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Abstract Recently, neural models have been proposed for headline generation by learning to map documents to headlines

with recurrent neural network. In this work, we give a detailed introduction and comparison of existing work and recent

improvements in neural headline generation, with particular attention on how encoders, decoders and neural model training

strategies alter the overall performance of the headline generation system. Furthermore, we perform quantitative analysis of

most existing neural headline generation systems and summarize several key factors that impact the performance of headline

generation systems. Meanwhile, we carry on detailed error analysis to typical neural headline generation systems in order

to gain more comprehension. Our results and conclusions are hoped to benefit future research studies.
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1 Introduction

Automatic text summarization is the process of cre-

ating a coherent, informative and brief summary of a

document. Text summarization is expected to under-

stand the central theme of the document and then out-

put a condensed summary which contains as many key

points of the original document as it can under a length

limit. Text summarization approaches could be classi-

fied into two standard categories: extractive and gen-

erative. Most extractive summarization systems usu-

ally select a subset of actual sentences from the orig-

inal documents as a summary. This leads to inherent

drawbacks of extractive summarization, e.g., unable to

generate coherent and compact summary in arbitrary

length or shorter than one sentence. In contrast, gen-

erative summarization builds the semantic representa-

tion of a document and creates a summary with sen-

tences which are not necessarily presented in the origi-

nal document. Generative summarization needs to un-

derstand accurately and represent the semantics of the

original document, and then generate informative sum-

mary according to document representation. Most pre-

vious studies heavily rely on modeling latent linguistic

structures of input documents, via syntactic or seman-

tic parsing, which always brings certain errors and de-

grades summarization quality.

Headline generation is within the area of automatic

generation of summary, and its focus is the construc-

tion of headline-style abstracts from a single news ar-
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ticle. It produces informative content describing the

salient theme or event of the news article[1]. Recently

deep learning has evolved into one of the most exciting

and promising technologies in the field of artificial in-

telligence (AI), and brought great success in many nat-

ural language processing (NLP) tasks including head-

line generation[2-7]. Neural headline generation adopts

an end-to-end encoder-decoder framework to model the

entire headline generation process. The encoder reads

and encodes a source article into a sequence of latent

vectors (or a single vector). The decoder then outputs

a summary word by word leveraging the information

from the latent vectors.

In this work, we give an in-depth review of recent

work on neural headline generation. The rest of our

paper is structured as follows. In Section 2 we intro-

duce standard components of a neural headline gene-

ration system, including the input representation meth-

ods, options of encoder and decoder, and existing train-

ing strategies. Further, we introduce the exploration of

neural headline generation in different aspects includ-

ing limited vocabulary size, length control, model ar-

chitecture and so on. Section 3 introduces the widely

used English and Chinese neural headline generation

datasets in detail. In Section 4, we present a quan-

titative analysis of recent neural headline generation

systems and explore the effect of different factors. In

Section 5, we carry out manual analysis on development

dataset to acquire more insights of neural headline gene-

ration systems. Besides, we also perform error analy-

sis of different systems to explore the remaining prob-

lems for neural headline generation, which is expected

to benefit the future research. Section 6 introduces re-

lated work of headline generation. Finally, this paper

is concluded in Section 7.

2 Neural Headline Generation Model

Given an input document X = (x1, · · · , xM ), where

each word xi comes from a fixed vocabulary V, the neu-

ral headline generation model aims to take X as input,

and generates a short headline Y = (y1, · · · , yN ) with

length N < M word by word. The log conditional

probability can be formalized as:

log Pr(Y |X; θ) =

N∑

j=1

log Pr(yj |X,y<j ; θ),

where y<j = (y1, . . . , yj−1) and θ indicates model para-

meters. That is, the j-th word yj in the headline is

generated according to all y<j generated in past and

the input document X.

In the following, we will introduce the basic form

for neural headline generation. The encoder-decoder

architectures are presented in Subsection 2.1 and the

training algorithms are introduced in Subsection 2.2.

Furthermore, we explore some complicated problems

for neural headline generation in Subsection 2.3.

2.1 Encoder-Decoder Models

A primary form of neural headline generation con-

sists of three components: 1) an input representer which

gives a representation of the input words, 2) an encoder

which computes either a single vector or a sequence of

vectors representing the original document, and 3) a

decoder which generates one target summary word at

a time.

2.1.1 Input Representation

First, a neural headline generation system projects

discrete source article words into continuous vector

space, and obtains the input representation E =

{e1, e2, · · · , eM} of the source article:

E = emb(1(X)), (1)

where 1(·) is a function to obtain the one-hot repre-

sentation of word, and emb(·) represents the projection

function to obtain word representation.

Word embeddings are low-dimensional real-valued

vectors, which are not only capacity saving, but also

able to reflect syntactic and semantic relationships be-

tween words. In this case, (1) could be re-written as:

E = Wx1(X),

where Wx ∈ R
D×|V |x is a source word embedding ma-

trix, D is the word embedding dimension size, and |V |x
is the source-side vocabulary size.

Although word embedding is the most common way

to represent input words, there are also efforts made to

incorporate more complicated information of the input

articles. For instance, word position is considered in

[2], in addition to the word embedding. Specifically,

the full embedding for each word is calculated as the

sum of the word embedding and the word position em-

bedding. Abstract meaning representation is utilized in

[4] to incorporate syntactic and semantic information

of input sentence into the headline generation model.

More linguistic features are also considered in addition
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to the word embedding to enrich linguistic features of

source articles in [3]. The linguistic features include

parts-of-speech tags, named-entity tags, and TF and

IDF statistics of the words by utilizing additional em-

bedding matrices to embed these features. We mainly

focus on the comparison of different model architec-

tures and training strategies; hence we only use word

embedding to represent input words.

2.1.2 Encoder

The encoder encodes input representations into ei-

ther a single vector or a sequence of vectors H , which

is also called source hidden states:

H = enc(E),

where enc(·) represents the encoder. We introduce

different encoders in the following.

Bag-of-Words Encoder[7]. It is the most basic and

simple model to embed an article into a fix-sized vec-

tor. It averages word embedding into a single vector,

ignoring word order or relationships between words in

a document. This encoder is simple yet unable to rep-

resent continuous phrases:

H = pTE,

where p = [ 1
M
]M is a uniform distribution over the in-

put words.

Convolutional Encoder[7]. It is proposed to em-

bed input document using convolutional neural net-

work. Specifically, [7] utilizes a time-delay neural net-

work (TDNN) architecture, in which the final vector

representing the original article is obtained by alter-

nating between convolutional layer and pooling layer:

H = tdnn(E),

where tdnn(·) denotes the TDNN architecture. How-

ever, the convolutional encoder still has trouble to cap-

ture long-term dependencies. It is contrary to the na-

ture of natural language by ignoring the connection be-

tween words in a sequence.

RNN Encoder. It is proposed to use recurrent neu-

ral network (RNN) to better model sequential infor-

mation. RNN calculates the hidden state for each ele-

ment of a sequence depending on its previous output.

Hence, RNN can capture information about what has

happened so far:

hi = φ(hi−1, ei)

= ψ(Whhi−1 +Wxei),
(2)

where ei is the word representation of the i-th input

word, hi denotes the i-th hidden state, φ(·) represents

the function to calculate the current hidden state, Wh

and Wx are weight matrices, and ψ(·) is usually a non-

linear function. We omit the bias term for simplicity.

Although theoretically, RNN can make use of in-

formation in arbitrarily long sequences, it suffers from

the exploding and vanishing gradient problems[8]. Re-

cent studies on neural headline generation mostly uti-

lize variants of plain RNN as the encoder.

In the case of GRU-RNN[9], (2) could be written as:

ri = σ(Urhi−1 +Wrei),

zi = σ(Uzhi−1 +Wzei),

h̃i = tanh(Ut(ri ⊙ hi−1) +Wtei),

hi = (1− zi)hi−1 + zih̃i,

where zi is the update gate, ri is the reset gate, h̃i is

the candidate activation, and ⊙ is an element-wise mul-

tiplication. Uz , Wz, Ut, Wt, Ur and Wr are weight

matrices. GRU-RNN is adopted in some headline gene-

ration systems[3,5-6].

In the case of LSTM-RNN[10], (2) could be written

as:

hi = φ(hi−1, ei)

= oi tanh(Ci),

oi = σ(Uohi−1 +Woei),

fi = σ(Ufhi−1 +Wfei),

ii = σ(Uihi−1 +Wiei),

C̃i = tanh(Uchi−1 +Wcei),

Ci = fiCi−1 + iiC̃i,

where oi is the output gate, Ci is the memory cell, fi

is the forget gate, ii is the input gate, C̃i is the mem-

ory content. Uo, Wo, Uc, Wc, Uf , Wf , Ui and Wi

are weight matrices. Studies about headline generation

systems adopting LSTM-RNN include [11-12].

Bidirectional RNN Encoder[3,6,12]. Conventional

RNNs typically deal with text sequence from start to

end and build the hidden state of each word only consi-

dering its previous words. It has been verified that the

hidden state should also consider its following words as

well. Hence, bidirectional RNN (BRNN)[13] is adopted

to learn hidden states using both preceding and follow-

ing words.

BRNN processes the input document in both for-

ward direction and backward direction with two sepa-

rate RNNs and obtains the forward hidden states
−→
H ,
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the backward hidden states
←−
H , and the final H =

−→
H ⊕

←−
H in which operator ⊕ indicates concatenation.

In this work, we implement four kinds of encoders,

i.e., GRU-RNN, LSTM-RNN, GRU-BRNN and LSTM-

BRNN encoders, to make a detailed comparison be-

tween different types of encoder.

2.1.3 Decoder

The decoder generates a headline word-by-word

leveraging source hidden states H :

Y = dec(H),

where dec(·) represents the decoder. At the j-th step of

generation, i.e., generating the j-th headline word, the

decoder updates its internal hidden state first and then

computes the conditional distribution over the next tar-

get word. These operations are often based on source

hidden states, previous decoder hidden states and pre-

vious output words. The decoder can be directly im-

plemented as a neural network language model, or as

various variants of recurrent neural network, as we will

introduce below.

Neural Network Language Model[14]. It is adopted

in [7] as the decoder to estimate the contextual proba-

bility of the next word:

Pr(Y |X) =

N∏

j=1

Pr(yi|yc,H),

where yc is past c output words before yi, and we have

Pr(yi|yc,H) ∝ exp(Vnnlms+WnnlmH),

s = tanh(Unnlmỹc),

where ỹc is concatenation of their word embeddings,

Vnnlm, Wnnlm and Unnlm are weight matrices and s

is the current hidden state. However, neural network

language model decoder cannot consider the history in-

formation.

RNN Decoder. It decodes with recurrent neural net-

work for better capturing sequential information. The

RNN decoder can be formalized as:

Pr(Y |X) =

N∏

j=1

Pr(yj |y<j , sj ,H)

=

N∏

j=1

g(sj ,yj−1,H),

where g(·) is a function that outputs the probability

of yj and sj is the decoder hidden state which can be

calculated as:

sj = f(sj−1,yj−1), (3)

where f(·) is a function that calculates the current hid-

den state with regard to previous output word and hid-

den state.

Attention-Based RNN Decoder[2]. When generating

a headline word, different input words usually make

different contributions. To emulate the procedure, [15]

proposes the attention mechanism in neural machine

translation, which is later introduced in neural head-

line generation as well[2]. With the attention mecha-

nism, (3) becomes:

sj = f(sj−1,yj−1, cj),

where cj is the context vector, computed as a weighted

average of H = (h1, · · · ,hN ):

cj =

N∑

i=1

αjihi,

αji =
exp(eji)∑N

k=1 exp(ejk)
,

eji = ρ(sj−1,hi),

where αji is the weight assigned to the i-th source hid-

den state when decoding the j-th output word, eji is

used to score how well hi matches with sj−1, and ρ(·)

is the scoring function.

Similar to the encoder, RNN variants, such as GRU-

RNN and LSTM-RNN, are preferred instead of the

plain RNN for the decoder. In our work, we implement

attention-based GRU-RNN and LSTM-RNN decoders

to examine the effect of different decoders.

2.2 Training Strategy

Existing neural headline generation models are

mostly trained according to the maximum likelihood

training strategy, which is essentially a word-level train-

ing strategy. There is also another line of sentence-

level training strategy called minimum risk training[16],

which can optimize model parameters with regard to

evaluation matrices. We introduce the two strategies

as follows.

2.2.1 Maximum Likelihood Estimation

In the traditional training strategy, the neural head-

line generation model parameters are optimized by

maximizing the log likelihood of generated headlines

over a set of training data D:

θ̂MLE = argmax
θ

{LMLE(θ)} ,
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where

LMLE(θ) =
∑

(X,Y )∈D

log Pr(Y |X; θ).

[16-17] point out that there are two shortcomings

when utilizing MLE for encoder-decoder architecture.

The first one is referred to as exposure bias[17]. That is,

while the models are trained only on the training data

distribution, an output word is predicted according to

a correct previous word during training. However, at

test time, an output word is predicted based on a pre-

dicted previous word which can be incorrect. Second,

MLE usually uses the word-level cross-entropy loss to

maximize the probability of the next word, which might

hardly correlate well with the sentence level evaluation

metric.

2.2.2 Minimum Risk Training

To tackle the problems of MLE training strategy,

the minimum Bayes risk technique is introduced to tune

neural model with respect to evaluation metrics. It

aims at minimizing a sentence-wise loss function over

the training data and has been widely used in many

NLP tasks such as machine translation[16,18-20]. In our

work, we implement the minimum risk training (MRT)

to optimize the neural headline generation model as

well.

Given a document X, Y(X; θ) is defined as the set

of all possible headlines generated with parameter θ.

Regarding Y ′ as the reference headline of X, ∆(Y ′,Y )

represents the distance between Y and a generated

headline Y ′. MRT defines the loss function as:

LMRT(θ) =
∑

(X,Y )∈D

EY(X;θ)∆(Y ′,Y ).

Here EY(X;θ) indicates the expectation over all pos-

sible headlines. Thus the loss function of MRT can be

further formalized as:

LMRT(θ) =
∑

(X,Y )∈D

∑

Y ′∈Y(X;θ)

Pr(Y ′|X; θ)∆(Y ′,Y ).

In this way, the training objective of MRT is to min-

imize the expected loss by perceiving the distance as a

measure of assessing the overall risk:

θ̂MRT = argmin
θ

{LMRT(θ)} .

Nevertheless, it is usually time-consuming and in-

efficient to enumerate all possible instances. For sim-

plicity, we draw a subset of samples S(X; θ) ⊂ Y(X; θ)

from the current probability distribution of generated

headlines. Algorithm 1 shows how to sample from the

current probability distribution of generated headlines.

The loss function can be approximated as:

LMRT(θ)

=
∑

(X,Y )∈D

∑

Y ′∈S(X;θ)

×

Pr(Y ′|X; θ)ǫ∑
Y ∗∈S(X;θ) Pr(Y

∗|X; θ)ǫ
∆(Y ′,Y ), (4)

where ǫ is a hyper-parameter that controls the smooth-

ness of the objective function[18]. A proper ǫ value can

significantly enhance the effectiveness of MRT[16]. Al-

gorithm 2 shows how to update model parameter.

Algorithm 1:81. Sampling Process of MRT

Input: a training data pair (X,Y ) from training dataset
D,
the limit on the size of sampling subset s,
the model parameter θ

Output: sampled subset S(X; θ)
1 S(X; θ)← {Y };
2 i← 1;
3 while i 6 s do

4 y ← ∅; // an empty candidate headline

5 j ← 1;
6 while true do

7 y ∼ Pr(yj |X,y<j ; θ); // sample the j-th word

8 y ← y ∪ {y};
9 if y = eos then

10 break;// stop generating if reach the

end of sentence

11 end

// eos refers to end of sentence symbol

12 j ← j + 1;

13 end

14 S(X; θ)← S(X; θ) ∪ {y};
15 i← i+ 1;

16 end

Algorithm 2:82. Training Process of MRT

Input: a set of training data D,
the limit on the size of sampling subset,
the set of model parameter θ′,
the hyper-parameter ǫ that controls the
smoothness of objective function

Output: optimized model parameter θ

1 Set initial value of parameter θ using the MLE parameter
θ′

2 for (X,Y ) ∈ D do

3 Sample S(X; θ);
4 Compute gradient of

∑
Y ′∈S(X;θ)

Pr(Y ′|X;θ)ǫ∑
Y ∗∈S(X;θ)

Pr(Y ∗|X;θ)ǫ
∆(Y ′,Y ) w.r.t.

θ;
5 Update model parameter and get θ

6 end

MRT exploits the distance between two sentences

to compose the loss function, which enables it to di-
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rectly optimize model parameter concerning specific

evaluation metric. Headline generation is fundamen-

tally a sub-task of summarization. Therefore, it is

reasonable to take ROUGE[21], the most widely used

evaluation metric for document summarization, to com-

pose the distance in MRT. The basic idea of ROUGE

is to count the number of overlapping units between

computer-generated summaries and the reference sum-

maries, such as overlapped N -grams, word sequences,

and word pairs. We measure the distance ∆(y′,y) with

ROUGE in our work, and more details about ROUGE

are introduced in Subsection 4.1.

2.3 Improvement for Neural Headline

Generation

Many researchers have been focusing on other as-

pects to improve the performance of neural headline

generation system as well. We will introduce them in

details in this subsection.

2.3.1 Limited Vocabulary Size

At each generation step of the decoder, the output

word is selected according to the probability distribu-

tion over the whole target side vocabulary, which is

the most time and capacity consuming part of the sys-

tem. To balance the performance and the efficiency,

most systems would keep a fix-sized target vocabulary

concerning word frequency. Infrequent words would be

replaced by a unique token “UNK”, meaning unknown

words. While there are only a few unknown words in

the headline, this approach would work well. How-

ever, it has been observed that the infrequent words

are usually proper nouns or named-entities that have

deterministic influence on the meaning of the headline.

Mapping them into a unified “UNK” token regardless

of other consideration would hurt system performance.

In this subsection, we introduce studies that make an

effort to deal with the limited vocabulary size problem

in neural headline generation system.

[6] proposes a new model called COPYNET, which

is an encoder-decoder architecture equipped with copy-

ing mechanism. The motivation behind this design is to

simulate the human behavior that people tend to repeat

named entities or even longer phrases when communi-

cating, especially when they are unfamiliar with those

named entities or phrases. In the canonical attention

based encoder-decoder model, to output a word, the

model would consider only a generating mode. COPY-

NET also considers an additional copy mode, so that

the model could accommodate both generating and

copying. [22] points out that unknown words are hurt-

ing the performance of most NLP applications, includ-

ing statistical-based and neural network based applica-

tions. Thus [22] proposes to solve the unknown word re-

lated problem in end-to-end neural network, i.e., when

predicting an output word, the model first makes a deci-

sion whether to pick a word from target side vocabulary

or copy one from source input. [3] tries to deal with the

rare keywords using the pointer network[23]. The mod-

els mentioned above[3,6,22] share the same essence: uti-

lizing input words that are not in the target vocabulary

to expand the limited target vocabulary size.

Besides, [3] explores another way to deal with the

limited vocabulary size, inspired by [24]. Specifically,

at each mini-batch, [3] restricts the decoder-vocabulary

to words in the source documents of the batch. If

the decoder-vocabulary size does not reach a fixed size,

more words of the target dictionary are added concern-

ing frequency. This technique is referred to as LVT

(large vocabulary trick).

In our work, we explore an easier “UNK replace”

method during testing, which is also inspired by [24].

That is, when the model generates a “UNK” token, we

replace it based on alignment information.

Another way to deal with the computational

complexity from very large vocabulary is to utilize a

character-level model, as proposed in [5]. [5] treats

source articles and target headlines as sequences of

characters without any explicit word segmentation.

The work of [5] is based on a Chinese dataset. Hence we

also adopt character level model for Chinese systems.

2.3.2 Length Control

Neural headline generation aims at highly summa-

rizing a longer article into a short and capable head-

line that includes the most salient information in the

original article. Depending on different application sce-

narios, there is one important attribute that headlines

should possess: the length of a headline can be man-

aged within the desired range. It is intractable to keep

as much salient information as possible and to make

the summary length achieve a pre-defined size at the

same time. To address this problem, [11] proposes

four model variants. Two of them are based on diffe-

rent decoding procedures without model architecture

modification. The other two are learning-based, i.e.,

the models take the desired length information as in-

put and encode it into the model architecture. The

best performing model, LenEmb, takes the length limit
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embedding as additional model input. When decod-

ing, LenEmb maintains a remaining length embedding,

which is changing along with the decoding process, to

control how many bytes of outputs will be generated.

2.3.3 Model Architecture Exploration

Researchers also explore if there are more appropri-

ate model architectures for neural headline generation.

In the attention-based encoder-decoder model, the

input sequence has to be read in and encoded before

the model produces any output, which is time- and

capacity-consuming. Inspired by the HMM word align-

ment model[25-26], [27] implements a new neural head-

line generation architecture to deal with the above-

mentioned bottleneck. Specifically, when reading in an

input signal, the model has to decide whether to read

the following input or generate an output signal, de-

pending on the transition probability. Note that the

model is online sequence-to-sequence model only when

the encoder is unidirectional.

[12] proposes a semi-supervised architecture for neu-

ral headline generation. Specifically, [12] combines

a generative unsupervised model (auto-encoding sen-

tence compression, ASC) that takes variational auto-

encoding framework as inference algorithm, and a

discriminative supervised model (forced attention sen-

tence compression, FSC) together. As a result, the sys-

tem can model language as a discrete latent variable in

the variational auto-encoding framework, and the re-

sultant generative model can exploit both supervised

and unsupervised data in headline generation task.

2.4 Comparison with Neural Machine

Translation

Among many tasks in the field of natural language

processing, the most related task to headline generation

is machine translation. Machine translation aims at

translating an input sequence of words in the source

language to an output sequence of words in the target

language. Headline generation can also be treated as a

special kind of translation process: translating an input

sequence of words in a source document to an output

sequence of words in a targeted headline. The source

document and the target headline are in the same lan-

guage though. Due to the similarity, researchers have

explored the possibility of applying machine transla-

tion models to headline generation[28]. Also, the of-

ficially adopted headline generation evaluation metric

ROUGE is also inspired by BLEU, a standard machine

translation evaluation metric.

Neural network based encoder-decoder architecture

is first proposed in machine translation and achieves

state-of-the-art performance compared with traditional

statistical models. According to the aforementioned

similarity between machine translation and headline

generation, it is a natural choice to adopt the encoder-

decoder architecture for headline generation as well.

Despite the similarity, there are some important

differences between machine translation and headline

generation. In machine translation, the target output is

expected to keep the original information of the source

input to the greatest extent. Hence the lengths of the

source input and the target output are close to each

other. In headline generation, on the other hand, the

target headline only remains the most salient parts of

the source document. As a result, the headline is typi-

cally much shorter than the original document. Hence,

although neural headline generation systems share a

similar framework with neural machine translation sys-

tems, the significance is quite different, which also in-

dicates the flexibility of neural models.

3 Corpora

In this section, we introduce the standardized En-

glish test set and the automatically composed training

sets (for English and Chinese respectively) in details.

3.1 DUC Data

The headline generation task is standardized in

Task-1 of DUC2003 and DUC2004 1○. The DUC2003

dataset consists of 624 news articles from Associated

Press Wire services and New York Times. Following

[7], the DUC2003 Task-1 data is often utilized as develo-

pment set, to select hyper-parameters. The DUC2004

Task-1 data is usually taken as test set, and it con-

sists of 500 news articles. Each article of these two

datasets is paired with four human-generated reference

headlines. Table 1 shows the statistics of them.

Table 1. Data Statistics of the DUC Datasets

Dataset Statistics
art.num art.avg.tok head.avg.tok

DUC2003 624 35.37 10.03
DUC2004 500 35.56 10.43

Note: art.num, art.avg.tok and head.avg.tok refer to the number
of articles, average token numbers in each article, and average
token numbers in each headline respectively.

1○http://duc.nist.gov/, May 2017.
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3.2 English Gigaword

The English training dataset, which is introduced

in [7], is made from English Gigaword[29] 2○. English

Gigaword is one of the largest static corpora of English

news, and it has the following layers of annotation: sen-

tences segmentation and tokenization, treebank-style

constituent parse trees annotation, syntactic depen-

dency trees annotation, named entities annotation, and

in-document coreference chains annotation. It consists

of nearly 10 million news articles from seven news out-

lets, with a total of more than four billion words. To

utilize it for training headline generation model, [7] car-

ries out a preprocessing and filtering procedure. [7] also

releases the corresponding preprocessing script to ben-

efit others. Specifically, the processing steps include: 1)

filtering out news articles that overlap with DUC2003

and DUC2004 datasets; 2) filtering out headlines in-

cluding bylines, extraneous editing marks and question

marks; 3) utilizing annotations for tokenization and

sentence separation to get word tokens; 4) opting the

first sentence of each news article and pairing it with

its corresponding headline as an article-headline pair;

5) lower-casing, replacing all digit characters with #,

and replacing word types seen less than five times with

“UNK”. The data statistics after these preprocessing

steps is shown in Table 2. In our experiments, we also

follow the aforementioned preprocessing steps.

3.3 LCSTS

LCSTS[5], the Large-Scale Chinese Short Text Sum-

marization dataset, is commonly used for Chinese

headline generation. It is constructed based on Sina

Weibo 3○, a popular social medium in China. On Sina

Weibo, some weibos are associated with headline-like

contents encapsulated in parentheses, which is a nat-

ural fit to the data format of the headline generation

task. Since Sina Weibo is open to any users, to make

sure the crawled weibos are clean, formal and infor-

mative, only those weibos from 50 very popular certi-

fied organization users and their blue verified followers

are collected. After filtering out too short weibos (less

than 80 characters) and inappropriate headlines (out

of range of 10∼30 characters), and manually annotat-

ing partial weibos, the dataset is categorized into three

parts, the bottom row of Table 2 shows the statistics of

the dataset.

4 Experiments

In this section, we introduce experiments that we

conduct to help better understand neural headline gene-

ration systems.

4.1 Evaluation Metric

ROUGE[21], standing for Recall-Oriented Under-

study for Gisting Evaluation, is the most widely used

evaluation metric for document summarization. It is

also adopted to evaluate headline generation system

performance by Document Understanding Conference

(DUC), a large-scale summarization evaluation spon-

sored by NIST (National Institute of Standards and

Technology) of United States Department of Com-

merce. Inspired by the evaluation metric of machine

translation, the basic idea of ROUGE is to count

the number of overlapping units between computer-

generated summaries and the reference summaries.

ROUGE-N is an N -gram recall between a generated

summary Y ′ and the reference summary Y , which can

be formulated as:

ROUGE-N =

∑
gram

N
∈Y

CM (gramN )
∑

gram
N
∈Y

CY (gramN )
, (5)

where gram
N
represents the N -gram, CY (gram

N
) indi-

cates the maximum number of co-occurring N -grams in

Y ′, and CM (gram
N
) denotes the number of N -grams

in Y . In the experiment, we take two types of N -gram

into consideration, i.e., uni-gram and bi-gram, corre-

sponding to ROUGE-1 and ROUGE-2 respectively.

Table 2. Data Statistics of English Gigaword and LCSTS Datasets

Language Dataset Statistics

Train Valid Test art.avg.tok head.avg.tok

English English Gigaword 3 799 588 394 622 381 197 31.35 8.23

Chinese LCSTS 2 400 591 10 666 1 106 103.68 17.86

Note: “Train”, “Valid” and “Test” represent the number of article-healdine pairs in the training, validation and test set respectively.
art.avg.tok refers to average token number of articles, head.avg.tok refers to average token number of headlines, and both these statistics
are based on the training set.

2○https://catalog.ldc.upenn.edu/LDC2012T21, May 2017.
3○http://www.weibo.com/, May 2017.
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ROUGE-L is a longest common sub-sequences based

F -measure to compare the similarity between two sen-

tences. It can be formalized as:

ROUGE-L =
(1 + β2)rLpL
rL + β2pL

,

rL =
Lcs(Y ′,Y )

Len(Y )
,

pL =
Lcs(Y ′,Y )

Len(Y ′)
, (6)

where Lcs(Y ′,Y ) is the length of the longest common

subsequence between Y ′ and Y , Len(Y ) is the length

of Y and β is the harmonic factor between recall rL
and precision pL.

Following [2-3, 7], for DUC2003 and DUC2004,

we report recall scores of ROUGE-1, ROUGE-2 and

ROUGE-L with official 75 bytes ceiling limit. Mean-

while, following [2-3, 7], for Gigaword test set, we report

full-length F -measure scores of ROUGE-1, ROUGE-2

and ROUGE-L. Since a shorter summary tends to get

a lower recall score, when testing on DUC datasets, we

set the minimum length of a generated headline to 10.

Note that we report 75 bytes capped recall scores only.

In this case, summaries longer than 75 bytes obtain no

bonus on recall scores. Due to that the full-length F -

measure makes the evaluation result unbiased to sum-

mary length, we set no limitation to the headline length

when testing on Gigaword test set.

For Chinese, we report full-length F -measure scores

following previous work[5-6]. We set no length limita-

tion on Chinese experiments either.

4.2 Implementation Details

We conduct several experiments to compare diffe-

rent encoders, decoders and training strategies and the

experimental setup is as follows. For English models,

we set the word embedding dimension to 600, the hid-

den unit size to 1 000 and the vocabulary size to 30 000.

The corresponding values for Chinese models are 400,

500 and 3 500 respectively. In MLE systems, model

parameters are randomly initialized and then updated

during training. In MRT systems, model parameters

are initialized using the optimized parameters from the

MLE systems. When training English MRT systems,

we adopt negative recall value of ROUGE-1, ROUGE-2

and ROUGE-L to compose ∆(Y ′,Y ). For Chinese sys-

tems, we utilize negative F -measure value of ROUGE-

1, ROUGE-2 and ROUGE-L to compose ∆(Y ′,Y ). In

particular, the size of subset S(X; θ) in (4) has a great

impact on the performance. When the size is too small,

the sampling will be insufficient. When the size is too

large, the learning time will grow correspondingly. In

this paper, we set the size to 100 to achieve a trade-

off between effectiveness and efficiency. These samples

are drawn from the probability distribution of gene-

rated headlines by the up-to-date system 4○. We use

AdaDelta[30] to adapt learning rates in stochastic gra-

dient descent for both MLE and MRT systems. We

utilize no dropout or regularization, but we take gra-

dient clipping during the training and the training is

early stopped based on the DUC2003 data. All mod-

els are trained on GeForce GTX TITAN GPU. For the

MLE system on the English datasets, it takes about 2.5

hours for each 10 000 iterations. For the MRT system,

it takes about 3.75 hours. During the testing, we use

the beam search of size 10[2] to generate headlines.

4.3 Baseline Systems

4.3.1 English Systems

ABS and ABS+[7] both utilize weighted bag-of-

words encoder and NNLM decoder. The difference is

that ABS+ extracts additional N -gram features at the

word level to revise the output of the ABS model.

Luong-NMT[31] exploits 2-layer attention based

LSTM-RNN architecture.

words-lvt2k-1sent[3] is based on GRU-BRNN en-

coder and attention-based GRU-decoder, and also uti-

lizes the large vocabulary trick.

ABS+AMR[4] utilizes the same model architecture

as ABS and meanwhile takes input article parsing in-

formation in addition.

RAS-Elman and RAS-LSTM[2] both utilize convo-

lutional encoders that take word position as extra input

information. RAS-Elman is based on the Elman-RNN

decoder, while RAS-LSTM is based on the LSTM-RNN

decoder.

LenEmb[11] tries to solve the output length control-

ling problem.

ASC+FSC[12] is a semi-supervised neural headline

generation system.

MLE and MRT denote the systems we implement.

They are both composed of GRU-BRNN encoder and

attention-based GRU-RNN decoder. The difference be-

tween them is the different training strategy.

4○An alternative subset building strategy is to choose top-k headlines. Considering the efficiency and parallel architecture of
GPUs, we opt sampling.
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4.3.2 Chinese Systems

RNN-Context(W) and RNN-Context(C)[5] are

word-based and character-based models respectively.

The basic model architecture is the GRU-BRNN en-

coder and the attention-based GRU-RNN decoder.

COPYNET(W)[6] incorporates copying mechanism

into a sequence-to-sequence framework, which repli-

cates certain segments from the input sentence into the

output sentence.

MLE(C) and MRT(C) remain the same meaning

as in English systems. (C) means that the system is

character-based.

4.4 Evaluation Results

In this subsection, we illustrate the overall evalua-

tion results in both English and Chinese test sets. R1R,

R2R and RLR stand for recall scores of ROUGE-1,

ROUGE-2 and ROUGE-L respectively. R1F1, R2F1

and RLF1 stand for F -measure scores of ROUGE-1,

ROUGE-2 and ROUGE-L respectively.

We discuss the performances in details to gain more

insights about what works for neural headline gene-

ration systems. Since the architectures vary in different

systems, we make the comparison between similar sys-

tems and find out what is working. When necessary, we

also implement further auxiliary experiments to verify

our observations.

4.4.1 Results on English Corpus

From Table 3 and Table 4, we observe the follow-

ing key factors that affect the performance of headline

generation systems.

Linguistic Feature. words-lvt2k-1sent[3] takes ad-

ditional linguistic features such as POS tag, NER

tag, TF-IDF statistics in their input representation.

ABS+AMR[4] includes parsing information in their in-

put representation. ABS+[2] is a system that adopts

extractive tuning. Comparing words-lvt2k-1sent with

MLE, and ABS+AMR with ABS+, we find that adding

Table 3. ROUGE Scores on DUC2004 and Gigaword English Test Sets

System DUC2004 Gigaword

R1R R2R RLR R1F1 R2F1 RLF1

ABS[7] 26.55 7.06 22.05 29.55 11.32 26.42

ABS+[7] 28.18 8.49 23.81 29.76 11.88 26.96

Luong-NMT[31] 28.55 8.79 24.43 33.10 14.45 30.71

words-lvt2k-1sent[3] 28.35 9.46 24.59 32.67 15.59 30.64

ABS+AMR[4] 28.80 7.83 23.62 - - -

RAS-LSTM[2] 27.41 7.69 23.06 32.55 14.70 30.03

RAS-Elman[2] 28.97 8.26 24.06 33.78 15.97 31.15

LenEmb[11] 26.73 8.40 23.88 - - -

ASC+FSC[12] - - - 34.16 15.94 31.92

MLE 24.92 8.60 22.55 32.67 15.23 30.56

MRT 30.41 10.87 26.79 36.54 16.59 33.44

Table 4. Model Architectures Corresponding to Table 3

System Input Encoder Decoder Others

ABS[7] Weighted bow NNLM+Att

ABS+[7] Weighted bow NNLM+Att Extractive feature

Luong-NMT[31] 2-layer LSTM 2-layer LSTM+Att

words-lvt2k-1sent[3] +Linguistic features GRU-BRNN GRU+Att LVT

ABS+AMR[4] +Parsing information Weighted bow NNLM+Att

RAS-LSTM[2] +Position embedding Convolutional LSTM+Att

RAS-Elman[2] +Position embedding Convolutional Elman+Att

LenEmb[11] +Length information LSTM-BRNN LSTM+Att

ASC+FSC[12] LSTM-BRNN LSTM+Att

MLE GRU-BRNN GRU+Att UNK replace

MRT GRU-BRNN GRU+Att UNK replace

Note: In the “Input” column, a blank bar means a model only takes word embeddings as the encoder input. In the “Others” column,
a blank bar means a model takes no other special techniques. Att denotes attention mechanism and weighted bow means weighted
bag-of-words.
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additional linguistic features of input could help in im-

proving system performance. Also these features ben-

efit the interpretability of neural headline generation

system.

Encoder Choice. Those systems which utilize BRNN

seem to have higher ROUGE-2 and ROUGE-L scores.

The most obvious example is that on both DUC and

Gigaword, the MLE system obtains higher ROUGE-

2 and ROUGE-L scores as compared with the extrac-

tively tuned ABS+ system. Hence we believe that the

bidirectional encoder has the ability to encode both for-

ward and backward information as it claims, and conse-

quently leads to more coherent target output. To verify

this observation, we implement four encoders while fix-

ing the decoder to be the same (attention-based GRU-

RNN). The experimental results are shown in Table 5.

We can find that BRNNs get higher R2R and RLR

scores, which are important indication of coherency.

Hence the aforementioned observation is verified. For

those encoders that are not based on recurrent neural

network, the advantages might be the light weightiness

as mentioned in [2]. That is, when obtaining compa-

rable system performance, these systems require fewer

parameters.

Table 5. Effect of Different Encoders on DUC2004

Encoder Evaluation Metric

R1R R2R RLR

GRU-RNN 25.42 7.64 22.44

GRU-BRNN 24.92 8.60 22.55

LSTM-RNN 26.14 8.25 23.17

LSTM-BRNN 26.09 8.44 23.18

Decoder Choice. ABS, ABS+, and ABS+AMR take

non-RNN architecture as their decoder. We find that

the overall performance of them is inferior to that of

those RNN-based ones. Hence when making a deci-

sion about the decoder, RNN-based decoders are rec-

ommended. [7] reports that their attention-based en-

coder performs much better than the bag-of-words and

convolutional encoders. Combining the fact that the

attention mechanism has achieved significant improve-

ment in NMT, adopting the attention mechanism in a

model is a smart choice. Furthermore, we carry out

comparative experiments to explore the effectiveness of

GRU decoder and LSTM decoder, and the results are

described in Table 6. As we can see from the table,

when exploiting the same encoder, the GRU-RNN de-

coder always gets better performance. Therefore, we

believe that the GRU-RNN decoder is more suitable

for headline generation than the LSTM-RNN decoder.

Table 6. Effect of Different Decoders on DUC2004

Encoder Decoder Evaluation Metric

R1R R2R RLR

GRU-BRNN GRU 24.92 8.60 22.55

LSTM 24.49 7.23 21.64

LSTM-BRNN GRU 26.09 8.44 23.17

LSTM 25.51 7.80 22.59

Training Strategy. Analyzing training strategy, we

observe that the MRT system, the only system opti-

mized with minimum risk training algorithm, signifi-

cantly improves over the MLE system, and is also supe-

rior to other systems. This suggests that the sentence-

level optimizing algorithm is much more efficient than

the word-level optimizing algorithm. As described in

Subsection 2.2.2, the distance ∆(Y ′,Y ) in the loss

function of MRT is computed by the negative value

of ROUGE. We also conduct experiments to investi-

gate the effect of utilizing various distance measures

in MRT. Table 7 shows the experimental results on

DUC2004 using different evaluation metrics. We find

that all MRT systems consistently outperform the MLE

system, which indicates that the MRT technique is ro-

bust when loss function varies. We also find that when

using −R1R and−RLR as distance measures, the corre-

sponding R1R and RLR scores reach the highest. How-

ever when using −R2R, the corresponding system does

not get the best R2R score as we expected. Instead, the

−RLR system gets the best R2R score. One possible

explanation is that RLR, which measures the longest

common string between two sentences, also can mea-

sure bi-gram information.

Table 7. Effect of Using Different Distance Measures

in MRT on DUC2004

System Evaluation Metric

R1R R2R RLR

MLE 24.92 8.60 22.55

−R1R 29.84 10.24 26.33

−R2R 28.35 10.43 25.28

−RLR 29.80 10.87 26.35

Output Length[11]. It tries to solve a basic prob-

lem of headline generation under the neural network

architecture, i.e., taking control over the output length.

From Table 3, we find that the ROUGE scores of [11]

are inferior to most systems. One possible explanation

is that the test dataset (DUC2004) is not very suitable

for the aim of this work, i.e., there is no specific cate-

gory classified according to different length values in

the test dataset.
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Corpus. We also find that the improvement of diffe-

rent systems is not very consistent on the DUC and

Gigaword datasets. For example, ABS+ shows signifi-

cant improvement over ABS on the DUC datasets, but

is not so significant on Gigaword. Since ABS+ is an

enhanced version of ABS, i.e., ABS+ parameters are

tuned according to the DUC2003 dataset, the superior

performance on DUC seems to be reasonable. However,

the same observation could be found when comparing

words-lvt2k-1sent and MLE. We suspect that the rea-

son might be relative to the reference headlines. The

DUC datasets have four manual references for each ar-

ticle when Gigaword only has one. According to [21],

more references lead to more stable evaluation. Hence

we believe results on DUC datasets are more reliable.

4.4.2 Results on Chinese Corpus

We have illustrated most English headline gene-

ration experimental results so far and made comparison

among different encoders, decoders and training strate-

gies. However, there is an important problem in accom-

plishing Chinese neural headline generation, i.e., the

segmentation problem. We conduct auxiliary experi-

ments on Chinese to compare the character-based and

the word-based model. Table 8 shows the evaluation

results of headline generation on Chinese test sets 5○.

The five systems listed in the table share the same basic

model architecture, i.e., GRU-BRNN encoder + GRU-

RNN decoder + attention mechanism. The differences

include: 1) RNN context(W) and COPYNET(W) are

word-based, and the others are character-based; 2) only

COPYNET(W) incorporates the Copy mechanism; 3)

only MRT(C) is trained with minimum risk training al-

gorithm, and the others are trained with maximum like-

lihood estimation algorithm; 4) RNN context(C) and

our MLE system differ in decoding method during test

time.

Table 8. ROUGE Scores on Chinese Test Set

System LCSTS

R1F1 R2F1 RLF1

RNN context(W)[5] 26.8 16.1 24.1

RNN context(C)[5] 29.9 17.4 27.2

COPYNET(W)[6] 35.0 22.3 32.0

MLE(C) 34.9 23.3 32.7

MRT(C) 38.2 25.2 35.4

Note: (W) and (C) mean word-based and character-based re-
spectively.

Due to the fact that the words are not delimited by

white space in Chinese, word-segmentation is often a

necessary pre-processing step. The error of word seg-

mentation would be brought into a model inevitably.

In addition, the segmentation results would influence

the fix-sized vocabulary as well. One way to solve

the problem is to directly separate an article charac-

ter by character. In this way, there will be no word-

segmentation error in the system, and the vocabulary

could be down-sized substantially as well. Comparing

RNN context(W) and RNN context(C), we find that

the character-based model performs significantly bet-

ter than the word-based model. We also find that,

although COPYNET(W) is word-based, its ROUGE-2

and ROUGE-L scores are notably better than the RNN

context(W), even better than the character-based RNN

context(C). This indicates the effectiveness of Copy

mechanism in handling word-level or phrase-level infor-

mation. With the strength of the sentence-level opti-

mization, the MRT system improves the ROUGE scores

up to over 3 points compared with the MLE system and

consistently outperforms other baseline systems. This

again proves the effectiveness of minimum risk training

algorithm in neural headline generation systems.

5 Analysis

The MRT training strategy could significantly im-

prove the neural headline generation system perfor-

mance, and our implemented MRT system achieves the

state-of-the-art in existing neural headline generation

systems. In order to further understand our MRT sys-

tem, and benefit later research, we conduct an in-depth

comparison between the MLE and MRT systems and

try to answer the following questions. 1) What can

the neural headline generation systems we implemented

learn? 2) What kinds of errors are the neural headline

generation systems making?

5.1 Data Analysis

By looking over the per-document performance of

the systems, we find that the ROUGE scores change

dramatically. Hence we decide to investigate about

the source documents and their corresponding head-

lines, and try to discover whether there is a connection

between data property and system performance. To

study this, we randomly sample 100 examples from the

development set of the LCSTS dataset for analysis.

5○The MRT result reported here is obtained by taking the negative F -measure score of ROUGE-1 as the loss function. Several
related experimental results are not given due to the length limit.
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5.1.1 Decomposing the Examples

After carefully analyzing the 100 examples, we clas-

sify them into six categories. There might be cases that

an example satisfies more than one category. In these

cases, we classify them into the earliest one and Ta-

ble 9 provides the percentage of each category. The

categories are as follows.

Proper Subset. Headline words are all from the orig-

inal article.

Expression Quotation. This category directly refers

to the speech fragment of someone while describing an

event, so that the description becomes more vivid. This

narrative approach is usually accompanied with post

positioned subject.

Paraphrasing. Although headline words are not ex-

actly the same with the ones in the original article,

they remain the same meanings obviously. Words in

this kind of headline are usually reordered to make the

headline coherent.

Mathematical Reasoning. The original article in-

cludes digital information; hence one should conduct

simple mathematical operation, such as counting or

adding, to get the corresponding digit in the headline.

Domain Knowledge. In this category, the original

article writes about contents that are targeted at spe-

cific readers, financial report for instance. To manu-

ally generate a concrete headline for this category, one

should be provided with certain domain knowledge.

Weak Clue. Headlines are supposed to highly sum-

marize the original article, so that the readers can de-

termine whether or not to continue reading this article.

Hence, it is unavoidable that there are many cases in

which headlines are intended to attract the public eye,

but have no much relationship with the original arti-

cles. Basically target summaries of this category are

treated as “unobtainable”.

5.1.2 Per Category Performance

We report the evaluation results of two systems

based on the above categorization in Table 9. From

the table, we find the following facts. 1) The proper

subset and expression quotation cases are quite simple

and both systems get promising scores compared with

other cases. 2) On the paraphrasing cases, the MRT

system performs much better than the MLE system,

which confirms that the MRT system is good at cap-

turing the integrated information. 3) The mathemati-

cal and domain knowledge cases require basic reasoning

ability and domain knowledge to generate a coherent

headline. Hence, both systems get lower scores as com-

pared with other cases. However, since these systems

do not incorporate any domain knowledge, it is inappro-

priate to evaluate the system performance with regard

to reference headline with domain knowledge. 4) For

weak clue cases, since the golden summaries have not

much relationship with the original articles, even for

human, it is unable to generate the golden outputs.

To address the issue mentioned in 3) and 4), plus to

carry out more reasonable, objective and fair analysis,

we further build reference headlines manually for those

domain knowledge and weak clue cases (62 examples in

total).

5.2 Manually Reference

We request four annotators to generate headlines for

the 62 examples manually. In fact, writing a headline

is a very subjective task, and headlines generated by

different annotators could be quite different. Hence, we

gives the following rules to better control the subjective

difference.

1) Given a weibo which includes less than 140 char-

acters, annotators need to generate a headline within

10∼20 characters.

2) The headline should contain the most salient con-

tent of the original weibo.

Table 9. Per-Category Performance of MLE and MRT

No. Category Statistics (%) MLE MRT

R1F1 R2F1 RLF1 R1F1 R2F1 RLF1

1 Proper subset 10 63.5 51.1 60.4 67.0 52.8 64.4

2 Expression quotation 10 50.7 33.9 45.1 56.7 39.6 51.4

3 Paraphrasing 14 29.7 16.3 28.0 37.9 23.3 34.2

4 Domain knowledge 15 35.1 21.0 34.3 31.9 20.3 31.0

5 Mathematical reasoning 4 24.3 15.7 22.8 26.2 17.1 24.9

6 Weak clue 47 30.4 15.8 27.7 36.4 22.5 33.9

Overall 34.3 22.6 32.1 36.8 25.0 34.7
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3) The terms used in the title should be derived

from the original weibo.

4) Abbreviations are allowed. For example, “¥IÕ1(Bank of China Limited)” can be abbreviated as

“¥1(China Bank)”.

5) Due to length restrictions, some weibos may not

be complete. For such cases, annotators are requested

to write the title only according to existing content.

We further analyze two neural headline generation

systems based on the manual headlines. From Ta-

ble 10 we found the following facts. First, for the

weak clue cases, evaluated with more reasonable refe-

rence headlines, both systems obtain a higher ROUGE

score. Moreover, MRT still performs better than MLE

which indicates that by considering the sentence-level

loss, MRT could consistently outperform a word-level

training strategy. Second, for the domain knowledge

cases, MRT performs better than MLE with regard to

manual reference headlines. We will show an example

in Table 11 to analyze the reason. From the example,

we find that the MLE system tends to extract a small

piece of the original article to take as the headline. The

MRT system, on the other hand, is able to output more

reasonable headlines. Although the output of the MRT

system has similar semantic meaning with the origi-

nal headline, it has a lower ROUGE score than MLE.

However, the MRT system outperforms the MLE sys-

tem with manual references, which further proves that

the MRT system is consistently better than the MLE

system.

5.3 Error Analysis

We now turn to analyze what types of errors the

MRT system is making. After carefully analyzing the

system output with regard to the 100 examples, we clas-

sify the errors into five major categories.

Missing Salient Information Errors. They are the

most serious errors, contributing to 63% of the overall

errors. Missing salient information errors occur when

a system generated headline fails to include the salient

content of the original article. This type of errors can

be attributed to a system’s failure to capture the salient

information of the original article.

Evaluation Errors. They are a major type of er-

rors that contribute to 26% of the overall errors. An

evaluation error occurs when a system outputs a head-

line that is semantically equivalent to a gold reference,

but is scored low by ROUGE because of its failure to

recognize that the generated headline and the corre-

sponding gold reference are semantically equivalent. In

other words, an evaluation error is not an error made by

a system, but an error due to the naivety of ROUGE.

Repeated Words Errors. They contribute to 8% of

the overall errors. They occur when a system correctly

identifies the key content of the original article, but out-

puts multiple times the exact same word. This type of

errors can be attributed to a system’s failure to remem-

ber past generated words.

Extra Words Errors. They occur when a system

outputs a word that has no relation with the original

article, and they contribute to 11% of the overall errors.

Word Order Errors. They indicate that the system

generated headline basically can cover most important

content, but expresses different meanings due to the

wrong word order. This type of errors contributes to

4% of the overall errors.

6 Related Work

Headline generation is a well-defined task standard-

ized in DUC2003 and DUC2004. Various approaches

have been proposed for headline generation: rule-based,

statistical-based, and neural-based.

The rule-based models create a headline for a news

article using handcrafted and linguistically motivated

rules to guide the choice of a potential headline. Hedge

trimmer[1] is a representative example of this approach

which creates a headline by removing constituents from

the parse tree of the first sentence until it reaches a spe-

cific length limit. Statistical-based methods make use of

large-scale training data to learn correlations between

words in headlines and articles[28]. The best system on

DUC2004, TOPIARY[32] combines both linguistic and

Table 10. Performance of Domain Knowledge and Weak Clue Cases with Regard to Original References and Our Manual References

Category Reference MLE MRT

R1F1 R2F1 RLF1 R1F1 R2F1 RLF1

Domain knowledge Original 35.1 21.0 34.3 31.9 20.3 31.0

Manual 36.5 23.8 35.7 43.1 29.2 41.7

Weak clue Original 30.4 15.8 27.7 36.4 22.5 33.9

Manual 41.8 30.2 40.3 44.2 32.1 42.6
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statistical information to generate headlines. There are

also studies that make use of knowledge bases to gene-

rate better headlines.

Table 11. Example from Domain Knowledge Cases

Article �ju´CÕ1116Ò
ó§{?CÕoi!Ǒ�CTO
(Ài)!1ÒAEâBoà"yú?�ÑÖJøûõ�°éÜM©<¡CEO"±e´�©��M�²�µM��1��uµ���û½�M��1��uµé���M��1n�uµé<â.. Maohua Hu is the 116th staff
of Tencent. He has been the director of Tencent, CTO
of Shanda and VP of Technology of Yihaodian. Cur-
rently, he is the co-founder and CEO of Duobeifen, a
cloud service provider company. The following is the
start-up experience he shared: The first step of start-
up is to make a decision. The second step of start-up
is to find partners. The third step of start-up is to find
talents ...

Originalõ�°CEO�juµM�´þ�Ê�u“iZ�*CEO
of Duobeifen Maohua Hu: five steps on the way of
start-up GameLook

Manual �ju©�M�²� Maohua Hu shared his start-up
experience

MLE ���M��1��u The second step to do a start-up

MRT �ju�M�²� The start-up experience of Maohua
Hu

Note: MLE and MRT represent the MLE system and the MRT
system outputs respectively. Manual means one of the four man-
ual reference headlines. Original means the original reference
headlines.

With the advances of deep neural network, there are

growing studies that design neural network for head-

line generation. [7] is the first to utilize attention-

based encoder-decoder architecture in headline gene-

ration task. [2-4] explore the effectiveness of additional

input features in neural headline generation systems.

[5] provides LCSTS, a dataset for Chinese headline

generation task. [27] proposes an online headline gene-

ration system that can read input and generate out-

put at the same time. [3, 6, 22] try to incorporate the

pointer network[23] into headline generation systems.

[11] is targeted at the length controlling problem of

headline generation. [12] attempts to accomplish the

headline generation task in a semi-supervised fashion.

Headline generation is a type of summarization task

in essence, and there are also many researches focusing

on the neural network based summarization task. [33]

proposes a hierarchical neural architecture to accom-

plish the task of extractive single document summa-

rization. [34] jointly handles saliency ranking and rele-

vance ranking in query-focused summarization with the

strength of neural network. [35] explores a quite inter-

esting task in which the system is required to generate

a function name-like summary given a source code snip-

pet.

7 Conclusions

In this paper, our contributions are as follows. 1)

We gave a broad overview of existing approaches based

on neural headline generation, with particular focus on

how encoders, decoders or training strategies influence

the overall performance of the neural headline gene-

ration systems. 2) We presented a quantitative anal-

ysis of recent neural headline generation systems and

explored which factors benefit this task indeed. 3) We

performed a detailed error analysis of typical models

and datasets to explore the capability of the neural

headline generation system.

To summarize, we observed several key factors that

affect the performance of headline generation systems.

1) Adding more linguistic features would help to cap-

ture more complicated information of input articles. 2)

Bi-directional recurrent neural networks perform bet-

ter on modeling input articles. 3) Attention mech-

anism consistently benefit neural headline generation

systems. 4) Copy mechanism is a promising method

to expand the limited target vocabulary with regard

to source input. 5) As a sentence-level training strat-

egy, MRT could significantly outperform a word-level

training strategy.

While the neural headline generation system is

proved to be superior to all the other systems, our anal-

ysis also pointed out some aspects of neural headline

generation systems that deserve further work, such as

the handling of missing salient information, repeating

words and extra words.
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