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Abstract Abnormal event detection in crowded scenes is a hot topic in computer vision and information retrieval

community. In this paper, we study the problems of detecting anomalous behaviors within the video, and propose a robust

collective representation with multi-feature descriptors for abnormal event detection. The proposed method represents

different features in an identical representation, in which different features of the same topic will show more common

properties. Then, we build the intrinsic relation between different feature descriptors and capture concept drift in the

video sequence, which can robustly discriminate between abnormal events and normal events. Experimental results on two

benchmark datasets and the comparison with the state-of-the-art methods validate the effectiveness of our method.
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1 Introduction

In surveillance video, the automated detection and

localization of anomalous behavior have become an ac-

tive research area of computer vision and pattern recog-

nition due to the increasing demand for security and

safety[1-3]. The goal of abnormal event detection is to

detect unusual behavior of individuals or a group in a

crowded scene[4]. While much work on anomaly event

detection has been reported in recent years, it is still a

challenging problem to develop a robust method due to

the general difficulties of the anomaly detection prob-

lem in crowded scenes. For crowds, for example, it is

infeasible to list the set of anomalies that are possible

in numerous vision applications[5-8].

One common solution to these problems is to find

new patterns in data that do not conform to the ex-

pected case[9]. This is compounded by fitting a statis-

tical model of anomaly detection, which tries to detect

events with low probability as abnormality. However,

it introduces a number of challenges. First, it needs a

high-dimensional feature to better represent the event

and train the statistical model. In this case, the num-

ber of training samples will increase exponentially with

the feature dimension. In practice, it is difficult to col-

lect enough data to train a statistical model. Second,

crowded scenes require a statistical detection model ro-

bust to complex and dynamic scenes, containing a large

number of moving persons that occlude each other in

complex ways, and can have low resolution. Hence, it is

difficult to effectively identify all abnormal behaviors.

Third, different tasks may require different models of

normalcy. However, it is unrealistic to collect sufficient

samples of abnormal video events, which brings chal-

lenges to build a robust video anomaly detector[10-11].

Recently, researches have shown that high-

dimensional natural signals of the same class usually

lie in a low-dimensional subspace[12-14]. Hence, for a

given sample, it can be represented by a linear combi-

nation of a few training samples from an overcomplete

dictionary[15]. Inspired by recent advantages in sparse

coding, sparse representation based methods have been

exploited in video anomaly detection[16-17]. The main

underlying assumption of these methods is that normal

events can be well constructed by the normal basis with

a small reconstruction cost, while abnormal events can-
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not with a large reconstruction cost. In sparse repre-

sentation (SR) based methods, event representation is

to extract distinguishable feature descriptors for diffe-

rent events. To enhance detection performance, several

kinds of low-level feature descriptors, such as multi-

scale histogram of optical flow (MHOF), Gabor filter

and object trajectory[18-19], saliency features[20-24], 3-

D video patches[25], spatial-temporal gradient[26], and

chaotic invariant features[27], are exploited to generate

event representation. Each of these features can only

describe certain aspects of object feature. In particu-

lar, MHOF descriptor considers amplitudes and direc-

tions of movements, while Gabor filter descriptors pro-

vide texture representation and discrimination. How-

ever, sparse representation based methods combine only

these low-level feature descriptors to generate sparse

event representation. In this case, these sparse repre-

sentation (SR) based methods fail to build the intrinsic

relation between different feature descriptors and cap-

ture high-level latent semantic information which has

been proved that it can obtain better performance in

computer vision.

In this paper, we propose a robust collective rep-

resentation with multi-feature descriptors for abnormal

event detection. The proposed method represents diffe-

rent features in an identical representation, in which

different features of the same topic will show more com-

mon properties. In fact, the proposed method exploits

sparse representation to capture the salient structures

of different descriptors, and generate the same represen-

tation with respect to different dictionaries. Then the

proposed method builds the intrinsic relation between

different feature descriptors and captures concept drift

in the video sequence. Finally, using sparse coding en-

ables the algorithm to robustly discriminate between

abnormal events and normal events.

The contributions of the proposed method can be

summarized as follows.

1) We propose a robust collective representation for

abnormal event detection, in which different features

can be represented in an identical representation. In

this case, the salient structures of different descrip-

tors can be captured and multiple information will be

merged effectively, which will increase the accuracy of

anomaly detection.

2) We build the intrinsic relation between different

feature descriptors and capture concept drift in the

video sequence. In this case, the latent structure re-

lation of different features generated from video events

can be presented to detect the abnormal event, which

outperforms the existing methods.

3) To evaluate the performance, a set of experiments

are conducted on two publicly available video datasets

to verify the effectiveness of the proposed method.

2 Related Work

In recent years, many anomaly detection

algorithms[27-30] have been proposed. Reviews about

abnormal event detection and human activity under-

standing can be referred to [31-33]. According to the

specific applications, anomaly detection algorithms can

be divided into two classes.

1) For uncrowded scenes, there are few moving ob-

jects in the scene, and they seldom interact with each

other.

2) For crowded scenes, many objects exist in the

scene, and they move complicatedly.

In uncrowded scenes, video events are usually

represented with binary features based on back-

ground subtraction methods such as normalization cut

clustering[34], or based on 3-D spatio-temporal fore-

ground mask[35]. There are also many trajectory-based

features based on frame-difference or tracking[36-39].

Trajectories occurring at much lower probabilities are

treated as anomalies. For example, Wu et al.[27] ex-

tracted chaotic invariant features from trajectories, and

modeled motion patterns with a probabilistic frame-

work. Cheng and Hwang[28] conducted reliable track-

ing with an adaptive particle sampling and the Kalman

filtering. Cui et al.[29] represented the crowd dynamic

by tracking interest points and calculating interaction

energy potentials. Trajectory-based features are gene-

rally of high-level semantics[40], but they may fail in

density crowded scenes due to inevitable overlaps and

occlusions.

In a crowded scene, video anomaly detection meth-

ods are generally developed with features based on

local 2-D image patches or 3-D video blocks, such

as spatio-temporal gradients and histograms of opti-

cal flow (HOF). Abnormal events are detected as ones

rarely happening and divergent from normalcies. Adam

et al.[41] represented the probability of optical flow at

a group of spatial locations with histograms. Kim and

Grauman[42] modeled local optical flows using a mix-

ture of probability principle component analysis (MP-

PCA), and adopted a Markov random field to deal with

space-time interactions. In [7], Mehran et al. proposed

a social force (SF) model to analyze crowd behaviors.

Kratz and Nishino[26] fit spatio-temporal gradient fea-

tures with a statistical framework. In [43], Mahadevan
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et al. jointly modeled appearances and dynamics of

the crowd using a mixture of dynamic textures (MDT).

Based on the MDT, Li et al.[44] proposed a hierarchi-

cal MDT (H-MDT) algorithm, which takes advantages

of background subtraction and discriminant saliency to

detect temporal and spatial abnormal events, respec-

tively. Cong et al.[1,45] described video events with a

multi-scale HOF. By estimating sparse representation

coefficients corresponding to a normal event dictionary,

abnormal events are identified as samples owing to large

reconstruction costs. Lu et al.[16] learned video event

representations with a combination of several small dic-

tionaries, which greatly increases the testing speed. In

[46], Thida et al. extracted crowd features with a

spatio-temporal Laplacian eigenmap, and learned their

variations in an embedded space. Kaltsa et al.[47] de-

scribed the characteristics of scenes with histograms of

oriented gradients, which are newly introduced based

on swarm theory.

3 Proposed Method

In this section, a novel sparse representation tech-

nique is formulated by considering the correction of

different feature descriptors. We restrict the discussion

to different feature descriptors consisting of multi-scale

histogram of optical flow (MHOF) and histogram of

oriented gradient (HOG) as they are appropriate for

representation and widely used in computer vision.

3.1 Event Representation

Event representation aims to extract distinguish-

able and effective features to represent video events.

Since appearance and motion patterns are the main

differences between normal and abnormal events, in

this paper, appearance and motion features are ex-

tracted to represent each spatio-temporal patch to-

gether. First, input image sequences are divided into

overlapped spatio-temporal patches. Second, to fil-

ter out distractions (e.g., waving trees, illumination

changes), foreground segmentation is exploited to es-

timate the background in crowded scenes[48]. Finally,

object appearance is described by the spatial deriva-

tives on horizontal and vertical directions, while the

motion information of the scene is represented with the

optical flow at each location. In this paper, histogram

of oriented gradient (HOG) and multi-scale histogram

of optical flow (MHOF) are exploited as appearance

and motion features, respectively.

3.2 Latent Relation Cross Different Features

In this subsection, we explore the latent relation

cross HOG feature and MHOF feature and assume that

each feature of a video event generates identical repre-

sentation with a given dictionary. For each video event,

we learn the representation by collective representation

learning with latent semantic model from different fea-

tures.

Suppose that a training dataset O = {oi}ni=1 con-

sists of MHOF feature and Gabor feature of the same

sample, i.e., oi = (xi, zi), where xi ∈ R
m is the m-

dimensional MHOF feature, and zi ∈ R
d is the d-

dimensional Gabor feature. In this paper, the purpose

of the proposed method is to adaptively learn a correla-

tion matrix which can bridge the semantic gap between

different feature descriptors. As illustrated in Fig.1, we

project different feature descriptors to the representa-

tion space respectively:

T1 : R
m → HM

1 , T2 : R
d → HD

2 ,

where T1 and T2 denote the projections, R stands for

the feature descriptor, and H is the representation

space. M andD are the dimension ofHM
1 andHD

2 , re-

spectively. Then different representations are mapped

into a common high-level abstraction space by linear

projection as follows.

(a)

(b)

(c)

(d)

(e)

Fig.1. Four examples of abnormal event detections in UCSD
Ped1 dataset. (a) Ground-truth. (b) Results of the MDT
algorithm[43]. (c) Results of SF-MPPCA algorithm[43]. (d) Re-
sults of the Sparse algorithm[1]. (e) Results of the proposed
algorithm.
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P1 : HM
1 → Ak, P2 : HD

2 → Ak,

where P1 and P2 are linear projections. To build the

correlation between different feature descriptors, we re-

quire different feature descriptors of each sample to be

equal in Ak:

P1T1 (xi) = P2T2 (yi) , ∀i.

3.3 Collective Sparse Representation for

Anomaly Detection

Nowadays, sparse representation based methods are

proposed to deal with the abnormal event detection.

For sparse representation based methods, sparse recon-

struction analysis of a given sample is exploited as a

novel and promising idea in abnormal behavior detec-

tion. The fundamental underlying assumption of these

methods is that any new sample can be represented

by a linear combination of a few training samples from

an overcomplete dictionary. Given an input test sample

y ∈ R
m, it can be reconstructed by a sparse linear com-

bination of an overcomplete normal base D ∈ R
m×n as

follows:

s∗ = argmin
s

‖y −Ds‖22 + λ ‖s‖1 , (1)

where s is the representation coefficients. In anomaly

event detection, a normal event y is more likely to gene-

rate sparse representation coefficients with respect to an

overcomplete dictionary D, but an abnormal event is

not, thus generating a dense representation. To quan-

tify the normalness, the standard sparse reconstruction

cost (SRC) with l1 regularization is described as follows:

SRC = ‖y −Ds∗‖22 + λ ‖s∗‖1 .

Generally, the SRC can be exploited as a measurement

to identify anomalies. That is, the reconstruction costs

of the normal frames are significantly higher than those

of the abnormal frames. The model in (1) is gene-

rally utilized to improve the accuracy of abnormal event

detection by combining different features, and fails to

consider latent relation cross different features. In this

case, it may lead to undesirable results by exploiting

the combination or concatenation of different features.

To address the problem, we exploit sparse representa-

tion to capture the salient structures of different de-

scriptors, and generate the same representation with

respect to different dictionaries. Then the proposed

method builds the intrinsic relation between different

feature descriptors and captures high level semantic in-

formation. We define the following objective function:

‖y1 −D1S‖2F + ‖y2 −D2S‖2F + λ‖S‖1, (2)

where y1 and y2 denote HOG feature and MHOF fea-

ture, respectively, S is the shared representation matrix

for y1 and y2, D1 and D2 represent the corresponding

dictionaries, and λ is regularization parameter. The

first term and the second term in (2) are the recon-

struction errors. For a feature pair {y1,y2}, these terms

should be small. This is because features from a usual

event are more likely to be reconstructible from dictio-

naries D1 and D2, which agrees with our definition of

usual events. The third term is the sparsity constraint.

It can be seen from (2) that each column vector of D1

or D1 captures the high-level information and each col-

umn vector of S is the corresponding representation.

By considering (2), there exists the linear map between

the dictionaryD1 of HOG feature y1 and the dictionary

D2 of MHOF feature y2 by left multiplication inverse

of P1T1:

D1 = (P1T1)
−1

P2T2D2 = PD2, (3)

where P = (P1T1)
−1

P2T2 is the linear projection. We

can approximate (3) by optimizing the cross-correlation

between different features:

‖D1 − PD2‖2F . (4)

The overall objective function, combining the sparse

coding on different features given in (3) and the cross-

correlation between different features given in (4), is

obtained as follows.

min
D1,D2,S,P

‖y1 −D1S‖2F + ‖y2 −D2S‖2F +

λ‖S‖1 + µ ‖D1 − PD2‖2F + γR (P )

s.t.
∥

∥di
1

∥

∥

2

2
6 1,

∥

∥di
2

∥

∥

2

2
6 1, i = 1, 2, · · · , T,

(5)

where the regularization term is defined as R (·) = ‖·‖2F
to avoid overfitting, and λ, µ and γ are regularization

parameters. µ is to enforce the latent relation between

different features by building the relationship between

their corresponding dictionaries.

4 Optimization Algorithm

(5) is non-convex with four variables D1,D2,P ,S.

Fortunately, it is convex with respect to any one of ran-

dom three variables while fixing the other three ones.

Thus, the optimization problem in (5) can be solved by

the following steps until convergency.
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Step 1. Learning sparse representation S by fixing

other variables, (5) can be formulated as follows.

min
S

‖y1 −D1S‖2F + ‖y2 −D2S‖2F + λ‖S‖1

⇔ min
S

∥

∥

∥

∥

(

y1

y2

)

−
(

D1

D2

)

S

∥

∥

∥

∥

2

F

+ λ‖S‖1.
(6)

(6) can be solved by using SLEP (sparse learning with

efficient projections) package 1○.

Step 2. Learning dictionary D1 by fixing other

variables, (5) can be obtained as:

min
D1

‖y1 −D1S‖2F + µ ‖D1 − PD2‖2F . (7)

(7) can be transformed as:

min
D1

∥

∥

∥

∥

(

y1

PD2

)

−D1

(

S√
µI

)∥

∥

∥

∥

2

F

s.t.
∥

∥di
1

∥

∥

2

2
6 1, i = 1, 2, · · · , T.

(8)

(8) can be obtained when considering the Lagrangian:

L (D1,λ) = min
D1

∥

∥

∥

∥

(

y1

PD2

)

−D1

(

S√
µI

)∥

∥

∥

∥

2

F

s.t.
∥

∥di
1

∥

∥

2

2
6 1, i = 1, 2, · · · , T

= trace

(

((

y1

PD2

)

−D1

(

S√
µI

))T

((

y1

PD2

)

−D1

(

S√
µI

)))

+

T
∑

j=1

ωj

(

k
∑

i=1

d
ij
1 − 1

)

,

where trace means to calculate the sum of the elements

on the main diagonal of a matrix. The gradient and

Hessian of L (D1,λ) are computed as follows.

∂L (D1,λ)

∂λi

=

∥

∥

∥

∥

(

y1

PD2

)

UT
(

UUT + diag(λ)
−1
)

−1

ei

∥

∥

∥

∥

2

− 1, (9)

∂L (D1,λ)

∂λi∂λj

= −2





(

(

S√
µI

)(

S√
µI

)T

+ diag(λ)
−1

)

−1

(

(

y1

PD2

)(

S√
µI

)T
)T
(

y1

PD2

)(

S√
µI

)T

(

(

S√
µI

)(

S√
µI

)T

+ diag(λ)−1

)

−1




ij

×





(

(

S√
µI

)(

S√
µI

)T

+ diag(λ)
−1

)

−1




i,j

,

where U =

(

S√
µI

)T

. After maximizing L (D1,λ), we

can obtain D1 as follows.

D1 =

(

(

S√
µI

)(

S√
µI

)T

+ diag(λ)
−1

)

−1

(

(

y1

PD2

)(

S√
µI

)T
)T

.

Step 3. Learning dictionary D2 by fixing other vari-

ables, (5) can be obtained as:

min
D2

‖y2 −D2S‖2F + µ ‖D1 − PD2‖2F
s.t.

∥

∥di
2

∥

∥

2

2
6 1, i = 1, 2, · · · , T.

(10)

The optimal solution D2 in (10) can be obtained by

using gradient descent with iterative projection[49].

Step 4. Obtaining P by fixing other variables, (5)

can be obtained as:

µ ‖D1 − PD2‖2F + γ ‖P ‖2F . (11)

By taking the derivative of (11) with respect to P and

setting it to 0, we can obtain the close form solution:

P =
µD1D

T
2

(

µD2D
T
2 + γI

) .

The overall optimization algorithm is summarized in

Algorithm 1.

Algorithm 1. Optimization Algorithm of Objective Function

Input: HOG feature y1 and HOF feature y2 of training sample

Initialize step: Initialize D1, D2 and P by random matrices

respectively, iterate number L

Repeat

1. Sparse representation S: optimizing for S:

Fixing the variables D1, D2 and P , sparse representation
S is optimized by exploiting step 1

2. Dictionary D1: optimizing for D1:

Fixing the variables S, D2 and P , update the dictionary
D1 by (9)

3. Variable D2: optimizing for D2:

Fixing variables S, D1 and P , update the variable D2 as
illustrated in step 3

4. Variable P : optimizing for P :

Fixing the variables S, D2 and D1, update the variable P

as illustrated in step 4

until convergency

Output: the estimated variables D1, D2 and S

1○http://parnec.nuaa.edu.cn/jliu/largeScaleSparseLearning.htm, Mar. 2017.
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5 Abnormal Event Detection

In this subsection, details about determining

whether a testing sample Y is normal or not are dis-

cussed. Similar to [2], Y is detected as an abnormal

event if the cost function is beyond a given threshold.

Mathematically, the cost function of Y is

J (Y ) = ‖Y1 −D1S‖2F + ‖Y2 −D2S‖2F + λ‖S‖1+
µ ‖D1 − PD2‖2F + γR (P ) ,

where Y1 and Y2 represent the HOG feature and the

HOF feature of test sample Y respectively. The abnor-

mal event detection framework is listed in Algorithm 2.

Algorithm 2. Abnormal Event Detection Framework

Input: HOG feature y′

1 and HOF feature y′

2 of testing sample
y′

Pursuit the sparse representation S by minimizing

S′ = arg min
S

J(S) = arg min
S

1

2
‖y1 −D1S‖2

F
+

‖y2 −D2S‖2
F

+ λ‖S‖1 + µ‖D1 − PD2‖
2
F

+

γ‖P ‖2
F

if J (S′) > ξ then y′ is an abnormal event

else y′ is a normal event

end if

6 Experiments

In this section, two real video datasets are used to

verify the validation of the proposed algorithm. Results

of state-of-the-art algorithms are adopted for compa-

rison.

6.1 Evaluation Methodology

In this paper, three commonly used criteria are

employed to evaluate the anomaly detection accuracy:

frame-level, pixel-level, and object-level. All crite-

ria consider the correct detections compared with the

ground-truth. The ground-truth is defined as: the ex-

isting of an anomaly is a “positive”, while the absence

is a “negative”.

• Frame-Level. If only a frame contains one abnor-

mal pixel, it is marked as an abnormal frame. If the

frame-level ground-truth of the corresponding frame is

abnormal, it is a true positive. Otherwise, it is a false

positive. Although it is easy to understand the frame-

level measurement, it does not identify whether the de-

tected anomaly is truly abnormal or not. Based on

this, some detected true positive frames may be co-

occurrences of true abnormalities and false detections.

• Pixel-Level. A detected abnormal frame is true

positive if and only if at least 40% of the true abnor-

mal pixels are detected, compared with the pixel-level

ground-truth. It is a false positive if any pixel in a

negative frame is detected to be abnormal. Compared

with frame-level measurement, pixel-level measurement

emphasizes more about the detection of truly abnormal

pixels.

• Object-Level. Although the pixel-level criterion

seems pretty good, it contains plenty of falsely detected

pixels. The reason is that if all pixels of an abnormal

frame are detected as abnormalities, more than 40% of

truly abnormal pixels must be detected. Object-level

measurement identifies the frames, in which

detected abnormality ∩ true abnormality

detected abnormality ∪ true abnormality
> Thr,(12)

where Thr is a given threshold. It is easy to find that

object-level measurement concerns more about the ac-

curate detection of the truly abnormal events.

For both the frame-level and the pixel-level crite-

ria, the receiver operating characteristic (ROC) curve

is utilized to measure the detection accuracy. ROC is a

curve of true positive rate (TPR) vs false positive rate

(FPR):

TPR =
number of true positive

number of positive
,

FPR =
number of false positive

number of negative
.

Based on the ROC curve, there are three evaluation

criteria:

• Area Under Curve (AUC): the area under the

ROC curve,

• Equal Error Rate (EER): the ratio of misclassi-

fied frames at which FPR = 1− TPR, and

• Equal Detected Rate (EDR): the detected rate at

EER, i.e., EDR = 1− EER.

6.2 UCSD Pedestrian Dataset

The UCSD 2○ dataset is a dataset recorded on the

UCSD campus, overlooking the pedestrian walkways.

2○http://www.svcl.ucsd.edu/projects/anomaly/dataset.html, Mar. 2017.
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The crowd density varies from sparse to extremely

crowded. The normal videos contain only normal

events, which are comprised with only pedestrians. Ab-

normal events are caused by either 1) the entities of

non-pedestrians, or 2) abnormal motion patterns of

pedestrians. Accurate detection on this dataset is hard

for that all the abnormal events are not staged or syn-

thesized, but occur naturally.

In this paper, UCSD Ped1 dataset is used to eva-

luate the performance of the proposed algorithm. There

are 34 and 36 video clips in training and testing sets,

respectively. Each short video clip is composed of 200

frames with spatial resolution 158×238. In this experi-

ment, frames are divided into 15× 15× 5 patches. For

each patch, a 16-dimension modified MHOF feature is

extracted to describe an event, and a 4-dimension tex-

ture and a 1-dimension size feature are extracted from

the current frame to discover the relationship between

events. Parameters in (5) are set as λ = 0.1, µ = 0.2,

and γ = 0.2. The training dataset is used to learn the

structured dictionary.

Some state-of-the-art algorithms are selected as

competitors, which are MDT[43], MPPCA[42], SF[7],

Cong et al.’s algorithm[1], and Adam et al.’s

algorithm[41]. Some visual results are shown in Fig.1,

in which the abnormal events are highlighted with red

masks. These abnormal events include a car, bikes, a

skater, people running or walking in the grass. Fig.1(a)

is the ground-truth, Fig.1(b) is generated by MDT

algorithm[43], and Figs.1(c) and 1(d) are from SF-

MPPCA[43] and the sparse algorithm[1], respectively.

Fig.1(e) is generated by the proposed algorithm. For

the MDT algorithm, the result in the third column of

Fig.1 misses people walking through the grass, and is

inaccurate since the foreground mask is too large. The

SF-MPPCA algorithm completely misses the skater in

the second column of Fig.1, person running and people

walking through the grass in the third column of Fig.1,

and the cyclist in the last column of Fig.1. For sparse[1]

and the proposed algorithms, they all fail to detect the

runner in the third column of Fig.1.

The frame-level and pixel-level criteria defined

above are used for quantitative comparisons. In Fig.2

and Fig.3, ROC curves of state-of-the-art algorithms

for anomaly detection are shown, including MDT[43],

sparse[1], social force model[7], MPPCA[42], and Adam

et al.’s work[41]. Fig.2 shows their frame-level perfor-

mance, and Fig.3 is the pixel-level performance. It can

be easily seen that for frame-level measurement, ROC

curve of the proposed algorithm is above the other algo-

rithms when false positive rate is high. For pixel-level

measurement, ROC curve of the proposed algorithm

outperforms those of all the others.
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Fig.2. Frame-level ROC for Ped1 dataset.
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Fig.3. Pixel-level ROC for Ped1 dataset.

The evaluation criteria of the two comparisons are

listed in Table 1 and Table 2, respectively. Values in

these tables are from existing work. With these crite-

ria, it can be seen that the proposed algorithm is the

best in the quantitative comparison.

Table 1. Comparison of Frame-Level EER and AUC

on the UCSD Ped1 Dataset

Algorithm EER (%) AUC (%)

MDT[43] 25.0 81.8

MPPCA[42] 40.0 67.0

SF-MPPCA[43] 32.0 76.9

SF[7] 31.0 76.8

Adam[41] 38.0 64.9

SRC[1] 19.0 86.0

Ours 12.1 94.6
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Table 2. Comparison of Pixel-Level EDR and AUC

on the UCSD Ped1 Dataset

Algorithm EDR (%) AUC (%)

MDT[43] 45.0 44.1

MPPCA[42] 18.0 13.3

SF-MPPCA[43] 28.0 20.5

SF[7] 21.0 21.3

Adam[41] 24.0 19.7

SRC[1] 46.0 46.1

Ours 51.3 52.1

6.3 Avenue Dataset

The Avenue dataset is released by Lu et al.[16], con-

taining 16 training and 21 testing video clips. Abnor-

mal events in this dataset include running, loitering,

and throwing objects. As indicated by the authors of

[16] 3○, the main challenges are a few outliers in training

videos, the slight camera shakes in testing video, and

the lack of some normal patterns appearing in testing

videos.

Some visual results are shown in Fig.4. For the

sake of high detection rate, [16] ignores the relation-

ships among samples, which leads to the difficulty of

distinguishing normal and abnormal events by recon-

struction errors. In the first column and the third col-

umn of Fig.4, some false detections are provided with

Lu et al.’s algorithm[16]. Since only the object-level

ground-truth is provided, the object-level quantitative

comparison is used in this subsection. Table 3 lists

the object-level measurements under varying overlap

threshold Thr computed by (12). It is easy to find

that the introduction of structural information by the

proposed algorithm improves the average detection ac-

curacy by 6.8%.

(a)

(b)

(c)

Fig.4. Examples of abnormal event detections in Avenue dataset. (a) Ground-truth. (b) Results of Lu et al.’s algorithm[16]. (c)
Results of the proposed algorithm.

Table 3. Comparisons of Detection Accuracy

on the Avenue Dataset

Thr Lu et al.’s Algorithm[16] (%) Proposed (%)

0.2 70.0 75.8

0.3 67.3 72.8

0.4 63.3 69.7

0.5 59.3 66.2

0.6 57.5 64.7

0.7 55.7 63.6

0.8 54.4 62.8

7 Conclusions

In this paper, we proposed a robust collective rep-

resentation with multi-feature descriptors for abnormal

event detection. The proposed method is composed of

three steps. First, we extracted the distinguishable and

effective features to represent video events and repre-

sent these different features in an identical represen-

tation, in which different features of the same topic

3○http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html, Mar. 2017.
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will show more common properties. Second, the in-

trinsic relation between different feature descriptors is

explored and built to capture concept drift in the video

sequence. Finally, the proposed collective representa-

tion based sparse coding can be exploited as a mea-

surement to identify anomalies.
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