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Abstract Deep convolutional neural networks (DCNNs) based methods recently keep setting new records on the tasks of

predicting depth maps from monocular images. When dealing with video-based applications such as 2D (2-dimensional) to

3D (3-dimensional) video conversion, however, these approaches tend to produce temporally inconsistent depth maps, since

their CNN models are optimized over single frames. In this paper, we address this problem by introducing a novel spatial-

temporal conditional random fields (CRF) model into the DCNN architecture, which is able to enforce temporal consistency

between depth map estimations over consecutive video frames. In our approach, temporally consistent superpixel (TSP) is

first applied to an image sequence to establish the correspondence of targets in consecutive frames. A DCNN is then used

to regress the depth value of each temporal superpixel, followed by a spatial-temporal CRF layer to model the relationship

of the estimated depths in both spatial and temporal domains. The parameters in both DCNN and CRF models are jointly

optimized with back propagation. Experimental results show that our approach not only is able to significantly enhance

the temporal consistency of estimated depth maps over existing single-frame-based approaches, but also improves the depth

estimation accuracy in terms of various evaluation metrics.
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1 Introduction

Predicting depth maps from video sequences is

a fundamentally important and challenging problem

in computer vision. Depth usually provides valua-

ble information, and facilitates applications in vari-

ous fields, including 3D (3-dimensional) modeling[1],

pose recognition[2], image-based rendering[3] and hu-

man computer interaction[4]. Moreover, in the grow-

ing 3D movie industry, knowing the depth informa-

tion greatly simplifies the process of converting 2D

(2-dimensional) movies to their stereoscopic form[5].

While depth estimation methods from images or video

sequences have been extensively studied, most of them

rely on specific depth cues such as camera motion[6],

scene geometry[7] and shading[8]. These approaches

make highly restrictive assumptions on scene types

and can only find quality depth estimation for spe-

cial cases. On the other hand, depth estimation ap-

proaches based on machine learning have gained more

and more popularity because of their independence

from scene-specific cues. In particular, Eigen et al.[9]

first introduced the deep learning models based on con-

volutional neural networks (CNNs) into the depth es-

timation task and improved the estimation accuracy

by over 30% compared with traditional methods. Af-

ter that, the research on CNN-based depth estimation
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proliferates, either building deeper and more complex

CNN models[10], or exploiting spatial relationships of

neighbouring (super)pixels[11-12] to improve depth es-

timation accuracy. However, all these methods ope-

rate on single 2D images while ignoring temporal co-

herence. When applied to continuous image sequences,

these approaches tend to produce temporally inconsis-

tent depth maps: the depth estimation of the same

object jumps obviously in two consecutive frames. For

example, Fig.1 shows the depth map estimations for

three consecutive video frames of a bedroom scene

using the recently proposed deep convolutional neu-

ral fields (DCNF) model[13]. Severe inter-frame salta-

tions in depth estimation at several regions are noticed,

with relative differences up to 30% of the ground truth

depths. This effect causes serious problems in applica-

tions such as automatic 3D video generation because

the temporal inconsistency in depth maps will propa-

gate to synthesized 3D videos and can be easily per-

ceived by human eyes.

(Meter)

(a)

(b)

(c)

1 2 3 4 5

Fig.1. Estimated depth maps for 3 consecutive frames of a video
using the deep convolutional neural fields (DCNF) model[13].
Temporal discontinuities of estimated depth are spotted at sev-
eral regions, as shown in dashed ellipses. (a) Frame t − 1. (b)
Frame t. (c) Frame t+ 1.

In this paper, we extend single-image based CNN

depth estimation to video-based applications by jointly

optimizing the depth estimation of several consecutive

frames and enforcing the temporal consistency of esti-

mated depth maps between them. More specifically, we

formulate video-based depth estimation as a deep struc-

tured regression problem: a CNN network is trained

to predict a depth value for each single superpixel of

the input video, and a conditional random fields (CRF)

model is used to explicitly model the depth predictions

of neighbouring superpixels in one frame and corre-

sponding superpixels between two consecutive frames.

Our work can be seen as an extension to the DCNF

model proposed in [12] by adding a temporal dimension:

not only are neighbouring superpixels of similar appear-

ance encouraged to take similar depth prediction, but

two superpixels in consecutive frames corresponding to

the same object are also required to have compatible

depth values. To establish temporal correspondence

between superpixels in consecutive frames, temporally

consistent superpixel (TSP)[14] is employed for video

segmentation. Compared with traditional video-based

depth estimation approaches such as structure from

motion[6], our approach does not rely on parallax in-

troduced by camera motion, and is thus able to process

videos containing dynamic scenes or shot by a rotating

camera; compared with single-image based CNN depth

estimation approaches, our method produces more ac-

curate and consistent depth map sequences required by

applications such as 2D to 3D video conversion. The

performance of the proposed approach is evaluated with

the standard NYU v2 depth dataset as well as the LYB

3D-TV dataset which is collected and annotated by our-

selves for 3D-movie generation, demonstrating satisfac-

tory performance for both depth estimation accuracy

and temporal consistency.

The rest of the paper is organized as follows. Sec-

tion 2 reviews the related work in depth estimation

for single images and videos, Section 3 introduces our

spatial-temporal consistent depth map estimation ap-

proach, Section 4 presents our experimental results, and

a conclusion is drawn in Section 5.

2 Related Work

There is a long history of work on depth estima-

tion from videos. Among them, approaches based on

structure from motion (SfM)[15-16] are the most popu-

lar. Given a static scene with sufficient camera motion,

SfM is able to obtain camera parameters and sparse

3D point structures from a monocular video sequence.

Based on the estimated camera parameters and the
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sparse 3D structure, dense depth maps can be obtained

by applying multi-view stereo techniques[6,17]. How-

ever, these methods generally assume that the video is

acquired by a camera whose motion introduces suffi-

cient parallax. When dealing with independently mov-

ing objects or static/rotational cameras, these methods

typically fail.

To address this limitation, many research studies

focus on the estimation of depth from a single static

image which eliminates the assumptions on camera mo-

tion and scene statics. In this domain, while initial ap-

proaches exploit specific cues such as scene geometry[7]

and shading[8], the focus has been recently shifted to-

wards employing machine learning methods due to the

heavily restrictive assumptions of cue-based methods.

In particular, the pioneering work of [18] and [19] mod-

eled depth estimation with a Markov random field.

However, they used low-level hand-crafted image fea-

tures which are insufficient to convey depth informa-

tion.

In recent years we have witnessed the prosperity of

deep convolutional neural networks (CNNs) which have

been setting new records for a wide variety of computer

vision applications such as image classification[20], ob-

ject detection[21] and camera pose estimation[22]. A pi-

oneer work of using deep CNN model for depth esti-

mation involves the work of Eigen et al.[9], who pro-

posed to train a multi-scale CNN model to directly

regress the depth maps from images by optimizing

the pixel-wise least square loss. Compared with tra-

ditional machine learning approaches based on hand-

crafted features, their method drastically improved the

depth estimation accuracy when evaluated on several

standard image-depth datasets. CNN-based depth es-

timation approaches have several obvious advantages.

First, CNN features are learnt from large-scale data si-

multaneously with the depth regression task and hence

have more expressive power than hand-crafted features,

leading to better estimation accuracy. Second, once

the model training is finished, predicting the depth of

a test image is highly efficient since it does not re-

quire iterative optimization. As a result, CNN-based

approaches have attracted considerable research inte-

rest in depth estimation and many research efforts have

been made ever since. In the latter work of Eigen and

Fergus[10], they made a deeper CNN network comprised

of more spatial scales to achieve higher prediction accu-

racy, and show that the same network can be applied to

other pixel-level prediction tasks such as surface normal

prediction and semantic labelling. Li et al.[11] proposed

to learn the mapping from multi-scale image patches

to depth values at the superpixel level, and smooth the

CNN output with a CRF model to constrain the spa-

tial coherence of the depth estimations. Their experi-

mental results have shown that by incorporating CRF

constraints, their model produces depth estimation ac-

curacy comparable to the work of [9] by using a much

smaller training set. However, the CNN and CRF mod-

els are used as two disjoint parts in this approach and

are trained separately. Very recently, Liu et al.[12-13]

showed that CNN and CRF can be combined into a

uniform network and trained in an end-to-end fashion.

The CNN features are hence optimally compatible with

the CRF depth estimation model, which brings further

improvement in depth estimation accuracy.

To deal with the temporal consistency problem of

video-based depth estimation of dynamic scenes ac-

quired by non-translational cameras, Karsch et al.[23-24]

proposed a sampling-based depth estimation approach

for single images and extended it to videos by incor-

porating temporal consistency constraints. However,

their non-parametric model is less competitive in terms

of depth estimation accuracy as well as computation ef-

ficiency compared with recent CNN-based approaches.

There are also several existing literatures working

on the combination of CNN and CRF models, espe-

cially for semantic segmentation tasks. In [25], a multi-

scale CNN network for scene labelling was proposed,

and CRF was used as a post-processing step for lo-

cal refinement. More recently, Zheng et al.[26] formu-

lated mean-field approximate inference for the condi-

tional random fields (CRF) with Gaussian pairwise po-

tentials as recurrent neural networks (RNNs), thereby

it can be integrated into the CNN network as a layer

and the whole network can be trained in an end-to-

end fashion. In these methods, the prediction variables

are discrete semantic labels, and thus approximated in-

ference is required. In contrast, our depth estimation

task performs continuous variable prediction. The log-

likelihood optimization can be directly solved without

using approximations since they can be analytically cal-

culated. Moreover, during depth estimation, the esti-

mated depth has a closed-form solution to the MAP

inference problem.

3 Our Approach

In the proposed approach, we go beyond single im-

age depth estimation and constrain the consistency of

estimated depth maps in both spatial and temporal do-
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main by exploring the power of both deep CNN and

CRF.

3.1 General Model Structure

The model structure of our video-based depth es-

timation approach is sketched in Fig.2. Assume that

a continuous video clip comprised of m frames is

denoted by I = (I1, . . . , Im). These frames are

first segmented into temporally consistent superpix-

els (TSPs)[14], which establish correspondence relation-

ships of superpixels in consecutive frames correspond-

ing to the same object. Each frame is then indepen-

dently fed into a deep CNN network (SP depth net-

work) parameterized by W to regress a single depth

value for each superpixel. The output depth estima-

tion for each single frame It is thus represented by

an nt × 1 vector zt, where nt is the number of super-

pixels in the frame, and the zts of all frames are con-

catenated into a single vector z. This raw superpixel

depth estimation z as well as the similarity relation-

ships of both spatially neighbouring superpixels (S(s))

and temporally corresponding superpixels (S(t)) is then

fed into a novel CRF layer, and the similarity relation-

ships explicitly model the spatial and temporal depth

smoothness and output a refined superpixel depth esti-

mation vector d̂. This CRF layer is parameterized by

α = (α(s),α(t)) where α(s) and α
(t) control the contri-

butions of spatial and temporal similarity constraints

of superpixel pairs respectively. Finally, those super-

pixel depths are projected back to the image domain

and constitute the final estimated depth maps. Both

the CNN parameters W and the CRF parameter α are

optimized simultaneously by back propagation and gra-

dient descent. Our approach extends the deep convolu-

tional neural fields (DCNF) model[12] for single image

depth estimation to video domain, and we thus refer

to our new model as spatial-temporal DCNF. In Sub-

section 3.2∼Subsection 3.4, we present different com-

ponents of our model in detail.

3.2 Temporally Consistent Superpixels (TSP)
Segmentation

The goal of depth estimation tasks is to infer the

depth of each pixel in a single image. However, this

will result in huge output space (number of pixels in

the input image) and significantly increase the number

of parameters in the CNN network. As a result, several

methods such as [9] and [10] only output severely down-

sampled depth maps, causing blurred depth bound-

aries. Following the idea in [13], we make the assump-

tion that each individual frame of the video is composed

of small homogeneous regions (superpixels), and predict

a single depth value for each individual superpixel. By

doing so, the number of output variables is significantly

reduced while the original resolution of depth maps is

maintained, and the resulting depth boundaries are well

aligned with the input images as well.

In [13], SLIC algorithm[27] is performed on single
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Fig. 2. Illustration of our spatial-temporal DCNF model for depth estimation. The input video is first segmented into temporally
consistent superpixels using the approach described in [27]. Each individual frame is passed into a superpixel depth network described
in [13] and each superpixel is regressed to a single depth value as the unary part. In the pairwise part, we calculate a similarity measure

for each pair of neighboring superpixels (p, q) in a single frame (denoted as S
(s)
pq ) and for each pair of corresponding superpixels in two

consecutive frames (denoted as S
(t)
pq ). The outputs of the SP depth network and the pairwise similarities are then fed to the CRF

structured loss layer, which minimizes the negative log-likelihood. Predicting the depth d̂ of a new image sequence I is to maximize
the conditional probability Pr(d|I), which has a closed-form solution.
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images for superpixel segmentation. When applied

on consecutive frames in videos, however, even mi-

nor variation of input images may cause completely

different segmentation results, which contributes to the

temporal discontinuity of depth map estimations. By

contrast, we apply temporally consistent superpixels

(TSP)[14] algorithm on the whole image sequence for

segmentation. TSP is a generative probabilistic model

for temporally consistent superpixel segmentation of

image sequences. Object parts in different frames are

tracked by the same temporal superpixel, and those

temporal superpixels are kept similar in appearance in

each frame. The benefits brought about by TSP are

two-fold: first, the temporal continuity of consecutive

image frames leads to similar TSP segmentation lay-

outs, which introduce less perturbation to the depth

estimation, and more importantly, TSP also generates

the temporal correspondence of superpixels in diffe-

rent frames, which naturally constitutes the temporal

pairwise constraints required by the CRF layer of our

model, which will be introduced later in Subsection 3.4.

3.3 SP Depth Network

After the TSP segmentation, each video clip is fed

into a DCNN network which regresses a single depth

value for each superpixel. We refer to this network as

SP depth network, and illustrate its structure in Fig.3.

The network is comprised of seven convolution (conv.)

blocks, with the first five blocks identical to the first

31 layers (from the first conv. layer to the 5th pool-

ing layer) of the popular VGG-16 network trained on

the ImageNet[28]. In convolution block 6, two more

conv. layers are added, followed by a superpixel pool-

ing layer introduced in [13], which performs average

pooling to its input feature map within each superpixel
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Fig. 3. Illustration for the SP depth network structure. (a) SP depth network structure. The network takes a single image as input
and a superpixel depth vector as output, with each of its elements representing the raw estimated depth for a single superpixel of the
image. The network is comprised of all conventional CNN layers but a superpixel pooling layer, which does average pooling to the
region of a feature map corresponding to a single superpixel into one unique value. (b) Forward pass of an image sequence. When
taken an image sequence as input, the network concatenates the SP depth vectors of each frame into a longer output vector.



448 J. Comput. Sci. & Technol., May 2017, Vol.32, No.3

region and outputs a feature vector for each superpixel.

The final convolution block 7 contains three fully con-

nected layers to regress a single depth value for each

superpixel. Taking one single frame It as input, the SP

depth network outputs an nt-dimensional depth esti-

mation vector zt where nt is the number of superpixels

in the frame. In our case, the network takes an im-

age sequence of m frames as a mini-batch and outputs

a vector z which is the concatenation of all zts of all

frames.

3.4 Spatial-Temporal CRF

3.4.1 Energy Function

The SP depth network gives raw estimates of each

superpixel in video frames, but neither spatial nor tem-

poral consistency of the estimated depth maps is consi-

dered. A spatial-temporal CRF layer is thus introduced

to incorporate these constraints into the DCNN model.

We formulate the depth estimation task as a structured-

regression task and denote by I one input video and d

a vector of continuous depth values corresponding to all

n superpixels in I. The conditional likelihood for one

video is formulated as:

P (d|I) =
1

Z(I)
exp(−E(d, I)), (1)

where Z is the partition function, defined as Z(I) =
∫

d
exp{−E(d, I)}dd. The energy function E(d, I) is

formulated as:

E(d, I) =
∑

p∈N

U(dp, I) +
∑

(p,q)∈S

V (s)(dp, dq, I) +

∑

(p,q)∈T

V (t)(dp, dq, I), (2)

where dp is the depth of the p-th superpixel in the video,

S is the union of spatially neighbouring superpixel pairs

in single frames, and T is the union of superpixel pairs

located in two consecutive frames tracked by the TSP

algorithm. This energy function is comprised of a unary

term U , a spatial pairwise term V (s), and a temporal

pairwise term V (t), which are discussed respectively in

the following.

Unary Potential. The unary term U aims to mini-

mize the least-square loss between raw estimated depth

values estimated by the SP depth network and the true

depth values, which is defined as:

U(dp, I;W ) = (dp − zp(W ))2, ∀p = 1, . . . , n, (3)

where zp is the raw depth estimation of the p-th tem-

poral superpixel produced by the SP depth network in-

troduced in Subsection 3.3, and is determined by the

CNN parameters W .

Spatial Pairwise Potential. The spatial pairwise

term V (s) encourages spatially neighbouring superpix-

els with similar appearance to take similar depths, and

has the following form:

V (s)(dp, dq, I;α) =
1

2
α(s)S

(s)
pq (dp − dq)

2,

∀p, q ∈ {1, 2, . . . , n},

(4)

where S
(s)
pq is a visual similarity score between two spa-

tially neighbouring superpixels computed from their

color histogram and LBP features, and S
(s)
pq = 0 if su-

perpixels p and q are not neighbours. α(s) is a weight-

ing parameter which needs to be learned from training

data.

Temporal Pairwise Potential. To produce tempo-

rally consistent depth maps, we also constrain super-

pixels corresponding to the same object to take similar

depth estimation. Similar to the spatial pairwise po-

tential in (4), the temporal pairwise potential V (t) is

defined as:

V (t)(dp, dq, I;α
(t)) =

1

2
α(t)S

(t)
pq (dp − dq)

2,

∀p, q ∈ {1, 2, . . . , n}.

(5)

The TSP algorithm generates temporal correspondence

between superpixels in consecutive frames. In (5),

S
(t)
pq = 1 if p and q are a pair of superpixels tracked

by TSP in two consecutive frames and S
(t)
pq = 0 other-

wise. α(t) is a weighting parameter which needs to be

learned in the training process.

By substituting U , V (s) and V (t) in (2) by their

expressions in (3)∼(5), the energy function can be re-

written as:

E(d, I)

=
∑

p∈N

(dp − zp)
2 +

1

2

∑

(p,q)∈S

(α(s)S(s)
pq + α(t)S(t)

pq )(dp − dq)
2

= d
T
Ld− 2zT

d+ z
T
z, (6)

where z is a vector concatenation of all the zps, and

L = I +D −M ,

M = α(s)
S

(s) + α(t)
S

(t),

in which S
(s) and S

(t) are n× n matrices comprised of

S
(s)
pq and S

(t)
pq respectively; D is a diagonal matrix with

Dpp =
∑

q Rpq. I is an identity matrix.
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Because E(I,d) is a quadratic function in terms of

continuous depth d, the partition function Z(I) in (2)

can be analytically calculated as:

Z(I) =

∫

d

exp{−E(d, I)}dd

=
π

n

2

|L|
1
2

exp(zT
L

−1
z − z

T
z), (7)

where |L| is the determinant of matrix L.

Substituting (6) and (7) into (1), the conditional

likelihood can be written as:

P (d|I) =
1

Z(I)
exp(−E(d, I))

=
|L|

1
2

π
n

2
exp(−d

T
Ld+ 2zT

d− z
T
L

−1
z).(8)

3.4.2 Objective and Learning

The whole spatial-temporal DCNF network has two

sets of trainable parameters: CNN parameter W for

the SP depth network and CRF weighting parameters

α(s) and α(t). We use the negative log-likelihood as the

loss function for training our model:

argmin
W ,α(s),α(t)

−

N
∑

i=1

logP (d(i)|I(i)), (9)

where N is the number of training video clips and

− logP (d|I) = −d
T
Ld+ 2zT

d− z
T
L

−1
z −

1

2
log(|L|) +

n

2
log(π),

where n is the total number of superpixels in all training

videos.

We use stochastic gradient descent (SGD) and back

propagation to solve the optimization problem in (9) for

learning all parameters of the whole network. The gra-

dients of − log Pr(d|I) with respect to CNN parameters

W can be analytically calculated as:

∂{− logPr(d|I)}

∂W
=

∂{− logPr(d|I)}

∂z

∂z

∂W

= 2(L−1
z − d)T

∂z

∂W
.

For the CRF part, the partial derivative of

− logPr(d|I) with respect to α(s) and α(t) can be cal-

culated by:

∂{− logPr(d|I)}

∂α(s/t)
= d

T
Jd − z

T
L

−1
JL

−1
z −

1

2
Tr(L−1

J),

where Tr() is the trace of a matrix, and J is a matrix

representing the partial derivative of L with respect to

α(s) or α(t) with its elements calculated by:

Jpq =
Lpq

α(s/t)
= −S(s/t)

pq + δ(p = q)
∑

q

S(s/t)
pq ,

where δ(·) is the indicator function, which equals 1 if

p = q and 0 otherwise.

3.4.3 Prediction

To predict the depth of a new video I, the maxi-

mum a posterior inference can be performed, which is

written as:

d̂ = argmax
d

Pr(d|I) = argmin
y

E(d, I). (10)

With the energy formulation in (2), we can obtain the

closed-form solution for (10):

d̂ = L
−1

z. (11)

Here L
−1 can be obtained by solving a linear equation

system, and does not need to compute the matrix in-

verse explicitly.

3.5 Implementation Details

The whole network is implemented in MAT-

LAB based on the efficient CNN toolbox: VLFeat

MatConvNet[29]. The network training is performed

on a standard desktop with an NVIDIA GTX Ti-

tan Balck with 12 GB memory. The parameters of

the first five convolution blocks in the SP depth net-

work (shown in Fig.3) are initialized using the Oxford

VGG16 network[28]. The learning rate is initialized at

10−5 for layers transferred from VGG net and 10−4 for

the rest of the layers. The momentum is set to 0.9 and

the weight decay parameters are set to 0.0005.

In terms of depth estimation speed, the major com-

putational overhead lies in the TSP segmentation pro-

cess, which involves optical flow computation between

every two consecutive frames and temporally consis-

tent segmentation optimization. Using the MATLAB

implementation of TSP provided by the authors of [14],

it takes on average eight seconds to segment a frame of

640 × 480 pixel resolution. After that, a forward pass

of frames through the proposed CNN-CRF depth esti-

mation network is relatively fast, averaging 1.5 seconds

per frame.
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4 Experiments

In this section, the proposed spatial-temporal

DCNF approach is evaluated on the public NYU v2

depth dataset[30] as well as on LYB 3D-TV dataset

for automatic 3D movie generation which is collected

and annotated by ourselves. We experimentally show

two major advantages of the proposed approach: 1)

our method improves the depth estimation accuracy by

incorporating spatial and temporal constraints into the

CNN depth estimation network; 2) the temporal consis-

tency of estimated depth maps for continuous image se-

quences is significantly improved compared with single-

image CNN-based methods. The quantitative evalua-

tion is thus done in two parts, namely depth estimation

accuracy and temporal consistency.

In terms of depth estimation accuracy, we adopt

several measures commonly used in prior work, which

include:

• root mean square error (rms):

√

1

T

∑

p

(d̂p − dp)2,

• average log10 error (log10):

1

T

∑

p

| log10 d̂p − log10 dp|,

• average relative error (rel):

1

T

∑

p

|d̂p − dp|/dp, and

• accuracy of threshold t:

percentage of d̂p
s.t. max(d̂p/dp, dp/d̂p) < t,

where d̂p and dp are the estimated and the ground truth

depth of pixel p respectively, and T is the total number

of pixels of all evaluated images.

In existing literatures, we are not able to identify

an appropriate measure to quantitatively evaluate the

temporal consistency of depth estimation methods. In-

tuitively, to ensure temporal continuity, the difference

between the estimated depths of a pair of pixels in

two consecutive frames corresponding to the same 3D

points should be equal to the difference of their ground

truth depths. In the TSP algorithm, object parts in

two consecutive frames are tracked by the same tempo-

ral superpixel. The temporal consistency of the depth

estimation of a superpixel p (denoted as d̂p) can be

thus measured by its relative temporal error (RTE) to

its corresponding superpixel in the previous frame (de-

noted as d̂p(−1)):

RTE(p) =
|d̂p − d̂p(−1) − (dp − dp(−1))|

dp
. (12)

For the evaluation of a whole video, we use two mea-

sures:

• average RTE: 1
T

∑

p∈T
RTE(p), and

• RTE percentage of threshold t: percentage of su-

perpixel p s.t. RTE(p) > t,

as evaluation metrics for temporal consistency. Note

that superpixels which have been lost tracking by the

TSP algorithm are not included in the calculation of

the measures.

4.1 NYU v2 Dataset

Our proposed method is first evaluated on the pub-

licly available NYU Depth v2 dataset[30], which is com-

posed of indoor scenes taken as video sequences using a

Microsoft Kinect camera with a resolution of 640×320.

Following the standard split of the dataset, 795 scenes

are used for training and 654 for test. For each scene,

we use 30 temporally consecutive image-depth pairs as

a video clip. The TSP[14] algorithm is applied to each

video clip to segment them into temporally consistent

superpixel. In the TSP algorithm, there are mainly two

hyper-parameters to be manually set: hyper-parameter

M which controls the designed superpixel number per

frame, and α which controls the superpixel shape regu-

larity. According to our experiments, varying M from

500 to 1 000 does not have notable influence on depth

estimation accuracy but has an impact on the train-

ing/testing speed and the coarseness of the estimated

depth maps. We select M = 750 for a good compro-

mise. For hyper-parameter α, several test runs are per-

formed on some sample image sequences and α could

be chosen to be a value which could generate regular

shaped superpixels. Since the ground truth depth maps

contain empty values, those superpixels which contain

no ground truth depth value are masked out during

back propagation and are not used for building pair-

wise similarity graphs. To remove many invalid regions

caused by windows, open doorways and specular sur-

faces, we also mask out depths equal to the minimum

or maximum recorded for each image.

We compare the proposed spatial-temporal DCNF

with two state-of-the-art CNN-based approaches,

namely multi-scale CNN[9] and 2D-DCNF[13], as well
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as two other recently proposed non-CNN-based ap-

proaches, depth transfer[24] and discrete-continuous

CRF[31]. The depth estimation accuracy and temporal

consistency performances of the compared algorithms

are summarized in Table 1 and Table 2. Note that the

2D-DCNF model reported in [13] is trained on 795 sin-

gle images (one image per scene), which is smaller than

our training set (30 consecutive images per scene). For

fair comparison, we implemented their method based

on the test code released by the authors of [13] and

trained a new 2D-DCNF model with the same train-

ing set of our approach. The performance of the new

2D-DCNF model is also reported in Table 1. The multi-

scale CNN approach[9] used a much larger training set

(the entire raw dataset) than ours, thereby we directly

cite the results from the paper[9].

In terms of depth estimation accuracy performances

denoted in Table 1, the CNN-based approaches ([9], [13]

and our approach) significantly out-perform non-CNN-

based approaches with relative performance gains over

30%, which demonstrates the power of deep CNN mod-

els. Compared with other single-image-based CNN ap-

proaches of [9] and [13], our spatial-temporal DCNF

approach achieved the best performance in all evalua-

tion metrics. In particular, the comparison of our ap-

proach and its single-image-based version 2D-DCNF is

especially meaningful, showing the benefits by the in-

corporation of temporal consistency constraints.

Table 2 compares the temporal consistency perfor-

mance of our approach with two other single-image-

based CNN approaches. For multi-scale CNN[9], the

results are obtained by applying the prediction model

to our test set and upsampling the resulting depth maps

to the original input image size of 640× 480, while for

2D-DCNF[13], both the prediction model provided by

the authors of [13] (trained on 795 single images) and

the model trained by ourselves on the augmented train-

ing set are evaluated. It is observed that the 2D-DCNF

approach achieves the worse performance in temporal

continuity. When trained with more training samples,

the temporal consistency errors are not reduced signifi-

cantly. The multi-scale CNN approach has a lower tem-

poral continuity error, partly due to the low resolution

of estimated depth maps (only 74×55 pixels in size) and

the error is smoothed out in the up-sampling process.

Finally, the proposed spatial-temporal DCNF approach

achieved significantly lower error in all temporal consis-

tency metrics, and for the RTE percentage of threshold

t measures, our error is one order of magnitude smaller

than its single-image counterpart 2D-DCNF.

In Fig.4, we provide a qualitative comparison of our

approach and [13] on a living room scene in the test set

of NYU v2 dataset. The estimated depth maps for five

consecutive frames by [11] and our approach are shown

in Fig.4(c) and Fig.4(d) respectively. For each frame,

the relative temporal error of each superpixel calculated

with (12) is projected back to its corresponding region

and visualized as heat-maps, as shown in Figs.4(e) and

4(f). Many red and yellow regions are observed in the

RTE heat-maps of 2D-DCNF, representing up to 20%

of relative temporal difference in depth estimation with

respect to the ground truth depths. Our approach, on

Table 1. Precision Performance Comparisons on the NYU v2 Dataset

Method Error (Lower Is Better) Accuracy of Threshold t (Higher Is Better)

rel log10 rms t = 1.25 t = 1.252 t = 1.253

Depth transfer[24] 0.350 0.131 1.200 - - -

Discrete-continuous CRF[31] 0.335 0.127 1.060 - - -

Multi-scale CNN[9] 0.245 - 0.907 0.611 0.887 0.971

2D-DCNF[13] 0.213 0.087 0.759 0.650 0.906 0.976

2D-DCNF[13] (augmented training set) 0.202 0.088 0.730 0.659 0.911 0.980

Spatial-temporal DCNF (ours) 0.188 0.085 0.699 0.690 0.923 0.985

Table 2. Temporal Consistency Performance Comparisons on the NYU v2 Dataset

Method Mean RTE (Lower Is Better) RTE % of Threshold t (Lower Is Better)

t = 0.03 t = 0.05 t = 0.10

Multi-scale CNN[9] 0.019 0.088 0.025 0.012

2D-DCNF[13] 0.035 0.164 0.084 0.031

2D-DCNF[13] (augmented training set) 0.032 0.171 0.082 0.029

Spatial-temporal DCNF (ours) 0.011 0.014 0.007 0.002
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Fig. 4. Depth map estimations for 5 consecutive frames of a living room scene in NYU v2 dataset generated by our spatial-temporal
DCNF and 2D-DCNF[13]. To better visualize the temporal continuity qualities, the relative temporal errors for all temporal superpixels
are projected to their locations in the corresponding frames and the resulting images are plotted as heat-maps. It is shown that our
approach produces much lower RTE than 2D-DCNF. (a) RGB input. (b) Ground truth depth. (c) Depth estimated by [13]. (d) Depth
estimated by our approach. (e) RTE of [13]. (f) RTE of our approach.

the other hand, produces much more temporally con-

sistent depth estimations with RTE no more than 5%.

4.2 LYB 3D-TV Dataset

Generating high quality depth maps for image se-

quences is a crucial component in 2D to 3D video con-

version. Given a 2D video and its corresponding depth

maps for each frame, a synthetic viewpoint can be

generated using depth image based rendering (DIBR)

techniques[32]. To obtain these depth maps, several

semi-automatic approaches have been proposed[33-34],

and allow the user to make sparse depth annotations

on a frame, and the dense depth maps are obtained by

propagating these user annotations to the entire frame.

Even though this scheme reduces the time consumed

in comparison to the pure manual depth annotation,

a significant amount of human engagement is still re-

quired to complete the conversion. To convert the vast

collection of available 2D material into 3D in an eco-

nomic manner, an automatic depth estimation scheme

is desired. To validate the performance of the proposed

spatial-temporal DCNF approach in the context of 3D

video conversion, we thus made a dataset by making

depth annotations of a set of selected scenes from a

popular Chinese historical drama called Lang Ya Bang

(Nirvana in Fire in English). This dataset is referred

to as LYB 3D-TV dataset.

The dataset is comprised of 80 different scenes, and

each is a short video clip containing 48∼186 consecu-

tive frames. The whole dataset contains 6 402 indi-

vidual frames in total, with each frame annotated by

a human operator with a semi-automatic depth anno-

tation system to generate a gray-scale monochromatic

depth map. Note that the resulting depth values range

from 0 to 1, which do not correspond to the real depth

value in meters but represent relative depths, with a

smaller value indicating a closer location to the viewer.

Used as the input of a DIBR system, these annotated

depth maps are able to generate plausible synthesized
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3D videos for commercial distribution. Several sample

frames and their corresponding depth maps are shown

in Fig.5. All the frames and depth maps are resized to

the resolution of 640×360 for computational efficiency.

The whole dataset is divided into a training set of 60

scenes containing 5 124 single frames and a test set of

20 scenes including 1 278 frames.

Fig.5. Several example images from our LYB dataset and their
corresponding depth maps.

The depth estimation performance of the proposed

3D-DCNF approach is again evaluated in terms of

both estimation accuracy and temporal consistency,

and compared with the two CNN-based approaches,

multi-scale CNN[9] and 2D-DCNF[13]. The results with

the best performance in bold are summarized in Ta-

ble 3 and Table 4 respectively. In terms of depth es-

timation accuracy, our method achieved better perfor-

mance in most of the metrics, only with the root mean

square (rms) error slightly larger than 2D-DCNF. Note

that the log10 error metric is not used since it aims to

compensate the influence of large depth values while

our ground truth depth values only vary from 0 to 1.

In terms of temporal consistency, our method outper-

forms the compared approaches in all metrics with sig-

nificant margins. In Fig.6, a qualitative comparison

of our approach and [13] on estimating the depth of

five consecutive frames in the test set is provided. It

is observed that [13] produces obvious temporal dis-

continuity at several regions in each frame, which are

marked in dashed circles. The regions have high rela-

tive temporal error (RTE) up to 45% and correspond

to the red and yellow regions in the RTE heat-maps.

Our approach, on the other hand, produces much more

temporally consistent depth estimations, as shown by

the RTE heat-maps in Fig.6(f).

5 Conclusions

This paper presented a novel CNN-based depth es-

timation approach which is able to produce temporally

consistent depth map estimations for videos. In con-

trast to existing CNN-based depth estimation meth-

ods which are optimized on single frames, our approach

was optimized over consecutive frames by incorporat-

ing a novel spatial-temporal CRF layer into the deep

CNN architecture, which is able to enforce both spa-

tial and temporal consistency between estimated depth

maps of consecutive frames. Experimental results on

the standard NYU v2 dataset and our LYB 3D-TV

dataset showed that our approach is able to not only

significantly enhance the temporal consistency of esti-

mated depth maps over existing single-frame-based ap-

proaches, but also improve the depth estimation accu-

racy in terms of various evaluation metrics.

One limitation our method concerns is the process-

ing speed. Indeed, the proposed approach is a relatively

slow method, with the TSP segmentation and the large

Table 3. Precision Comparisons on the LYB 3D-TV Dataset

Method Error (Lower Is Better) Accuracy of Threshold t (Higher Is Better)

rel rms t = 1.25 t = 1.252 t = 1.253

Multi-scale CNN[9] 0.264 0.161 0.572 0.810 0.941

2D-DCNF[13] 0.234 0.132 0.623 0.860 0.960

Spatial-temporal DCNF (ours) 0.225 0.135 0.648 0.889 0.968

Table 4. Temporal Consistency Comparisons on the LYB 3D-TV Dataset

Method Mean RTE (Lower Is Better) RTE % of Threshold t (Lower Is Better)

t = 0.05 t = 0.10 t = 0.20

Multi-scale CNN[9] 0.035 0.162 0.102 0.025

2D-DCNF[13] 0.078 0.428 0.234 0.099

Spatial-temporal DCNF (ours) 0.024 0.107 0.031 0.007
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Fig. 6. Depth map estimations for 5 consecutive frames in the test set of LYB 3D-TV dataset by our approach and the 2D-DCNF
method. Obvious temporal discontinuities of estimated depth by 2D-DCNF are marked out in dashed ellipses, and these regions have
high RTE values up to 45%. The temporal discontinuity of estimated depth maps is significantly reduced in our method, as shown by
the RTE heat-maps. (a) RGB input. (b) Ground truth depth. (c) Depth estimated by [13]. (d) Depth estimated by our approach. (e)
RTE of [13]. (f) RTE of our approach.

linear systems solution in the inference step being the

main computational overhead. One potential solution

to this problem is to use temporal models such as Re-

current Neural Network (RNN)[35] or Long-Short Term

Memory (LSTM)[36], which can be integrated into the

CNN network to model the temporal continuity. That

is, the estimated depth map of one frame depends not

only on the RGB input of the current frame, but also on

the depth estimation outputs of previous frames, and

such dependency is learned by RNN or LSTM during

training. By doing so, both the time-consuming TSP

segmentation and the CRF inference are removed, and

such a model can predict depth frame by frame with

normal CNN forward pass procedure. Application of

such CNN-RNN or CNN-LSTM models to video-based

depth estimation comprises our potential future work.
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