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Abstract We present a system that automatically recovers scene geometry and illumination from a video, providing

a basis for various applications. Previous image based illumination estimation methods require either user interaction or

external information in the form of a database. We adopt structure-from-motion and multi-view stereo for initial scene

reconstruction, and then estimate an environment map represented by spherical harmonics (as these perform better than

other bases). We also demonstrate several video editing applications that exploit the recovered geometry and illumination,

including object insertion (e.g., for augmented reality), shadow detection, and video relighting.

Keywords video processing, augmented reality, illumination recovery

1 Introduction

Video editing has become a popular research topic

in computer graphics, due to the proliferation of hand-

held cameras and smart phones: video content is now

very easy to generate. Many studies treat a video as a

set of two-dimensional (2D) images, perhaps with tem-

poral continuity. However, many video editing tasks

require an understanding of the underlying scene in

three-dimensional (3D) space. For example, a common

requirement in film making, advertising and augmented

reality is to add a virtual object to a video.

The difficulty of manipulating a video as a 3D scene

comes from a lack of information. Explicit scene geome-

try, illumination and surface reflection characteristics

are not recorded in videos. While current commercial

video editing software such as Adobe After Effects pro-

vides many tools to help the user describe the scene

geometry and illumination for subsequent editing, in-

putting such information is very tedious and unreliable.

Even an experienced artist needs much effort to produce

convincing editing results.

In particular, understanding the illumination is

critical for creating proper shadows in the edited re-

sults. Any inconsistency in shadows can soon reveal

the video to be a forgery[1]. Modeling scene illumina-

tion in a way which is compatible with its geometry and

shadows is not easy, particularly when the illumination

may not be simply a point light or directional light.

Previous work has sought to estimate scene illumina-

tion with the aid of user interaction[2], by using a data

driven approach[3], or by directly measuring it with a

precise tool[4]. Here, we propose a system that can au-

tomatically infer the scene illumination for a given video

without extra input. The scene structure is initially re-

covered using existing multi-view stereo methods. We

then estimate shading intensity in the video by using in-

trinsic decomposition techniques to approximately ob-

tain the distribution of illuminated and shadowed pixels

in each frame. An illumination estimation module uses

these shading maps and the scene geometry to com-

pute an environment map represented in a spherical

harmonic basis. The resulting estimated illumination

and scene structure provide a basis for producing con-
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vincing results in a range of editing applications.

Our method works for a video of a static scene under

constant (but possibly complex) illumination, taken by

a moving camera. We require the input video to capture

a sufficient range of views of the scene for geometric re-

construction. We assume scene surfaces to be made of

Lambertian materials; we do not model specular reflec-

tion or inter-reflections between surfaces in the scene.

Later we will see that, despite these assumptions, we

can produce plausible results for real scenes containing

real surface materials.

To summarize, our main contributions are as fol-

lows.

• We present an overall framework that combines

geometric reconstruction, intrinsic decomposition, and

an optimization-based approach to recover scene illu-

mination.

• We demonstrate a set of applications that edit

videos by exploiting scene geometry and illumination,

producing convincing results for tasks such as object

insertion[5] (e.g., for augmented reality), shadow detec-

tion and video relighting.

The remainder of this paper is organized as follows.

In Section 2 we briefly review related work. Section 3

details our scene illumination estimation framework.

Section 4 presents editing applications exploiting the

recovered scene geometry and illumination. Section 5

presents some experiments and Section 6 draws some

conclusions.

2 Related Work

In video editing, knowledge of illumination, as well

as the geometric and reflectance properties of objects

in the scene, is essential to achieving realistic results.

Many approaches have been devised to recover this in-

formation from input images or videos. Intrinsic image

decomposition algorithms aim to separate a single im-

age into illumination and reflectance layers[6-9]. The

illumination component can help determine the extent

to which each pixel is in shadow, while the reflectance

component reveals how the material there reflects inci-

dent light. Such a decomposition allows editing effects

such as material replacement to be applied to a source

image or video. Other intrinsic decomposition methods

take image collections or videos of the same scene as in-

put; matches between images add extra constraints on

the relationships between reflectance values, permitting

more accurate results[10-14].

However, approaches based on pixel-wise illumina-

tion and reflectance maps are not powerful enough to

support more complex editing operations such as object

insertion. To achieve plausible results, shadows and

inter-reflections must be carefully computed, which re-

quires an understanding of the geometry of the scene

and the lighting configuration in 3D space. The prob-

lem of estimating illumination from images is called in-

verse lighting. Dong et al. proposed a method that

can simultaneously recover spatially varying isotropic

surface reflectance and the incident lighting given a

video of a rotating object[15]. However, the geometry

of the object must be known in advance, and the ge-

ometric model needs to be precisely registered to the

image frames. Other methods recover the illumination

distribution in a scene from shadows cast by objects

of known shape[16-17]. Research has shown that hu-

mans are poor at distinguishing between different light-

ing conditions[18]; some work exploited this property

to create fake illumination that is consistent with the

scene image[19-20]. The results are physically wrong but

visually plausible, which suffices to create realistic light-

ing effects.

The geometry of a scene in the image can be

approximated by user interaction[2,21-24], inferred by

scene understanding algorithms[25-26] or using depth

sensors[27]. Many algorithms can directly estimate

the geometry of the scene from a single image using

very simple structures[28-30]. Structure-from-motion

(SFM) is an image-based modeling technique that si-

multaneously estimates 3D scene structure, camera

pose, and calibration parameters from a 2D image

sequence[31]. It lies at the core of various applications in

video processing such as depth inferencing[32-33], video

stabilization[34], SLAM[35], and so on. For example,

Snavely et al. developed a photo browser which takes

unstructured collections of photos of tourist sites as in-

put and computes the viewpoint of each photo as well

as a sparse 3D point cloud of the scene[36], enabling

the user to explore the photos in 3D space. Similarly,

“Building Rome in a Day” showed how to reconstruct

an entire city by processing an extremely large number

of photos[37]. Fuhrmann et al.[38] provided an end-to-

end image-based geometry reconstruction tool for ob-

ject modeling; it takes photos of a scene as input and

produces a textured surface as the result[38].

Rendering virtual objects into real scenes has long

been studied; Kronander et al. provided a survey[39].

The methods used solve the problems of illumination

and geometry recovery in various ways. Debevec mea-

sures scene radiance and global illumination to support

object insertion, using a mirrored ball to capture a
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high-dynamic range lighting environment at the loca-

tion of the inserted object[4]; a differential rendering

approach is used to add shadows and reflections caused

by the inserted object to the original scene. Karsch et

al. devised an image composition system that renders

synthetic objects into input photos. The approximate

scene structure and area light sources are determined

from user annotations[2]. This work was later extended

to automatically infer depths and lighting using a data

driven approach[3]. Depth values are transferred from

existing annotations in a database of RGBD images.

A light classifier is used to detect light sources in the

image and image-based lights are used to represent il-

lumination from outside the view frustum. Kholgade

et al. modeled the objects in a photograph using stock

3D models from a public repository as guidance, repre-

senting the illumination in a von Mises-Fisher basis[40].

The user may apply complex manipulations to the ob-

jects in the image, including scaling, rotation, transla-

tion, copying-and-pasting, and non-rigid deformation.

These methods work on a single image and require ex-

tra input (from user interaction, large image sets, or

a 3D model database) to obtain geometric information

which is essential for plausible illumination estimation.

In contrast, our system works on video, and the geo-

metry of the scene is automatically recovered without

additional input.

Other work has also considered inserting objects

into video. Zhang et al. estimated a depth map as dis-

crete layers for each frame[41]. The object in another

video clip is also treated as lying on a plane and is in-

serted between two layers of the source video; shadows

are synthesized according to a user specified light direc-

tion. Our method differs from [41] in that we treat the

scene and objects as 3D models, and create physically

correct shadows using realistic rendering methods.

3 Pipeline

Our approach is applicable to videos of a static scene

shot by a moving camera under (approximately) con-

stant lighting. The pipeline of our system is illustrated

in Fig.1. Given an input video, firstly the geometry

of the scene, the camera pose and the camera parame-

ters are recovered, using scene reconstruction methods.

We also apply an intrinsic decomposition algorithm to

each frame, obtaining shading and reflectance compo-

nents. The illumination of the scene is then estimated

based on the geometry and the shading. The recovered

information is passed to downstream editing applica-

tions enabling such tasks as object insertion and video

relighting.

3.1 Scene Reconstruction

Recovery of scene geometry and camera pose is the

first step of our system. We directly use existing ap-

proaches without modification. But as they are the

key to plausible results, we briefly outline how they are

used in our 3-step process. Firstly, structure from mo-

tion (SFM) recovers a sparse point cloud of the scene

geometry as well as the camera’s extrinsic parameters

(i.e., rotation and translation in world coordinates) and

intrinsic parameters (i.e., focal length and principal

(a) Input Video 

(c) Shading Layers(b) Reflectance Layers (e) Recovered Illumination

Object Insertion

Video Re-lighting

(d) Scene Geometry
& Camera Pose

(f) Applications

Scene 
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Shadow Detection
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Fig.1. Pipeline. Given (a) an input video, for each frame, (b) the shading and (c) the reflectance are computed using intrinsic video
decomposition. (d) The scene geometry and the camera pose are simultaneously recovered using scene reconstruction methods. (e)
The illumination of the scene is then estimated from the shading maps and the scene geometry. The recovered information provides a
basis for editing (f) applications such as object insertion, shadow detection, and video relighting.
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point). Next, multi-view stereo computes a dense point

cloud for the scene based on the SFM results. Finally,

surface reconstruction estimates a collection of mesh

surfaces that best explain the dense point cloud. Var-

ious tools are available that can perform these tasks,

e.g., LS-ACTS[42], and MVE[38]. We use VisualSFM[43]

and OpenMVS[44] for scene reconstruction. Various re-

constructed scene point clouds, camera poses and mesh

surfaces are shown in Fig.2.

(a)

(b)

Fig.2. Scene reconstruction results for a video of a Rubik’s cube.
(a) Sparse point cloud from SFM. (b) Final textured scene mesh
produced by multi-view stereo and surface reconstruction.

Often the algorithm needs no assistance. Neverthe-

less, in cases with very complex scenes or insufficient

views of some parts of the scene, it may fail to produce

perfect surface meshes. We will discuss such cases in

detail in Subsection 5.3, but we note here that all is

not lost — the user can use 3D modeling software like

MeshLab[45] to repair such problems before proceeding.

Once the scene geometry is ready, we use it as an

input to our illumination estimation algorithm, as de-

scribed next.

3.2 Illumination Estimation

In the standard rendering equation proposed by

Kajiya[46], the light Lr reflected from point x in di-

rection ωr is given by:

Lr(x,ωr)

=

∫
Ω

fr(x,ωi,ωr)Li(x,ωi)(ωi · n)V (x,ωi)dωi, (1)

where Li is the incident light arriving at x from direc-

tion ωi, n is the surface normal at point x, fr is the

bidirectional reflectance distribution function (BRDF)

of the surface at x, and V is the visibility term, indicat-

ing whether the light from other objects or light sources

reaches x along ωi. If we assume that the material is

Lambertian, then fr is only determined by the albedo

of the surface at point x. We assume that interreflec-

tions between the surfaces are negligible compared with

the light received from the light sources, following other

work in this area[3,40]. In this case (1) can be written:

Lr(x) = fr(x)

∫
Ω

Li(x,ωi)(ωi · n)V (x,ωi)dωi. (2)

Note that Lr no longer depends on ωr: it does not ap-

pear on the right hand side of the equation. Setting fr
to 1 in (2) allows the received light at point x to be

measured:

S(x) =

∫
Ω

Li(x,ωi)(ωi · n)V (x,ωi)dωi. (3)

Now, the shading layer of the video, which we denote

as Sv, encodes the incident illumination at each point

of the scene and can be estimated by applying an in-

trinsic decomposition algorithm[14] to it. The goal of

illumination estimation is to determine Li such that it

produces a distribution of S(x) as close as possible to

Sv given the scene geometry and camera parameters.

Thus, the following shading error should be minimized:

Es =
∑
t,p

(S(x(t, p))− Sv(t, p))
2, (4)

where t is the frame number, p is pixel position in the

image plane, and x(t, p) un-projects pixel p to the scene

surface in the camera configuration of frame t.

The illumination term Li can take a variety of forms,

such as point lighting, area lighting, directional light-

ing, spot lighting or an environment map, the last being

well-suited to representing “natural” illumination[47].

An environment map is a distribution on a sphere show-

ing the light intensity from each direction. It can be

represented as a linear combination of basis functions,

such as spherical harmonics[48], Haar wavelets[49] or von

Mises-Fisher kernels[50]. We may write Li as a weighted

sum in some basis {lk}:

Li =
∑
k

αklk. (5)
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Substituting (5) into (3) gives

S(x) =
∑
k

αk

∫
Ω

lk(x,ωi)(ωi · n)V (x,ωi)dωi

=
∑
k

αksk(x), (6)

where sk(x) is the individual contribution of basis lk
to the overall shading value S(x). Substituting (6) into

the objective function in (4) gives a quadratic form:

Es

= α
T(
∑
t,p

st,ps
T
t,p)α− 2(

∑
t,p

Sv(t, p)s
T
t,p)α+

∑
t,p

Sv(t, p)
2

= α
TAα− 2bTα+ c, (7)

where α and st,p are vectors whose k-th components

are αk and sk(x(t, p)) respectively. Having chosen a

set of basis functions {lk}, the weights of each com-

ponent can be computed by minimizing the objective

function in (7).

We use the spherical harmonic (SH) basis in our

implementation for its efficiency in modeling low-

frequency lighting[48]; 256 basis functions suffice in our

application. Fig.3 illustrates the intensity distribution

provided by some of these basis elements, and their

shading effects; note that the coefficient vector α of

SH does not have to be non-negative as a single basis

contains both positive and negative intensities. Matrix

A in (7) is semi-positive definite, and thus the mini-

mum of Es is not unique if A is singular. To avoid this

possibility, we add a regularization term Er. The final

objective function is:

E = Es + Er = α
T(A+Λ)α− 2bTα+ c, (8)

where Λ is a diagonal matrix with positive entries, used

to avoid singularities; it is set to an identity matrix in

our implementation. The quadratic function E has a

unique global minimum, which is the solution of the

linear equation:

(A+Λ)α = b.

After obtaining the coefficients {αk} for the basis

functions, the environment map Li can be generated

from (5). Fig.4 illustrates the shading produced by

such a computed environment map. The shadow cast

by the Rubik’s cube indicates that the light comes from

the right hand side, as correctly estimated by our algo-

rithm.

(a) (b)

(c) (d)

Fig.3. Sample spherical harmonic basis functions (indexed by
l, m) and their shading effects. Both positive and negative in-
tensities exist in a single SH basis, visualized here in green and
red. (a) l = 0, m = 0. (b) l = 2,m = 0. (c) l = 2, m = 1. (d)
l = 3, m = 2.

(a) (b)

(c) (d)

(e) (f)

Fig.4. Illumination recovery. (a) Input video frame. (b) Shad-
ing layer from intrinsic decomposition. (c)(e) Environment maps
estimated by our method and the one in [40] respectively. (d)
(f) Rendered recovered scene geometry under the corresponding
illumination.

4 Applications

4.1 Object Insertion

The purpose of recovering scene geometry and il-

lumination from the video is to enable video editing

with visually realistic results. One such application is

to insert objects into the video. If we put a synthetic

object into the scene, some pixels of the scene will be



Bin Liu et al.: Static Scene Illumination Estimation from Videos with Applications 435

occluded by the virtual object. The virtual object can

also have an influence on unoccluded pixels. For ex-

ample, the local area around the inserted object will

darken, as the object casts shadows on it. This area

is called a “local scene” by Debevec[4], who renders it

with a differential approach which we now briefly re-

view. Firstly, the virtual local scene is rendered with

and without the synthetic object under the given illu-

mination and camera parameters, giving images IO and

IN . The difference between these two images reveals

how the inserted object affects the scene. The change

is added to the original video frame IF to generate the

composed frame I∆:

I∆ = IF + (IO − IN ). (9)

Differential rendering requires the virtual object to be

rendered in a virtual local scene with a locally similar

color to that of the real scene. However, this does not

always work well for video, as the intensity of the lo-

cal scene may change from frame to frame, e.g., due to

auto-exposure correction by the camera (see Fig.5), the

intensity of the table changes. Adding the same diffe-

rence to each frame can lead to inconsistent shadows.

To overcome this problem, we compute the intensity in

the composed frame using:

IC = IF × (SO/SN ), (10)

where SO and SN are the rendered textureless scenes

with and without the virtual object respectively. Their

ratio reveals how much pixel darkening is caused by in-

serting the virtual object (see Fig.6). In Subsection 5.1,

we will give a qualitative and quantitative comparison

between our proposed object insertion method and dif-

ferential rendering.

If a region in the original scene is occluded by the

inserted object, we should replace it by pixels from the

(a) (b) (c) (d) (e)

Fig.5. Differential rendering by Debevec[4] . (a) and (b) show the rendered result for the textured scene with and without inserted
objects (i.e., IN and IO) respectively. (c) shows their difference IO − IN . This difference is added to the source frame IF in (d),
providing the composite results I∆ in (e). Due to changes in intensity of the surface, inconsistencies may arise in shadows.

(a) (b) (c) (d)

Fig.6. Compositing method. (a) and (b) show the original and edited scenes (i.e., SN and SO) respectively. The decrease in received
light caused by object insertion at each point is measured by SO/SN in (c). Each pixel in the source frame is darkened according to
this proportion, generating the composited result IC in (d).
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synthetic object. We determine such regions by com-

paring the depths of scene pixels and object pixels in

the camera coordinate system; the pixel in IO is copied

to IC if the inserted object is nearer to the viewer. Note

that other approaches such as the one in [2] lack scene

geometry, requiring the occluded region to be manu-

ally determined by the user. Synthetic frames showing

examples of object insertion can be seen in Fig.7.

Some frames of the input video can be blurred due

to camera motion. To produce more convincing results,

the synthetic object should also be blurred as deter-

mined by the camera movement. When compositing

frame t, we gather several samples in the time domain,

at times t′ = t−∆t with ∆t ∈ [0, 1]. The final compo-

site frame IC,t is obtained by averaging the individually

composited images at sample times t′:

IC,t

=

∑
t′ (t− t′) (Mt′IO,t′ + (1 −Mt′)IF,t(SO,t′/SN,t′))∑

t′ (t− t′)
,

where IO,t′ , SO,t′ and SN,t′ have similar meanings to

IO, SO and SN in (9) and (10), rendered at time t′.

The camera pose at t′ is computed by linearly interpo-

lating the rotation and translation of the camera be-

tween frames t and t − 1. IF,t is the t-th frame of the

input video. Mt′ is a binary mask with value 1 where

the inserted object occludes the original scene at time t′

and 0 elsewhere. Fig.8 shows some composited frames

to which a bench has been added, with and without

the use of motion blur. With motion blur, we perceive

more coherent movement of the synthetic object and

the background scene, strengthening the realism of the

result.

4.2 Shadow Detection

Shadow detection and removal are challenging com-

puter vision tasks[51]. If the light source is blocked

by various objects, the shadows cast can undesirably

darken other shapes. If we can compute the extent to

which the light is blocked, we can remove the shadow.

This is possible if scene geometry and illumination are

available. To determine how much the light is blocked

at each point, we need to compute the amount of light

it receives when there is no occlusion, by ignoring the

visibility term V in (3):

(a)

(b)

Fig.7. Object insertion example. (a) Garden. Synthetic objects are bench, dragon and ram. (b) Gallery. Synthetic objects are Buddha,
Lucy and chair.
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S′(x) =

∫
Ω

Li(x,ωi)(ωi · n) dωi.

As S(x) and S′(x) measure the light that reaches x

with and without occlusion respectively, S(x)/S′(x) in-

dicates the degree to which the light is unobstructed at

x (see Fig.9). In this example, there are two places

which appear darker: 1) the front of the Rubik’s cube,

as it is facing away from the light sources, and 2) the ta-

ble to the left of the Rubik’s cube, where light is blocked

by the cube. Only the latter constitutes a shadow. Us-

ing the shading layer from the intrinsic decomposition

alone, we cannot distinguish these two cases. However,

we can distinguish shadows of the kind in the second

case by computing S(x)/S′(x).

(a) (b)

Fig.8. Synthesised frames with an added bench. (a) Without
motion blur. (b) With motion blur.

To perform shadow removal, we divide each pixel

I(x) by the value of S(x)/S′(x) to compensate for

shadowing. Doing so directly is insufficient, as this

value may be inaccurate and some areas may be over-

corrected while other areas are still too dark. To

overcome this problem, we threshold S(x)/S′(x) to

generate a shadow mask and employ local illumina-

tion changes[52] in the masked region to adjust its ap-

pearance, as shown in Fig.9. Although being imper-

fect, our shadow removal results are comparable to

those generated by state-of-the-art automatic[53] and

interactive[54] algorithms. An alternative would be to

use the shadow mask to remove part of the original

image, and to apply image completion methods or re-

lated techniques to replace the removed shadowed re-

gion. Such approaches remain for future work.

4.3 Video Relighting

Movie studios often set up the lighting carefully

before filming as everyday environments typically do

not provide appropriate lighting. However, not all

film makers have access to the substantial resources

required, and even with careful planning, things may

not always turn out as desired. Thus, an alternative

is to improve videos after shooting by using software

to synthetically relight them. Relighting is still a chal-

lenging problem, studied in various works[55-56]. As our

approach recovers scene geometry and illumination, we

can relight video by editing the estimated environment

map. For example, we can change the color tempera-

ture of the light, change the environment map or add

additional light sources.

Fig.10 shows an example of relighting a scene.

Given the rendered scene geometry with original and

new environment maps, the relit frame can be com-

puted from (10).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig.9. Shadow detection and removal. The shadow mask used to guide shadow removal is obtained by thresholding S(x)/S′(x). (a)
S(x). (b) S′(x). (c) S(x)/S′(x). (d) Shadow mask. (e) Source frame. (f) Our shadow removal result. (g) Result of [53]. (h) Result
of [54].
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5 Experiments and Discussions

In this section we first evaluate our method and

compare its results with those of other leading meth-

ods, and finally discuss its limitations.

(a) (b)

(c) (d)

Fig.10. Video relighting. (a) Scene geometry rendered under
recovered illumination. (b) New environment map. The change
of received light at each point is calculated and is applied to (c)
the input video frame, generating (d) a relit frame.

5.1 Evaluation

To evaluate our illumination recovery method, we

compare its results with those produced by the method

of [40]. The latter uses von Mises-Fisher (vMF) kernels

as basis functions to represent the environment map in

(5); sparseness and non-negativity constraints are used

when solving for the objective function in (7). As can

be seen in Fig.4, the resulting environment map mod-

els light as mainly coming from a few directions, which

is not representative of the real world. A comparison

of the rendered scene geometry shows that our method

is superior: the shapes of shadows in our result are a

better match to those in the input video frame.

To verify the correctness of our illumination estima-

tion algorithm, we conducted the following experiment.

We first took a picture IN of a scene with a camera

mounted on a tripod. We then put a sphere in the

scene and took another picture IO as ground truth at

the same camera pose. We also took several pictures of

the scene from several viewing directions to enable us to

recover geometry. We then estimated the illumination

using the pipeline in Section 3, using SH and vMF bases

respectively. We then inserted a virtual sphere into the

original scene using the method in Subsection 4.1, pro-

ducing IC . A comparison of the ground truth image

containing a real sphere, IO, and the augmented im-

age, IC , is provided in Fig.11 for both sets of basis

functions. The environment map using vMF generates

much less realistic highlights and shadows than the one

using SH. The estimated illumination using SH provides

a plausible environment map, and the augmented result

is comparable to the ground truth.

(a) (b) (c) (d)

Fig.11. Comparison of augmented images to ground truth. (a)
Ground truth image using a real sphere. (b) (c) Augmented re-
ality images with added spheres, using environment maps based
on spherical harmonic and von Mises-Fisher bases respectively.
(d) Augmented reality images using differential rendering. The
bottom row shows the close-ups of the spheres in the upper im-
ages.

We measured the similarity between the augmented

image and the ground truth using the peak signal-

to-noise ratio (PSNR), defined in terms of the mean

squared error (MSE) between two images:

PSNR(A,B) = −10 log10 (MSE(A,B)),

for pixel values in the range [0,1]. We repeated the

aforementioned experiment using five different scenes.

Table 1 gives the results; higher PSNR values mean that

the two images are more similar. Images generated us-

ing SH are closer to the ground truth than those using

vMF, confirming that SH is more suitable for represent-

ing the environment map.

Table 1. PSNR Comparisons Between Ground

Truth G and Augmented Images Using Our Illumination

Estimation and Object Insertion Method, the Method

of [40] and the One from [4]

Scene Ours [40] [4]

1 24.1 20.5 21.7

2 26.4 22.5 27.0

3 23.2 22.6 19.2

4 26.4 23.9 26.1

5 28.0 23.2 27.8

We also compared our object insertion method with

differential rendering[4] (see Subsection 4.1) in a simi-

lar way. The results are given in Fig.11 and Table 1.

In most cases, our object insertion method achieves a

higher PSNR value than differential rendering.
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5.2 Discussion of Results

We have implemented our illumination estimation

algorithm in C++. On a PC with an Intel Core i7

4.0 GHz CPU, it takes around 90 seconds to minimize

(8) to find the weights for a 256 basis SH representa-

tion. It takes 190 seconds to render all 256 shading

results for a single frame. Thus in practice we do not

use the shading layers of all frames for computation,

and instead we uniformly sample some frames.

In the supplemental material, we present four re-

sults. In case 1 (the “cube”), we inserted five virtual

objects around a Rubik’s cube, including a tea pot, a

dragon, a Buddha, a bunny and a spaceship. In the

output video, the shadows cast by the objects on the

table indicate the estimated environment map is plau-

sible. Also the shadows on the Rubik’s cube cast by

the teapot and the spaceship are correctly computed.

In case 2 (the “garden”), we inserted a bench, a

lion sculpture and a ram sculpture. In this scene, light

comes evenly from all directions and the dark area on

the ground under the bench shows the effect of ambient

occlusion. Although the geometry of the scene is not

precisely recovered (in the last few frames, the body of

the ram is wrongly occluded by the ground), the arte-

facts are not readily noticeable.

In case 3 (the “cuboid stone”), the environment map

is also nearly constant; we have added a directional light

which causes a shadow on the ground.

In case 4 (the “gallery”), we inserted a Lucy statue,

a Buddha and a wooden chair into the scene. We as-

sume the scene contains Lambertian surfaces, but the

material of the virtual objects can be arbitrary; the ma-

terials of the Lucy and the Buddha here are glass and

aluminium respectively.

Fig.12 shows the shading layers for the examples in

Figs.7 and 10. While they are not entirely accurate,

causing inaccurate environment maps, the rendered re-

sults remain plausible. Since there are no strong sha-

dows in the original and synthetic scenes, it is hard for

viewers to detect any inconsistencies in the shadows.

Fig.12. Shading layers for the examples in Fig.7 and Fig.10.

5.3 Limitations

Our method may be less successful in certain sit-

uations. Firstly, illumination recovery does not work

correctly when significant shadows are cast by objects

lying outside the video frame, as in such cases, the il-

lumination cannot be modeled by a single environment

map[57] (see Fig.13).

(a) (b)

Fig.13. Our method cannot model complex illumination which
cannot be represented by an environment map, e.g., shadows
cast by objects outside the video frame. (a) Hard shadows are
cast by a tree outside the frame. (b) Our method fails to re-
cover the illumination, so hard shadows are not produced on the
bunny added to the scene.

Secondly, scene reconstruction may inadequately

model the surface mesh if the scene is not viewed from

a large enough range of viewing directions. In turn,

this can lead to incorrect occlusion relations between

the scene and any inserted object, causing artefacts.

For example, in Fig.14, some of the flowers on the left

are wrongly occluded by the synthetic lion because of

inaccurately reconstructed scene geometry.

(a) (b) (c)

Fig.14. Failure of scene reconstruction leading to incorrect oc-
clusion. (a) Original frame. (b) Rendered scene geometry with
synthetic object. (c) Composed result. Some flowers are missing
due to incorrect occlusion relationships.

Thirdly, the geometry of textureless surfaces, for ex-

ample a white wall, may not be recovered due to a lack

of trackable feature points. As Fig.15 shows, part of the

wall is missing in the result reconstructed by the auto-

matic routine in Subsection 3.1. This can be overcome

with user assistance — the user can refine the scene

mesh using 3D modeling software, allowing the overall
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approach to still produce convincing results. A further

example can be found in Fig.8.

(a) (b) (c) (d)

Fig.15. Failure of scene reconstruction in smooth regions. (a)
Textureless surfaces cannot be correctly reconstructed in (b) the
scene mesh. This means that when (c) inserting objects, shad-
ows cast on the surface cannot be computed correctly. (d) The
problem is solved by manually editing the scene mesh before
inserting objects.

Fourthly, SFM may be unable to compute the cam-

era pose for some frames, if they contain an insufficient

number of matched feature points. In case 4 of the

supplemental material, starting from the 10th second,

several frames are missing for this reason.

Finally, our system has other limitations. We as-

sume scene surfaces are made of Lambertian materials,

which is only approximately valid for certain real world

materials, and quite invalid for others. Also, the illumi-

nation is assumed to be constant in each frame, which

may not be true of a partially cloudy day, in long-period

time-lapse videos or in circumstances with moving light

sources.

6 Conclusions

We presented a framework that automatically reco-

vers scene geometry and illumination from a video. Our

system reconstructs scene geometry using structure-

from-motion, with spherical harmonic basis functions

used to approximate the environment map. The re-

covered illumination and geometry are useful for sub-

sequent applications such as object insertion, shadow

detection, and video relighting. While our system has

certain limitations, there are also many circumstances

in which it works well enough to be useful.

In future, we intend to consider cases involving vary-

ing illumination, changing in either time or position. A

more sophisticated compositing algorithm would also

help to generate more realistic results by simulating

complex surface materials.
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