
Meng XD, Wu CT, Guo MY et al. A hint frequency based approach to enhancing the I/O performance of multilevel

cache storage systems. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 32(2): 312–328 Mar. 2017. DOI

10.1007/s11390-017-1724-0

A Hint Frequency Based Approach to Enhancing the I/O
Performance of Multilevel Cache Storage Systems

Xiao-Dong Meng, Member, CCF, Chen-Tao Wu ∗, Member, CCF, IEEE, Min-Yi Guo, Senior Member, IEEE
Jie Li, Senior Member, ACM, IEEE, Xiao-Yao Liang, Bin Yao, and Long Zheng

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

E-mail: mengxiaodong1985@sjtu.edu.cn; {wuct, guo-my, lijie, liang-xy, yaobin, lzheng}@cs.sjtu.edu.cn

Received April 5, 2016; revised December 29, 2016.

Abstract With the enormous and increasing user demand, I/O performance is one of the primary considerations to

build a data center. Several new technologies in data centers, such as tiered storage, prompt the widespread usage of

multilevel cache techniques. In these storage systems, the upper level storage typically serves as a cache for the lower level,

which forms a distributed multilevel cache system. However, although many excellent multilevel cache algorithms have been

proposed to improve the I/O performance, they still have potential to be enhanced by investigating the history information

of hints. To address this challenge, in this paper, we propose a novel hint frequency based approach (HFA), to improve the

overall multilevel cache performance of storage systems. The main idea of HFA is using hint frequencies (the total number

of demotions/promotions by employing demote/promote hints) to efficiently explore the valuable history information of

data blocks among multiple levels. HFA can be applied with several popular multilevel cache algorithms, such as Demote,

Promote and Hint-K. Simulation results show that, compared with original multilevel cache algorithms such as Demote,

Promote and Hint-K, HFA can improve the I/O performance by up to 20% under different I/O workloads.

Keywords storage system, multilevel cache, hint, I/O performance

1 Introduction

In big data era, I/O performance is still the bottle-

neck of data processing in many fields[1-10]. In large

data centers, heterogeneous storage devices cooperate

together to accelerate the I/O processing. Typically,

the storage devices in the upper level serve as caches

for the lower level, which forms a distributed multilevel

cache system. In recent years, multilevel caches have

received more attention due to the following reasons.

• High I/O Performance. By aggregating het-

erogeneous storage devices together, multilevel caches

achieve higher I/O performance compared with using

single level caches separately[11-13].

• Low Monetary Cost. Typically, multilevel cache

policies can provide global management on all cache lev-

els without any manual operations[14]. It can sharply

decease the monetary cost.

• High Flexibility. Multilevel caches are widely used

in many scenarios, such as in traditional client-sever

model 1○[15-16], networked storage 2○[12-13] and hybrid

storage 3○[17].

In the past two decades, many classic multilevel

cache solutions were proposed to improve the I/O per-

Regular Paper

This work was supported by the National Basic Research 973 Program of China under Grant No. 2015CB352403, the National High
Technology Research and Development 863 Program of China under Grant No. 2015AA015302, the National Natural Science Foundation
of China under Grant Nos. 61332001, 61303012, 61572323 and 61628208, the Scientific Research Foundation for the Returned Overseas
Chinese Scholars, and the CCF-Tencent Open Fund.

∗Corresponding Author
1○The clients provide the first-level caches, and the servers supply the second-level caches. In some scenarios, the application

servers provide the first-level caches, and the storage servers supply the second-level caches.
2○Metadata servers and data storage servers offer the upper level and the lower level caches, respectively.
3○Fast and slow storage devices (e.g., DRAM and flash) serve as the upper level and the lower level caches, respectively.

©2017 Springer Science +Business Media, LLC & Science Press, China

Xiao-Dong Meng et al.: HFA: Enhancing the I/O Performance of Multilevel Cache Storage Systems 313

formance of storage systems. One of the most effective

approaches is making the cache exclusively among diffe-

rent hierarchies, where hints are well utilized to identify

hot data blocks. These hints can provide a global view

of a storage system, which can be optimized via gen-

eral/specific replacement strategies.

According to the roles in different scenarios, hints

can be divided into three categories, demote hints, pro-

mote hints and application hints. A demote hint[12] is a

flag to mark a demotion operation, which occurs when

a data block is evicted from an upper level to a lower

level. Similarly, a promote hint[13] is used to identify

a promotion, which is an opposite operation of demo-

tion. Except for demote and promote hints, an applica-

tion hint[18-19] is computed by well-defined formula(s)

and is evaluated by the access patterns of I/O work-

loads. A hybrid hint is a flag containing information of

a data block from multiple aspects such as demotion,

promotion or application access patterns. In many pre-

vious literatures[20-22], hybrid hints are demonstrated

to be an efficient way to enhance the performance sig-

nificantly.

However, existing multilevel cache algorithms still

have potential to be improved. Most multilevel cache

algorithms[12-13,19] use hints to store the concentrated

information of data blocks. The demote and promote

hints based approaches only record the latest hint ope-

rations, thereby valuable history hint information is ig-

nored. And the application hints are usually dependent

on a specified application, which is not general to all

scenarios. Some algorithms[22-23] keep the latest multi-

ple steps hint information, but they are insufficient to

describe the status of data blocks. The detailed illus-

tration is given in Subsection 2.3.

To address the above problems, in this paper, we

propose a novel hint frequency based approach, HFA,

which is an efficient multilevel cache scheme to enhance

the I/O performance. The main idea of HFA is using

rich history hint information (e.g., hint frequencies) to

efficiently identify hot data blocks.

Our contributions include the following aspects.

• We propose a novel hint frequency based ap-

proach, HFA, using history hint information of data

blocks, which efficiently enhances the I/O performance

of storage systems.

• HFA can cooperate with several famous multilevel

algorithms, such as Demote, Promote and Hint-K.

• We implement HFA by combining with Demote,

Promote and Hint-K algorithms. Simulation results

demonstrate that HFA can enhance the cache perfor-

mance under various I/O workloads.

The rest of this paper continues as follows. Sec-

tion 2 briefly overviews related work and our motiva-

tion. In Section 3, we illustrate the design, model and

replacement policies of HFA. Section 4 illustrates how

HFA collaborates with other popular algorithms. In

Section 5, we analyze the simulation results by using

various multilevel cache approaches. Finally Section 6

concludes the paper.

2 Related Work and Our Motivation

Many classic cache schemes have been proposed to

improve the I/O performance over the past several

decades, which can be classified into two main cate-

gories: single level caches and multilevel caches. In this

section, we briefly introduce the state-of-the-art algo-

rithms and our motivation of this work.

2.1 Single Level Cache Algorithms

LRU[24] is widely used in buffer cache manage-

ment. Since the 1990s, many LRU variants aim

to improve the performance of single level caches.

Due to page limit, here we only list some famous

LRU-based algorithms: FBR[25], 2Q[26], LRU-K[27-28],

UBM[29], LRFU[30], LIRS[31], ARC[32], CAR[33],

SPCC[34], SARC[35], AMP[36], DULO[37], CLOCK-

Pro[38], WOW[39], RACE[40], STOW[41].

2.2 Multilevel Cache Algorithms

Quite a few multilevel cache algorithms emerge to

improve the aggregate I/O performance of distributed

systems as summarized in Table 1. As introduced in

Section 1, hints are widely used for cooperative cache

for heterogeneous storage devices. Based on the usage

of hints, we divide these cache algorithms into the fol-

lowing five classifications: multilevel algorithms with-

out hints, those with demote hints, those with promote

hints, those with application hints, and those with hy-

brid hints.

Without Hints. MQ[15] concentrates three proper-

ties for a good second-level buffer cache: minimal life-

time, frequency based priority, and temporal frequency

to efficiently manage the second-level buffer cache.

With Demote Hints. The demote algorithm[12] first

uses demote hints to describe evicted data information

from the upper cache level, which makes caches exclu-

sive. Through demote hints, the dynamic behavior of

314 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

evicted caching data is well captured, which increases

the cache hit rate and decreases the average latency

in different applications. From then on, demote hints

have been extensively used in multilevel cache solutions.

X-RAY[42] is another sample which uses demote hints

in disk arrays. It gives the array cache the data in-

formation on the content through file-node operations

and writes log updates. Other cache policies combine

with demote hints and the analysis of access patterns

to enhance the cache performance, such as EV[43], GL-

MQ[16], uCache[44].

Table 1. Different Policies in Cache Algorithm Design

Cache Cache WH DH PH AH HH

Algorithm Level

MQ Last level
√

× × × ×

DEMOTE Last level ×
√

× × ×

EV Last level ×
√

× × ×

GL-MQ Last level ×
√

× × ×

ULC All levels ×
√

×
√ √

X-RAY Last level ×
√

× × ×

uCache All levels ×
√

× × ×

TQ Last level × × ×
√

×

Karma All levels ×
√ √

×
√

PROMOTE All levels × ×
√

× ×

MC2 All levels ×
√ √ √ √

CLIC All levels × × ×
√

×

C-Hint All levels × × ×
√

×

Hint-K All levels ×
√ √

×
√

UARC All levels
√

× × × ×

HFA All levels ×
√ √

×
√

Note: WH: without hints. DH: using demote hint. PH: using
promote hints. AH: using application hints. HH: using hybrid
hints. All levels: at least perform well in a two-level cache hier-
archy.

With Promote Hints. The promote[13,45] algorithms

are proposed when hot data needs to be promoted to

the higher cache level. Different from demote hints,

promotion may cross layers and is decided by more fac-

tors (like cache size and hint frequency). Promote pol-

icy achieves additional better performance when com-

bined with the ARC algorithm[32].

With Application Hints. TQ[18] is proposed to im-

prove the efficiency of the second-level cache by us-

ing write hints. According to the access patterns in

real database applications, three write hints (SYNCH,

REPLACE and RECOV) are used. These hints pro-

vide strong indications to show the access patterns of

current state and near future, which can manage the

second cache level effectively. CLIC[19] uses dynamic

application hints in various database applications to

dramatically describe the hotness of data blocks, and

has achieved good results. C-Hint[46] is a client-assisted

cache management approach. It delivers sustainable

high cache hit rate with limited cache capacity by

analysing access history reports from clients.

With Hybrid Hints. Hybrid hints are appeared in

ULC[47] algorithm. By combining with demote hints

and application controlled hints (RETRIEVE), ULC

effectively exploits hierarchical locality in multilevel

cache. Karma[20] uses demote hints for exclusivity,

and adds two additional operations (READ and READ-

SAVE), which can be considered as promotions. Based

on the Karma algorithm, MC2[21] presents a solution for

multiple clients with approximate application hints. A

state-of-the-art implementation combining Karma and

MC2 is presented in [48]. Hint-K[22-23] uses the k-step

hint history information of both demote and promote

operations, which can efficiently describe the activeness

of data blocks. In addition, with the development of

tiered storage[49], unified single level cache algorithms

(e.g., UARC[17]) are another way to provide a compre-

hensive solution for hybrid memory systems.

2.3 Our Motivation

Nowadays most commercial storage servers use

a large storage cache to speed up I/O processing,

where hint-based cache algorithms are primary solu-

tions to smooth the gap among heterogenous storage

devices[50-51]. Typically, a general purpose of these so-

lutions is investigating history hint information to effi-

ciently identify hot data blocks. They ignore some im-

portant history hint information, such as hint frequency

and temporal locality, which motivates us to propose a

new solution to enhance the I/O performance of storage

systems.

We first study the effectiveness of hint fre-

quency. Hint frequency is the total number of de-

motions/promotions (by employing demote/promote

hints) in a period. The plots in Fig.1(a) show the num-

ber of block read hits of 200 pairs of sample blocks

from nine traces. Each trace is simulated on a three-

level cache with the cache space ratio of 1 : 2 : 4, and

each kind of bar presents a hint frequency of three lev-

els. The access frequencies of blocks with one demo-

tion/promotion are normalized to 100%. We can see

from Fig.1(a) that the blocks with higher hint frequency

tend to be visited more frequently for all traces. It dedi-

cates that the higher hint frequency has more important

impacts on the access frequencies of data blocks.

Xiao-Dong Meng et al.: HFA: Enhancing the I/O Performance of Multilevel Cache Storage Systems 315

 Hint Frequency=1

Hint Frequencies=2

Hint Frequencies=3

140

120

100

80

60

40

20

0A
c
c
e
ss

 F
re

q
u
e
n
c
y
 (

%
)

Fin
an

cia
l1

W
eb

Se
ar

ch
1

W
eb

Se
ar

ch
2

TPC-E

FIU
-H

om
e

Exc
ha

ng
e

TPC-C

M
SN

-S
FS

Fin
an

cia
l2

TPC-C
FIU-Home
Exchange
MSN-SFS

Financial1
Financial2
WebSearch1
WebSearch2
TPC-E

1 2 3 4 5

Hint Frequency

H
in

t
R

e
u
se

 D
is

ta
n
c
e

6 7 8 9 10

1.0

0.8

0.6

0.4

0.2

0.0

(a)

(b)

Fig.1. Relationship among hint frequency, access frequency,
and hint reuse distance. Nine traces are tested on a three-level
cache. The cache space ratio of each level is 1 : 2 : 4. The demote
and promote algorithms[12-13] are used in each cache level for
comparison. (a) Access frequency of different traces. (b) Hint
reuse distance.

The temporal locality of buffer cache accesses de-

scribes the characteristics of traces, which is then

used to design replace algorithms to manage buffer

caches[52]. Similarly, we need to analyze the access pat-

terns of demotions/promotions, and design a replace-

ment algorithm based on those patterns. We use hint

reuse distance to observe the temporal locality of the

traces. Hint reuse distance is the number of distinct

accesses between a demote operation and a read miss

(or a promote) operation to the same block. For ex-

ample, in a cache level Li, if five distinct blocks are

visited during the period between a demotion and later

a promotion of a block x, then the hint reuse distance

of block x is 5.

Fig.1(b) compares the temporal locality of nine

traces on a cache that uses the same configuration with

that in Fig.1(a). It shows the average hint reuse dis-

tance for the blocks grouped by the hint frequency from

1 to 10. The highest value of hint reuse distance for each

trace is normalized to 100%. Obviously, for all nine

traces, the blocks with higher hint frequency usually

have a smaller hint reuse distance, despite that traces

vary in terms of hint frequency sensitivity.

These two observations drive us to develop a practi-

cal approach to freeze or promote the blocks with higher

hint frequencies in a certain cache level in order to im-

prove the overall cache hit ratio.

3 Hint Frequency Based Approach (HFA)

In this section, we present the design and replace-

ment policies of our hint frequency based approach,

HFA. To facilitate the discussion, we summarize the

symbols used in this paper in Table 2.

Table 2. Notations

Parameter Description

n Number of cache levels

x Random block in a multilevel cache

Li (1 6 i 6 n) The i-th cache level (the first level is L1 and
the last level is Ln)

Di/Pi Demotion from Li−1 to Li/promotion from
Li+1 to Li

Di(x)/Pi(x) Number of demotions/promotions of block x

in Li

hits(x) Number of cache hits on block x in a cache
level

T Time slot

t1 Aggregate duration between demotions and
promotions of a block

t2 Duration that a block resides in a cache level

k Steps to record blocks’ demotion and promo-
tion history

δ Hotness degradation value

Fi(x) Hint frequencies of block x in Li

Fmin Threshold hint frequency which determines a
queue for a block insertion

Hi(x) Hotness value of block x in Li

S Size of cache space exchanged between the
two queues

NC/NH Number of cold/hot blocks in Q1/Q2

tC(x)/tH(x) Resident duration of cold/hot blocks in
Q1/Q2

3.1 Overview

Our design is to improve I/O performance by in-

vestigating some potential history hint information of

multilevel cache systems, such as hint frequencies. To

achieve this goal, we propose a novel hint frequency

based approach (HFA). As shown in Fig.2, the cache

model of HFA consists of n cache levels (L1, L2, ..., Ln),

excluding the first client level and the last storage de-

316 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

vice level. In this model, Di delegates a demotion from

Li−1 to Li, and Pi stands for a promotion from Li+1

to Li. Di(x) and Pi(x) are used to represent the corre-

sponding demotes/promotes for a data block x. In this

model, hot blocks are encouraged to be promoted to

the upper level, and cold blocks are evicted via demote

operations.

I/O Requests

Level 1

Level i

Level n

Storage Devices

Client

Level i⇁

D P

Di

Di⇁

Di⇁

Dn

Pi֓

Pi

Pi⇁

Pn֓

I/O Requests

Cache Policies Among

Multiple Levels

Cache Policies in

Each Level

...
...

...
...

Fig.2. Multilevel cache model of HFA. It consists of n levels,
with one cache in each level. Demotions (Di, 2 6 i 6 n+ 1) and
promotions (Pi, 1 6 i 6 n) are communicated among different
cache levels. D1, P0, Dn+1 and Pn are invalid in this model.

3.2 Cache Policies in Each Level

HFA is a comprehensive multilevel cache solution,

which can combine with demote/promote hints. It uti-

lizes the hint frequencies to identify hot data blocks.

HFA has two main components.

• Cache Policies in Each Level. Different from typi-

cal multilevel cache algorithms, HFA uses two queues in

each level. One queue is used to store data blocks with

high hint frequencies sorted by hotness, and the other

queue contains data blocks with low hint frequencies.

• Demotion/Promotion Policies Among Multiple

Levels. In HFA, the demotion/promotion policies add

hint frequencies as an important aspect to decide

whether a data block is demoted/promoted.

To design an effective cache policy in each level, first

we need to efficiently identify hot data blocks. Second,

a proper replacement policy should be provided to pro-

cess the I/O requests.

3.2.1 Identification of Hot Blocks

In HFA, the hotness of a random block x in cache

level i is decided by both hint frequency and hit ratio,

as calculated by:

Hi(x) =
Fi(x)

t1 + t2
+

hits(x)

t2
. (1)

In (1), t1 and t2 present the periods before and af-

ter block x is loaded in cache i, respectively. Fi(x) =

Di(x) + Pi(x), is the number of demotions and promo-

tions of block x. And hits(x) is the number of cache

hits on block x. Thus, we say a block is hot when it is

moved between cache levels and(or) accessed frequently.

As LRU-K[27] and Hint-K[22] use k steps to record

history information, HFA takes a long time interval

(t1+t2 = kT , k is an integer and T is a pre-defined time

slot) to accurately evaluate the hint frequency value of

data blocks. We set a hotness degradation value δ, and

aggregate the hint frequency of block x as:

Fi(x) =

k∑

j=0

δj−1F
j−1
i (x). (2)

Consequently, (1) changes to

Hi(x) =

∑k

j=0 δ
j−1F

j−1
i (x)

kT
+

hits(x)

t2
. (3)

3.2.2 Replacement Policy in Dual Queues

Hotness contains history information, but it is not

efficient if we manage caches by simply sorting and re-

placing blocks by the hotness value. Considering obser-

vation 1 and observation 2, a new allocated block has

the lowest priority, compared with the migrated and hit

blocks. The new allocated blocks are replaced rather

than the others when a quere is full. Consequently, in

level i, the hotness value of a new allocated block x is

set to zero (Hi(x) = 0). Block x has a low hotness

in the cache queue and is going to be demoted to the

lower level repeatedly, regardless of potential intensive

accesses on x in the near future. x becomes hot only

after it travels inter-cache levels until it is set to be a

high hint frequency value. To utilize the property of

Xiao-Dong Meng et al.: HFA: Enhancing the I/O Performance of Multilevel Cache Storage Systems 317

hint frequency as we showed in the motivation to im-

prove the cache performance, it calls a sophisticated

design of the replacement policy.

As shown in Fig.3, there are two queues in HFA in

each level. One is a queue (Q1), which stores the data

blocks with a high hotness value and sorts blocks by

the hotness values. According to the observation from

Fig.1(b), the blocks with a higher hint frequency value

tend to be reused in a near future. Therefore, we set

the other queue (Q2), which saves the blocks with a

low hotness value, but sorts the blocks by their hint

frequencies. Q1 has a higher priority than Q2, that is,

the evicted block from Q1 will be inserted to Q2, in-

stead of erasing or demoting it to a lower level. As a

result, blocks in Q1 can resist in the cache longer.

 Evicted

Evicted

Block

Period

1

5 k

k֓

Li

Li⇁

Q(Hot)

Q(Hot)

Q(Cold)

Q(Cold)

Demote (x) Promote (x)

Tout Table

Fi

x1

x2

...
...

...

Fig.3. HFA dual-queue structure.

Meanwhile, there are two types of blocks in Q2

which can be promoted to Q1. One is the blocks which

are frequently visited. The other is the blocks whose

hint frequency is higher than a threshold, because the

increment on the value of hint frequency needs the

movements of the block between cache levels. But the

promoting process from Q2 to Q1 introduces the la-

tency to the blocks with potential intensive accesses in

the near future. To reduce the latency, the blocks in

Q2 will also be promoted to Q1 after a hit.

The cache management of Q2 can apply any pro-

posed multilevel cache policy for single queue, such as

Demote[12], Promote[13] and Hint-K[22]. Therefore, the

management policy of Q2 is not mentioned in the fol-

lowing paragraphs.

According to (2), hint frequencies are dynamic. To

sort blocks by hint frequencies, in each level, HFA main-

tains a Tout table to record the hint frequency of the re-

cent demoted/promoted blocks from a level (only cross

cache level operations are considered; data blocks mov-

ing between Q1 and Q2 in a same cache level are not

recorded in Tout). The detail usage of Tout is introduced

in Subsection 3.2.3. The size of table Tout is fixed, which

is set to 0.1% of the corresponding cache size in each

level by default.

The table Tout organizes records in format

(x, Fi(x), k). It denotes that the hint frequency of block

x in period from kT to (k+1)T is Fi(x). Tout retrieves

entries to compute hotness value only when a block is

inserted into a cache level. Simultaneously, it inserts

or updates records only when a block is leaving a cache

level. For example, block x1 is evicted from a cache level

at time t and k1T < t < (k1 + 1)T . Then a new record

(x1, Fi(x1), k1) is inserted into Tout. If there has already

existed a record (x1, F
′(x1), k1) in Tout, the record will

be replaced by (x1, F (x1), k1). The old records (resided

longer than kT) in Tout are marked as invalid. When

Tout is full, a cleanup process is called to remove all the

invalid records. If Tout still has no space for the new

record insertion after the cleanup process, a record with

the lowest hint frequency in those oldest time intervals

is evicted.

The HFA management policy is shown in Algo-

rithm 1. Before kickoff, HFA sets a constant time inter-

val T , a degradation ratio δ and creates two queues Q1

and Q2 on each cache level (line 1). For cache misses,

Algorithm 1 . Pseudo-Code for HFA Cache
Operations

Input: a data block x accessed on cache level i
Initialize:

1: Set T and δ, and create Q1 and Q2

Cache miss:

2: if x can be found in Tout then

3: Calculate Fi(x)
4: if Fi(x) > Fmin then

5: Call InsertQ1(x, Fi(x))
6: else

7: Insert x into Q2

8: end if

9: else

10: Insert x into Q2

11: end if

Cache hit in Q1:

12: Hit(x) + +
13: Compare bolcks ahead of x until it finds a block x′ which

satisfies H(x′) > H(x)
14: Insert x behind x′

Func InsertQ1(x, Fi(x))
Input: a data block x and Fi(x)
15: Set Hi(x) = Fi(x)
16: if Q1 is full then
17: Evict block x′ with the minimal hotness from Q1 to Q2

18: end if

19: Insert x to Q1

20: if hits(x′) > hitsmin then

21: Insert x′ to Q2

22: else

23: Call Demote(x′) to demote x′ to a lower level
24: end if

318 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

HFA firstly checks whether corresponding records of a

missing block x can be found in Tout. If so, it reads

Tout entries to calculate the hint frequency Fi(x) and

decides which queue the block x should reside (lines 2

and 3). If Fi(x) is larger than Fmin, HFA calls a func-

tion InsertQ1 to insert x in Q1. Otherwise, x is put in

Q2. Fmin denotes a threshold value which is the mini-

mal hint frequency that blocks need to meet to stay in

Q1 (lines 4∼8). In our implementation Fmin = 1 and

k = 6. If x has no records in Tout, HFA sends x to the

head of Q2 (line 10).

The function InsertQ1 takes a data block and its hint

frequency value as inputs. If Q1 is full, it evicts block

x′ with the minimal hotness from the queue, and then

inserts x into Q1 (lines 16∼19). The block x′ is either

demoted to a lower level or inserted intoQ2, by compar-

ing hits(x′) with the lowest cache hits in Q2, which is

denoted by hitsmin. If hits(x
′) is larger, then x′ is sent

to Q2, otherwise, it calls function Demote to demote x′

to a lower level (lines 20∼24). The demote policy will

be introduced in Subsection 3.3. It is worth noting that

HFA is an exclusive multilevel cache algorithm, and it

never discards data blocks. The evicted block from one

queue is either demoted or moved to another queue.

3.2.3 Lazy Update and Bubble Sort

The hint frequency of a block is a dynamic value,

which is degrading along with time. Therefore, sorting

blocks by their hotness values in Q1 requires a real-

time update which is costly and impractical for cache

management. Therefore, we propose a lazy update and

bubble sort to solve this problem.

Firstly, regarding the lazy update, we set a hot-

ness expire duration (T) and a last update time for all

blocks. We say the hotness of a block is expired if the

duration from the last update time is longer than T .

And we check Tout to update Hi(x) when it is expired

and x is called to use.

The demote and the promote processes of HFA work

on the blocks with the minimal and the maximal hot-

ness values, respectively. However, selecting those data

blocks needs a sorting through all the blocks in a queue.

To avoid this scenario, we introduce a bubble sort mech-

anism. The bubble sort increases hits(x) by 1 if there

is a cache hit on block x, and then it compares H(x)

with the blocks ahead sequentially until it finds block

x′ which satisfies H(x′) > H(x). Then, block x is al-

located behind x′ (lines 12∼14 in Algorithm 1). In-

stead of searching the block with the maximal and the

minimal hotness values, the bubble sort only needs to

retrieve the head and the tail blocks in a queue. There-

fore, the bubble sort improves the sorting performance

without correctness garranteed.

3.3 Demotion/Promotion Policies Among

Multiple Levels

According to the cache policies in each level and

history hint information, we adjust the original de-

motion/promotion policies for demote/promote-based

cache algorithms, such as Demote[12], Promote[13], and

Hint-K[22-23]. HFA uses hint frequency value as a hint.

The hint is bundled with the corresponding data block

and demoted or promoted to the other cache levels.

The demotions and promotions can happen on ei-

ther Q1 or Q2. Since Q2 is managed separately by a

proposed multilevel cache policy, we only demonstrate

the demotion and promotion process for Q1. As shown

in Algorithm 2, the demotion policy is implemented by

function Demote, which takes a block x with the min-

imal hotness in Q1 as an input. Before the demotion

of x from cache level i − 1, HFA updates Tout with

(x, Fi(x), k), and takes Fi(x) as a hint. Then, Fi(x)

and block x are sent to level i. When cache level i re-

ceives x, HFA takes the hint and history records in Tout

to calculate an initial hotness value Hi(x) for the de-

moted block x by using (3). Then, Hi(x) decides into

which queue the block x should be inserted.

Algorithm 2 . Pseudo-Code for HFA Demotion and
Promotion Processes
Func Demote(x)
Input: a data block x with the minimal hotness of Q1

In cache level i− 1
1: Insert Fi(x) into Tout

2: Send Fi(x) and block x to a lower level i
3: Evict x from Q1

In cache level i

4: Calculate Hi(x)
5: Insert x into a queue
6: if x is inserted into Q1 then

7: Call Promote(x)
8: end if

Func Promote(x)
Input: a data block x added into Q1

In cache level i

9: Pick up a block x′ from the head of Q1

10: if Hi(x′) > Hi(x) then

11: Insert F (x′) into Tout

12: Send F (x′) and block x′ to an upper level i− 1
13: Evict x′ from Q1

14: end if

Considering that the blocks with higher hint fre-

quencies tend to be reused in a near future (shown in

Xiao-Dong Meng et al.: HFA: Enhancing the I/O Performance of Multilevel Cache Storage Systems 319

Fig.1), HFA promotes hot blocks in Q1 from a lower

cache level i to a higher level i−1 to improve the cache

response time on the hot blocks. The promotion pro-

cess is awakened in a cache level i when Q1 receives a

demoted block x from i−1. Assuming that x′ is a block

with the maximal hotness in Q1 of level i. HFA com-

pares Hi(x
′) with Hi(x), and promotes x′ to level i− 1

if Hi(x
′) is larger. After promotion, F (x′) is recorded

in Tout and x′ is evicted from Q1.

3.4 Dynamic Partition

Dual-queue design in HFA prolongs the life of blocks

with higher hint frequency in a cache level by managing

the hot blocks in Q1. The hot blocks in Q1 are more

likely to be visited again in a near future. However,

an improper configuration on queue size impacts the

cache performance negatively. A larger Q1 could result

in wasting the cache space for keeping cold blocks in

Q1, but replacing blocks in Q2 more frequently. On the

contrary, a smaller Q1 losses the benefits gained from

the hint frequency properties.

HFA uses a dynamic partition strategy in runtime

to adjust the size ratio between Q1 and Q2. The basic

idea of the dynamic partition is to enlarge Q1 (shrink

Q2) if it contains a number of cold blocks (Hi(x) = 0

is considered as cold blocks in our configuration), but

to shrink Q1 (enlarge Q2) if Q2 contains too many hot

blocks. The exchanged queue space between Q1 and

Q2 is estimated by equation S = NC −NH, where NC

and NH are the number of cold and hot blocks in Q1

and Q2 respectively.

In our implementation (see Algorithm 3), HFA

repartitions the two queues over every T time in each

cache level. Initially, the whole cache space is allocated

to Q1 and Q2 evenly. Next, in run-time, HFA records

the resident duration of cold blocks tC(x) in Q1 and

hot blocks tH(x) in Q2 for every period T . And then it

calculates S by using the average number of cold and

hot blocks in Q1 and Q2 respectively.

S = NC −NH,

where NC =
∑

x∈Q1
tC(x)

T
and NH =

∑
x∈Q2

tH(x)

T
. The

value will round down to the nearest integer. If S is

a positive value, it indicates that the negative impact

of cold blocks in Q1 overweights that of hot blocks in

Q2. Thereby, HFA resizes the two queues by moving S

space from Q1 to Q2. If Q1 is full, S blocks are also

reallocated to Q2 from the tail of Q1, vice versa. Note

that the partitioning is logical, not physical, and the

cache blocks are not actually moved in the cache dur-

ing repartition.

Algorithm 3 . Dynamic Partition Process of HFA

Func Partition()
For each cache level

Cache space is allocated to Q1 and Q2 evenly
for each T time do

Calculate S

if S > 0 then

Move S space from Q1 to Q2

end if

if S < 0 then

Move S space from Q2 to Q1

end if

end for

4 Case Study

HFA uses hint frequency information to improve the

cache hit ratio in each cache level. Although the hint

frequency predicts the cache access property in each

level, it has two defects. Firstly, the hint frequency

is a collection of history demotion and promotion ope-

rations, which usually has latency. For recency- and

frequency-dominated applications, it may not catch the

cache access pattern accurately. Secondly, the hint fre-

quency improves the cache hit ratio of the blocks de-

parture or arrival frequently in a period on each cache

level. It does not catch the blocks that travel actively

in different cache levels. For example, in a period T ,

a block x moves in and out level i for m times, where

m > Fmin. It is considered as a hot block and will be

kept longer in Q1 in level i. Nevertheless, if x trav-

els several different cache levels after it leaves level i,

it will not be marked as a hot block. As proposed in

[23], these blocks are considered as active blocks and

have a potential to impact cache performance for many

workloads.

The two-queue design of HFA makes it easy for co-

operating with the other cache approaches to further

improve the cache performance. In this section, we

show how HFA integrates with algorithms like Demote,

Promote and Hint-K to manage multilevel cache.

4.1 HFA Combined with Demote

Demote policy[12] introduces a DEMOTE operation

to achieve exclusive caching. The blocks ejected from

an upper cache are transferred to a lower level. De-

mote policy improves the cache system response time

while the operation overhead is comparatively lower

to the other multilevel cache approaches. Regarding

320 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

to the latency issue of HFA, HFA uses demote policy

to manage Q1 and sort blocks in Q2 by hotness sepa-

rately as shown in Algorithm 4. As a result, the MRU

data blocks are marked as a hot block without waiting

for any Demote/Promote operations. Thereby, Demote

can reduce the latency for the recency-dominated ap-

plications.

Algorithm 4. Cache Management for HFA Combined
with Demote Policy

For a cache read miss in cache level i:

1: Get missing block x from a lower level cache or disk
2: Compute Fi(x), and put x into Q2

3: If Q2 is full, then demote a block from the queue tail to level
i+ 1

4: Update Tout with the demoted block

For a cache hit in Q2 or Q1:

5: Put the hit block to the head of Q1

6: if Q1 is full then
7: Demote the tail block to level i+ 1, and update Tout

8: end if

4.2 HFA Combined with Promote

Promote approach[13] applies PROMOTE operation

instead of DEMOTE. It achieves exclusive caching

without demotions while the bandwidth cost and the

cache aggregate response time are lower than those of

DEMOTE. The principle of PROMOTE is to push the

blocks that are most likely to be visited to the upper

level. Combining HFA with PROMOTE can actively

increase the hotness of those promoted blocks, which re-

duces the delay for hot blocks identification. To adapt

PROMOTE, HFA assigns one bit hint for each block

hintP (x) to decide which cache should own the block.

Computation of hintP (x) in our implementation is the

same with [13]. hintP (x) is set to true when a cache

hit or disk read is firstly formed and set to false when

some cache decides to keep it. The management policy

is shown in Algorithm 5.

4.3 HFA Combined with Hint-K

Hint-K approach explores the relationship between

cache access and block activeness which is the degree

of block movements between cache levels. Regarding to

the second issue of HFA, Hint-K can gather the block

history information from different cache levels which

improves the hit ratio of HFA. Combining HFA and

Hint-K needs some changes on the cache replacement

policy (as shown in Algorithm 6). Instead of demotion

and promotion with hint frequency, the combined algo-

rithm uses K-step Hint Value (KHV)[23] as a hint. Q2

is sort by LRU (Last Recent Use).

Algorithm 5. Cache Management for HFA Combined
with Promote Policy

For a read request from upper level i− 1
if cache miss in Q2 then

Send request to level i+ 1
else

Calculate hintP (x)
if hintP (x) is True then

Update Tout and promote x to level i− 1
end if

end if

For receiving a block x from the other levels

if Fi(x) 6 Fmin then

if hintP (x) is True then

Update Tout and promote x to level i− 1
else

Insert x in Q2

end if

else

Insert x in Q1

end if

Algorithm 6. Cache Management for HFA Combined
with Hint-K Policy

For Q2 of level i,

receiving a block x:

if x ∈ Tout then

Insert x into Q1

else

Insert x into the head of Q2

end if

demoting a block:

Step 1. Get the minimum KHV in Q2

Step 2. Find block(s) with the minimal KHV
Step 3. Demote the last block from those in step 2 to level
Step 3. i+ 1
Step 4. Update KHV value of the demoted block

promoting a block at read miss:

Step 1. Receive the minimum KHV in Q2 from level i− 1
Step 2. If KHV of x is larger than the minimum KHV, then
Step 3. promote x and update corresponding KHV

Hint-K[22-23] is the closest approach to our work.

Both approaches use a hybrid hint to improve the multi-

level cache performance. However, there are two ma-

jor differences between Hint-K and HFA. 1) The man-

agement policy of Hint-K in each cache level does not

consider the period/sudden hot blocks, which means a

block becomes a hotspot data in a short period. For ex-

ample, for block x that was hopped between cache levels

frequently in a transient time interval, Hint-K consid-

ers it as an active block and assigns x a high KHV to

capture x in an upper level. If x is never used in the

near future, we prefer to remove x from the queue im-

Xiao-Dong Meng et al.: HFA: Enhancing the I/O Performance of Multilevel Cache Storage Systems 321

mediately. On the contrary, Hint-K resists x due to its

high KHV, which reduces the cache hit ratio. This issue

can get worse when those cold blocks are accumulated.

Different from Hint-K, HFA considers this issue by de-

grading hint over time. A block can get cold and be

demoted to a lower level when it receives no operation

in a period. 2) Hint-K made an observation that hot

blocks are usually active. In another word, a block is

identified to be hot only after a number of inter-cache

level movements of the block. Hence, there are always

a latency and extra network traffic (typically, they are

called warm-up cost of a data block[53]) to capture hot

blocks in Hint-K. Instead, HFA reduces the warm-up

response to hot blocks. We define a hot block by both

hit and movement frequencies, which guarantees a quick

detection on hot blocks and holds it in a higher priority

queue.

5 Simulation Methodology and Analysis

To demonstrate the effectiveness of the HFA algo-

rithm, we use a trace-driven simulation to evaluate HFA

and other popular multilevel cache approaches under

different I/O workloads.

5.1 Simulation Methodology

We use fscachesim as the simulator to evaluate var-

ious multilevel cache solutions, which appears in sev-

eral previous literatures[12,22-23]. Nowadays most mul-

tilevel cache algorithms are based on demote and pro-

mote hints[12,16,22,42-44], thereby we select Demote[12],

Promote[13] and Hint-K[22-23] algorithms in our com-

parison. HFA approach is collaborated with these algo-

rithms, and we use D-HFA, P-HFA, H-HFA to delegate

HFA combined with demote hints, promote hints and

hybrid hints (both demote and promote hints), respec-

tively. We select an ideal case on the knowledge of

future hint information called Oracle HFA (Oracle for

short), which is included in our comparison as well.

We use six I/O traces in our simulation as below.

Statistics of the six traces are summarized in Table 3.

1) WebSearch: this I/O trace is collected from a

popular search engine.

2) FIU IODedup Homes (FIU): the block traces are

the collected downstream of an active page cache for

three weeks from an NFS server that serves the home

directories of SNIA research group.

3) MSN Storage File System (MSN-SFS): the traces

are collected for MSN storage file server for a duration

of 6 hours, which consists of 36 10-minute trace files;

they trace the primarily disk I/O events at block level

as well as file I/O events.

4) Microsoft Exchange: the Microsoft Exchange

traces are collected from an Exchange 2007 SP1 server,

which is a mail server for 5 000 corporate users.

5) TPC-E: the traces are collected at Microsoft run-

ning TPC-C benchmark.

6) TPC-C: the traces are collected at a server run-

ning TPC-C benchmark.

Table 3. Summary of Traces

Trace Year Size of Length (h) I/Os (×106)

Dataset (GB)

WebSearch 2002 4.3 2.6 5.7

FIU 2009 5.9 5.7 7.3

MSN-SFS 2007 1.6 6.0 4.5

Microsoft 2007 1.9 5.0 11.5

Exchange

TPC-E 2007 18.4 11.4 16.7

TPC-C 2007 27.2 12.1 21.3

Unless otherwise mentioned, the following default

parameters are used: two cache levels (n = 2) and the

block size (4 KB). The ratio of cache size between an

upper cache level and the next lower level is 1 : 4, and

it is 1 : 2 for the Websearch and FIU traces. Aggre-

gate cache size is the sum of all cache levels. Based on

the default settings of fscachesim, the average access

time of L1 cache, L2 cache and disks is 0.2 ms, 2 ms

and 10 ms, respectively. We set the warm-up time to

be long enough to make sure enough data blocks have

been flooded to all cache levels.

In our simulation, we set proper values for several

parameters in HFA. The size of Tout table is set to 0.1%

of the cache size of each level, and δ is set to 0.5. T

is set to the duration of 1 000 requests. We find that

this group of setting gives the best performance in the

experiment.

5.2 Simulation Results

In this subsection, we give the simulation results of

different multilevel cache algorithms under various I/O

workloads.

5.2.1 Cache Performance

First, we measure the cache performance under

different workloads. In these simulations, we use two

typical metrics, aggregate hit ratio and average re-

sponse time, to evaluate the I/O performance.

The results of aggregate hit ratio are presented in

Fig.4. It is clear that compared with the correspond-

ing original cache algorithms such as Demote, Promote

322 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

3 6 12 24

Cache Size (MB)

48 96 192

3584 7168 14336 28672

Cache Size (MB)

57344 114688 229376

1280 2560 5120 10240 20480 40960 81920

0

A
g
g
re

g
a
te

 H
it
 R

a
ti
o
 (

%
)

A
g
g
re

g
a
te

 H
it
 R

a
ti
o
 (

%
)

A
g
g
re

g
a
te

 H
it
 R

a
ti
o
 (

%
)

20

40

60

80

100

0

5

10

15

20

25

30

35

40

0

10

20

30

40

50

60

70

80

A
g
g
re

g
a
te

 H
it
 R

a
ti
o
 (

%
)

0

10

20

30

40

50

60

70

80

A
g
g
re

g
a
te

 H
it
 R

a
ti
o
 (

%
)

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

90

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

3 6 12 24

Cache Size (MB)

Cache Size (MB)

2560 5120 10240 20480 40960 81920 163840

Cache Size (MB)

640 1280 2560 5120 10240 20480 40960

Cache Size (MB)

48 96 192

A
g
g
re

g
a
te

 H
it
 R

a
ti
o
 (

%
) Oracle

Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

(a) (b)

(c) (d)

(e) (f)

Fig.4. Aggregate hit ratio under various traces with different aggregate cache sizes. FIU-HOMES uses a two-level cache hierarchy
which has a fixed cache size ratio of 1 : 2. MSN-SFS, Microsoft Exchange and TPC-E use a two-level cache hierarchy with a fixed cache
size ratio of 1 : 4. TPC-C uses a three-level cache hierarchy with a fixed cache size ratio of 1 : 2 : 4. (a) WebSearch. (b) FIU-HOMES.
(c) MSN-SFS. (d) Microsoft Exchange. (e) TPC-E. (f) TPC-C.

and Hint-K, HFA achieves performance gains by up to

19.1%, 7.1% and 6.5%, respectively. In most cases, it

is easy to see that the gains from HFA are proportional

to the cache size. This is because large cache size is

suitable for HFA to allocate blocks to right queues.

Further, increasing cache size beyond a value (such

as 48 MB of WebSearch and 40 906 MB of MSN-SFS)

does not seem to help hit ratio significantly. More-

over, compared with Hint-K, HFA presents a little im-

provement on Hint-K for various workloads, as shown

in Figs.4(a)∼4(d). The reason is that those workloads

show strong temporal locality. Then, in runtime, the

size of Q1 is much larger than the size of Q2. As a

result, the behaviour of H-HFA approaches to that of

Hint-K.

The simulation results on response time under diffe-

rent workloads are shown in Fig.5. Compared with

original Demote, Promote and Hint-K algorithms, HFA

sharply decreases the average response time. For exam-

ple, D-HFA reduces the average response time by up to

26% compared with Demote in Fig.5(c). P-HFA and

H-HFA decrease the I/O latencies by up to 20.7% and

10.1%, respectively. Clearly, the latency improvement

of HFA over Hint-K is comparatively smaller than that

of D-HFA and P-HFA. It is because that both HFA and

Hint-K are history hint based approaches. In Fig.5(b),

we also notice a special case on cache size 96 MB that

Promote responses faster than HFA. The reason is that,

for trace FIU-HOMES, a large number of promoted

blocks managed by HFA in the upper level are degraded

Xiao-Dong Meng et al.: HFA: Enhancing the I/O Performance of Multilevel Cache Storage Systems 323

1

2

3

4

5

6

7

8

8.25

8.50

8.75

9.00

9.25

9.50

2

3

4

5

6

7

8

9

10

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

3

4

5

6

7

8

9

10

3 6 12 24

Cache Size (MB)

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e
 (

m
s)

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e
 (

m
s)

2

3

4

5

6

7

8

9

10

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e
 (

m
s)

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e
 (

m
s)

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e
 (

m
s)

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e
 (

m
s)

48 96 192

(a)

3 6 12 24

Cache Size (MB)

48 96 192

(b)

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

1280 2560 5120 10240 20480 40960 81920

Cache Size (MB)

(c)

2560 5120 10240 20480 40960 81920 163840

Cache Size (MB)

(d)

3584 7168 14336 28672

Cache Size (MB)

57344 114688 229376

(e)

3584 7168 14336 28672

Cache Size (MB)

57344 114688 229376

(f)

Fig.5. Average response time under different traces with different aggregate cache sizes. The TPC-C trace runs at a three-level cache
architecture, and the cache size ratio is 1 : 2 : 4. (a) WebSearch. (b) FIU-HOMES. (c) MSN-SFS. (d) Microsoft Exchange. (e) TPC-E.
(f) TPC-C.

as cold blocks and demoted quickly before the next vis-

iting.

We summarize the previous results as shown in Ta-

ble 4.

Table 4. Improvement of HFA Approach over Other Typical

Multilevel Cache Algorithms in Terms of Aggregate Hit Ratio

and Average Response Time

Algorithm Aggregate Hit Average Response

Ratio (%) Time (%)

Demote 19.1 22.0

Promote 7.1 20.1

Hint-K 6.5 10.1

5.2.2 Cache Overhead

The first overhead in our evaluation is the consump-

tion of inter-cache bandwidth of different algorithms,

and the results are shown in Fig.6. The number of hint

frequencies of all data blocks under different workloads

is monitored. Obviously, HFA reduces hint frequencies

by approximately 10% on average. It demonstrates that

HFA is more efficient on keeping the hot data blocks at

a proper level. We also notice that the enhancement

becomes larger with the increased cache size.

Regarding to the HFA scheme, the space overhead

is decided by Tout and Q1. In our simulation, the size

of Tout is fixed to 0.1% of the corresponding cache size

324 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

0

20

40

60

80

100

120

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

160

180

3 6 12 24

Cache Size (MB)

48 96 192

H
in

t
F
re

q
u
en

ci
es

 (
%

)

H
in

t
F
re

q
u
en

ci
es

 (
%

)
H

in
t

F
re

q
u
en

ci
es

 (
%

)

0

20

40

60

80

100

120

H
in

t
F
re

q
u
en

ci
es

 (
%

)

0

20

40

60

80

100

120

140

H
in

t
F
re

q
u
en

ci
es

 (
%

)

(a)

3 6 12 24

Cache Size (MB)

48 96 192

(b)

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

Oracle
Demote
D-HFA
Promote
P-HFA
Hint-K
H-HFA

0

20

40

60

80

100

120

140

160

H
in

t
F
re

q
u
en

ci
es

 (
%

)
2560 5120 10240 20480 40960 81920 163840

Cache Size (MB)

(c)

2560 5120 10240 20480 40960 81920 163840

Cache Size (MB)

(d)

2560 5120 10240 20480 40960 81920 163840

Cache Size (MB)

(e)

2560 5120 10240 20480 40960 81920 163840

Cache Size (MB)

(f)

Fig.6. Hint frequencies of all data blocks under different I/O workloads (the hint frequencies in Oracle HFA are normalized to 100%).
(a) WebSearch. (b) FIU-HOMES. (c) MSN-SFS. (d) Microsoft Exchange. (e) TPC-E. (f) TPC-C.

in each level. Q1 uses extra space (a few megabytes in

typical) to record the history hint information of hot

data blocks.

The space overhead is shown in Fig.7. It is clear

that the space overhead of HFA is very low (less than

2.6%).

5 10 20

S
p
a
ce

 O
v
er

h
ea

d
 (

%
)

40 80
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cache Size (MB)

WebSearch
FIU-HOMES
MSN-SFS
Microsoft Exchange
TPC-C
TPC-E

Fig.7. Space cost of HFA approach under different traces.

5.2.3 Stability

The stability of a cache system shows the changes

on the system response speed in run time and how quick

the system can reach a stable hit ratio in the first cache

level after start-up. In this part we analyze the stabil-

ity of HFA by choosing TPC-C as the benchmark, and

implementing D-HFA, P-HFA and H-HFA on a three-

level cache with the aggregate cache space of 114 GB.

The cache space ratio of the three levels are 1 : 2 : 4.

In Fig.8, the x-axis is the time that benchmarks run

for 512 periods from the time when all the cache levels

are warmed up. The y-axis of Fig.8(a) and Fig.8(b) is

the cache hit ratio and the space proportion of Q1 : Q2,

respectively. It is noted that the proportion in the first

time period (T = 1) is 1 : 1 for all three approaches.

Fig.8(a) shows the first level cache hit ratio for the

three approaches along with the time. It is clear that

Xiao-Dong Meng et al.: HFA: Enhancing the I/O Performance of Multilevel Cache Storage Systems 325

the hit ratio reaches a stable level at around 54, 39 and

62 after 8, 6 and 4 periods for D-HFA, P-HFA and H-

HFA, respectively. The fluctuation of H-HFA (8.9% on

average) is larger than the fluctuation of D-HFA (4.6%)

and P-HFA (4.8%).

1 2 4

C
a
ch

e
 H

it
 R

a
ti
o
 (

%
)

S
p
a
c
e
 R

a
ti
o
 o

f
Q

1
 (

%
)

8 16 32

Number of T

64 128 256 512

1 2 4 8 16 32

Number of T

64 128 256 512

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

D-HFA

D-HFA

P-HFA

P-HFA

H-HFA

H-HFA

(a)

(b)

Fig.8. Influence of dynamic partition on stability over time. (a)
Comparison of cache hit ratio on the first level under different
approaches. (b) Comparison of queue proportion under different
approaches.

Fig.8(b) illustrates the results from the dynamic

partition of changing of proportion between Q1 and Q2

along with the time. For D-HFA and P-HFA, Q1 takes

13% and 9% of the whole cache space of the top level,

respectively. On the contrary, Q1 takes over 70% of

the cache space in H-HFA. This is because that Hint-

K assists to identify hot blocks from lower levels and

aggregates them to the top level. Then the refresh

frequency of blocks in the first cache level increases.

Consequently, Q1 requests more space to keep the hot

blocks. Meanwhile, this is also the reason why the fluc-

tuation of H-HFA is larger than that of the other ap-

proaches.

5.2.4 Impact of Size Ratio of Two Queues

Fig.9 examines the impact of size ratio of Q1 and

Q2 on the cache aggravate hit ratio. We use TPC-C as

the benchmark in this evaluation. The aggregate cache

size is 114 GB. The cache space ratio of the three levels

is 1 : 2 : 4. Instead of dynamic partition, the space

proportion of Q1 : Q2 is increased manually from 0%

to 100% with an interval of 10%. From the figure, we

notice that the aggregate hit ratio of D-HFA, P-HFA

and H-HFA reaches a peak value of 46%, 35% and 55%

at a space ratio of 2 : 8, 1 : 9, and 8 : 2, respectively,

which is about 11% lower than the value that uses dy-

namic partition. It can be seen that P-HFA uses the

smallest Q1 space than the rest to reach the maximal

aggregate hit ratio, because TPC-C has a weak tem-

poral locality. Most of the blocks promoted from the

lower level are stored in Q2 and usually missed. This is

another reason why D-HFA performs better on TPC-C.

Moreover, it can be seen that Q1 of H-HFA consumes

over 80% of the whole cache space to meet the best

hit ratio. As illustrated in Subsection 5.2.3, Hint-K in-

creases the refresh frequency of blocks, which increases

the hotness value of the block as well. As a result, it

allocates more cache space to Q1 to keep the hot blocks.

0 0.1 0.2

A
g
g
re

g
a
te

 H
it
 R

a
ti
o
 (

%
)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10

20

30

40

50

60

Space Ratio of Q1 to Q2

 D-HFA P-HFA H-HFA

Fig.9. Aggregate hit ratio of D-HFA, P-HFA and H-HFA when
varying the proportion between Q1 and Q2 on a three-level cache
over trace TPC-C.

5.2.5 Examination of Parameter k of HFA

We now study the impact of parameter k. The trace

and the cache configuration are the same with the pre-

vious evaluation. In Fig.10, we plot the parameter k

versus the aggregate cache hit ratio. When k is zero,

Tout is disabled, and the hotness of blocks is only re-

lated to the hit frequency which makes D-HFA, P-HFA

and H-HFA behave close to original Demote, Promote

and Hint-K respectively. It can be seen that the ag-

gregate hit ratio increases to a peak value when k is 4

for P-HFA and 5 for both D-HFA and H-HFA, and then

goes smoothly. The larger the value of k, the longer the

operation history of blocks recorded in Tout, which cal-

culates the hotness values more accurately. However,

according to (3), the old history (large k) contributes

much less to the hotness than new operations. Fur-

ther, since Tout’s size is fixed, the old history could be

removed by the clean-up process. As a result, after

parameter k grows to a proper value, the aggregate hit

ratio will not increase anymore. Therefore, in the con-

figuration of HFA, we set k to a fixed value of 6 for all

workloads.

326 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

0 1 2 3 4 5 6

Value of k

7 8 9 10

70

40

50

60

A
g
g
re

g
a
te

 H
it
 R

a
ti
o
 (

%
) D-HFA P-HFA H-HFA

Fig.10. Plot of the parameter k (the steps of history operations)
versus the aggregate hit ratio for algorithms D-HFA, P-HFA and
H-HFA on trace TPC-C. The cache has three levels and the space
ratio of each level is 1:2:4. The aggregate cache space is 114 GB.

5.3 Analysis

From the results in Subsection 5.2, compared with

the original Demote, Promote and Hint-K algorithms,

it is clear that HFA approach has many advantages

on cache performance. There are several reasons to

achieve these gains. First, HFA is based on the anal-

ysis of the history hint information of data blocks,

which is one of the most significant essences in mul-

tilevel cache systems. By effectively identifying the

hint frequencies, hot data blocks are selected to have

a long residence in upper-level cache, which increases

the aggregate hit radio of data blocks and decreases

the average response time. Second, HFA divides tra-

ditional queues into two dedicated queues, which keeps

the hint information locally to reduce the usage of inter-

cache bandwidth. Third, HFA reduces the overall hint

frequencies (inter-cache demotions/promotions), which

decreases the bandwidth consumption among different

levels. Besides, the space cost of HFA approach is very

low, which can help to provide high performance under

various workloads. In addition, HFA exhibits a good

stability from two aspects. On one hand, the turbu-

lence on the cache hit ratio is low. On the other hand,

it can reach a stable status in a short time.

6 Conclusions

In this paper, we proposed a novel multilevel cache

approach called HFA, which explores hint frequencies of

data blocks. HFA monitors the status of data blocks to

keep hot data blocks with high hint frequencies resident

in cache as long as possible. Mathematical definitions

are given to effectively identify hot data blocks. And

we discussed various types of hints combined with the

HFA approach. The simulation results showed that,

compared with original Demote, Promote and Hint-

K algorithms, the corresponding algorithms combined

with HFA approach achieve better performance under

different I/O workloads.

References

[1] Zhao Q, Liew S C, Zhang S, Yu Y. Distance-based location

management utilizing initial position for mobile communi-

cation networks. IEEE Transactions on Mobile Computing,

2016, 15(1): 107-120.

[2] Yang R, Wang Z. Cross-oriented choquet integrals and their

applications on data classification. Journal of Intelligent &

Fuzzy System, 2015, 28(1): 205-216.

[3] Zhu Z, Zhang Y, Ji Z, He S, Yang X. High-throughput

DNA sequence data compression. Briefings in Bioinformat-

ics, 2015, 16(1): 1-15.

[4] Wang T, Liu D, Wang Y, Shao Z. Towards write-activity-

aware page table management for non-volatile main memo-

ries. ACM Transactions on Embedded Computing Systems,

2015, 14(2): 34:1-34:23.

[5] Liu J K, Au M H, Susilo W, Liang K, Lu R, Srinivasan

B. Secure sharing and searching for real-time video data in

mobile cloud. IEEE Network, 2015, 29(2): 46-50.

[6] Li J, Liu C, Liu B, Mao R, Wang Y, Chen S, Wang Q et

al. Diversity-aware retrieval of medical records. Computers

in Industry, 2015, 69: 81-91.

[7] Huang X, Cheng H, Li R H, Qin L, Yu J X. Top-K struc-

tural diversity search in large networks. The VLDB Journal,

2015, 24(3): 319-343.

[8] Chen R, Qin Z, Wang Y, Liu D, Shao Z, Guan Y. On-

demand block-level address mapping in large-scale NAND

flash storage systems. IEEE Transactions on Computers,

2015, 64(6): 1729-1741.

[9] Hao Y, Xu J, Bai J, Han Y. Image decomposition combin-

ing a total variational filter and a Tikhonov quadratic fil-

ter. Multidimensional Systems and Signal Processing, 2015,

26(3): 739-751.

[10] You Z H, Yu J Z, Zhu L, Li S, Wen Z K. A MapReduce based

parellel SVM for large-scale predicting protein-protein in-

teractions. Neurocomputing, 2014, 145: 37-43.

[11] Motghare M, Shrawankar U. RFS-UCM: A unified multi-

level cache management policy. In Proc. the 9th IEEE Int.

Conf. Intelligent Systems and Control, Jan. 2015.

[12] Wong T M, Wilkes J. My cache or yours? Making storage

more exclusive. In Proc. USENIX Annual Technical Con-

ference, June 2002, pp.161-175.

[13] Gill B S. On multi-level exclusive caching: Offline optimal-

ity and why promotions are better than demotions. In Proc.

the 6th USENIX Conference on File and Storage Technolo-

gies, Feb. 2008, pp.48-65.

[14] Koltsidas I, Viglas S D. Designing a flash-aware two-level

cache. In Proc. the 15th Int. Conf. Advances in Databases

and Information Systems, Sept. 2011, pp.153-169.

[15] Zhou Y, Philbin J, Li K. The multi-queue replacement algo-

rithm for second level buffer caches. In Proc. the USENIX

Annual Technical Conference, June 2001, pp.91-104.

[16] Zhou Y, Chen Z, Li K. Second-level buffer cache manage-

ment. IEEE Transactions on Parallel and Distributed Sys-

tems, 2004, 15(6): 505-519.

[17] Appuswamy R, van Moolenbroek D C, Tanenbaum A S.

Cache, cache everywhere, flushing all hits down the sink:

On exclusivity in multilevel, hybrid caches. In Proc. the

29th IEEE Symposium on Mass Storage Systems and Tech-

nologies, May 2013.

Xiao-Dong Meng et al.: HFA: Enhancing the I/O Performance of Multilevel Cache Storage Systems 327

[18] Li X, Aboulnaga A, Salem K et al. Second-tier cache man-

agement using write hints. In Proc. the USENIX FAST,

Dec. 2005.

[19] Liu X, Aboulnaga A, Salem K, Li X. CLIC: CLient-

informed caching for storage servers. In Proc. the USENIX

FAST, Feb. 2009, pp.297-310.

[20] Yadgar G, Factor M, Schuster A. Karma: Know-it-all re-

placement for a multilevel cache. In Proc. the USENIX

FAST, Feb. 2007, pp.169-184.

[21] Yadgar G, Factor M, Li K, Schuster A. MC2: Multi-

ple clients on a multilevel cache. In Proc. the 28th IEEE

ICDCS, June 2008, pp.722-730.

[22] Wu C, He X, Cao Q, Xie C. Hint-k: An efficient multi-level

cache using k-step hints. In Proc. the 39th IEEE ICPP,

Sept. 2010, pp.624-633.

[23] Wu C, He X, Cao Q, Xie C et al. Hint-K: An effcient multi-

level cache using K-step Hints. IEEE Transactions on Par-

allel and Distributed Systems, 2014, 25(3): 653-662.

[24] Denning P J. The working set model for program behavior.

Communications of the ACM, 1968, 11(5): 323-333.

[25] Robinson J T, Devarakonda M V. Data cache management

using frequency based replacement. ACM SIGMETRICS

Performance Evaluation Review, 1990, 18(1): 134-142.

[26] Johnson T, Shasha D. 2Q: A low overhead high performance

buffer management replacement algoritm. In Proc. the 20th

Int. Very Large Data Bases, Sept. 1994, pp.439-450.

[27] O’neil E J, O’neil P E, Weikum G. The LRU-K page re-

placement algorithm for database disk buffering. ACM SIG-

MOD Record, 1993, 22(2): 297-306.

[28] O’neil E J, O’Neil P E, Weikum G. An optimality proof

of the LRU-K page replacement algorithm. Journal of the

ACM, 1999, 46(1): 92-112.

[29] Kim J M, Choi J, Kim J et al. A low-overhead high-

performance unified buffer management scheme that ex-

ploits sequential and looping references. In Proc. the 4th

Symp. Operating System Design & Implementation, Oct.

2000.

[30] Lee D, Choi J, Kim J H et al. LRFU: A spectrum of policies

that subsumes the least recently used and least frequently

used policies. IEEE Trans. Computers, 2001, 50(12): 1352-

1361.

[31] Jiang S, Zhang X. LIRS: An efficient low inter-reference re-

cency set replacement policy to improve buffer cache perfor-

mance. ACM SIGMETRICS Performance Evaluation Re-

view, 2002, 30(1): 31-42.

[32] Megiddo N, Modha D S. ARC: A self-tuning, low overhead

replacement cache. In Proc. the USENIX FAST, Mar.31-

Apr.2, 2003, pp.115-130.

[33] Bansal S, Modha D S. CAR: Clock with adaptive replace-

ment. In Proc. the USENIX FAST, Mar.31-Apr.2, 2004,

pp.187-200.

[34] Gniady C, Butt A R, Hu Y C. Program-counter-based pat-

tern classification in buffer caching. In Proc. OSDI, Dec.

2004, pp.395-408.

[35] Gill B S, Modha D S. SARC: Sequential prefetching in adap-

tive replacement cache. In Proc. the USENIX Annual Tech-

nical Conference, Apr. 2005, pp.293-308.

[36] Zhou F, von Behren J R, Brewer E A. AMP: Program con-

text specific buffer caching. In Proc. the USENIX Annual

Technical Conference, Apr. 2005, pp.371-374.

[37] Jiang S, Ding X, Chen F, Tan E, Zhang X. DULO: An effec-

tive buffer cache management scheme to exploit both tem-

poral and spatial locality. In Proc. the 4th USENIX Con-

ference on File and Storage Technologies, Dec. 2005.

[38] Jiang S, Chen F, Zhang X. CLOCK-Pro: An effective

improvement of the CLOCK replacement. In Proc. the

USENIX Annual Technical Conference, Apr. 2005, pp.323-

336.

[39] Gill B S, Modha D S. WOW: Wise ordering for writes

— Combining spatial and temporal locality in non-volatile

caches. In Proc. the 4th USENIX Conference on File and

Storage Technologies, Dec. 2005.

[40] Zhu Y, Jiang H. RACE: A robust adaptive caching strategy

for buffer cache. IEEE Transactions on Computers, 2008,

57(1): 25-40.

[41] Gill B S, Ko M, Debnath B et al. STOW: A spatially and

temporally optimized write caching algorithm. In Proc. the

USENIX Annual Technical Conference, June 2009.

[42] Bairavasundaram L N, Sivathanu M, Arpaci-Dusseau A

C, Arpaci-Dusseau R H. X-ray: A non-invasive exclusive

caching mechanism for raids. In Proc. Annual International

Symposium Computer Architecture, June 2004, pp.176-187.

[43] Chen Z, Zhou Y, Li K. Eviction-based cache placement

for storage caches. In Proc. the USENIX Annual Techni-

cal Conference, June 2003, pp.269-281.

[44] He X, Ou L, Kosa M J, Scott S L, Engelmann C. A unified

multiple-level cache for high performance storage systems.

International Journal of High Performance Computing and

Networking, 2007, 5(1/2): 97-109.

[45] Gill B S. Systems and methods for multi-level exclusive

caching using hints. U.S. Patent US 7761664 B2, 2010.

[46] Wang Y, Meng X, Zhang L et al. Chint: An effective and re-

liable cache management for RDMA-accelerated key-value

stores. In Proc. the ACM Symposium on Cloud Computing,

Nov. 2014.

[47] Jiang S, Zhang X. ULC: A file block placement and replace-

ment protocol to effectively exploit hierarchical locality in

multi-level buffer caches. In Proc. the 24th Int. Conf. Dis-

tributed Computing Systems, Mar. 2004, pp.168-177.

[48] Yadgar G, Factor M, Li K et al. Management of multilevel,

multiclient cache hierarchies with application hints. ACM

Transactions on Computer Systems, 2011, 29(2): 5.

[49] Al Assaf M M, Alghamdi M I, Jiang X, Zhang J, Qin X. A

pipelining approach to informed prefetching in distributed

multi-level storage systems. In Proc. the 11th IEEE Int.

Symp. Network Computing and Applications, Aug. 2012,

pp.87-95.

[50] Meng X, Zheng L, Li L et al. PAM: An efficient power-aware

multi-level cache policy to reduce energy consumption of

Software Defined Network. In Proc. the 1st IEEE Int.

Industrial Networks and Intelligent Systems, Mar. 2015,

pp.18-23.

[51] Benhase M T, Gupta L M. Caching data in a storage sys-

tem having multiple caches including non-volatile storage

cache in a sequential access storage device. U.S. Patent US

8806122 B2, 2014.

[52] González A, Aliagas C, Valero M. A data cache with mul-

tiple caching strategies tuned to different types of locality.

In Proc. Int. Supercomputing 25th Anniversary, June 2014,

pp.217-226.

[53] Zhang Y, Soundararajan G, Storer M W et al. Warming up

storage-level caches with bonfire. In Proc. the 11th USENIX

Conf. File and Storage Technologies, Feb. 2013, pp.59-72.

328 J. Comput. Sci. & Technol., Mar. 2017, Vol.32, No.2

Xiao-Dong Meng is a Ph.D. stu-

dent of computer science in Shanghai

Jiao Tong University. He received his

Bachelor’s degree in electronic infor-

mation science and technology from

Wuhan University in 2007, and Master’s

degree in information technology from

Monash University, Melbourne, in 2010.

His main interest is in parallel and distributed computing,

social graph processing, and storage systems.

Chen-Tao Wu received his Ph.D.

degree in electrical and computer engi-

neering from Virginia Commonwealth

University, Virginia, in 2012, and M.E.

degree in software engineering in 2006

and B.E. degree in computer science

and technology in 2004, both from

Huazhong University of Science and

Technology, Wuhan. He is currently an assistant professor

in the Department of Computer Science and Engineering

at Shanghai Jiao Tong University, Shanghai. His research

interests include computer architecture and data storage

systems.

Min-Yi Guo received his B.S. and

M.E. degrees in computer science from

Nanjing University, Nanjing, in 1982

and 1986, respectively, and his Ph.D.

degree in information science from

University of Tsukuba, Tokyo, 1998. He

was a full professor at The University

of Aizu and is the head of Department

of Computer Science and Engineering at Shanghai Jiao

Tong University. His main interests include automatic

parallelization and data-parallel languages, bioinformatics,

compiler optimization, high performance computing, and

pervasive computing.

Jie Li received his B.E. degree in

computer science from Zhejiang Univer-

sity, Hangzhou, in 1982, M.E. degree in

electronic engineering and communica-

tion systems from China Academy of

Posts and Telecommunications, Beijing,

in 1985, and Dr. Eng. degree from

the University of Electro-Communications, Tokyo, in

1993. Since April 1993, he has been with the Institute

of Information Sciences and Electronics, University of

Tsukuba, Ibaraki, where he is currently an associate

professor. He is also a chair professor in Shanghai Jiao

Tong University. His research covers computer networks,

distributed, parallel and mobile systems, and modeling

and performance evaluation.

Xiao-Yao Liang received his Ph.D.

degree in electrical engineering from

Harvard University in 2008. He is a

professor and the associate dean of

the Department of Computer Science

and Engineering, Shanghai Jiao Tong

University, Shanghai. His research

interests include computer processor and system architec-

tures, energy efficient and resilient microprocessor design,

high throughput and parallel computing, general purpose

graphic processing unit (GPGPU) and hardware/software

co-design for the cloud and mobile computing. He is

also interested in IC design, VLSI methodology, FPGA

innovations and compiler technology. He has ample

industry experience working as a senior architect or IC

designer at companies like NVIDIA, Intel, and IBM.

Bin Yao received his B.S. degree

and M.S. degree in computer science

from the South China University of

Technology, Guangzhou, in 2003 and

2007, respectively, and his Ph.D. degree

in computer science from the Florida

State University, Tallahassee, in 2011.

He has been an associate professor in

the Department of Computer Science and Engineering,

Shanghai Jiao Tong University since 2014. His research

interests are management and indexing of large databases,

and scalable data analysis.

Long Zheng received his B.S. de-

gree in computer science and technol-

ogy from Huazhong University of Sci-

ence and Technology (HUST), Wuhan,

in 2006, his M.S. degree in computer sci-

ence and engineering from the Univer-

sity of Aizu, Aizu-Wakamatsu, in 2009,

and his M.S. degree in computer science and technology

from HUST, Wuhan, in 2010. He was a visiting scholar

with Embedded and Pervasive Computing Center at Shang-

hai Jiao Tong University, Shanghai, from October 2010 to

March 2011. He received his Ph.D. degree from the Univer-

sity of Aizu, 2014. He has been a researcher in the Depart-

ment of Computer Science and Engineering, Shanghai Jiao

Tong University, Shanghai, since 2014. His research inter-

ests include chip multiprocessor, parallel and distributed

processing, and pervasive computing.

