is

worth mentioning that NSGA-II-PAOA is faster than

APOA. The greatest time saving reached 60.52% and

the average time saving reached 40.60%, which are at-

tributed to the fact that APOA is divided into two

phases: the best polarity searching phase neglecting

don’t care terms and the phase searching the best al-

location of don’t care terms. Since APOA needs to

perform optimal searching twice and NSGA-II-PAOA

only needs to perform once, NSGA-II-PAOA is faster

than APOA.

4.2 Comparison of NSGA-II-PAOA and

WSM-PAOA

To further assess the effectiveness of NSGA-II-

PAOA, we compared NSGA-II-PAOA with WSM-

PAOA. Since WSM-PAOA is based on WSM, we need

to allocate the weights for the dynamic power, leakage

power and area cost functions. The fitness function of

WSM-PAOA is defined as:

fitness(i) = (
w1

SW (i)
+

w2

Leakage(i)
+

w3

Area(i)
)× β,

where SW (i), Leakage(i) and Area(i) represent the

switching activity, leakage power (microwatts) and area

corresponding to chromosome i, respectively. Weights

w1, w2 and w3 can be set by the designer with w1 +

w2 + w3 = 1. The constant β is used to prevent the

fitness value from being too small to participate in the

subsequent computations. In this experiment, β is set

to 100.

Moreover, we need to assign more values to weights

w1, w2 and w3 to obtain more solutions. There are

many different combinations of w1, w2 and w3, which

satisfy w1+w2+w3 = 1. But for the sake of space and

for the distribution of weights, we select seven diffe-
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rent combinations of w1, w2 and w3, namely, (1, 0, 0),

(0.5, 0.5, 0), (0, 1, 0), (0, 0.5, 0.5), (0, 0, 1), (0.5, 0.25,

0.25) and (0.5, 0, 0.5) for each function or circuit in the

following experiments.

Eight randomly generated incompletely specified

Boolean functions and eight randomly selected MCNC

benchmark circuits were tested on NSGA-II-PAOA and

WSM-PAOA respectively. Moreover, in order to calcu-

late the switching activity accurately, 18 input signal

probabilities were generated under the random func-

tion, which are 0.11, 0.73, 0.94, 0.62, 0.29, 0.15, 0.23,

0.67, 0.14, 0.38, 0.54, 0.06, 0.80, 0.46, 0.37, 0.30, 0.02,

0.97, respectively. Furthermore, in order to determine

the parameters and then obtain the better experimental

results, we conducted a series of experiments with diffe-

rent parameters. The parameters of two approaches are

given in Table 3.

Table 3. Parameters of NSGA-II-PAOA and WSM-PAOA

Parameter Value

Size of population 100.00

Number of iteration 200.00

Probability of crossover 0.90

Probability of mutation 0.01

Figs.7∼14 show the comparison of NSGA-II-PAOA

and WSM-PAOA on eight randomly generated incom-

pletely specified Boolean functions, respectively. The

X-axis denotes area, the Y -axis denotes switching ac-

tivity, and the Z-axis denotes leakage power. More-

over, the red circle points and blue square points repre-

sent the Pareto optimal solutions obtained by NSGA-

II-PAOA and WSM-PAOA, respectively. Table 4 shows

the comparison of NSGA-II-PAOA andWSM-PAOA on

eight randomly selected MCNC benchmark circuits, re-

spectively. Column 1 shows the circuit name. Column 2

shows the number of don’t care terms added to circuits

(dc). Column 3 shows the number of Pareto optimal

solutions obtained by WSM-PAOA (num). Columns

4∼6 show the area, switching activity (SW) and leak-

age power corresponding to the Pareto optimal so-

lutions obtained by WSM-PAOA, respectively. Col-

umn 7 shows the total run time of WSM-PAOA under

seven different weights. Column 8 shows the number of

Pareto optimal solutions obtained by NSGA-II-PAOA.

Columns 9∼11 show the area, switching activity and

leakage power corresponding to the Pareto optimal so-

lutions obtained by NSGA-II-PAOA, respectively. Col-

umn 12 shows the run time of NSGA-II-PAOA. Column

13 shows the multiple relationship between NSGA-II-

PAOA and WSM-PAOA in terms of the number of so-

lutions. Column 14 shows the percentage of time saved

by NSGA-II-PAOA compared with WSM-PAOA, which

is defined as

Savetime

=
WSMPAOAtime −NSGAIIPAOAtime

WSMPAOAtime
× 100%.
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Fig.9. Comparison results on f(7, 35, 40, 5).
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Fig.12. Comparison results on f(10, 500, 30, 10).

Figs.7∼14 and Table 4 demonstrate that compared

with WSM-PAOA, NSGA-II-PAOA can obtain more

Pareto optimal solutions. For the eight incompletely

specified Boolean functions, the maximum multiple

reached 5.5 times. For the eight MCNC benchmark cir-

cuits, the maximum multiple reached four times. More-

over, the Pareto optimal solutions obtained by WSM-

PAOA are not evenly distributed, whereas the Pareto

optimal solutions obtained by NSGA-II-PAOA are well-

distributed. Moreover, NSGA-II-PAOA has higher effi-

ciency than WSM-PAOA. For the eight MCNC bench-

mark circuits, the greatest time saving reached 81.73%

and the average time saving reached 72.94%. The above

results can be explained by the following reasons.
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Fig.13. Comparison results on f(10, 700, 40, 5).
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Fig.14. Comparison results on f(11, 1 000, 30, 1).

1) WSM cannot obtain the Pareto optimal solutions

in the non-convex regions of Parent front and a uniform

distribution set of Pareto optimal solutions in Pareto

front. Therefore, WSM-PAOA has disadvantage of be-

ing unable to generate more Pareto optimal solutions.

2) In order to obtain the Pareto optimal solutions as

many as possible, WSM-PAOA needs to run as many

times as the value of the weight set by the designer,

whereas NSGA-II-PAOA can generate a set of Pareto

optimal solutions in one single run. Therefore, NSGA-

II-PAOA has higher efficiency.
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Table 4. Comparison of WSM-PAOA and NSGA-II-PAOA

Circuit dc WSM-PAOA NSGA-II-PAOA Number of Time

num Area SW Leak Time (s) num Area SW Leak Time (s) Solutions Saved (%)

xor5 20 1 32 1.92 35.23 21.98 3 32 1.91 36.40 7.54 3.00 65.70

32 1.92 35.23

40 1.96 34.78

m1 50 2 32 9.06 41.50 20.02 4 32 9.06 41.50 4.63 2.00 76.87

40 9.05 41.67 32 9.07 41.46

40 9.05 41.67

41 9.02 41.42

rd84 190 2 258 98.69 184.52 99.75 6 256 97.33 184.79 26.98 3.00 72.95

269 82.73 182.23 258 98.69 184.52

260 96.83 182.11

261 83.75 184.25

266 92.36 183.92

269 82.73 182.23

clip 300 3 747 125.38 323.81 115.01 8 747 125.38 323.81 41.62 2.67 63.81

888 94.80 324.52 750 123.21 323.68

935 128.25 321.09 751 123.21 322.45

862 92.80 325.76

888 94.80 324.52

927 118.56 322.70

935 128.25 321.09

937 116.40 323.17

ex1010 250 1 216 24.80 147.63 39.95 4 214 24.80 153.33 9.77 4.00 75.54

216 24.80 147.63

263 26.15 140.57

264 27.49 138.50

dk48 200 1 176 36.15 108.26 34.19 3 175 35.94 110.57 8.48 3.00 75.20

176 36.15 108.26

178 36.15 105.83

14 4color 320 2 680 125.62 243.75 71.26 4 680 125.62 243.75 20.15 2.00 71.72

688 125.63 241.28 683 125.60 243.14

687 125.63 242.50

688 125.63 241.28

src1 280 2 763 62.65 190.44 94.36 5 761 61.27 193.81 17.24 2.50 81.73

775 79.40 176.59 763 62.65 190.44

774 60.19 178.32

775 79.40 176.59

778 83.05 172.64

3) Compared with the most multi-objective opti-

mization methods, NSGA-II was able to find a much

better spread of solutions and a better convergence to

the true Pareto optimal front. Consequently, NSGA-II-

PAOA can generate distributed uniformly Pareto opti-

mal solutions.

5 Conclusions

In this paper, we proposed a novel approach that

can optimize the power and the area of mixed polar-

ity RM circuits simultaneously. The approach uses the

don’t care terms to further optimize the circuit per-

formance. Moreover, the Pareto optimal solutions ob-

tained by the approach are more diverse on the multi-

objective space than those obtained by the existing

power and area optimization approaches. The exper-

imental results showed that the approach can optimize

the power and the area of mixed polarity RM circuits

quickly and effectively. The obtained MPRMs can be

selected by the designer based on the importance of

objectives.

The optimization of RM circuits, which considers

the don’t care terms, is a computationally hard prob-

lem, because the optimization space will increase expo-

nentially with the increase of input variables and don’t

care terms. In future, we will study much more ef-
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ficient optimization approaches considering the don’t

care terms. Moreover, we will introduce the delay op-

timization into our approach, so as to make the circuit

comprehensive performance better.
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Appendix

A.1 MPRM

Any n-variable Boolean function may be repre-

sented canonically in a sum-of-products (SOP) form as

(A1):

f(xn−1, xn−2, ..., x0) =

2n−1∑

i=0

aimi, (A1)

where Σ is the OR operator,mi are the minterms which

can be expressed as mi = ẋn−1ẋn−2...ẋ0; if ij = 0, then

ẋj = xj , and if ij = 1, then ẋj = xj .

ai is the coefficient of minterms, ai = 1 or 0 repre-

sents the presence or absence of minterms, respectively.

OR can be replaced by XOR if all the variables are

present in every term of (A1). Alternatively, the func-

tion can be expressed by MPRM as follows:

fp(xn−1, xn−2, ..., x0) = ⊕
2n−1∑

i=0

biπi, (A2)

where ⊕Σ denotes the modulo-2 addition, πi =

ẋn−1ẋn−2...ẋ0 represents the product terms of the

MPRM. bi ∈ {0, 1} represents whether πi appears in

the function or not. p = (pn−1pn−2...p0) is polarity.

i = (in−1in−2...i0) is subscript. The relationship among

ẋj , pi and ij can be expressed in Table A1.

Table A1. Value of ẋj

ij = 0 ij = 1

pi = 0 ẋj = 1 ẋj = xj

pi = 1 ẋj = 1 ẋj = xj

pi = 2 ẋj = xj ẋj = xj

In MPRM, each variable can appear to be true, com-

plemented or both at the same time. The polarity of

MPRM can be represented by replacing each variable

by 0, 1, or 2 depending on whether the variable is used

in true, complement or mixed, respectively. When a

variable is used in true(complemented), it can be re-

placed by 0(1). When a variable is present in both

true and complemented forms, it can be replaced by 2.

Therefore, for an n-variable MPRM, it has 3n different

polarities.

The polarity will directly determine the form of ex-

pression, and thus influence circuit performance. Con-

sequently, the polarity optimization of RM circuits is

to search the best polarity, which corresponds to an

optimal circuit performance, from a particular polarity

space.

A.2 ISMPRM

An n-variable incompletely specified Boolean func-

tion may be represented canonically in an SOP form as

(A3):

f(xn−1, xn−2, ..., x0) =

2n−1∑

i=0

aimi +

2n−1∑

i=0

dimi, (A3)

where Σ is OR operator, mi is the minterm which can

be expressed as mi = ẋn−1ẋn−2...ẋ0. ai is the coeffi-

cient of minterms, ai = 1 or 0 represents the presence

or absence of minterms, respectively. di is the coeffi-

cient of the don’t care terms, di = 1 or 0 represents the

presence or absence of don’t care terms, respectively.

Accordingly, ISMPRM can be expressed as follows:

fp(xn−1, xn−2, ..., x0) = ⊕
2n−1∑

i=0

biei ⊕
2n−1∑

i=0

d′iei.(A4)

Compared with (A2), (A4) introduces
2n−1∑
i=0

d′iei,

d′i ∈ {0, 1} represents whether the don’t care term ei
appears in MPRM or not.

For an n-variable ISMPRM with r don’t care terms,

whether or not each don’t care term is to be written

to the expression can be represented by a string of bi-

nary numbers < br−1br−2...bi...b0 > (called allocation

of don’t care terms). bi = 0 represents the don’t care

term di is not written to the expression, while bi = 1

represents di is written to the expression. The allo-

cation of don’t care terms does not affect the circuit

function, but affects the circuit structure, and thus af-

fects circuit performance. Consequently, the RM cir-

cuits can be optimized by determining the allocation of

don’t care terms properly.


