
Li Y, Cai ZP, Xu H. LLMP: Exploiting LLDP for latency measurement in software-defined data center networks. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 33(2): 277–285 Mar. 2018. DOI 10.1007/s11390-018-1819-2

LLMP: Exploiting LLDP for Latency Measurement in

Software-Defined Data Center Networks

Yang Li1, Student Member, CCF, Zhi-Ping Cai1,∗, Senior Member, CCF, Member, IEEE

and Hong Xu2, Member, ACM, IEEE

1College of Computer, National University of Defense Technology, Changsha 410073, China
2Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China

E-mail: liyang06200910@163.com; zpcai@nudt.edu.cn; henry.xu@cityu.edu.hk

Received July 31, 2017; revised January 24, 2018.

Abstract The administrators of data center networks have to continually monitor path latency to detect network anomaly

quickly and ensure the efficient operation of the networks. In this work, we propose Link Layer Measurement Protocol

(LLMP), a prototype latency measuring framework based on the Link Layer Discovery Protocol (LLDP). LLDP is utilized

by the controller to discover network topology dynamically. We insert timestamps into the optional LLDPTLV field in LLDP,

so that the controller can estimate latency on any single link. The framework utilizes a reactive measurement approach

without injecting any probe packets to the network. Our experiments show that the latency of a link can be measured

accurately by LLMP. In relatively complex network conditions, LLMP can still maintain a high accuracy. We store the

LLMP measurement results into a latency matrix, which can be used to infer the path latency.

Keywords software-defined network (SDN), Link Layer Discovery Protocol (LLDP), latency measurement

1 Introduction

The Open Networking Foundation (ONF), a deve-

loping non-profit organization dedicating to the promo-

tion of software-defined network (SDN), defines SDN

architecture as the physical separation of the control

plane from the data plane in traditional networks. The

data plane of the network typically consists of all the

network elements such as switches and the routers that

forward packets from one network node to another. The

control plane is an intelligent controller behind those

network elements and decides how to forward packets

from one network node to another. The SDN architec-

ture has been applied to data center networks (DCNs)

where the data needs to be managed and controlled

centrally. In addition, network performance measure-

ment in software-defined DCNs is a fundamental mana-

gement task of administrators to ensure the smooth

operations of the network. Latency is one of the most

important factors for network measurement because

many interactive requirement services and applications

are latency-sensitive, such as online games and multi-

media services. The network administrator relies on

the measurement results to detect latency violation.

Specifically, administrators need real-time fine-grained

latency measurements on any segment of a network

path to pinpoint faults, hotspots, and troubleshoot-

ing. The problem is especially challenging due to the

complex topologies and sheer volume of traffic in data

center networks. Thus, a latency measurement solu-

tion with minimal overhead is preferred for practical

deployment.

Traditional link and path latency measurement

methods include active measurement and passive mea-

surement. Active measurement techniques[1] frequently

take the measures of sending and receiving probe pac-

kets (e.g., ICMP requests) from the network edge

and measure their response time. Therefore, end-to-

end probes[2] cannot measure the latency of path seg-

ments between arbitrary network devices. Another ap-

Regular Paper

Special Section on Computer Networks and Distributed Computing

Recommended by CCF ICoC 2017

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61379145, 61501482, 61762033.
∗Corresponding Author

©2018 Springer Science +Business Media, LLC & Science Press, China

278 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

proach is to install measurement tools at servers and

launch probes from them, such as FlowSense[3] and

OFLOPS[4]. This may not be feasible since coloca-

tion data centers restrict access to customer servers.

Passive measurement[5] captures latency information

about paths by measurement tools installed in the net-

work devices. However, these approaches usually incur

the overhead of performing real-time local coordina-

tion and aggregating measurements captured at many

devices. The installation and deployment of passive

measurement methods requires high network privileges,

and sometimes even needs the support from network

operators. In order to passively measure the traffic,

we need to install corresponding applications or deploy

measurement devices in each node. With the growing

size of the network, the cost of the deployment is get-

ting higher and higher. Therefore, it is not feasible to

apply the passive measurement method to monitor the

large-scale data center networks. Hence it is difficult

and expensive to measure link and path latency using

existing methods.

In this paper, we propose Link Layer Measurement

Protocol (LLMP), a novel approach to measuring path

latency in data center networks. LLMP overcomes

the limitations of existing work by exploiting the Link

Layer Discovery Protocol (LLDP) 1○, which is widely

used in SDN controllers[6] to discover and update net-

work topology. The idea is that we can simply utilize

LLDP packets to piggyback timestamp information,

and use it to measure latency of any single link seg-

ment. In addition, the proposed method uses the echo

message to improve the accuracy of the measurement

result. LLMP is a reactive scheme and does not inject

additional probe packets to the network. All the data

packets LLMP 2○ exploits (LLDP packets, packet-out

packets, echo messages, etc.) are inherent packets in

SDN. It is arguably the first work combining LLDP and

echo messages to complete practical work in SDN. Re-

lated studies such as OpenNetMon[7] and SLAM[8] are

also reactive measurement approaches. However, they

cannot measure the latency of path segments between

arbitrary network devices, and they mainly depend on

generating extra probe packets and sending correspond-

ing matching rules to the target switches, which would

consume expensive flow table resources of switches.

In our implementation, the LLDP packet is ap-

pended with a customizable field which is called

latency-tag to carry the timestamp. When the con-

troller sends the LLDP packet to one switch and re-

trieves it from another, it can infer the latency of this

link by subtracting the time packets taken from the

controller to the switches. We deploy our prototype

on a physical and an emulated SDN testbed[9] and find

LLMP can accurately measure link latency inflations of

tens of milliseconds with little overhead. We also record

the latency information of links into a latency matrix,

which can be used to infer the path latency. Further-

more, if LLMP becomes a basic component for all SDN

controllers, the network operator can utilize the mea-

surement results to improve network service quality.

The remainder of this paper is structured as follows.

In Section 2, we discuss the design and implementa-

tion of LLMP. We perform experiments and analyze

the evaluation results of LLMP in Section 3. We also

deploy LLMP in a small-scale campus DCN and analyze

its real performance in Section 4. Section 5 concludes

our work.

2 LLMP Design and Implementation

In this section, we present our measurement solution

LLMP, which computes the latency of a single link by

sending and retrieving LLMP packets over a specified

period of time. Based on the measurement results, the

path latency between any two switches can be inferred.

2.1 LLDP (Link Layer Discovery Protocol)

To dynamically discover the topology in SDN, the

link discovery service inside controllers takes advan-

tages of the data link layer LLDP to detect links be-

tween switches. The LLDP information is sent by con-

trollers from of each of their interfaces at a fixed inter-

val, in the form of an Ethernet frame. Table 1 shows

the Ethernet frame format used in LLDP. DA and SA

represent the multicast destination MAC address and

source MAC address respectively. The ethertype field

is set to 0x88CC. Each frame contains one LLDP data

unit (LLDPDU). Each LLDPDU which carries the pay-

load of an LLDP frame is a sequence of type-length-

value (TLV) structures[10]. Each LLDP frame always

includes the following integral mandatory TLVs: chas-

sis ID, port ID, and time-to-live. The mandatory TLVs

are followed by any number of optional TLVs. The

1○http://www.ieee802.org/1/pages/802.1ab.html, Jan. 2018.
2○https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.-

0.noipr.pdf, Jan. 2018.

Yang Li et al.: LLMP: Exploiting LLDP for Latency Measurement in Software-Defined Data Center Networks 279

frame ends with a special TLV, named end of LLD-

PDU in which both the type and the length fields are

0. Table 2 exhibits the structure of an LLDPTLV, in

which the actual value can be 0 to 511 octets.

Table 1. Frame Format of LLDP

Field Value Length (Byte)

DA LLDP multicast address 6

SA MAC address 6

Ether type 0x88cc 2

Data pad LLDPDU (collection of TLVs) 1 500

FCS Check digit 4

Table 2. Format of LLDPTLV

Item Length (Byte)

TLV type 7

TLV information string length 9

TLV actual value of information 0∼511

Fig.1 shows the general link discovery procedures in

an OpenFlow-based SDN network 3○. Here we illustrate

only a unidirectional link discovery process for simpli-

city. The discovery of the reverse link is performed in

a similar fashion.

Controller

Switch X
Step 2: LLDP

Step 1:
Packet-Out
with LLDP

Step 3:
Packet-In

with LLDP

Echo Message
RTT

Echo Message
RTT

Switch Y

T T

tt

Fig.1. Link discovery procedures of LLDP, and simulated net-
work experimental environment of single link.

Initially, the controller sends a packet-out message

to switch X in Fig.1 with the payload of a controller-

specific LLDP packet. The payload of the LLDP packet

contains DPID (DataPath Identity) and the output

port ID of switch X . Upon receiving the LLDP packet,

switch X broadcasts it to all other ports. Typically,

in an OpenFlow network, this is achieved by iterative

transmissions of one LLDP packet to each broadcast

enabled port. When receiving the broadcasting LLDP

packet sent from switch X , the neighbor switch Y re-

ports the incoming LLDP packet to the controller with

the ingress port ID and DPID of switch Y via a packet-

in message. When receiving the packet-in message from

switch Y , the controller can detect a unidirectional link

from switch X to switch Y .

In an OpenFlow-based network environment, the

OpenFlow controller takes advantage of above link dis-

covery method to obtain the entire network topol-

ogy. The typical interval time is 12 seconds (e.g., in

Floodlight 4○). In other words, if there are any changes

of network topology, the controller can detect it within

12 seconds. The interval time can also be set to diffe-

rent values according to network management demand.

2.2 Design and Implementation of LLMP

Our algorithm implementation is mainly based on

OpenFlow 5○ version 1.3 and LLDP. Now we introduce

how to design LLMP using OpenFlow messages and

LLDP in our algorithm.

According to the specification of LLDP, there are

many reserved TLVs which can be utilized to collect

the information of the OpenFlow switches. The LLMP

packet is built by embedding the timestamp into the

LLDP packet. The timestamp is encoded as a TLV[11].

In order to distinguish from other TLVs, a special type

and a special name are set in the TLVs for the proposed

LLMP: the type number is set to 10 (because numbers

1∼9 have been occupied by other TLVs, such as chassis

ID and port ID) and the name is set to latency-tag.

When the LLMP packet encapsulated in a packet-out

message is traversed to the switches, we convert the

current system time t1 to string data type and embed

it to the TLV’s value. Step 1 accomplishes the above

process in Fig.1.

When switch X receives the packet-out message

containing the LLMP packet, it will broadcast the

LLMP packet to all other ports. The next-hop switch

Y reports the incoming LLMP packet to the controller

via a packet-in message. The procedure is shown in

step 2 and step 3 in Fig.1. When receiving the packet-

in message from switch Y , the controller can calculate

the latency of the LLMP packet in the network by com-

paring the receiving time with the sending time em-

bedded in the LLMP packet, i.e., (t2 − t1). Note that

the accuracy of measurement results can be up to the

3○http://www.opennetworking.org, Jan. 2018.
4○http://www.projectfloodlight.org, Jan. 2018.
5○https://www.opennetworking.org, Jan. 2018.

280 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

nanosecond granularity, but we only consider the mil-

lisecond granularity in this work as the millisecond level

of precision is enough for most of web applications.

Although we have obtained the time the controller

consumes between sending the LLMP packet and re-

ceiving the LLMP packet, it does not reflect the exact

latency of the packet traverse between switches X and

Y . Actually, the total latency is the sum of the latency

time of the LLMP packet traversing from the controller

to switch X , plus the latency time of forwarding it from

switch X to switch Y , and plus the latency time of for-

warding it from switch Y to the controller. Hence, in

order to improve the accuracy, we must eliminate these

influential elements. Skillfully we can take advantage

of the echo messages in OpenFlow. One of the func-

tions of echo messages is to measure the end-to-end

latency. Hence, we utilize the function to obtain the

latency between the controller and the switches. The

black lines in Fig.1 show the procedure. First, the con-

troller sends echo request messages to switches. When

switches receive the echo request messages, they gene-

rate echo reply messages and send them back to the

controller. The controller retrieves the echo reply mes-

sages and can calculate RTT between the controller and

switches (i.e., T3 and T4 in Fig.1 are the latencies be-

tween the controller and the switches). Note that a

one-way delay method can be used to measure the de-

lay between the controller and switches, which would

be more accurate if the controller and switches have

synchronous clocks. However, in order to get the mea-

surement results of one-way delay, the entire network

would require clock synchronization and need install ex-

tra measurement devices or applications on all network

nodes[12]. Consequently, in order to make LLMP easier

to deploy, we adopt the method of RTT. Having tested

the real one-way delay and half of RTT in the same

experiment conditions, we find that the measurement

results of them are almost equal. As a consequence, we

ultimately select the half of RTT approximatively as

the one-way delay in LLMP.

The controller estimates the actual latency by cal-

culating the interval time TLLDP of the LLMP packet

passing through the network, and then subtracting the

additional time the LLMP packet consumes in the link

between the controller and the switches. The mathe-

matical calculation formula can be directly described

as:

TLLDP = t2 − t1,

TLLMP = TLLDP − (T3 + T4)/2.

2.3 Multi-Links Path Segment Inference

The controller periodically launches the LLMP ser-

vice to discover topology and measure all links latency

between switches. The measurement results are stored

in the latency matrix, in which every entry is composed

of five tuples (source switch DPID, source switch port

ID, destination switch DPID, destination switch port

ID, and latency value). The information of latency

matrix is updated along with the changes of network

topology by sending and retrieving LLMP packets.

As a vital part of the SDN architecture, the con-

troller has a global view of the entire network topo-

logy which can be used to implement route selection

and other network functionalities. The controller can

utilize the link latency matrix to infer and estimate

the multi-links path segment latency. For instance,

given any multi-links path segment, the controller iden-

tifies the first and last switches of the path segment

and determines the switches and the links in the path

segment[13]. Then, the controller carries out a series of

actions, searching corresponding links’ latency values

in the latency matrix and summing these results to get

the path segment latency.

The latency matrix can help the controller obtain

path segment latency rapidly and the controller utilize

the results to re-route the flow forwarding, which can

reduce network resource consumption and enhance the

efficiency of network operation. In addition, the net-

work operators evaluate network congestion condition

relying on the measurement results obtained by LLMP,

which we will analyze in detail in Section 4.

3 Experiments and Evaluation

3.1 Experiments

We implement LLMP based on Floodlight and mod-

ify the LinkDiscoveryManager module. In all experi-

ments we launch iperf flows to simulate user traffic, and

develop a user application to record a packet’s arrival

and departure time on switches to obtain the accurate

one-way delay. We also realize SLAM by preinstalling

forwarding rules on the switches along the path, and

making the controller generate a series of probe pac-

kets delivering along the link or path.

In order to guarantee the feasibility and flexibility

of LLMP, we set two experimental conditions.

In the first setting, we collect measurement results

of all single links on a physical testbed as shown in

Fig.1. The physical testbed consists of three servers

Yang Li et al.: LLMP: Exploiting LLDP for Latency Measurement in Software-Defined Data Center Networks 281

with Intelr Core i5 CPU running stock Ubuntu Server

14.04 LTS and OpenvSwitch. Both switches are linked

to the central controller running Floodlight. The three

measurement methods (user applications, SLAM and

LLMP) are launched simultaneously, and thus we can

obtain three types of synchronized measurement results

which can be used to evaluate LLMP’s accuracy. We

perform two sets of experiments to evaluate the LLMP’s

performance in different network conditions. One is in

the regular latency condition and the other is in the

high latency condition, i.e., the switches are in the con-

gestion condition. We estimate the latency between the

same pair of switches in our testbed, and introduce the

background traffic using iperf and simulate the conges-

tion by shaping traffic at a switch in the regular latency

condition.

In the other setting, we use Mininet to emulate

a larger-scale network again with OpenVSwitch con-

trolled by Floodlight. The links are configured with

20 ms latency and 200 Mbps bandwidth. We select

eight typical topologies (Table 3) from Topology Zoo 6○,

measure the latency of all links by LLMP, and preserve

the results in the corresponding latency matrix. We

choose two paths each composed by three links in ev-

ery topology, and infer their latency through the latency

matrix. In addition, we use the 4th topology SWITCH

as our foundational test topology since we consider this

topology to be more representative, choose the path

segment composed by different links, and run the user

application, SLAM, and LLMP on it respectively.

Table 3. Latency of Different Path Segments

No. Type Switch Link Path Latency (ms)

1 Sprint 11 17 61.7

2 IBM 15 20 62.2

3 Renater 25 34 62.9

4 SWITCH 21 47 62.5

5 Tinet 32 53 63.1

6 DFN 35 62 63.3

7 TATA 64 88 63.8

8 Viatel 98 115 64.1

3.2 Results and Evaluation

3.2.1 Accuracy in Single Path Segment

In the regular latency environment, we run all of the

three methods synchronously and obtain three datasets.

Fig.2(a) shows the variation tendencies of measurement

results, and it is clear to see that the fluctuation of the

delay values is not obvious, mainly because the rate of

injected traffic is constant. The figure also indicates

that the measurement results of LLMP are extremely

close to those of user applications, verifying that LLMP

can be utilized to detect millisecond-level link latency

variations accurately.

Time (min)

L
a
te

n
c
y
 (

m
s)

0 10 20

40

35

30

L
a
te

n
c
y
 (

m
s)

30

20

10

0

30 40

Time (min)

0 10 20 30 40

User
SLAM
LLMP

User
SLAM
LLMP

(a)

(b)

Fig.2. (a) Comparison of LLMP, user application (user) and
SLAM with constant traffic. The measurement results of the
three methods are pretty similar. (b) Comparison of LLMP,
user application and SLAM with bursty traffic. LLMP is able
to correctly detect the variations of links’ latency.

We compare the dataset of user application against

that of LLMP, and the minimum difference of the two

datasets is 0.011 ms. Besides, most of the differences

are between 0 ms and 1 ms. All statistical measures

of the deviations of the two datasets are shown in Ta-

ble 4. In addition, the measurement results of SLAM

have similar accuracy as those of LLMP.

Table 4. Statistical Results of Deviations

Statistical Characteristic Value

Min-deviation value 0.011 0

Average deviation 0.451 3

Standard deviation 0.684 2

Variance 0.583 5

6○http://www.topology-zoo.org/dataset.html, Jan. 2018.

282 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

3.2.2 Sensitivity to Network Conditions

We use iperf to slightly congest the network, and

estimate the measurement accuracy of using LLMP in

the presence of bursty traffic. Fig.2(b) shows the vari-

ations of link latency along with time since we inter-

mittently introduce bursty traffic. The figure indicates

that LLMP has strong adaptability when there is con-

gestion in the network. When the network traffic is nor-

mal, measured latency is small; however, when launch-

ing iperf, with a sudden rise of network traffic, the mea-

surement results of relevant links commence to increase.

Obviously, LLMP can accurately capture the latency

variations as well as the other two approaches.

3.2.3 Multi-Links Path Latency Estimation

LLMP can calculate single link path latency, but

more realistic network topology is mainly composed by

a vast number of path segments and one path segment is

usually composed of many links. In order to verify the

feasibility of LLMP in the path segments, we use eight

distinct topologies from Topology Zoo as shown in Ta-

ble 3 and run LLMP on them. Then we randomly select

two path segments composed by three links from every

topology and obtain the path segments’ latency infor-

mation by summing up latency values of corresponding

links which are stored in the latency matrix[14]. Table

3 shows the relevant topologies and the calculated de-

lay results. From the data in the table we can observe

that with the increasing number of switches and links

in different topologies, the measurement results grow

slightly.

Figs.3(a) and 3(b) display the distribution of path

segments’ latency results measured by different meth-

ods in topology SWITCH 7○, and we can draw a conclu-

sion that within the same range of error, LLMP shows

the equal accuracy with the two other measurement

methods.

As a result, the measurement results in the latency

matrix can be used to infer the multi-links path seg-

ment latency. We compare our proposed LLMP method

with SLAM from the aspect of resources consumption

as follows. If a network path segment is composed by n

switches and n−1 links, and in order to get the latency

between any two nodes, the controller has to execute M

times calculation operations and send Q probe packets

to the switches. Considering the difference of bidirec-

tional latency in actual network environment, we obtain

the values of M and Q by the following formulas:

M = 2
n−1∑

i=1

i = n(n− 1)(n > 2), (1)

Q = 2
n−1∑

i=1

i(n− i+ 1)

=
n(n− 1)(n− 2)

3
(n > 2). (2)

60 62

LLMP

SLAM

User

64 66

Path Latency (ms)

C
D

F
 o

f
R

e
su

lt
s

68

80 82 84 86

Path Latency (ms)

88

1.0

0.8

0.6

0.4

0.2

0.0

LLMP

SLAM

User

C
D

F
 o

f
R

e
su

lt
s

1.0

0.8

0.6

0.4

0.2

0.0

(a)

(b)

Fig.3. LLMP vs user application (user) and SLAM measure-
ment results’ CDFs for paths composed of different numbers of
links in SWITCH. (a) Path including three links. (b) Path in-
cluding four links.

From (1) and (2), we can draw a conclusion that

the spatial complexity of injecting probe packets using

SLAM is O(n3). However, LLMP only needs the con-

troller to calculate the delay of n− 1 links for one path

segment, and cutting down the number of calculations

of so many path segments’ delay is pretty significant,

because too many calculation and probe manipulations

would consume the computing resources of the con-

troller and the flow table resources of the switches. If

7○http://www.topology-zoo.org/dataset.html, Jan. 2018.

Yang Li et al.: LLMP: Exploiting LLDP for Latency Measurement in Software-Defined Data Center Networks 283

the controller uses such methods which need preinstall

forwarding rules in the switches for probe packets to ob-

tain the delay information of every path segment, the

additional resource consumption is inevitable[15]. Even

though SLAM has similar accuracy to LLMP, it would

be only adapted to a given link or path. If the con-

troller needs to know the delay information of a path

segment in specific moment, it could utilize SLAM to

measure the given path. However, in most situations,

the controller must obtain latency conditions of all links

actively. It is infeasible for the controller to reach the

destination by SLAM, but it can do that with LLMP.

Consequently, for the controller and network operators,

it is a better alternative to obtain the links’ delay in-

formation.

4 Impletemention in a Real Network

Environment

We have disposed the controller including LLMP

in a small-scale data center networks in our campus

network for three months. Fig.4 indicates the network

topology of our campus, composed by different types of

switches (e.g., core switches, aggregation switches[16])

and a server center. As long as the controller imple-

ments network topology discovery, all of the links’ la-

tency information can be recorded by LLMP. After an-

alyzing the latency data, we find that most of the links’

measurement values keep in a low level, less than 20 ms

during a vast majority of time of the day. In contrary,

only a very small number of links display high latency

scene, over 40 ms, just at a specific moment. As a con-

sequence, we filter out the data less than 20 ms, and

detect the congestion condition of links whose delay is

over 20 ms to verify whether they are suffering from

congestion[17]. High latency does not necessarily im-

ply that the links or path segments are congested. Yet

when some other similar characteristics appear on the

same link, such as increasing packet loss rate, jitter[18],

and throughout degradation[19], the link is highly likely

to encounter congestion.

We detect the link congestion condition[20] accord-

ing to LLMP’s measurement results. Fig.5 shows the

relation between the possibility of links’ congestion and

their delay measurement results, as well as their rates.

Obviously, the higher the links’ delay, the greater the

probability of their congestion. When the latency re-

sults increase to 80 ms, the links are almost in a con-

gestion state. Thus, we believe that the measurement

results of LLMP can be used as suggestions of detect-

ing link congestion. This means that the network ope-

rators do not need to observe and detect the network

state constantly. They only need to carry out relevant

monitoring manipulations when the measurement re-

Server Center

Core Switches

Aggregation
Switches

Fig.4. Campus network topology. A typical small-scale software-defined data center runs the controller in the server center and all of
the switches support the OpenFlow.

284 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

sults obtained by LLMP show abnormal values, which

can reduce the onerous and heavy tasks of them.

20

100

75

50

25

0

40 60 80 100

Congestion Links

Links Rate

120

Path Latency (ms)

C
o
n
g
e
st

io
n
 P

ro
p
o
rt

io
n
 (

%
)

Fig.5. Relation between links’ congestion and their latency.
Apparently, the higher the delay, the higher the probability of
congestion. In addition, high-delay links occupy a very small
proportion.

5 Conclusions

We presented LLMP, a link and path segment

latency measurement framework for software-defined

data center networks. LLMP utilizes timestamps of

carefully triggered control messages to measure network

latency between any two arbitrary switches. LLMP’s

measurements are accurate enough to detect latency

inflations of tens of milliseconds. The method also can

be used to monitor an SDN network for measuring the

delay without any extra traffic and can carry out real-

time network measurement and monitoring. The ad-

ministrators can depend on latency results obtained by

LLMP to detect the network conditions rather than do

some repetitive and boring work.

For future work, we plan to estimate the end-to-

end latency utilizing LLMP, and design a more accurate

measurement module for the controller, because it is vi-

tal important for the controller to gain the links delay

information[21]. The proposed LLMP method is pos-

sible to be used on network security[22]. We will also

consider using LLMP for other network management

tasks such as load balancing, anomaly detection and

congestion control.

References

[1] Das A, Lumezanu C, Zhang Y et al. Transparent and flex-

ible network management for big data processing in the

cloud. In Proc. the 5th USENIX Workshop on Hot Topics

in Cloud Computing, June 2013.

[2] Duffield N G, Grossglauser M. Trajectory sampling for di-

rect traffic observation. IEEE/ACM Transactions on Net-

working, 2001, 9(3): 280-292.

[3] Yu C, Lumezanu C, Zhang Y et al. FlowSense: Monitoring

network utilization with zero measurement cost. In Proc.

PAM, Oct. 2013, pp.31-34.

[4] Rotsos C, Sarrar N, Uhlig S et al. OFLOPS: An open frame-

work for OpenFlow switch evaluation. In Proc. PAM, Mar.

2012, pp.85-95.

[5] Huang D Y, Yocum K, Snoeren A C. High-fidelity switch

models for software-defined network emulation. In Proc.

HotSDN, Aug. 2013, pp.43-48.

[6] Kreutz D, Ramos F M V, Paulo Esteves Verssimo et al.

Software-defined networking: A comprehensive survey. Pro-

ceedings of the IEEE, 2015, 103(1): 14-76.

[7] van Adrichem N L M, Doerr C, Kuipers F A. OpenNet-

Mon: Network monitoring in OpenFlow software-defined

networks. In Proc. Network Operations and Management

Symposium (NOMS), May 2014.

[8] Yu C, Lumezanu C, Sharma A et al. Software-defined la-

tency monitoring in data center networks. In Proc. PAM,

Mar. 2015, pp.360-372.

[9] Cui Y, Xiao S, Liao C et al. Data centers as software-

defined networks: Traffic redundancy elimination with wire-

less cards at routers. IEEE Journal on Selected Areas in

Communications, 2013, 31(12): 2658-2672.

[10] Han K, Hu Z, Luo J et al. RUSH: Routing and scheduling

for hybrid data center networks. In Proc. IEEE INFOCOM,

Apr. 2015, pp.415-423.

[11] Narisetty R R, Dane L, Malishevskiy A et al. OpenFlow

configuration protocol: Implementation for the of mana-

gement plane. In Proc. the 2nd GENI Research and Edu-

cational Experiment Workshop, Mar. 2013, pp.66-67.

[12] Mckeown N, Anderson T, Balakrishnan H et al. OpenFlow:

Enabling innovation in campus networks. ACM SIGCOMM

Computer Communication Review, 2008, 38(2): 69-74.

[13] Dhawan M, Poddar R, Mahajan K et al. SPHINX: Detect-

ing security attacks in software-defined networks. In Proc.

NDSS, Feb 2015.

[14] Yu M, Jose L, Miao R. Software-defined traffic measurement

with OpenSketch. In Proc. NSDI, Apr. 2013, pp.29-42.

[15] Braun W, Menth M. Software-defined networking using

OpenFlow: Protocols, applications and architectural design

choices. Future Internet, 2014, 6(2): 302-336.

[16] Kim H, Feamster N. Improving network management with

software-defined networking. IEEE Communications Mag-

azine, 2013, 51(2): 114-119.

[17] Chowdhury S R, Bari M F, Ahmed R et al. PayLess: A

low cost network monitoring framework for software-defined

networks. In Proc. NOMS 2014, May 2014, pp.1-9.

[18] Gill P, Jain N, Nagappan N. Understanding network failures

in data centers: Measurement, analysis, and implications.

ACM SIGCOMM Computer Communication Review, 2011,

41(4): 350-361.

[19] Gandhi R, Liu H H, Hu Y C et al. Duet: Cloud scale load

balancing with hardware and software. ACM SIGCOMM

Computer Communication Review, 2015, 44(4): 27-38.

[20] Xie D, Ding N, Hu Y C et al. The only constant is change:

Incorporating time-varying network reservations in data

centers. ACM SIGCOMM Computer Communication Re-

view, 2012, 42(4): 199-210.

Yang Li et al.: LLMP: Exploiting LLDP for Latency Measurement in Software-Defined Data Center Networks 285

[21] Zhang H, Cai Z P, Liu Q et al. A survey on security-aware

measurement in SDN. Security and Communication Net-

works, 2018, doi:10.1155/2018/2459154. (to be appeared)

[22] Xia J, Cai Z P, Hu G et al. An active defense solution for

ARP spoofing in OpenFlow network. Chinese Journal of

Electronics, 2018. (to be appeared)

Yang Li received his B.S. degree

in computer science from Ocean Uni-

versity of China, Qingdao, in 2014.

Then he received his M.S. degree in

computer science and technology from

National University of Defense Techno-

logy, Changsha, in 2017. His research

interests are mainly in software-defined

network (SDN) and network measurement.

Zhi-Ping Cai received his B.Eng.,

M.A.Sc., and Ph.D. degrees in computer

science and technology from the Na-

tional University of Defense Technology

(NUDT), Changsha, in 1996, 2002,

and 2005, respectively. He is a full

professor in the College of Computer,

NUDT, Changsha. His current research

interests include network security and big data. He is

a senior member of CCF and a member of IEEE. His

doctoral dissertation was rewarded with the Outstanding

Dissertation Award of the Chinese PLA.

Hong Xu is an assistant professor

in Department of Computer Science,

City University of Hong Kong, Hong

Kong. His research area is computer

networking, particularly data center

networks, NFV, and big data systems.

He received his B.Eng. degree from

The Chinese University of Hong Kong,

Hong Kong, in 2007, and his M.A.Sc. and Ph.D. degrees

from University of Toronto in 2009 and 2013 respectively.

He was the recipient of an Early Career Scheme Grant

from the Hong Kong Research Grants Council in 2014.

He received the Best Paper Awards from ACM TURC

2017 (SIGCOMM China), IEEE ICNP 2015, and ACM

CoNEXT Student Workshop 2014. He is a member of

ACM and IEEE.

