
Ni C, Liu WS, Chen X et al. A cluster based feature selection method for cross-project software defect prediction. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 32(6): 1090–1107 Nov. 2017. DOI 10.1007/s11390-017-1785-0

A Cluster Based Feature Selection Method for Cross-Project Software

Defect Prediction

Chao Ni1, Student Member, IEEE, Wang-Shu Liu1, Xiang Chen1,2, Senior Member, CCF
Qing Gu1,∗, Senior Member, CCF, Dao-Xu Chen1, Fellow, CCF, Member, ACM, IEEE
and Qi-Guo Huang1, Member, CCF

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
2School of Computer Science and Technology, Nantong University, Nantong 226019, China

E-mail: {jacknichao920209, liuws0707}@gmail.com; xchencs@ntu.edu.cn; {guq, cdx}@nju.edu.cn
E-mail: huangqiguo2003@126.com

Received April 21, 2017; revised September 27, 2017.

Abstract Cross-project defect prediction (CPDP) uses the labeled data from external source software projects to com-

pensate the shortage of useful data in the target project, in order to build a meaningful classification model. However, the

distribution gap between software features extracted from the source and the target projects may be too large to make the

mixed data useful for training. In this paper, we propose a cluster-based novel method FeSCH (Feature Selection Using

Clusters of Hybrid-Data) to alleviate the distribution differences by feature selection. FeSCH includes two phases. The

feature clustering phase clusters features using a density-based clustering method, and the feature selection phase selects

features from each cluster using a ranking strategy. For CPDP, we design three different heuristic ranking strategies in the

second phase. To investigate the prediction performance of FeSCH, we design experiments based on real-world software

projects, and study the effects of design options in FeSCH (such as ranking strategy, feature selection ratio, and classifiers).

The experimental results prove the effectiveness of FeSCH. Firstly, compared with the state-of-the-art baseline methods,

FeSCH achieves better performance and its performance is less affected by the classifiers used. Secondly, FeSCH enhances

the performance by effectively selecting features across feature categories, and provides guidelines for selecting useful features

for defect prediction.

Keywords software defect prediction, cross-project defect prediction, feature selection, feature clustering, density-based

clustering

1 Introduction

Software defects may be introduced during different

stages of software development, resulting in defects hid-

den in software codes. The defects may come from

misunderstanding of the requirements, uncontrollable

development process, or the lack of developer experi-

ence. Hidden defects will produce unexpected results or

failures after deployment. Software testing and code in-

spection are effective ways in detecting hidden defects.

Since resources of software testing and code inspection

are usually limited, methods are required to identify

potential defective software modules which lead to effi-

cient use of the resources.

Software defect prediction (SDP) is an active re-

search problem in software engineering for identify-

ing defect-prone software modules. SDP usually takes

the following steps in estimating the degree of defect-

proneness. Firstly, software modules are extracted from

software historical repositories. Secondly, software met-

rics (i.e., features) are extracted from the modules

and the corresponding development processes, along

Regular Paper

Special Section on Software Systems 2017

This work is supported in part by the National Natural Science Foundation of China under Grant Nos. 61373012, 91218302,
61321491 and 61202006, the Collaborative Innovation Center of Novel Software Technology and Industrialization, the Open Project of
State Key Laboratory for Novel Software Technology at Nanjing University under Grant No. KFKT2016B18, and the National Basic
Research 973 Program of China under Grant No. 2009CB320705.

∗Corresponding Author

©2017 Springer Science +Business Media, LLC & Science Press, China

Chao Ni et al.: Feature Selection Method for Cross-Project Software Defect Prediction 1091

with labels identifying whether the modules are defect-

prone. Thirdly, classification models are trained based

on the labeled data, which are used later to predict

defect-proneness of new software modules. With the

aid of SDP, the limited testing resources can hopefully

be allocated in a cost-effective manner.

The majority of existing SDP researches focus on

within-project defect prediction (WPDP), which builds

the prediction model and predicts defects within the

same project. This hinders the application of SDP, be-

cause the target project may not have sufficient labeled

modules for training any useful classification model.

A feasible solution is to use data from other projects

(called the source projects) to train classifiers used on

the target project, which leads to the cross-project de-

fect prediction (CPDP)[1-2]. To make the data from

source projects useful, the problem is how to mini-

mize the gap between different projects, normally rep-

resented by dissimilar feature distributions[3].

To alleviate the distribution differences between the

source and the target project data, transfer learning

methods have been studied for CPDP in recent years.

Generally, knowledge from source projects can be trans-

ferred in two ways: instance transfer[4-5] and feature

transfer[1,6]. Nam et al.[1] proposed the merits of fea-

ture transfer for CPDP. Their experiments proved that

the distribution gap could be relieved by feature map-

ping and feature selection.

In this paper, we propose a novel feature selection

method FeSCH for CPDP which has two phases. In

the feature clustering phase, we cluster redundant fea-

tures into multiple clusters. In the feature selection

phase, we choose features, which have similar distribu-

tion between the source project and the target project,

from each cluster to construct the target feature set.

In particular, FeSCH firstly uses a density-based clus-

tering method DPC (Density Peaks Clustering)[7] to

divide the original feature set into multiple clusters.

Then it uses a specific ranking strategy to select ap-

propriate features from each cluster. For CPDP, we

design three different heuristic strategies in the feature

selection phase, which are LDF (local density of fea-

tures), SFD (similarity of feature distributions), and

FCR (feature-class relevance) respectively.

The main contributions of this paper can be high-

lighted as follows.

• We propose a cluster-based feature selection

method FeSCH, which uses a density-based clustering

method with three ranking strategies to select useful

features for CPDP.

• We conduct empirical studies based on real-world

software projects to demonstrate the effectiveness of

FeSCH, which can provide useful guidelines for real-

world applications.

The rest of the paper is organized as follows. Sec-

tion 2 introduces the related work of our research. Sec-

tion 3 describes the proposed method FeSCH. Section 4

presents the experimental setup. Section 5 analyzes the

experimental results. Section 6 explains the possible

threats to validity. Finally, Section 7 concludes the pa-

per with future work.

2 Related Work

2.1 Cross-Project Defect Prediction

Since the target software projects usually lack the

labeled modules for training meaningful defect predic-

tors, historical projects are usually required to build

the source data for training. This situation is called the

cross-project defect prediction (CPDP)[1]. The charac-

teristics of the target and source projects are usually

different, which makes CPDP a challenging task. In

early studies, researchers have done empirical studies

under CPDP and their results were not positive. Briand

et al.[8] used the predictor trained on the Xpose project

to predict modules in the Jwriter project. They found

the performance was much worse than that of within-

project defect prediction (WPDP). Zimmermann et

al.[9] conducted 622 cross-project defect predictions in

which only 21 predictions achieved acceptable perfor-

mance. He et al.[10] observed that only 0.32%∼4.67%

of trained predictors under the context of CPDP can

achieve satisfactory performances.

Recently, researchers have proposed different ap-

proaches to improve the defect prediction performance

under CPDP context. Turhan et al.[4] proposed the

nearest neighbour filter which selects 10 most simi-

lar source instances (i.e., modules) for each target in-

stance. Peters et al.[5] improved the filter design by

taking in extra information from source projects. Ma et

al.[11] proposed an approach which assigns high weights

to the source instances that were similar to the tar-

get instances. Ryu et al.[12] proposed a hybrid in-

stance selection method HISNN which uses the local

and global knowledge from the nearest neighbors. Her-

bold et al.[13] introduced the concept of local models

to CPDP. They found that local models only make

a minor difference in comparison with global models

and transfer learning for CPDP. Nam et al.[1] proposed

TCA+, which uses the data normalization solution to

1092 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

minimize the difference between the source and the tar-

get projects. Wang et al.[14] leveraged a representation-

learning algorithm (i.e., deep learning) to learn seman-

tic representation of the modules from the projects.

Chen et al.[15] proposed a novel algorithm to remove

irrelevant instances from the source projects. Canfora

et al.[16] used genetic algorithm to optimize two diffe-

rent objectives (i.e., high recall and low code inspec-

tion cost) under CPDP context. Panichella et al.[17]

combined defect prediction results from different clas-

sifiers. Zhang et al.[18] considered ensemble learning

to combine different classifiers. Zhang et al.[19] pro-

posed context-aware rank transformations that map

feature distributions between the source and the tar-

get projects. Xia et al.[20] proposed a two-layer frame-

work, which combines the genetic algorithm and en-

semble learning to capture common properties between

the source and the target projects and combine mer-

its of multiple classifiers[1,5,17]. Herbold[21] developed

a tool, which includes many state-of-the-art techniques

under CPDP context, in order to facilitate replication

for cross-project defect prediction.

Some researchers considered the case where the

source and the target projects have different feature

sets. Nam and Kim[22] proposed the heterogeneous de-

fect prediction method to handle the differences in fea-

ture sets. Jing et al.[23] solved the problem by defining

unified feature space and used CCA (Canonical Corre-

lation Analysis)-based transfer learning.

Some researchers also took the change-level defect

prediction into consideration, which is also referred to

as Just-In-Time (JIT) defect prediction. Kamei et

al.[24] made an empirical study on eleven open source

projects, and found that although JIT models rarely

performed well under the CPDP context, their perfor-

mance could be improved by feature selection.

Recently, researchers have adopted search-based

technologies and unsupervised learning methods for

CPDP. Hosseini and Turhan[25] proposed a search based

instance selection method for CPDP. Nam and Kim[26]

performed defect prediction on unlabeled data using

cluster based auto-labeling. Zhang et al.[27] designed

a connectivity-based unsupervised classifier using only

the unlabeled target project data. Clustering methods

are useful based on the fact that defective software mod-

ules usually have excessive feature values or distinctive

value patterns.

In this paper, for CPDP, we assume the source and

target projects have similar feature sets, and propose

a clustering-based feature selection method to allevi-

ate the difference of feature distributions between the

source and the target software projects.

2.2 Feature Selection

There is the problem of the curse of dimensionality

in defect prediction datasets. That is, the data built

for SDP usually contain redundant or irrelevant fea-

tures, which may lead to poor prediction performance,

high model complexity, and extra training time. Fea-

ture selection is an effective way to alleviate the curse

of dimensionality in software defect prediction, and can

improve the performance of defect predictors[28]. Fea-

ture selection is a process of identifying and removing

irrelevant and redundant features from the data so that

only beneficial features are left for training. Existing

feature selection methods can be roughly grouped into

two categories: filter-based and wrapper-based. The

filter-based methods evaluate and select the high rele-

vant features, considering the correlation between the

features and the class label. These approaches are in-

dependent of the classification models. The wrapper-

based methods require feedbacks from the prediction

results, which are used to improve iteratively the se-

lected feature set. Gao et al.[28] applied feature selec-

tion for defect prediction on a large-scale legacy soft-

ware system in telecommunications. Shivaji et al.[29]

applied feature selection in change-based defect predic-

tion. Xu et al.[30] used a double Scott-Knott test tech-

nique to compare the performances of 32 state-of-the-

art feature selection methods. Their results suggested

that the performance of the feature selection methods

varies significantly on different datasets. Xu et al.[31]

introduced principal component analysis (PCA) and

consistent index to investigate the equivalence among

different feature selection methods. Ghotra et al.[32]

conducted large-scale empirical studies to analyze the

impact of feature selection, and proved the merits of

feature selection techniques.

Feature selection technologies have been studied un-

der CPDP context. Amasaki et al.[6] devised meth-

ods to remove irrelevant features and unrelated in-

stances from source project data according to the tar-

get project. Nam and Kim[22] proposed a method to

handle the homogeneous cross-project defect learning,

which combines feature mapping and feature selection.

Our previous work[33-35] proposed a cluster-based

feature selection framework and a two-phase data pre-

processing approach to improve the performance of de-

fect predictors under the context of WPDP. In this pa-

per, we extend our previous method considering the

Chao Ni et al.: Feature Selection Method for Cross-Project Software Defect Prediction 1093

requirements of CPDP. The main difference between

our previous work and current work can be summa-

rized as follows. 1) Our previous work mainly concerns

on WPDP context, while our current work considers

CPDP context. 2) In the feature selection phase, our

previous work extended k-medoids method to perform

feature clustering. This method needs to specify the

number of clusters in advance. However, in current

work, we use DPC to cluster features. This method is

more flexible since it does not need to define the num-

ber of features in advance. 3) To effectively identify and

remove redundant features and features with large dis-

tribution difference between the source projects and the

target projects under CPDP context, we propose three

new feature ranking strategies, i.e., LDF (local density

of features), SFD (similarity of feature distributions),

and FCR (feature-class relevance).

3 FeSCH

To alleviate the distribution gap between the source

project and the target project, we propose a novel

method FeSCH (Feature Selection Using Clusters of

Hybrid-Data), which selects suitable features based on

clustering across cross-project data. The framework of

FeSCH is shown in Fig.1.

Source Project

Features

Original
Feature Set

Ranking Strategies

Feature
Clustering

Feature
Selection LDF

LDF: S

S

T

T

C
S

SFD

SFD:

FCR FCR:

Selected
Features

Features

Target Project

fifi

fi

fi

fi

Fig.1. Framework of FeSCH. S: source project; T: target
project; C: the class of the target project.

In detail, FeSCH contains two phases: the feature

clustering phase and the feature selection phase. In

the former phase, we use the density-based clustering

method DPC[7] to divide the original feature set into

multiple clusters according to the correlation among the

features. Features are highly correlated with each other

in the same cluster, while they are irrelevant in diffe-

rent clusters. In the latter phase, we rank the features

in each cluster using a specific strategy to select the ap-

propriate features from each cluster. In order to reflect

the population of each cluster, we will select features

from each cluster proportionally on account of the size

of the cluster.

After using FeSCH, a classifier is trained on the

cross-project data using only selected features as the

defect predictor. In this paper, we choose the Logis-

tic Regression as the classifier, which is commonly used

and whose performance can be guaranteed[1,22]. In Sec-

tion 5, we will prove that the performance of FeSCH is

largely independent of the classifiers used.

3.1 Feature Clustering Phase

In this phase, we use DPC (density peaks

clustering)[7] to cluster features using data from both

the source and the target software projects. DPC can

divide the features into non-predetermined number of

clusters. A cluster center has two characteristics: high

density and large distance. The high density requires

that a cluster center should be surrounded by features

with low density. The large distance requires that the

center should have a large distance to features with

great densities. Three steps are involved in the feature

clustering phase using DPC.

In the first step, for each feature fi, its local density

ρi and local distance δi are calculated. Let dij be the

Euclidean distance of the features fi and fj , and it can

be computed as follows:

dij =

√

√

√

√

m
∑

k=1

(xik − xjk)
2,

where m is the number of instances from the dataset,

and x is the feature value in an instance. The lo-

cal density ρi is the number of features within a pre-

determined distance:

ρi =
∑

j

χ(dij − dc),

where χ(x) = 1 if x < 0 and χ(x) = 0 otherwise, and

dc is the cutoff distance which ensures each feature has

at least 2% of the total features as its neighbors.

1094 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

The local distance δi is the Euclidean distance from

feature fi to the nearest feature with greater local den-

sity:

δi = min
j:ρj>ρi

(dij).

For the features with the greatest local density, their

local distances are the greatest possible Euclidean dis-

tances:

δi = max
j

(dij), if fi has the maximum ρi.

In the second step, we determine centers of the fea-

ture clusters using the calculated local densities and

local distances. Firstly, for the feature fi, we calculate

the centrality measure γi as follows:

γi = z(ρi)× z(δi),

where z(·) is the z-score normalization function. Sec-

ondly, we sort the features in descending order of γi,

denoted as {γ}ni , where n is the total number of fea-

tures. Based on {γ}ni , which conforms to the power

law distribution, we can use its single inflection point

as the cut point γc. The features with centrality mea-

sures greater than γc are used as the cluster centers.

In the last step, suppose there are k centers deter-

mined, each of the remaining features is assigned to the

nearest center which has greater local density. By us-

ing DPC, the features are clustered in one round and k

does not need to be pre-specified.

3.2 Feature Selection Phase

In this phase, three ranking strategies are designed

to rank the features in each cluster. Since clusters have

non-similar size, and the number of clusters is not pre-

determined, the number of selected features is propor-

tional to the cluster size (e.g., more features will be

selected from larger clusters). Such handling may in-

troduce redundancy, but it keeps the number of selected

features as promised. The three strategies are defined

as follows.

3.2.1 LDF (Local Density of Features) Strategy

In this strategy, the features are selected using the

local density measure. The local density means the

number of neighbors around a feature, which may re-

flect the degree of popularity or representativeness of

the feature.

3.2.2 SFD (Similarity of Feature Distributions)
Strategy

In this strategy, the features are selected based on

the level of distribution similarity between the source

and the target project data. We use MIC (maximal

information coefficient)[36] to measure the difference of

two distributions. Given two vectors X and Y, which

correspond to the same feature from the source project

and the target project respectively, MIC(X,Y) can be

computed as follows:

MIC(X,Y) = max
gx×gy<n0.6

max
G∈(gx,gy)

I(X(G),Y(G))

log min(gx, gy)
,

where G belongs to the grids generated by multiple

gx × gy combinations, gx and gy are numbers of the

equal partitions of vectors X and Y respectively, and

n is the search range of G [36]. For each grid G, X (G)

and Y (G) are vectors of the mean values of the par-

titions. We set the maximum possible I(X(G),Y(G))

as the MIC value. I(·) is the function of mutual infor-

mation computed as follows:

I(X,Y) = H(X) +H(Y)−H(X,Y),

where H(·) is the entropy function, which is computed

as follows:

H(X) = −
∑

x∈X

p(x)log2p(x). (1)

3.2.3 FCR (Feature-Class Relevance) Strategy

This strategy has been used in our previous work

FECAR[33]. The main assumption is that the features

strongly related to the class labels are worth selecting.

Under CPDP context, since the target data have no

class labels, we use IG (information gain) to measure

the feature-to-label relevance based on the source data.

IG can be computed as follows:

IG(X|Y) = H(X) +
∑

y∈Y

p(y)
∑

x∈X

p(x|y)log2p(x|y),

where X is the feature vector from the source data, Y

is the class label vector, x and y are the element values,

and p(·) is the probability function. H(·) is the entropy

function computed by (1).

3.2.4 Comparison Among the Feature Ranking

Strategies

Comparing the three ranking strategies, LDF com-

bines the source and the target data as a whole, and se-

Chao Ni et al.: Feature Selection Method for Cross-Project Software Defect Prediction 1095

lects the representative features. SFD makes a compa-

rison between the source and the target data, and se-

lects the features which have similar distributions be-

tween these two datasets. FCR only considers the

source data, and selects features which have high rele-

vance to the class label. In our empirical studies, we

will further compare these ranking strategies. Although

multiple features may be selected from a cluster, the

latter two strategies select features from a different per-

spective, and hence can reduce the possible redundancy.

During experiments, we use the three strategies sepa-

rately, and compare their effects on the performance of

the defect predictor trained for CPDP.

3.3 Time Complexity Analysis

Algorithm 1 summarizes our proposed method

FeSCH under CPDP context. We assume the source

and target projects share similar feature sets, which can

be achieved by the repository mining procedures. The

time complexity of FeSCH is O(n′2 × (m+m′)), where

n′ represents the number of selected features, and m

and m′ represent the number of instances in the source

project and the target project respectively.

Algorithm 1. FeSCH

Input:
S
m×n: data from the source projects;

T
m

′×n: data from the target project;
nt: the specified number of selected features;
strat: the feature ranking strategy;
Output:
FS: the final set of selected features
/* Feature Clustering Phase */

1 Combine S
m×n and T

m
′×n as the dataset D

2 for each feature vector fi in D do

3 Compute the density and distance measures ρi
and δi

4 Compute the centrality measure γi = ρi × δi

5 end

6 Sort the set {γ}ni in descending order
7 Compute the cut point γc based on the sorted {γ}ni
8 Label the features above γc as the cluster centers
9 Assign the rest features below γc to appropriate

clusters
/* Feature Selection Phase */

10 for each cluster C do

11 Sort its features in descending order according to
strat

12 end

13 FS ← ∅
14 for each cluster C do

15 Select top ⌈ |C|×nt

n
⌉ features of C into FS

16 end

17 return FS

In Algorithm 1, lines 1∼9 describe the procedure of

the feature clustering phase, and lines 10∼16 describe

the procedure of the feature selection phase. In line 15,

features are selected from each cluster proportionally

on account of the cluster size. For example, we assume

the source project has n features and we want to se-

lect nt features from the original features by using our

method. Then for a cluster C, which has |C| features in

this cluster, we will choose top
⌈

|C|×nt

n

⌉

features from

this cluster.

4 Experimental Setup

In this section, we firstly present the research ques-

tions for the empirical study. Secondly, we describe the

experimental design. Thirdly, we present the datasets

which are widely used under CPDP context, including

the feature categories in each dataset. Lastly, we intro-

duce the performance measures used for comparison.

4.1 Research Questions

To verify the effectiveness of the proposed FeSCH,

we design experiments to investigate the following re-

search questions.

RQ1. Can FeSCH further improve the performance

under CPDP context when compared with the baseline

methods?

RQ2. How do the design options (i.e., the ranking

strategy, the feature selection ratio, and the classifier)

under FeSCH affect the performance of CPDP?

RQ3. Can FeSCH improve the performance of

CPDP when compared with feature selection methods

only based on feature category?

4.2 Experimental Design

To evaluate the performance of FeSCH under CPDP

context, we use three baseline methods: WPDP

(within-project defect prediction without feature selec-

tion), ALL (all features under CPDP context), and

TCA+[1].

For WPDP, we train and test the defect predictor on

the target project only, and use 2-fold cross validation

(CV). We do not use 10-fold CV since, firstly, 2-fold CV

is a common setting in CPDP[1,22], and secondly, 90%

labeled instances available in the target project make

an unfair comparison under CPDP context. To over-

come possible bias in the random selection processes, we

repeat the random CV split 100 times and report the

1096 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

average prediction results. For ALL, we train the de-

fect predictor using all features from the source project,

and use the trained predictor to make prediction on the

target project. For TCA+, we directly use the results

reported by Nam et al.[1]

We will examine the influence of different clas-

sifiers on the performance of FeSCH. Three classi-

fiers are considered, including the probability-based

classifier Naive Bayes, decision-tree based classifier

Random Forest, and function-based classifier Logis-

tic Regression. To facilitate comparison with the

baseline methods, Logistic Regression is used as the

default classifier. Logistic Regression is commonly

used in previous research[1,22]. During experiments,

we use the implementation provided by LibLinear[37]

and consider the option (i.e., −S 0 −B 1) used in

TCA+[1]. To calculate the relevance formulas, we

use the MINE 1○ (Maximal Information-based Nonpara-

metric Exploration) toolkits[36] with default setting.

4.3 Datasets

During experiments, we use two classical datasets

for CPDP[1]: ReLink and AEEEM. Table 1 lists the

details of these datasets.

The ReLink dataset was collected by Wu et al.[38]

They used the Understand toolkit 2○ to analyze and ex-

tract the value of software metrics from three projects

(i.e., Apache, Safe and ZXing). ReLink has 26 fea-

tures, which are categorized into the complexity met-

rics and the count metrics. These metrics are designed

based on the code complexity (such as LOC, cycloramic

complexity, and the number of classes), and abstract

syntax trees (such as the number of blocks, the number

of statements, and method references).

Table 1. Details of Datasets

Dataset Project Level Number of Features Number of Instances Number of Faulty Instances (Percent)

ReLink Apache File 26 194 98 (50.52%)

Safe 56 22 (39.29%)

ZXing 399 118 (29.57%)

AEEEM EQ Class 61 324 129 (39.80%)

JDT 997 206 (20.70%)

LC 691 64 (9.30%)

ML 1 862 245 (13.20%)

PDE 1 497 209 (14.00%)

The AEEEM dataset contains five projects: EQ,

JDT, LC, ML, and PDE, which were collected by

D’Ambros et al.[39] AEEEM has 61 metrics, which

are categorized into code metrics, process metrics, and

change-based metrics. Artificial metrics are computed

using facilities such as entropy.

4.4 Feature Categories

The features of ReLink and AEEEM are grouped

into different categories. In ReLink, the extracted fea-

tures are grouped into two categories according to the

definition in Understand 3○. There are 12 complexity

metrics and 15 count metrics. There is such a fact that

the sum (i.e., 27) of the number of complexity metrics

(i.e., 12) and the number of count metrics (i.e., 15) is

greater than the total number of features (i.e., 26). The

reasoning behind the fact is that the feature in ReLink

named “RatioCommentToCode” belongs to two cate-

gories simultaneously. In AEEEM[39], the 61 features

are grouped into five categories: 5 previous defect met-

rics, 5 entropy of changes metrics, 17 source code met-

rics, 17 entropy of source code metrics, and 17 churn of

source code metrics. Table 2 gives the details of these

feature categories.

4.5 Performance Measures

According to the ground truths and the predicted

class labels, we can compute the number of true posi-

tives (TP), false positives (FP), true negatives (TN)

and false negatives (FN) respectively. Then, we can

1○http://www.exploredata.net/Downloads/MINE-Application/, Sept. 2017.
2○https://scitools.com/, Sept. 2017.
3○https://scitools.com/support/metrics list, Sept. 2017.

Chao Ni et al.: Feature Selection Method for Cross-Project Software Defect Prediction 1097

Table 2. Feature Categories in ReLink and AEEEM

Dataset Category Description Number of Features

ReLink ComplexityMetric (CPM) Complexity measures of the source code, e.g., McCabe
Cyclomatic measure

12

CountMetric (CTM) Quantitative counting of the source code, e.g., the number
of all lines

15

AEEEM SourceCodeMetric (SCM) Metrics solely computed from source code 17

ChurnOfSourceCodeMetric (COSCM) Artificial metrics computed from SCM based on code churn 17

EntropyOfSourceCodeMetric (EOSCM) Artificial metrics computed from SCM based on entropy 17

PreviousDefectsMetric (PDM) Metrics computed from known defects and the revisions 5

EntropyOfChangesMetric (EOCM) Artificial metrics computed from changes based on entropy 5

calculate the precision measure p and recall measure r

as follows:

p =
TP

TP + FP
, r =

TP

TP + FN
.

There always exists a trade-off between the preci-

sion measure and the recall measure. To handle the

dilemma, the F1-measure, which will be used in our

experiments, is defined as follows:

F1 =
2× p× r

p+ r
.

To extensively compare the performance of FeSCH

and the baseline methods, we also use AUC measure.

AUC measures the area under the receiver operating

characteristic (ROC) curve, which is a 2D illustration of

true positive rate on the y-axis versus false positive rate

on the x -axis. ROC curve is obtained by varying the

classification threshold over all possible values, sepa-

rating clean and buggy predictions. A well preformed

predictor provides an AUC value close to 1. The ROC

analysis is robust in case of imbalanced class distribu-

tions and asymmetric misclassification costs, which is

suitable for CPDP.

To check the significance of performance compa-

rison, we conduct the Wilconxon signed-rank test,

which is a non-parametric statistical hypothesis test on

the performance measures. For all the tests, the null

hypotheses are that there is no difference between the

trained predictors, and the significance level α is set to

0.05. If p-value is smaller than 0.05, we reject the null

hypotheses; otherwise we accept the null hypotheses.

To perform a further comparison of pairwise met-

hods, we also use “Win/Draw/Loss” analysis. The

“Win/Draw/Loss” record of “method 1 vs method 2”

presents three values on a given measure. These three

values are the number of datasets for which method 1

performs better than, equal to, and worse than method

2 respectively.

5 Experimental Results

5.1 Result Analysis for RQ1

For RQ1, we perform FeSCH on ReLink and

AEEEM datasets respectively, using the Logistic Re-

gression as the classifier, and compare its performance

with that of three baseline methods. Table 3 and Ta-

ble 4 present the final results.

In both tables, the first column presents specific

cases of CPDP. For example, in Table 3, the case

“Safe⇒Apache” means the project “Safe” is used as

Table 3. Comparison of F1-Measure Among Baseline Methods, FeSCH, and Feature Categories on ReLink

Source⇒Project Baseline Method FeSCH Category

WPDP ALL TCA+ LDF SFD FCR CPM CTM

Safe⇒Apache 0.68 0.52 0.64 0.65 0.65 0.62 0.49 0.54

ZXing⇒Apache 0.68 0.68 0.72 0.69 0.61 0.67 0.59 0.57

Apache⇒Safe 0.60 0.56 0.72 0.22 0.62 0.52 0.71 0.36

ZXing⇒Safe 0.60 0.59 0.64 0.64 0.71 0.78 0.60 0.62

Apache⇒ZXing 0.31 0.46 0.49 0.13 0.67 0.62 0.56 0.33

Safe⇒ZXing 0.31 0.10 0.43 0.62 0.62 0.65 0.58 0.60

Average 0.53 0.49 0.61 0.49 0.65 0.64 0.59 0.50

1098 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

Table 4. Comparison of F1-Measure Among Baseline Methods, FeSCH, and Feature Categories on AEEEM

Source⇒Project Baseline Method FeSCH Category

WPDP ALL TCA+ LDF SFD FCR SCM COSCM EOSCM PDM EOCM

JDT⇒EQ 0.58 0.30 0.60 0.41 0.66 0.52 0.40 0.29 0.27 0.41 0.27

LC⇒EQ 0.58 0.51 0.62 0.38 0.50 0.55 0.42 0.33 0.20 0.33 0.23

ML⇒EQ 0.58 0.24 0.56 0.37 0.46 0.53 0.45 0.30 0.18 0.43 0.26

PDE⇒EQ 0.58 0.43 0.60 0.41 0.55 0.49 0.42 0.31 0.20 0.42 0.31

EQ⇒JDT 0.53 0.39 0.54 0.22 0.32 0.33 0.28 0.19 0.10 0.12 0.06

LC⇒JDT 0.53 0.49 0.56 0.67 0.62 0.67 0.55 0.45 0.49 0.47 0.45

ML⇒JDT 0.53 0.42 0.43 0.63 0.62 0.61 0.39 0.49 0.49 0.37 0.44

PDE⇒JDT 0.53 0.47 0.48 0.60 0.61 0.59 0.55 0.50 0.49 0.43 0.44

EQ⇒LC 0.31 0.26 0.27 0.34 0.45 0.46 0.49 0.32 0.11 0.01 0.08

JDT⇒LC 0.31 0.26 0.31 0.51 0.53 0.53 0.55 0.49 0.47 0.26 0.14

ML⇒LC 0.31 0.10 0.25 0.47 0.49 0.48 0.57 0.51 0.55 0.27 0.12

PDE⇒LC 0.31 0.33 0.33 0.47 0.52 0.45 0.57 0.52 0.55 0.45 0.53

EQ⇒ML 0.26 0.19 0.23 0.33 0.48 0.17 0.37 0.35 0.14 0.01 0.01

JDT⇒ML 0.26 0.27 0.36 0.39 0.49 0.49 0.42 0.52 0.43 0.54 0.49

LC⇒ML 0.26 0.20 0.29 0.64 0.43 0.45 0.42 0.52 0.54 0.60 0.32

PDE⇒ML 0.26 0.28 0.29 0.75 0.42 0.80 0.43 0.55 0.54 0.49 0.12

EQ⇒PDE 0.33 0.36 0.33 0.12 0.48 0.41 0.46 0.21 0.10 0.26 0.08

JDT⇒PDE 0.33 0.28 0.38 0.51 0.51 0.51 0.49 0.48 0.34 0.31 0.48

LC⇒PDE 0.33 0.31 0.37 0.52 0.49 0.53 0.48 0.47 0.61 0.53 0.58

ML⇒PDE 0.33 0.27 0.37 0.50 0.47 0.43 0.49 0.51 0.60 0.45 0.34

Average 0.40 0.32 0.41 0.46 0.51 0.50 0.46 0.42 0.37 0.36 0.29

the source project, and the project “Apache” is used

as the target project. The “baseline methods” column

lists the results of three baseline methods (i.e., WPDP,

ALL, and TCA+) and the “FeSCH” column lists the

results using one of the three strategies. The last row

provides the average performance in each table. The

SFD ranking strategy is used as the adopted ranking

strategy in our FeSCH due to its stable performance

and the further investigation of the impact of different

ranking strategies will be given in the next subsection.

The feature selection ratio is set to 30%. For each case

(row), the best result of FeSCH and the baseline meth-

ods is underlined, and the best result of CPDP methods

(i.e., ALL, TCA+, and FeSCH) is emphasized in bold.

From the last row of the two tables, we can

find that FeSCH can achieve the best performance

among the three methods on both ReLink and AEEEM

datasets. Especially, FeSCH has dominant performance

on AEEEM. On both datasets, the performance of

both TCA+ and FeSCH is nearly similar to that of

WPDP with 50% labeled instances, which proves that

the methods are promising for CPDP.

Compared with WPDP, FeSCH performs better in

most cases. For example, in the case “ZXing ⇒ Safe”

on ReLink, FeSCH has the best performance of 0.71,

much greater than 0.60 of WPDP. In the case “LC

⇒ JDT” on AEEEM, FeSCH achieves the best per-

formance of 0.62, greater than 0.53 of WPDP. The evi-

dence strongly suggests that FeSCH makes an effective

use of the source projects.

Compared with ALL, FeSCH performs better in

nearly all the cases on both ReLink and AEEEM.

The results prove that feature selection is essential for

CPDP, conforming to the findings of Nam et al.[1] The

possible reasons are that irrelevant and redundant fea-

tures will cause serious performance degradation for

software defect prediction, especially under CPDP con-

text.

Compared with TCA+, FeSCH still performs bet-

ter in the majority of cases on both ReLink and

AEEEM. The results suggest that feature selection is

promising under CPDP context, which can decrease the

costs required in measuring software modules. How-

ever, FeSCH performs worse in several cases, such as

“Apache”, “Safe” of ReLink and “EQ” on AEEEM.

The reason may be that these datasets contain less than

350 instances and may not provide enough information

for feature selection. In these cases, the feature space

projection used in TCA+ is more helpful.

The reasons why FeSCH performs better than

Chao Ni et al.: Feature Selection Method for Cross-Project Software Defect Prediction 1099

TCA+ can be summarized as follows. 1) Most clas-

sifiers are designed under the assumption that train-

ing and test datasets are represented in the same fea-

ture space and drawn from the same data distribution.

Therefore, the difference in feature distribution between

the source project and the target project may cause the

poor performance under the CPDP context and even

make the classifier invalidate. TCA+ aims to figure

out a latent feature space for the data between the

source and the target project by normalizing feature

data. Then mapping the data of the source project and

the target project into such latent space may cause the

loss of original information. FeSCH can save the infor-

mation loss by directly picking up features from original

data according to similarity distribution of features. 2)

Redundant features exist not only in the source project

but also in the target project, which will not only in-

crease the time complexity of model training, but also

decrease the performance of the classifier. TCA+ does

not consider the influence of redundancy, while the pro-

posed FeSCH can effectively remove redundant features

through feature clustering so that the performance is

further improved.

Table 5 summarizes the results of “win/draw/loss”

between FeSCH using SFD and the three baseline meth-

ods. The first two columns represent the datasets and

target projects respectively. The rest columns repre-

sent the three baseline methods to be compared. Each

row refers to one project in the particular dataset taken

as the target project, and the rest projects in the same

dataset served as the source project.

Table 5. Win/Draw/Loss of FeSCH (SFD) Compared

with the Baselines on Both Datasets

Dataset Target Against (Win/Draw/Loss)

WPDP ALL TCA+

ReLink Apache 0/0/2 1/0/1 1/0/1

Safe 2/0/0 2/0/0 1/0/1

ZXing 2/0/0 2/0/0 2/0/0

Total 4/0/2 5/0/1 4/0/2

AEEEM EQ 1/0/3 3/0/1 1/0/3

JDT 3/0/1 3/0/1 3/0/1

LC 4/0/0 4/0/0 4/0/0

ML 4/0/0 4/0/0 4/0/0

PDE 4/0/0 4/0/0 4/0/0

Total 16/0/4 18/0/2 16/0/4

Taking the first row as an example, the ReLink has

three projects (i.e., Apache, Safe and ZXing). When

the “Apache” in ReLink was taken as the target project,

the rest projects in ReLink (i.e., Safe and ZXing)

were served as the source project respectively. Com-

pared with the baseline methods (i.e., WPDP, ALL and

TCA+), when the result of FeSCH is larger than the

results of baselines, then FeSCH wins; when the result

of FeSCH is smaller than the results of baselines, then

FeSCH losses; otherwise they draw.

Relink has three projects, which leads to a total of

six combinations. In particular, for each target project,

it has two cases of CPDP. From Table 5, FeSCH has at

least 4/6 wins on ReLink, and 16/20 wins on AEEEM,

which demonstrates its effectiveness.

To check whether the performance differences

among WPDP, ALL, TCA+ and FeSCH (SFD) are sig-

nificant, we conduct the Wilconxon signed-rank test.

Table 6 shows the results in detail. Combining all the

cases of the two datasets, the p-values of “FeSCH vs

WPDP”, “FeSCH vs ALL”, and “FeSCH vs TCA+”

are all less than 0.05, which indicates that FeSCH is

statistically better than the baseline methods.

Table 6. p-Value of the Wilconxon Signed-Rank Test Among

Baseline Methods and FeSCH (SFD)

Dataset FeSCH vs FeSCH vs FeSCH vs

WPDP ALL TCA+

ReLink 1.24e-01 3.74e-02 2.32e-01

AEEEM 1.80e-03 7.00e-05 2.56e-03

Both datasets 5.03e-04 1.05e-05 1.75e-03

Summary. FeSCH can outperform the three base-

line methods in most cases under the CPDP context

and has improved performance compared with bench-

mark methods on average on these two datasets (25%

improvement compared with WPDP, 46% improvement

compared with ALL, and 15% improvement compared

with TCA+). However, when the target project does

not have enough data (e.g., less than 350 instances),

TCA+ proves to be a better choice than FeSCH.

5.2 Result Analysis for RQ2

For RQ2, we study how the design options of FeSCH

affect its performance under CPDP context and thus

provide a guideline for using FeSCH. Here we focus on

three design options: the ranking strategy, the feature

selection ratio, and the trained classifier.

5.2.1 Effects of Ranking Strategies

In FeSCH, three ranking strategies, LDF, SFD and

FCR, are designed for selecting representative features

1100 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

from each cluster. The “FeSCH” column in Table 3 and

Table 4 shows the results of FeSCH when using different

ranking strategies on both datasets. Based on the ave-

rage performance, FeSCH using either of the three rank-

ing strategies outperforms WPDP on AEEEM, while

FeSCH using SFD or FCR outperforms WPDP on Re-

Link. We also summarize the “win/draw/loss” informa-

tion between WPDP and those different ranking strate-

gies in Table 7. According to “win/draw/loss”, the

superiority of FeSCH becomes evident. All the three

ranking strategies win in the majority of cases. On Re-

Link, FeSCH has at least 3/6 wins, while on AEEEM

dataset, FeSCH has at least 14/20 wins. However, we

observe that FeSCH performs poor when the project

EQ in AEEEM is set as the target project. This implies

that “EQ” is distinct in AEEEM, and further improve-

ments are required for FeSCH.

Table 7. Win/Draw/Loss of WPDP Against the Three

Ranking Strategies on ReLink and AEEEM

Dataset Target Against (Win/Draw/Loss)

LDF SFD FCR

ReLink Apache 1/0/1 2/0/0 2/0/0

Safe 1/0/1 0/0/2 1/0/1

ZXing 1/0/1 0/0/2 0/0/2

Total 3/0/3 2/0/4 3/0/3

AEEEM EQ 4/0/0 3/0/1 4/0/0

JDT 1/0/3 1/0/3 1/0/3

LC 0/0/4 0/0/4 0/0/4

ML 0/0/4 0/0/4 1/0/3

PDE 1/0/3 0/0/4 0/0/4

Total 6/0/14 4/0/16 6/0/14

Among the ranking strategies, SFD achieves the

best average performance (i.e., 0.65 on ReLink and 0.51

on AEEEM), while LDF performs the worst (i.e., 0.49

on ReLink and 0.46 on AEEEM). No ranking strategy

can win the other strategies in all the CPDP cases.

For example, LDF still performs the best in one of

the six cases on ReLink, and five of the 20 cases on

AEEEM. On the other hand, SFD only performs the

best in two cases on ReLink and nine cases on AEEEM.

LDF performs the worst when the project “EQ” is set

as the target project, which suggests that LDF is sensi-

ble to the difference between the source and the target

projects. Considering the definitions of these ranking

strategies, SFD selects features based on the simila-

rity of feature distributions between the target and the

source projects, and FCR considers the strong relevance

between features and class labels on the source projects,

while LDF calculates the Euclidean distances between

features taking the source and the target projects as a

whole. The results suggest that both distribution simi-

larity and class relevancy are suitable for selecting fea-

tures under CPDP, while directly combining the data

of the source and the target projects may not work well.

We conduct the Wilconxon signed-rank test to check

if the performance of the three ranking strategies is

significantly different. Table 8 shows the results in de-

tail. From this table, it can be seen that the perfor-

mance differences among the three strategies are not

always significant, which indicates that all the strate-

gies are useful and have their own advantages on diffe-

rent datasets.

Table 8. p-Value of the Wilconxon Signed-Rank Test

Among Three Ranking Strategies

Dataset LDF vs LDF vs SFD vs

SFD FCR FCR

ReLink 1.47e-01 7.11e-02 5.00e-01

AEEEM 4.83e-02 6.29e-02 3.34e-01

Both datasets 1.70e-02 1.86e-02 3.61e-01

Summary. All the three ranking strategies are ef-

fective and useful for FeSCH. The strategy SFD, which

is to increase the similarity of feature distributions be-

tween the source and the target projects, performs bet-

ter in our experiments. The strategy LDF, although

performing the worst, is still promising in certain cases.

5.2.2 Effects of Feature Selection Ratio

To study the effects of feature selection ratio on

FeSCH, we conduct experiments on both datasets vary-

ing the feature selection ratio from 5% to 100% with a

step of 5%. The ranking strategy used is SFD. Fig.2

and Fig.3 show the results on both ReLink and AEEEM

respectively.

In both figures, the x-axis indicates the feature se-

lection ratio, and the y-axis indicates the corresponding

F1-measure. The trend lines represent the mean F1-

measure on different target projects, where the vari-

ances are caused by using different source projects.

As shown in Fig.2, selecting 30% of the original fea-

tures can achieve good-enough performance on ReLink,

which is better than using all the features. For ex-

ample, when setting the project “Safe” as the target

project, FeSCH can achieve the best average perfor-

mance (0.67), which is better than using all the features

(0.60). In addition, we find that selecting 20%∼40%

Chao Ni et al.: Feature Selection Method for Cross-Project Software Defect Prediction 1101

of the original features will achieve good performance.

This finding is similar to the finding in [33].

0.0

5 15 25 35 45 55 65 75 85 95

0.2

0.4

0.6

0.8

Feature Selection Ratio (%)

F
1

−
M

e
a
su

re

Apache
Safe
ZXing

Fig.2. Average performance of FeSCH by varying feature selec-
tion ratio on ReLink.

0.0

0.2

0.4

0.6

0.8

Feature Selection Ratio (%)

F


−
M

e
a
su

re

EQ
JDT

LC
ML

PDE
E

5 15 25 35 45 55 65 75 85 95

Fig.3. Average performance of FeSCH by varying feature selec-
tion ratio on AEEEM.

As shown in Fig.3, the optimal feature selection ra-

tios on AEEEM are nearly the same as those on Re-

Link. When “LC”, “PDE”, or “ML” is set as the tar-

get project respectively, selecting 20%∼40% features is

preferred. When “JDT” is set as the target project,

the optimal selection ratio is about 20%. On the other

hand, when “EQ” is set as the target project, the result

is exceptional: the optimal ratio has a long range from

20% to 90%.

Summary. For FeSCH, the feature selection ratio

can be set within 20%∼40%, and 30% can be a promis-

ing start point, at least on ReLink and AEEEM. Other

CPDP cases are still required to provide sound evi-

dence.

5.2.3 Effects on Different Classifiers

To check the performance of FeSCH when train-

ing different classifiers, we make a comparison among

three commonly used classifiers: LR (Logistic Regres-

sion), NB (Naive Bayes), and RF (Random Forest).

The ranking strategy used is SFD, and the feature se-

lection ratio is 30%. Fig.4 and Fig.5 show the average

performance on different target projects.

Apache Safe ZXing

LR NB RF

0.0

0.2

0.4

0.6

0.8
F


−
M

e
a
su

re

Fig.4. Comparison of the classifiers after using FeSCH on Re-
Link.

EQ JDT LC ML PDE

LR NB RF

0.0

0.2

0.4

0.6

0.8

F


−
M

e
a
su

re

Fig.5. Comparison of the classifiers after using FeSCH on
AEEEM.

1102 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

In both figures, the x-axis indicates the target

projects, and the y-axis indicates the corresponding F1-

measure. Each bar represents the mean F1-measure on

a specific target project resulted from one of the three

classifiers.

As shown in Fig.4, on ReLink, we can hardly de-

tect significant differences among the three classifiers.

For example, the classifier NB performs the best when

Apache is set as the target project. But NB performs

the worst when either of the other two projects is set

as the target project.

As shown in Fig.5, on AEEEM, the F1-measure

varies a lot among the five target projects. For example,

NB performs the best on “EQ” and “PDE”, while RF

performs the best on “JDT”, “LC” and “ML”. LR looks

inferior, but the decrease in F1-measure is usually less

than 0.07. The above suggests that the performance of

FeSCH does not rely on the classifiers used, at least on

the two datasets.

Summary. By applying FeSCH, the classifiers may

not have discriminative effects on the prediction perfor-

mance under the CPDP context. Researchers should

pay attention to building high-quality source data for

training useful defect predictors for the target project.

In the future, we should consider more projects and in-

vestigate more classifiers to consider the generalization

of our empirical results.

5.3 Result Analysis for RQ3

In order to investigate the effects of singular cate-

gory of software metrics (features) under CPDP, we

conduct experiments using one feature category at a

time, and compare the results of ALL and FeSCH

(SFD) respectively. The “category” columns of Table 3

and Table 4 list the results on the two datasets.

Compared with ALL, it is clear that using all fea-

tures may not guarantee the best performance, and the

prediction model constructed on certain feature cate-

gory can obtain better performance. For example, on

ReLink, the category CPM has at least 4/6 wins against

ALL, and the average performance is much better than

that of ALL. On AEEEM, both SCM and COSCM have

won against ALL in most cases, and the average per-

formance is better. On both datasets, there are feature

categories that significantly outperform the others un-

der the CPDP context, which may explain why ALL

cannot obtain good performance by simply combining

all the feature categories.

Compared with FeSCH (SFD), it is clear that

FeSCH can outperform any singular feature category

on the two datasets. Table 9 and Table 10 present

“win/draw/loss” of FeSCH (using SFD strategy and

30% of original features) against various feature cate-

gories on both datasets. In both tables, each row refers

to one project taken as the target project, and one of

the rest projects served as the source project. From

these tables, we can see that FeSCH has at least 5/6

wins against the best feature category on ReLink, and

14/20 wins against the best category on AEEEM, which

demonstrate the effectiveness of FeSCH. The reason is

that FeSCH can make good use of features from diffe-

rent categories to obtain better performance.

Table 9. Win/Draw/Loss of FeSCH (SFD) Against Different

Feature Categories on ReLink

Target Against (Win/Draw/Loss)

CPM CTM

Apache 2/0/0 2/0/0

Safe 1/0/1 2/0/0

ZXing 2/0/0 2/0/0

Total 5/0/1 6/0/0

Table 10. Win/Draw/Loss of FeSCH (SFD) Against Different

Feature Categories on AEEEM

Target Against (Win/Draw/Loss)

SCM COSCM EOSCM PDM EOCM

EQ 4/0/0 4/0/0 4/0/0 4/0/0 4/0/0

JDT 4/0/0 4/0/0 4/0/0 4/0/0 4/0/0

LC 0/0/4 2/1/1 2/0/2 4/0/0 3/0/1

ML 3/0/1 1/0/3 2/0/2 1/0/3 3/1/0

PDE 3/0/1 3/0/1 2/0/2 3/0/1 3/0/1

Total 14/0/6 14/1/5 14/0/6 16/0/4 17/1/2

Moreover, it is useful to investigate which features

are more likely to be selected by FeSCH, and hence

valuable for CPDP. Table 11 and Table 12 list the top 10

features selected by FeSCH from ReLink and AEEEM

respectively. In both tables, the first three columns

represent the name, description and category of the se-

lected features respectively, and the last column lists

the selection frequency by FeSCH. The frequency of se-

lection is the proportion of appearance in the selected

feature sets of all the cases, which is used to order the

features.

On ReLink, AvgCyclomaticModified and Count-

LineCodeExec are always selected by FeSCH. In gene-

ral, features from the CTM category are mostly selected

corresponding to the good performance of CTM. On

AEEEM, among the top selected features, the source

code based features (SCM, COSCM, and EOSCM) are

Chao Ni et al.: Feature Selection Method for Cross-Project Software Defect Prediction 1103

Table 11. Top 10 Features Selected by FeSCH on ReLink

Feature Name Description Category Selection Frequency

AvgCyclomaticModified Average modified cyclomatic complexity for all nested functions or
methods

CPM 1.00

CountLineCodeExe Number of lines containing executable source code CTM 1.00

CountLineCode Number of lines containing source code CTM 0.78

CountLine Number of all lines CTM 0.67

CountSemicolon Number of semicolons CTM 0.67

CountStmt Number of statements CTM 0.67

CountLineBlank Number of blank lines CTM 0.56

CountLineCodeDecl Number of lines containing declarative source code CTM 0.56

MaxCyclomaticStrict Maximum strict cyclomatic complexity of nested functions or methods CPM 0.56

CountStmtDecl Number of declarative statements CTM 0.45

Table 12. Top 10 Features Selected by FeSCH on AEEEM

Feature Name Description Category Selection Frequency

CvsEntropy Entropy of source code EOCM 0.92

CvsLogEntropy Logarithmic variants of entropy of source code EOCM 0.92

WCHU numberOfLinesOfCode Weighted churn of the number of lines of code COSCM 0.92

CvsWEntropy Weighted variants of entropy of source code EOCM 0.87

ck oo numberOfLinesOfCode Number of line code SCM 0.85

ck oo rfc Response for class SCM 0.82

LDHH numberOfAttributes Linearly decayed entropy of the number of attributes EOSCM 0.82

LDHH cbo Linearly decayed entropy of the coupling between objects EOSCM 0.82

LDHH numberOfLinesOfCode Linearly decayed entropy of the number of lines of code EOSCM 0.75

CvsLinEntropy Linear variants of entropy of source code EOCM 0.75

mostly selected. However, according to selection ratio,

the entropy of changes-based features (EOCM) is domi-

nant, since three out of five EOCM features appear in

the top list. Entropy metric, digging the difference be-

tween successive software versions, is the most valuable

for CPDP.

Summary. Different feature categories may present

different performances under the CPDP context. Sim-

ply combining the feature categories may not ensure the

best performance. The proposed method FeSCH can

make good use of the features from multiple categories

leading to a well-trained defect predictor for CPDP.

5.4 Discussions

We have performed an in-depth comparison between

our proposed method FeSCH and a state-of-the-art

method TCA+[1], which is based on feature mapping.

To further investigate the effectiveness of FeSCH, we

consider other types of CPDP methods for comparison:

Peters[5], Burak[4] and HISNN[12]. Peters and Burak

adapt the source project data by instance selection us-

ing the k nearest neighbors, and use the Euclidean dis-

tances to measure the differences among source and

target instances. HISNN selects instances by cluster-

ing, and uses the Hamming distance to measure the

difference.

Fig.6 and Fig.7 depict the results in box-plots,

where the measures are taken from all cases on each

dataset. In both figures, we group the box-plots by

the four measures (i.e., precision, recall, F1-measure,

and AUC), for comparison. The x -axis indicates the

five methods arranged in four groups, while the y-axis

indicates the corresponding scores of precision, recall,

F1-measure or AUC. Each box-plot presents the mean,

median, maximum, minimum, and quartiles of the spe-

cific measure. FeSCH uses the same settings as in RQ1.

Logistic Regression is the classifier trained after all the

methods.

Firstly, we illustrate the performance comparison

on ReLink according to Fig.6. 1) Considering preci-

sion, the range between the quartiles of FeSCH is the

smallest (i.e., 0.057) among all the methods (i.e., Peters

is 0.225, Burak is 0.186, HISNN is 0.086 and TCA+

is 0.217). The mean score of FeSCH (i.e., 0.640) is

also the best. 2) Considering recall, the mean score

(i.e., 0.650) of FeSCH is again the best, and the quar-

tile range (i.e., 0.023) is also the smallest among the

1104 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

(a)

0.7

0.6

0.5

0.4

0.3

0.2

(b) (c) (d)

Peters
Burak
HISNN
TCA+
FeSCH

Fig.6. Comparison of FeSCH and four baseline methods using different measures on ReLink. (a) Precision. (b) Recall. (c) F1-measure.
(d) AUC.

(a)

0.7

0.6

0.5

0.4

0.3

0.2

(b) (c) (d)

Peters
Burak
HISNN
TCA+
FeSCH

Fig.7. Comparison of FeSCH and four baseline methods using different measures on AEEEM. (a) Precision. (b) Recall. (c) F1-measure.
(d) AUC.

methods. 3) Considering F1-measure, the mean score

of FeSCH (i.e., 0.650) is the best because of the high

precision and recall scores, and the quartile range (i.e.,

0.050) remains the smallest among all the methods. 4)

Considering AUC, FeSCH can also achieve relatively

good results. The mean score (i.e., 0.620) is the best,

while the quartile range is smaller than Burak, HISNN,

and TCA+. Peters has the smallest quartile range, but

the mean score (i.e., 0.510) is the worst.

Secondly, we illustrate the performance comparison

on AEEEM according to Fig.7. 1) Considering both

precision and recall, FeSCH achieves the best mean

scores (i.e., 0.480 and 0.560), and its quartile ranges

are also the smallest among all the methods. 2) Consi-

dering F1-measure, the mean score of FeSCH (i.e.,

0.510) is the best, and the quartile range (i.e., 0.075)

is the smallest among the methods. 3) Considering

AUC, FeSCH and Burak have the best mean scores

(i.e., 0.590). The quartile range of FeSCH is smaller

than that of Peters, HISNN and TCA+, while Burak

has the smallest quartile range.

Based on the above analysis, compared with the four

state-of-the-art methods, FeSCH can achieve better

performance under CPDP context. The AUC measure

normally conforms to the F1-measure, which means a

method with a good AUC score also has a good score

of F1-measure. In addition, FeSCH has stable perfor-

mance on both datasets according to all four perfor-

mance measures. The reasons that FeSCH performs

nearly the best among the methods can be summarized

as follows. 1) FeSCH not only considers the distribution

differences of features between the source and the tar-

get projects, but also takes into account the redundancy

among the features. 2) Instance filtering requires large

enough source project data, because the number of in-

stances (i.e., the size of training set) is more essential

than the number of features in training a high-quality

defect predictor. When the source project data are not

sufficient, the instance filtering methods may perform

poor. 3) Feature mapping performs well when having

sufficient source data, but the performance may be sac-

rificed by information loss during the feature mapping.

Above all, feature selection may seem promising un-

der the CPDP context, but extensive studies are still

required to make a sound conclusion.

Chao Ni et al.: Feature Selection Method for Cross-Project Software Defect Prediction 1105

6 Threats to Validity

Threats to the internal validity are that faults may

exist in the implementation of the methods. To mini-

mize the internal threats, we implement these methods

by pair programming, and make full use of the third-

party implementations such as the LIBLINEAR and

MINE toolkits. Moreover, the results of the baseline

method (e.g., TCA+) are gathered from their published

work[1].

Threats to the external validity of our study are

that the observed experimental results may not be ap-

plicable to other software projects. To guarantee the

universality of the experimental results, we choose two

extensively used datasets ReLink and AEEEM[1,23,27].

In addition, we choose Logistic Regression as the de-

fault classifier, which is most used in recent CPDP re-

search. Other commonly used classifiers (Naive Bayes

and Random Forest) are also implemented to reduce

the external threats.

Threats to the construct validity are that the per-

formance evaluation may not be representative of the

real-world requirements for software defect prediction.

To minimize the threats, we use F1-measure, which is

commonly used in CPDP[1,5] and makes a good bal-

ance between the precision and recall measure. Dur-

ing discussion, we add AUC to reinforce the validity of

the experimental results. The non-parametric statisti-

cal hypothesis test (Wilconxon signed-rank test) is con-

ducted to ensure the confidence of performance compa-

rison among the methods.

7 Conclusions

In this paper, for cross-project defect prediction,

we proposed a cluster-based method FeSCH for se-

lecting suitable features to alleviate the distribution

gap between the source and the target project data.

FeSCH clusters features using a density-based cluster-

ing method DPC and selects features from these clus-

ters using one of the three ranking strategies. To eva-

luate the performance of FeSCH, we designed experi-

ments using real-world project data, and studied the

effects of ranking strategies, feature selection ratio, clas-

sification models, and feature categories. The experi-

mental results proved that FeSCH can outperform the

other baseline methods in most cases and its perfor-

mance does not rely on the classifiers trained. In addi-

tion, guidelines are provided for choosing suitable fea-

tures, including the optimal ranking strategy, the suit-

able feature selection ratio, and the favorable software

metrics under cross-project software defect prediction.

In the future work, firstly, we plan to collect extra

datasets to verify the generality of our empirical results

and use other classification models (such as support

vector machines and neural networks) to investigate the

potential of FeSCH. Secondly, we plan to design new

feature selection strategies and clustering methods to

improve FeSCH. Thirdly, we will study how to select

the optimal design options, such as the feature ratio

through self-learning.

References

[1] Nam J, Pan S J, Kim S. Transfer defect learning. In

Proc. the 35th Int. Conf. Software Engineering, May 2013,

pp.382-391.

[2] Zhang F, Keivanloo I, Zou Y. Data transformation in cross-

project defect prediction. Empir. Softw. Eng., 2017, 22(6):

3186-3218.

[3] Herbold S. Training data selection for cross-project defect

prediction. In Proc. the 9th Int. Conf. Predictive Models in

Software Engineering, October 2013, Article No. 6.

[4] Turhan B, Menzies T, Bener A B, Di Stefano J. On the rel-

ative value of cross-company and within-company data for

defect prediction. Empir. Softw. Eng., 2009, 14(5): 540-578.

[5] Peters F, Menzies T, Marcus A. Better cross company de-

fect prediction. In Proc. the 10th Working Conf. Mining

Software Repositories, May 2013, pp.409-418.

[6] Amasaki S, Kawata K, Yokogawa T. Improving cross-

project defect prediction methods with data simplification.

In Proc. the 41st Euromicro Conf. Software Engineering

and Advanced Applications, August 2015, pp.96-103.

[7] Rodriguez A, Laio A. Clustering by fast search and find of

density peaks. Science, 2014, 344(6191): 1492-1496.

[8] Briand L C, Melo W L, Wust J. Assessing the applicability

of fault-proneness models across object-oriented software

projects. IEEE Trans. Softw. Eng., 2002, 28(7): 706-720.

[9] Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B.

Cross-project defect prediction: A large scale experiment on

data vs. domain vs. process. In Proc. the 7th Joint Meeting

of the European Software Engineering Conf. and the ACM

SIGSOFT Symp. the Foundations of Software Engineering,

August 2009, pp.91-100.

[10] He Z M, Shu F D, Yang Y, Li M S, Wang Q. An investi-

gation on the feasibility of cross-project defect prediction.

Autom. Softw. Eng., 2012, 19(2): 167-199.

[11] Ma Y, Luo G C, Zeng X, Chen A G. Transfer learning for

cross-company software defect prediction. Inf. Softw. Tech-

nol., 2012, 54(3): 248-256.

[12] Ryu D, Jang J I, Baik J. A hybrid instance selection us-

ing nearest-neighbor for cross-project defect prediction. J.

Comput. Sci. Technol., 2015, 30(5): 969-980.

[13] Herbold S, Trautsch A, Grabowski J. Global vs. local mod-

els for cross-project defect prediction. Empir. Softw. Eng.,

2017, 22(4): 1866-1902.

1106 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

[14] Wang S, Liu T Y, Tan L. Automatically learning semantic

features for defect prediction. In Proc. the 38th Int. Conf.

Software Engineering, May 2016, pp.297-308.

[15] Chen L, Fang B, Shang Z W, Tang Y Y. Negative samples

reduction in cross-company software defects prediction. Inf.

Softw. Technol., 2015, 62: 6777.

[16] Canfora G, De Lucia A, Di Penta M, Oliveto R, Panichella

A, Panichella S. Multi-objective cross-project defect predic-

tion. In Proc. the 6th Int. Conf. Software Testing Verifica-

tion and Validation, March 2013, pp.252-261.

[17] Panichella A, Oliveto R, De Lucia A. Cross-project defect

prediction models: L’union fait la force. In Proc. Conf. Soft-

ware Maintenance Reengineering and Reverse Engineering,

February 2014, pp.164-173.

[18] Zhang Y, Lo D, Xia X, Sun J L. An empirical study of

classifier combination for cross-project defect prediction. In

Proc. the 39th Annual Computer Software and Applications

Conf., July 2015, 2: 264-269.

[19] Zhang F, Mockus A, Keivanloo I, Zou Y. Towards build-

ing a universal defect prediction model. In Proc. the 11th

Working Conf. Mining Software Repositories, May 2014,

pp.182-191.

[20] Xia X, Lo D, Pan S J, Nagappan N, Wang X Y. HYDRA:

Massively compositional model for cross-project defect pre-

diction. IEEE Trans. Softw. Eng., 2016, 42(10): 977-998.

[21] Herbold S. CrossPare: A tool for benchmarking cross-

project defect predictions. In Proc. the 30th ACM/IEEE

Int. Conf. Automated Software Engineering Workshop

November 2015, pp.90-96.

[22] Nam J, Kim S. Heterogeneous defect prediction. In Proc.

the 10th Joint Meeting on Foundations of Software Engi-

neering, September 2015, pp.508-519.

[23] Jing X Y, Wu F, Dong X W, Qi F M, Xu B W. Hete-

rogeneous cross-company defect prediction by unified met-

ric representation and CCA-based transfer learning. In

Proc. the 10th Joint Meeting on Foundations of Software

Engineering, August 30-September 4, 2015, pp.496-507.

[24] Kamei Y, Fukushima T, McIntosh S, Yamashita K,

Ubayashi N, Hassan A E. Studying just-in-time defect pre-

diction using cross-project models. Empir. Softw. Eng.,

2016, 21(5): 2072-2106.

[25] Hosseini S, Turhan B, Mäntylä M. Search based train-

ing data selection for cross project defect prediction. In

Proc. the 12th Int. Conf. Predictive MODELS and Data

Analytics in Software Engineering, September 2016, Arti-

cle No. 3.

[26] Nam J, Kim S. CLAMI: Defect prediction on unlabeled

datasets. In Proc. the 30th ACM/IEEE Int. Conf. Auto-

mated Software Engineering, November 2015, pp.452-463.

[27] Zhang F, Zheng Q, Zou Y, Hassan A E. Cross-project defect

prediction using a connectivity-based unsupervised classi-

fier. In Proc. the 38th Int. Conf. Software Engineering, May

2016, pp.309-320.

[28] Gao K H, Khoshgoftaar T M, Wang H J, Seliya N. Choos-

ing software metrics for defect prediction: An investigation

on feature selection techniques. Softw.: Pract. Exper., 2011,

41(5): 579-606.

[29] Shivaji S, Whitehead E J, Akella R, Kim S. Reducing fea-

tures to improve code change-based bug prediction. IEEE

Trans. Softw. Eng., 2013, 39(4): 552-569.

[30] Xu Z, Liu J, Yang Z J, An G G, Jia X Y. The impact of

feature selection on defect prediction performance: An em-

pirical comparison. In Proc. the 27th IEEE Int. Symp. Soft-

ware Reliability Engineering, October 2016, pp.309-320.

[31] Xu Z, Liu J, Xia Z, Yuan P P. An empirical study on the

equivalence and stability of feature selection for noisy soft-

ware defect data. In Proc. the 29th Int. Conf. Software En-

gineering and Knowledge Engineering, July 2017, pp.191-

196.

[32] Ghotra B, McIntosh S, Hassan A E. A large-scale study of

the impact of feature selection techniques on defect classifi-

cation models. In Proc. the 14th Int. Conf. Mining Software

Repositories, May 2017, pp.146-157.

[33] Liu S L, Chen X, Liu W S, Chen J Q, Gu Q, Chen D X.

FECAR: A feature selection framework for software defect

prediction. In Proc. the 38th Annual Computer Software

and Applications Conf., July 2014, pp.426-435.

[34] Liu W S, Liu S L, Gu Q, Chen J Q, Chen X, Chen D X. Em-

pirical studies of a two-stage data preprocessing approach

for software fault prediction. IEEE Trans. Reliab., 2016,

65(1): 38-53.

[35] Liu W S, Chen X, Gu Q, Liu S L, Chen D X. A cluster-

analysis-based feature-selection method for software defect

prediction. Sci. Sin. Inf., 2016, 46(9): 1298-1320.

[36] Reshef D N, Reshef Y A, Finucane H K, Grossman S R,

McVean G, Turnbaugh P J, Lander E S, Mitzenmacher M,

Sabeti P C. Detecting novel associations in large data sets.

Science, 2011, 334(6062): 1518-1524.

[37] Fan R E, Chang K W, Hsieh C J, Wang X R, Lin C J. LIB-

LINEAR: A library for large linear classification. J. Mach.

Learn. Res., 2008, 9: 1871-1874.

[38] Wu R X, Zhang H Y, Kim S, Cheung S C. ReLink: Recover-

ing links between bugs and changes. In Proc. the 19th ACM

SIGSOFT Symp. and the 13th European Conf. Foundations

of Software Engineering, September 2011, pp.15-25.

[39] D’Ambros M, Lanza M, Robbes R. An extensive compa-

rison of bug prediction approaches. In Proc. the 7th IEEE

Working Conf. Mining Software Repositories, May 2010,

pp.31-41.

Chao Ni received his B.S. degree

in computer science from Nantong

University, Nantong, in 2014. Then

he received his M.S. degree in com-

puter science from Nanjing University,

Nanjing, in 2017. Now he is a Ph.D.

candidate of State Key Laboratory

for Novel Software Technology and the Department of

Computer Science and Technology, Nanjing University,

Nanjing. His research interests are mainly in software

defect prediction and machine learning.

Chao Ni et al.: Feature Selection Method for Cross-Project Software Defect Prediction 1107

Wang-Shu Liu received his B.S.

and M.S. degrees in computer science

from Nanjing University of Science

and Technology, Nanjing, in 2010 and

2013, respectively. He is now a Ph.D.

candidate of State Key Laboratory for

Novel Software Technology and the

Department of Computer Science and

Technology, Nanjing University, Nanjing. His research

interests include software defect prediction and machine

learning.

Xiang Chen received his B.S. degree

in the School of Management from

Xi’an Jiaotong University, Xi’an, in

2002. Then he received his M.S. and

Ph.D. degrees in computer science from

Nanjing University, Nanjing, in 2008

and 2011, respectively. Now he is an

associate professor in the School of

Computer Science and Technology, Nantong University,

Nantong. His research interests are mainly in software

testing, such as software defect prediction, combinatorial

testing, regression testing, and software fault localization.

He has published over 40 papers in referred journals and

conferences.

Qing Gu received his Ph.D. degree

in computer science from Nanjing

University, Nanjing. He is a pro-

fessor of the State Key Laboratory

of Novel Software Technology, and

the Department of Computer Science

and Technology, Nanjing University,

Nanjing. His research interests in-

clude software testing, quality and process improvement,

software maintenance and evolution, and complex network.

Dao-Xu Chen is currently a full

professor of the State Key Laboratory

of Novel Software Technology and

the Department of Computer Science

and Technology, Nanjing University,

Nanjing. His research interests include

distributed computing, parallel process-

ing, and computer networks. He is a

fellow of CCF and a member of ACM and IEEE.

Qi-Guo Huang received his Bach-

elor of Arts in English in the School

of Foreign Language from Nanjing

University of Finance & Economics,

Nanjing, in 2008. Then he received his

M.S. degree from the School of Software

from Nanjing University, Nanjing, in

2012. Now he is a Ph.D. candidate at

the Department of Computer Science and Technology and

the State Key Laboratory of Novel Software Technology,

Nanjing University, Nanjing. His research interests are

mainly in big data analysis for software engineering.

