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Abstract The measurement of influence in social networks has received a lot of attention in the data mining community.

Influence maximization refers to the process of finding influential users who make the most of information or product

adoption. In real settings, the influence of a user in a social network can be modeled by the set of actions (e.g., “like”,

“share”, “retweet”, “comment”) performed by other users of the network on his/her publications. To the best of our

knowledge, all proposed models in the literature treat these actions equally. However, it is obvious that a “like” of a

publication means less influence than a “share” of the same publication. This suggests that each action has its own level

of influence (or importance). In this paper, we propose a model (called Social Action-Based Influence Maximization Model,

SAIM) for influence maximization in social networks. In SAIM, actions are not considered equally in measuring the “influence

power” of an individual, and it is composed of two major steps. In the first step, we compute the influence power of each

individual in the social network. This influence power is computed from user actions using PageRank. At the end of this

step, we get a weighted social network in which each node is labeled by its influence power. In the second step of SAIM,

we compute an optimal set of influential nodes using a new concept named “influence-BFS tree”. Experiments conducted

on large-scale real-world and synthetic social networks reveal the good performance of our model SAIM in computing, in

acceptable time scales, a minimal set of influential nodes allowing the maximum spreading of information.

Keywords social network, social influence, social action, personalized PageRank, influence-BFS tree

1 Introduction and Related Work

The popularity of social networks has increased over

the years, such as Facebook, Google+, Twitter and Mi-

croBlog. These networks have been used to model the

human friendship by a graph wherein the members, or

their profiles, are modeled by nodes and each edge rep-

resents a relationship. Members can share experiences,

express their views, and discuss ideas with their friends.

Thus, some ideas can spread in a major way in the

network. These ideas are published by members who

have a high capacity of interactivity and a significant

breadth of information dissemination. These mem-

bers are called influential individuals and go by many

names in the literature as experts[1], authorities[2], and

leaders[3]. Detecting influential members is a critical

issue in social network analysis, which has many appli-

cations, such as viral marketing[4-5], healthcare[6], and

sensor placement[7]. Indeed, such influential users can

be used in politics to alter political preferences in a

community, or in marketing to advertise products to

increase sales[5,8]. From an abstract point of view, in-

fluential users are those who, when “activated”, can ac-

tivate the maximum number of individuals in the social

network. More precisely, influence maximization (IM)

consists in computing a small number k of influential

users (referred to as seeds) that influence the maximal

number of users (referred to as influence spread)[9]. The

proposed models in the literature for solving the IM

problem can be broadly divided into two categories.

In the first category, IM is considered as an algorith-

mic problem[9]; whereas in the second category, it is

considered as a discrete optimization problem[8]. Un-

fortunately, it was shown that solving IM is NP-hard

under both the independent cascade (IC)[10-14] and the

linear threshold (LT)[10,15-17] models. For this, several

approximation algorithms were proposed in the liter-
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ature[18-20]. For example, Wang et al.[18] proposed a

community-based greedy solution to the IM problem.

In [19], Jiang et al. introduced a local approximation,

called the expected diffusion value (EDV), to approxi-

mate the influence spread in the IC model computed by

the Monte Carlo simulations. Tang et al.[20] proposed

new randomized approximation algorithms which are

orders of magnitude faster than the original greedy al-

gorithms in [8]. Doubtless, an extensive review of exist-

ing models for solving the IM problem goes beyond the

scope of the current paper and the interested reader is

referred to the specialized literature, for example, [21-

23]. Instead, hereafter, we will try to briefly categorize

the existing approaches based on the adopted methodo-

logy.

In the first category, users are ordered w.r.t. a de-

fined measure for influence and the top-k influential

ones are selected. Starting with [3], a random-walk-

based algorithm LeaderRank was proposed to identify

leaders in social networks and outperforms PageRank.

Weng et al.[24] defined a metric similar to PageRank

for topic-sensitive influential users’ detection in Twit-

ter. The influence of a twitterer is computed by taking

into account both the topical similarity between users

and the link structure. In [25], Barbieri et al. intro-

duced novel topic-aware influence-driven propagation

models. Similar to traditional PageRank, the weight of

each user is computed by a random walker with diffe-

rent probabilities. Xiang et al.[26] proposed a linear so-

cial influence model which is essentially PageRank with

priors. To better qualify an individual, recently Wang

et al.[27] have defined two distinct properties, namely,

“susceptibility of being influenced” and the “influential

power” in the PPRank algorithm. In [28], a fine-grained

feature-based social influence (FBI) evaluation model is

proposed. A user’s initial social influence is computed

based on two factors: the possibility of impacting oth-

ers and the importance of the user him/herself. Then,

the social influence of an individual is adjusted with

PageRank taking into account the social influence con-

tributions of his/her friends. Most of the above studies

can be considered as heuristic approaches, since they

explore the top-k influential nodes selected according

to different types of centrality measures (such as the

personal characters, PageRank, closeness, betweenness

and topics). An alternative strategy always uses cen-

trality measures to quantify the involvement of users.

In fact, it is believed that people having the greatest

number of links (connections) are the hubs for exten-

sive influence spreading[29-30]. One of the most impor-

tant measures is the interaction behaviours. For exam-

ple, Li et al.[31] proposed CINEMA (Conformity-Aware

Influence-Maximization), a novel conformity-aware cas-

cade model for estimating influence spreads. CINEMA

computes the influence and conformity indices of nodes

by leveraging CASINO (conformity-aware social influ-

ence computation)[32]. In the algorithm CASINO, each

edge is annotated with a positive or a negative sign ac-

cording to the 5-leveled sentiments. Li et al.[33] studied

voter-model dynamics on signed digraphs and applied

it to solve the influence maximization problem. He et

al.[34] proposed a greedy algorithm to address the posi-

tive opinion influential node set selection problem by

considering both friend and foe relationships. Guler

et al.[35] incorporated the social and physical network

dynamics (such as propagation delay, frequency of inte-

raction, the strength of friendship/foe ties or the impact

factor of the propagating idea) to study the optimal in-

fluence propagation. Liu et al. proposed HYDRA[36-37]

to address the IM problem across multiple social me-

dia platforms. In HYDRA, the authors of [36-37] com-

bined temporal network information and node labels for

similarity estimation. Extensive experiments on 10 mil-

lion users across seven popular social network platforms

demonstrate that HYDRA correctly identifies real user

linkage across different platforms, and outperforms exi-

sting state-of-the-art algorithms by at least 20% un-

der different settings, and four times better in most

settings[36].

In the second category of approaches, the IM prob-

lem is modeled as an “individual influence evaluation

problem”. In [38], Subbian et al. used the social capi-

tal values to find influencers in online social networks.

Franks et al.[39] proposed a multi-agent system to iden-

tify influential agents by adopting a matrix factoriza-

tion method. Recently, Deng et al.[40] proposed an ap-

proach that incorporates node features and leverages

the temporal nature of influence for influence maximiza-

tion. Liu et al.[41] proposed a trust-oriented social influ-

ence evaluation method, called TOSI, that takes the so-

cial contexts into account. More recently, Zeng et al.[42]

considered a new type of influence maximization prob-

lem which is naturally motivated by the reliability con-

straint of nodes in social networks. In [43], the problem

of influence analysis is introduced in the context of in-

formation flow in networks. Then, a new algorithm In-

FlowMine is proposed based on a fully content-centered

model of flow analysis in networks. In InFlowMine, the

analysis is based on the actual content transmissions

in the underlying social stream, rather than a static
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model of transmission on the edges. In [44], Liu et al.

proposed a model in which vertex attributes are consi-

dered in the IM problem. This proposal is motivated

by the fact that vertices have different attributes in mo-

bile social networks. For this, the authors of [44] sug-

gested that it is more useful to study the IM problem in

different search categories. They named this new prob-

lem as categorical influence maximization (CIM). The

CIM query finds a small subset of vertices with diffe-

rent labels (categories) having the maximum influence

spreads. To address CIM, the authors of [44] proposed

a probability distribution based search (PDS) method

mainly in two steps. In the first step, they proposed

a probability distribution based parameter free method

(PD-max) to identify the maximum influential vertex

set for the specified category by studying the categori-

cal influential distribution within a time interval. In

the second step, starting from these detected influen-

tial vertices, they computed the minimum number of

vertices in each category having the maximum influ-

ences using a probability distribution based minimizing

method (PD-minmax). Experimental results on real-

world datasets collected in a city of China during one

year period used by the authors of [44] show the effec-

tiveness of the proposed approach. In the same context,

the graph summarization has also been utilized for in-

formation diffusion in dynamic graphs[45].

In the third category, we measure the “engagement”

capacity of users in social networks, while we define the

engagement as the capacity of a user in interacting with

other users of the social network. First, we should no-

tice that little research has been done on measuring

engagement so far. In [46], the term of engagement

is introduced in modeling email message chains. In

[47], Achananuparp et al. proposed a study on Twitter

where they introduced a new measure of engagement

based on the count of re-tweets. We should remark

that in these proposals, only direct responses from one

user to another are accounted for, and that “intermedi-

ate” responses (engaging one user through another) are

not considered. Zhao et al.[48] explored how the struc-

ture of online interactions affects the sentiment of the

messages posted by a given user, considering the situa-

tions where the same user appears at least twice in the

same thread (for example, asking a question and then

replying to the respondents). In [49], Yang and Tang

explored the reasons why a user may succeed in at-

tracting responses to his/her posts, to understand the

mechanisms of online influence. More recently, Niko-

laev et al.[50] introduced a new metric (named the en-

gagement capacity) for measuring the ability of online

media platform users to engage each other in commu-

nication. In their work, the engagement capacity of

a user is measured according to the number of newly

contributed posts that attract more posts. The authors

of [50] adopted a game theoretic approach to quantify

engagement, view a platform’s social capital as a co-

operatively created value, and find a fair distribution

of this value among the contributors. Extensive ex-

perimentation shows that engagement capacity can re-

veal well-interpretable facts about the nature of online

communication on different platform types. The en-

gagement capacity distribution in a userbase reveals the

different dynamics of communication and engagement

in two social media, differing in purposes, Health Forum

and Twitter social networks.

We should notice that most of the proposed ap-

proaches solve the IM problem under the assumption

that each user has a fixed cost for being an initial

adopter. However, in practice, user decisions regard-

ing the fact to be initial adopters or not are often

probabilistic. Moreover, these models solve the influ-

ence maximization problem given a limited budget k,

i.e., they accept k as a parameter. Hence, comput-

ing the optimal budget k becomes problematic and is

often solved experimentally through a trial-and-error

approach. In this regard, it is necessary to understand

how users make reactions when they are influenced by a

product, for adopting the allocated budget of influence.

Moreover, to the best of our knowledge, all proposed

models in the literature treat these reactions equally.

In fact, such models use objective functions based on

the number of interactions independently of their na-

ture. However, in real life, people can actually react to

the published content of their neighbors in several ways

based on profound impact on them. The strength of the

reaction differs from one publication to another. For ex-

ample, in Twitter, having a “retweet” is not the same

as having the mention “favorite”. In Facebook, a “like”

of a publication means less influence than a “share” of

the same publication. This suggests that each action

has its own level of influence (or importance).

In this paper, we propose a model called SAIM (So-

cial Action-Based Influence Maximization) that falls in

the first category. SAIM identifies influential users in

social networks based on their interaction behaviors.

To intertwine the IM with reality, we use a particular

form of corresponding probability. Unlike other models,

SAIM is not designed to work on the canonical infor-

mation diffusion graph, which includes the modeling of
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influence probabilities between nodes; rather it lever-

ages on social actions between users and on the con-

cept of node-centric influence power. The key feature

of SAIM is that it does not require the seed size k, but

rather computes an optimal one for the social network

at hand. In addition, we propose a new measure of in-

fluence based on social actions that aims at computing

the influence power for each user and in which actions

are not treated equally. The remainder of this paper is

structured as follows. Section 2 introduces preliminary

material. In Section 3, we present the details of our pro-

posal, illustrate it on a sample network, and analyze its

time and space complexities. Section 4 conducts an ex-

tensive experimentation of SAIM and compares it with

other recent proposals using large-scale real-world and

synthetic social networks. Section 5 offers concluding

remarks and sheds the light on future research direc-

tions.

2 Preliminaries

In this section, we first present the traditional in-

fluence maximization (IM) problem in social networks,

and thereafter introduce our definition of the IM prob-

lem based on social actions.

2.1 Problem Description

The influence maximization problem was first de-

fined by Kempe et al.[8] as follows. Given a network

G = (V,E), a diffusion model, the influence maxi-

mization problem aims to find a subset S of k nodes

(|S| = k) such that the expected number of overall ac-

tivated nodes σ(S) is maximized, i.e.,

S∗ = argmax
S

σ(S). (1)

Kempe et al.[8] proved that the influence maximiza-

tion problem defined in (1) is NP-hard and that the

objective function σ(S) is submodular under both the

Independent Cascade (IC)[10-14] and the Linear Thresh-

old (LT)[10,15-17] models.

In the age of social networks evolution, analyzing

social interactions is an important criterion to iden-

tify the active members. In fact, in the study of in-

fluence maximization, either ignoring the social actions

in the relationship polarities between users, or treat-

ing them incorrectly, will have a bad effect in practical

applications[51].

To address this issue, we will present our definition

of the IM problem using social actions. Our social-

actions influence maximization problem focuses on the

introduction of the activities of members to identify the

most active users in the network. Doubtless, we will

present the corresponding cascade model that analyzes

the information diffusion. Formal definition follows.

Definition 1 (Social Actions Based Influence Maxi-

mization Problem). Given a social network, G =

(V,E,A), where V is the set of nodes modeling the users

of the network, E is the set of edges, and A is the set

of social actions. We classify the nodes into two sub-

sets: an active set B, and an inactive set V \B. This

classification is based on the social actions A. There-

after, we find the minimum most active node set INF

in B and a specific cascade model CM , such that the

expected number of nodes influenced by INF according

to CM is the largest in V . That is:

S = argmax
INF⊆B,|INF |min

σ(INF ). (2)

Observe that in the aforementioned definition, we

have introduced the notion of active member. Natu-

rally, the user activity can be modeled through the re-

actions he/she receives from his/her friends. In fact, the

probability of a node v to be influential can be viewed

as a function of the social actions that v received from

his/her friends. Likewise, we seek a theoretical analysis

of how an arbitrary node’s influence spread quality is

affected. Given a set of active nodes INF and a propa-

gation model CM, we seek to find a minimum number of

active nodes that maximize σ(INF ) according to CM.

After introducing our definition of the IM problem, now

we need the following basic definitions.

2.2 Basic Definitions

We consider a directed graph G = (V,E) with

V = {v1, v2, . . . , vn} being the set of vertices and the set

of edges E = {(vi, vj)| there is an edge from vi to vj}.

A node represents an individual, and an edge between

two nodes represents some kind of relationship (friend-

ship or co-authorship, etc.). We denote by |.| the set

cardinality. Each vertex v ∈ V in G is labeled with its

computed influence score noted by IP (v). Now, we are

ready to introduce the following definitions.

Definition 2 (Direct Neighbor). In G = (V,E),

vertex v is a direct neighbor of vertex u if v and u are

connected by an edge. This relationship is represented

by the edge (u, v) ∈ E.

Definition 3 (Vertex Border). In G = (V,E),

B(u) is the set of all direct neighbors of vertex u, i.e.,

B(u) = {v ∈ V, (u, v) ∈ E}.
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Given these basic definitions, now we are ready to

introduce our proposal for influence maximization sub-

sequently.

3 Our Proposal

Our model, called SAIM, is composed of two ma-

jor steps and is depicted in Fig.1. The main objective

of the first phase is to compute the influence power of

each node in the social network. Intuitively, this in-

fluence power is computed from users’ actions on the

published statutes by friends (nodes) at hand. There-

after, SAIM prunes in the second phase the insignifi-

cant nodes using local average influence power, based

on an assumption of convexity which leads to stopping

conditions with respect to the distance that defines “lo-

cality”. Thus, SAIM derives the set of influential nodes

using a new concept named “influence-BFS tree”. Sub-

section 3.1 outlines our proposal for computing the in-

fluence power, i.e., the first phase of SAIM.

Social Graph

Identification

Social Action
Extraction Personalized

PageRank

Influential
Users

Select Users
Maximizing

the Objective
Function

Weighted Graph
with Influence

Values

0.35

0.95

0.250.22
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0.15x

t

z

u

v

w

Fig.1. Workflow of the proposed approach.

3.1 Influence Power Model

Recent studies have introduced several factors for

measuring influential power such as network proper-

ties and structural characteristics[29], topics[25,52-53],

communities[17,54], quality of followers, quality of

publications[55], and interaction behaviors[33-35,56-57].

Among the factors that directly measure the power of

influence is the set of interactive behaviors. Generally,

when a user is influenced by another, it will react ac-

cordingly. This reaction is modeled by a social action

such as like, comment or share. The strength of the

reaction indicates the strength of the influence or “in-

fluence power” (IP).

Generally, most people share the published content

(publications) of friends considered to be useful or new.

Indeed, they could attract more audience and amplify

influence quickly by publishing original and high quality

publications frequently. Thus, the interactions a user

receives after each published content are an important

indicator to measure its influence power. To the best of

our knowledge, existing models consider only the num-

ber of social actions in the set of interactive behaviors.

However, not all actions are of equivalent importance.

Stated otherwise, they do not all have the same “level”

of influence power. Hence, when a user v is influenced

by the published content of user u, then the former will

make a reaction depending on the influence power of

such publication. For example, it is well-known in a

social network like Facebook that a “share” is a much

more important reaction (thereby meaning more influ-

ence) than a “like”. Recently, Facebook has introduced

even distinct levels of the social action “like” modeling

distinct degrees of influence 1○. Hence, it seems natu-

ral to take into account this concept in computing the

influence power of each individual in the social network.

In our model SAIM, we associate importance values,

called friendship factors, to social actions. For this, let

A = {a1, ..., an} be a finite set of social actions, and

α = {α1, ..., αn} the set of friendship factors such as,

∀i ∈ {1, ..., n}, αi > αi+1 and
∑

∀i

αi = 1. Therefore, the

influential power W (ux, uy) of user uy on his/her friend

ux can be described as follows:

W (ux, uy) =

n
∑

i=1

αi ×Nai
(ux, uy)

Npy

, (3)

where Npy
is the number of published contents by user

uy, Nai
(ux, uy) is the number of actions ai performed

by user ux on the published content of uy (see Fig.2).

Publish n Contents
=Npz

Publish n Contents
=Npy

y

W
↼u

x֒
uz
↽ W

↼u
x֒u

y↽

z

x

IP↼x↽

Fig.2. Transition influence power computation.

1○https://newsroom.fb.com/news/2016/02/reactions-now-available-globally/, Feb. 2018.



Mehdi Azaouzi et al.: An Efficient Two-Phase Model for Computing Influential Nodes 291

Bonchi et al.[51] summarized several aspects in so-

cial network analysis such as trust, expertise and infor-

mation propagation. They concluded that “the idea of

influence in social networks is rather straightforward:

when users see their social contacts performing an ac-

tion they may decide to perform the action themselves”.

Based on this aspect, the users are interested in the

publication that is preferred by their neighbors or is

similar to their favorite publications. Based on mea-

surements of the received endorsement, we can estimate

the influence power of an individual. Intuitively, there

are a large number of “endorsement paths” between

the target user and the rest. Therefore, some form of

proximity measure is required to compare the number

of “endorsement paths”. A general approach for mea-

suring nodes’ proximity in a network is personalized

PageRank (PPR)[58] that is acknowledged to be one of

the most effective measures that rank nodes based on

their reachability from a certain set of nodes in a net-

work. It gives high scores to items that are closer to

the target user regarding a wide range of graph prop-

erties such as the distance or number of paths between

them[59]. For this, PPR can be used to find the influ-

ence closeness of a node based on measurements of its

endorsement. More clearly, based on users’ behavior,

PPR estimates the probability that a random walker,

starting from the target user, will follow a path to in-

fluential and uninfluential users. For this, we adopt the

PageRank algorithm to compute the influence based

on our measurements of endorsement defined in (3).

Hence, we propose the following PageRank-like func-

tion:

IP (ux)

= d×





∑

uy∈Followers(ux)

W (uy, ux)× IP (uy)

Followees(uy)



+

(1− d)
|Followers(ux)|

N
,

where d is a dumping factor.

Algorithm 1 computes the influence power (IP) for

each vertex in the input graph. Fig.3 depicts a sample

graph in which each vertex is labeled with its computed

IP value. Now, we need to compute a subset of nodes

which will be the final seeds. This process is described

in Subsection 3.2.

3.2 Significant Nodes Generation

After the computation of the IP values in the net-

work, this phase aims to determine a set of candidate

Algorithm 1. Influence Power

Data: a graph G = (V, E), a social action set A = {a1, ..., an},
a set of friendship factors α = {α1, ..., αn}

Result: an influence value of every vertex u ∈ V
1: for (ui, uj) ∈ E do

2: for ax ∈ A do

3: Calculate αx ×Nax(ui, uj)
4: end for

5: Calculate W (ui, uj)
6: end for

7: for ui ∈ V do

8: F (ui) = |Followers(ui)|/N
9: end for

10: for ui ∈ V do

11: for uj ∈ Followers(ui) do

12: sum = sum+W (uj , ui)×
IP (uj)

Followees(uj)

13: end for

14: IP (ui) = (1 − d) × F (uj) + d× sum
15: end for

0.9 0.7

0.7

0.5

0.5

0.3

0.8

0.85

F

E

D

B

A

H

C

G

Fig.3. Sample graph where each node is labeled with its IP
value computed by PPR.

seeds based on the influence score of each node and

its connectivity in the network. Notice that as social

networks in realistic settings are extremely large, the

search space for selecting seeds with maximal influence

spread is also huge. Therefore, there is a need to effec-

tively reduce the number of candidate seeds. How to

narrow down the size of the candidate set of seeds is a

core issue in our model SAIM tackled in this phase.

Based on our observations, an individual (say, vx)

with a high influence power is trusted by his/her

friends, and therefore triggers more friends (friends-of-

friends) to follow him/her. Hence, starting from vx,

this influence is propagated through the network fol-

lowing distinct paths composed of friends and friends-

of-friends. Naturally, this influence power decays as

we move from vx until it is completely annihilated.

Hence, this measure of influence power defines an in-

fluence zone for vx. Naturally, an intuitive approach

would select such centroids having the k-high influence
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scores as the k-influential seeds. For this, we define a

significant node as a node with an influence power (IP)

greater than the average IP in a given zone of the so-

cial network. By pruning the insignificant nodes, we

can effectively reduce the number of seed candidates.

In order to find the significant nodes, we use the local

average value of IP for each vertex. In this model, only

directed paths are considered. Let P = (v1, v2, ..., vm)

be a shortest path which leads v1 towards vm. The

length of P is its number of edges. Now, we can define

the local average influence as follows.

Definition 4 (Local Average Influence). Given a

graph G = (V,E) where each vertex v is labeled with its

IP value, we define the local average influence value of

v as follows:

IL(v) =
1

N

∑

v′∈path(v,L)

IP (v′),

where N is the number of nodes in all the shortest paths

with length L from v.

In Definition 4, the notion of locality of IL(v) is re-

lated to the radius L of the region in the social network

centered around vertex v.

Definition 5 (Significant Vertex). Given a graph

G = (V,E) where each vertex v is labeled with its IP

value, a node v is said significant iff: IP (v) > IL(v).

A key challenge in our definition of a significant ver-

tex is what is the best length L to be used. To solve this

problem, we can estimate the length L by determining

optimal local influence of any vertex v based on these

properties.

Definition 6 (Convex Function). A function f

is said convex[60] if ∀x, y ∈ dom(f) and λ ∈ [0, 1],

f(λx + (1 − λ)y) < λf(x) + (1 − λ)f(y). Moreover,

let a set C be convex, if for all points x, y ∈ C and

0 6 λ 6 1 we have λx + (1− λ)y ∈ C.

Theorem 1. IL(v) is a convex function.

Proof.

IL′(v) =
IPL(v) + IPL′\L(v)

NL +NL′\L

=
NL

NL +NL′\L
IL(v) +

NL′\L

NL +NL′\L
IL′\L(v).

Let λ1 =
NL

NL +NL′\L
and λ2 =

NL′\L

NL +NL′\L
,

then

IL′(v) ∈ convex(IL(v), IL′\L(v)),

= {λ1IL(v) + λ2IL′\L(v),

such that λ1 + λ2 = 1, 0 6 λ1 6 1}. �

Now, we can derive the following properties.

Property 1. {L|IL(v) > I(L+1)\L(v)} = ∅ ⇒

∀L, IL(v) 6 I(L+1)\L(v).

Property 2. {L|IL(v) > I(L+1)\L(v)} 6= ∅ ⇒ L0 =

min {L|IL(v) 6 I(L+1)\L(v)}.

The last two properties give us stopping conditions

when computing the optimal length L using a greedy

algorithm. Indeed, as long as the average influence in-

creases and becomes greater than the influence power

of the central node, then we can decide that such node

is not significant. On the contrary, if the local average

influence decreases, then the optimal length is the mini-

mal one causing that decrease. Now, we are ready to

introduce the following proposition.

Proposition 1 (Local Length of a Vertex). Given

a graph G = (V,E) wherein each vertice v is labeled

with IP value, for a given vertex v, we define the set of

length Ω(v) where I(v) is ascending, and is given by:

Ω(v) = {L, IL(v) > I(L+1)\L(v)}.

Ω(v) is bounded below 1. Now, we define the local

length of vertex v by the minimum length in Ω(v),

L0 = min(Ω(v)).

Algorithm 2 outlines our computation of the opti-

mal length. First, a path of length l = 1 is considered

and Il(v) is computed. Stated otherwise, first we con-

sider only the direct neighbors of each vertex. If IP (v)

is greater than Il(v), then the path length is increased

by 1 and Il(v) is computed again. Here, we should

consider two cases. In the first case, the local average

value Il(v) is decreased compared with the previous

path length Il′(v). Hence, IP (v) remains higher than

Il(v) and vertex v is noted to be significant. In the

second case, the local average value Il(v) is increased

Algorithm 2 . Significant Nodes

Data: a weighted graph G = (V, E,W ) where each node is la-

beled with its influence score

Result: a set of significant nodes B = {v1, ..., vp}

1: B ← ∅

2: for i← 1 to |V | do

3: L← 1

4: Compute IL(vi)

5: while (IL\(L+1)(vi) > IL+1(vi)

and IP (vi) > IL(vi)) do

6: L← L+ 1

7: end while

8: if IP (vi) > IL(vi) then

9: B ← B ∪ {vi}

10: end if

11: end for

12: return B



Mehdi Azaouzi et al.: An Efficient Two-Phase Model for Computing Influential Nodes 293

compared with the previous path length, then the path

length is increased, and Il(v) is computed again. Con-

sequently, if IP (v) becomes lower than Il(v), then we

should stop our expansion of the region and decide that

the node v is not significant.

Definition 7 (Significant Vertices). Given a graph

G = (V,E) where each vertex v is labeled with IP value,

we define the set of significant vertices of G as follows:

B = {v : v ∈ V and IP(v) > IL0
(v)}.

Given a social network G = (V,E,B), let B be

the set of significant nodes computed by Algorithm 2.

Hence, V \B is the set of non-significant ones. For the

sake of presentation, we will mark the significant nodes

as black, whereas the non-significant ones as white.

Fig.4 reports our sample graph (in Fig.3) on which we

have run Algorithm 2. We can remark that the set

of computed significant (black) nodes is B = {“A”,

“D”, “F”, “G”}, whereas the rest of the nodes are la-

beled as non-significant (i.e., those in white). Basically,

our model SAIM specifies two activities to represent

the behavior of the individuals in G when faced with a

given information (publication): 1) a black node who

is “infected” by the information may keep sending it to

its neighbors, and 2) a white node can be influenced

by this information but it cannot keep sending it to its

neighbors. This means that black nodes receive and

send influence, where white nodes are only influenced.

Now, we need to compute an optimal subset of these

computed black nodes which would maximize influence

as we will see in Subsection 3.3.

F
E

D

B

A

H

C

G

Fig.4. Sample graph in which black nodes represent the sig-

nificant ones and the white nodes represent the non-significant

ones.

3.3 Finding Seed Nodes

As mentioned previously, we want to identify an op-

timal subset of black nodes as seeds, i.e., those that

maximize the number of influenced nodes at the end

of the diffusion process. For this, we will introduce a

new concept called “influence-BFS tree”, for pruning

candidate seeds.

3.3.1 Influence-BFS Tree

Breadth first search (BFS) is a strategy for travers-

ing graphs. We will base our proposal on this strategy

to solve the influence maximization problem. The ra-

tionale behind the choice of BFS is that it produces

the shortest paths (in terms of the number of edges)

and thereby guarantees a rapid spread of informa-

tion. Hence, given a black (or significant) node u in

the social network, we can compute the set of influ-

enced nodes (black or white) by u with a specific BFS

tree rooted at u. Our methodology for computing

influence-BFS trees, called influence-BFS, is a variant

of the standard breadth-first search technique, which

imposes constraints on the visited nodes as follows.

At each step, influence-BFS starts with a black vertex

and puts it in an empty queue. Then, the first ver-

tex is extracted from the queue and all its unvisited

neighbors are visited and added to the queue. The

main difference between the standard BFS algorithm

and the influence-BFS is that in the latter only black

vertices are selected to build the queue for the next

level. This choice is natural since only significant black

nodes can diffuse or transmit information and thereby

trigger friends. For each vertex, its distance from the

root or its predecessor is stored in an array called dis-

tance (parent array) that represents the output of the

algorithm. For each vertex in the current level all its

neighbors must be visited. For example, Fig.5 reports

our sample graph G = (V,E,B,W ) and four different

influence-BFS trees (T1, T2, T3 and T4) for G. For

example, in T1, BFS begins by the black vertex F ,

then all its black and white neighbors {C,E,D,G} will

(a)

(b) (c)

(d) (e)

Fig.5. Input graph G and four corresponding influence-BFS

trees. (a) Input graph G. (b) T1. (c) T2. (d) T3. (e) T4.
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be visited. The addition at the end of the queue is

allowed only on black vertices D and G. Finally, the

unvisited neighbors of D and G (i.e., vertex B) will be

visited.

Now, we need the following definitions and proper-

ties related to the concept of influence-BFS tree.

Definition 8 (Black Path). Let us consider a graph

G = (V,E,B), where B denotes the set of black nodes.

We define a black path Bpath(u, v) between two black

nodes u ∈ B and v ∈ B as a sequence of edges that

only connects a sequence of black nodes.

For example, in Fig.5, Bpath(G,D) = (GF,FD) is

a black path between black nodes G and D.

Notation 1. Given G = (V,E,B) and a vertex

u ∈ B, we denote by T u the influence-BFS tree of black

node u.

Since, we associate an influence-BFS tree to each

black node, and then we can say that the number of

influence-BFS trees in the social graph is equal to the

number of black nodes. This is modeled by the follow-

ing property.

Property 3. Given G = (V,E,B), where B is the

set of black nodes, and T = {T v1
1 , T v2

2 , ..., T vk
k } is the set

of influence-BFS trees of G. Then, we have |T | = |B|.

Definition 9 (Size of Influence-BFS Tree). Given

G = (V,E,B), where |B| = r and T =

{T v1
1 , T v2

2 , ..., T vk
k }, the set of influence-BFS trees. We

note by size(T vi
i ) the size of T vi

i defined as its number

of nodes (in black and white).

For example, in Fig.5, the size of TF
1 = 6, while the

size of TA
4 = 4. Intuitively, the size of T vi answers the

question how many nodes are influenced by the black

(significant) node vi, i.e., the influence spread. Natu-

rally, the black vertex having the maximal influence-

BFS tree is the most influential.

Definition 10 (Influence Zone). Let G = (V,E,B),

where |B| = k and T = {T v1
1 , T v2

2 , ..., T vk
k }, the set

of influence-BFS trees. The influence zone of black

vertex vi is the set of nodes influenced by vi, i.e.,

Avi = {u|u ∈ T vi
i }.

At this stage, we should notice that our construc-

tion of the influence-BFS tree respects the following

constraint: an internal node at level k is only deve-

loped (i.e., visited) from a given node at level (k − 1)

which is necessarily a black (significant) node. This is

defined formally as follows.

Property 4. Let G = (V,E,B), where B is the

set of black nodes. Let T u be the influence-BFS tree

of u ∈ B, and let x ∈ T u be an internal node of it.

Let π(u, x) = (u, x) be the path between the root u and

x. Then, π has the form π(u, x) = (u, v1, v2, · · · , vk, x)

where v1, v2, · · · , vk ∈ B.

Lemma 1. Consider a social graph G = (V,E,B)

and two vertices u, v ∈ B. There exists a black path

between u and v, Bpath(u, v) if and only if v ∈ T u.

Proof. Let us assume that v ∈ T u, and then there

exists necessarily a black path between the root u and

v due to Property 4.

Now, let us assume that there exists a black path

between u and v, i.e., π(u, v) = (u, x1, x2, · · · , xr, v)

where xi ∈ B, ∀i. Hence, running BFS starting from u

will enable us to visit x1 at level 1, x2 at level 2,..., and

xr at level r which are all black nodes, and thereby are

included in the influence-BFS tree T u. Starting from

xk, we thereafter visit v at level (k + 1) whether it is a

white or black vertex. Consequently, v ∈ T u. �

Corollary 1. Given G = (V,E,B), where |B| = k

and the set of influence-BFS trees T = {T v1
1 , T v2

2 ,

..., T vk
k }. Let Avi and Avj be the influence zones of

both black vertices vi and vj. If there is a black path

Bpath(vi, vj) between vi and vj then Avi = Avj .

Corollary 1 simply states that the existence of a

black path between two black nodes guarantees that

their influential zones are identical. We can see for

example in Fig.5 that there is a black path between

nodes G and D. The influence zone of G is AG =

{G,F,C,D,E,B} (i.e., influence-BFS tree T2), whereas

the influence zone of F is AF = {F,C,E,D,G,B} (i.e.,

influence-BFS tree T1). It is obvious that AG = AF .

Naturally, in order to reduce the search space, select-

ing one of these BFS trees is enough to guarantee the

influence of the same zone. At this stage, a major con-

cern raises about the choice of the best black vertex (or

influence-BFS tree) among all possible ones in a black

path. Naturally, the best tree would enable diffusion

(or broadcast) of information very quickly.

Definition 11 (Rank-Vertex). Consider an

influence-BFS tree T v and a vertex u ∈ T v. The rank of

u in T v, denoted as rank(u, T v), is defined as the num-

ber of hops away from the root v to node u, hop(v, u)

i.e.,

rank(u, T v) = |{hop(v, u)|u ∈ T v}|.

Having the rank of each node at hand, now we can

define the rank of an influence-BFS tree as follows.

Definition 12 (Rank-Tree). Consider an influence-

BFS tree T v. The rank of T v is defined as the average

rank of its vertices, i.e.,

Rank(T v) =
1

|Av|

∑

ui∈Tv

rank(ui, T
v).
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Definition 13 (Minimal Rank-Tree). Consider

a black path Bpath(vi, vj) and T = {T vk
k |k ∈

Bpath(vi, vj)}, the set of influence-BFS trees of each

vertex in Bpath(vi, vj). We call the minimal tree Tmin,

the tree with the lowest rank, i.e.,

Tmin = argmin{Rank(T vk)|vk ∈ Bpath(vi, vj)}.

Definition 13 states that the best BFS tree among

those corresponding to root nodes in the same black

path is the one that has, in the average, the shortest

path to its nodes. Stated otherwise, it has the “fastest

spread” of influence. As for our example in Fig.5, we

consider the black path Bpath(G,D) = (G,F,D). The

minimal rank tree in this black path is computed as

follows in Table 1.

Table 1. Rank Tree Values for the Influence-BFS Trees in Fig.5

Tree Rank

TG
rank(F, TG) + rank(C, TG) + rank(D, TG)

5
+

rank(E,TG) + rank(B, TG)

5

=
1 + 1 + 2 + 2 + 3

5
= 1.8

TF
rank(C, TF ) + rank(E,TF ) + rank(D,TF )

5
+

rank(G,TF ) + rank(B, TF )

5

=
1 + 1 + 1 + 1 + 2

5
= 1.2

TD
rank(B,TD) + rank(E,TD) + rank(F, TD)

5
+

rank(C, TD) + rank(G,TD)

5

=
1 + 1 + 1 + 2 + 2

5
= 1.4

As a summary, now we can say that each significant

node is characterized by an influence-BFS tree which

models its influence zone. In addition, we have proved

that black nodes belonging to the same black path have

the same influence zones. Hence, in order to prune the

search space, we define a measure to rank those trees

and choose the best (minimal) one. From an abstract

point of view, the best tree is the one that spreads the

information most rapidly: when this information is put

on its root, it will reach most rapidly (in terms of path

length) the rest of its nodes. Now, we are ready to

outline our algorithm for computing the optimal set of

influential nodes subsequently.

3.3.2 Algorithm

Our approach of influence maximization algorithm

is summarized in Algorithm 3 and follows a greedy ap-

proach in computing the set of influential nodes. It

takes as input a graph G where each vertex v is la-

beled with its influence score IP. The set of influential

nodes INF is initially empty (line 1). First, we be-

gin by computing B the set of black (significant) nodes

in the graph using Algorithm 2 (line 2). Thereafter,

we build the influence-BFS trees of nodes in B (lines

3∼6). The while loop (lines 7∼14) builds the influential

nodes set INF from the black nodes B as follows. We

select from B the node (say, umax) having the maxi-

mal influence spread (line 8) in graph G. Thereafter

we compute the black path in the influence-BFS tree

of umax (line 9). Remind that all the black nodes in

the black path BLACK have exactly the same influence

zone and thereby are equivalent thanks to Corollary 1.

This is why we select the node vmin corresponding to the

influence-BFS tree Tmin with the minimal rank. Stated

otherwise, we select the BFS tree having the quickest

broadcast of information from its root vmin to the rest

of its nodes (see Definition 12). Hence, vmin is added

to the actual set of influential nodes (line 12), whereas

it is removed (along with all black nodes in the same

path BLACK) from B (line 13). Finally, our algorithm

outputs the selected nodes as seeds (line 15). As a sum-

mary, the seed selection is stopped when the maximal

number of nodes in the network is influenced by the se-

lected seeds. In addition, a new selected seed does not

improve any further the expected number of activated

nodes. Therefore, the optimal solution for the prob-

lem defined in (2) is obtained. In Subsection 3.3.3, we

will illustrate the distinct steps of our algorithm on a

sample social graph.

Algorithm 3 . Influence Maximization Algorithm

Data: a graph G = (V, E), where each vertex is labeled by its
influence power IP

Result: a set of influential nodes INF
1: INF ← ∅
2: B ← Significant-Nodes(G)
3: for each vi ∈ B do

4: Build the influence-BFS tree T
vi
i of vi

5: T ← T ∪ T
vi
i

6: end for

7: while B 6= ∅ do
8: umax = argmax

v∈B

(size (T v))

9: Compute the black path of umax: BLACK ← {vk |vk ∈
Tumax ∧ vk ∈ B}

10: Let Tmin ← argmin{Rank(T vk )|vk ∈ BLACK}
11: Let vmin ← the root node of Tmin

12: INF ← INF ∪ {vmin}
13: B ← B \ {BLACK ∪ {vmin}}
14: end while

15: return INF



296 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

3.3.3 Illustration

The main purpose of this subsection is to illus-

trate the distinct steps of our algorithm on a sample

social graph composed of 10 nodes and 14 edges de-

picted in Fig.6. The graph is oriented: a link from

u to v simply means that v performed an action on

a publication of u. Each vertex (user) is labeled with

his/her number of published contents, and an oriented

edge (u, v) is labeled with the number of actions per-

formed by user v on the publications of user u. For our

concern, we consider only three social actions “like”,

“share” and “comment” (see Fig.6(a)). Moreover we

associate the following social factors (importance) to

these social actions empirically as follows: αlike = 0.15,

αcomment = 0.35 and αshare = 0.50. We should notice

that αshare + αlike + αcomment = 1 and that αshare >

αcomment > αlike. In fact, we consider that a share is

more meaningful than a comment which is more mean-

ingful than a like w.r.t. the reactions of users.

Initially we measure the endorsement weight from

vertex ux to vertex uy which is subject to the proba-

bility function computed by (3). Then we compute

the influence power IP of the vertices, by calling Al-

gorithm 1 — see Fig.6(b). The set of significant black

nodes is {A,B, J} reported in Fig.6(c). The corre-

sponding BFS trees are depicted in Fig.6(d). Remark

that both black nodes A and B (having the maximum

influence tree size) belong to the same black path. How-

ever, the influence-BFS tree of A has the lowest rank

(≈ 1.14). Hence, node A is chosen as the influen-

tial node along this path and is added to INF , and

Fig.6. Visualization of the main steps of our algorithm. (a) Sample graph with several social actions reported on its edges. (b)

Computed influence power. (c) Significant nodes generation. (d) Influence-BFS tree set. (f) Seed’s nodes.
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both nodes A and B are removed from the set of black

nodes which contains thereafter only J . Hence, J will

compose the next seed and is removed from the set of

black nodes which becomes empty, and therefore the

algorithm stops. The final output of our algorithm is

INF = {A, J} as the set of influential nodes in this

sample graph (see Fig.6(e)).

Most important aspects in the detection of influen-

tial users in large-scale social networks are both time

and space complexities. For this, we will evaluate theo-

retically the performance of our algorithm by comput-

ing its temporal and spatial complexities subsequently.

3.3.4 Complexity Analysis

SAIM is run in three main steps: 1) computation

of the influence power of each node using PPR, 2)

generation of significant nodes, and 3) finding the seed

nodes. Hence, we will evaluate the space and time com-

plexities of each step and then sum up the results. The

following theorem is about the time complexity.

Theorem 2. The time complexity of SAIM is

O(n +m) where n is the number of vertices and m is

the number of edges in the social network.

Proof. We begin by the step of calculating the in-

fluence power (Algorithm 1), which is as follows. First,

the computation of endorsement (lines 2∼7) is done

in O(m × |A|) = O(m) where |A| is the number of

actions (generally constant w.r.t. the size of the net-

works) and m denotes the number of edges. Second,

we calculate the followers of each vertex (lines 8∼10)

in O(2m) = O(m). Third, we calculate the IP value of

each vertex (lines 8∼16) in O(2m) = O(m). Therefore

the time complexity of Algorithm 1 is: Talgorithm 1 =

O(m× |A|+m+m) = O(|A|+2m). Since |A| is a con-

stant, Talgorithm 1 = O(m). After the computation of IP

value of each vertex, we apply personalized PageRank

(PPR) computation on these measures, which runs in

the worst case p times with p being the number of iter-

ations needed before personalized PageRank converges.

The time complexity of the influence power model is:

Tstep 1 = O(p×m).

Then we move to the second stage which is the com-

putation of the local average influence (Algorithm 2).

Calculating the area average influence of each vertex

(lines 3∼13) is done in O(n×T ) (T is the area size and

it is Lmax in the worst case, where Lmax is the maxi-

mum length of a path in graph), thus its complexity

is:

Tstep 2 = O(n× Lmax).

We note that in the general case Lmax is negligible com-

pared with the number of nodes n and Lmax is a con-

stant. Therefore, the time complexity of this phase can

be estimated to be O(n).

In the third step, we apply the influence-BFS tree

algorithm (Algorithm 3, lines 4∼7) on each black (sig-

nificant) node. First, we begin by computing B (line

3), which has been already calculated, in O(n×Lmax).

The complexity of the BFS algorithm is O(n′), where

n′ denotes the number of nodes in the tree. There-

fore, the time complexity of the influence-BFS tree is

O(n×|B|). After, we select the seed nodes (lines 8∼15)

which is O(n). Therefore, the time complexity of this

phase is:

Tstep 3

= O(n× |B|+ n× Lmax) = O(n × (|B|+ Lmax)).

Finally, we note that in the general case p and

|B| + Lmax are constants. Therefore, the time comple-

xity of the entire algorithm can be estimated to be:

Ttemporal(SAIM) = O(p×m) +O(n× (|B|+ Lmax))

= O(p×m+ n× (|B|+ Lmax))

= O(m+ n). �

The following theorem is about the spatial comple-

xity of SAIM.

Theorem 3. The space complexity of SAIM is

O(m) where m is the number of edges in the social net-

work.

Proof. In our approach, we use two vectors: the first

vector stores the influence power of nodes, and the sec-

ond is the queue used for influence-BFS tree, which is

stored at the worst case n nodes (all vertices). We also

build a graph with m edges. Considering the worst case

where the input graph is very dense (w.r.t. the number

of edges), then we have:

Tspatial(SAIM) = O(max{m,n}) = O(m). �

In the next section, we will conduct an extensive ex-

perimental evaluation of our model SAIM on real world

as well as synthetic social networks.

4 Experimentation

The main purpose of this section is to compare

experimentally our proposal SAIM with the state-

of-the-art research in the field of influence maxi-

mization. For this, we considered the following six

well-known proposals: 1) maximum degree[8] which
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is a heuristic based on the degree centrality mea-

sure, 2) CDH (Community and Degree Heuristic)[29]

which is a model based on community detection, 3)

CELF++ (Cost Effective Lazy Forward)[61] which is

a fast and more efficient version of CELF[7], 4) SMG

(State Machine Greedy)[62] which is a fast greedy al-

gorithm, 5) CINEMA (Conformity-Aware Influence-

Maximization)[31] which is a conformity-aware model

based on the sentiment of users computed by the al-

gorithm CASINO (Conformity-Aware Social Influence

Computation)[32], and 6) IMM (Influence Maximiza-

tion via Martingales)[20] which is a model based on

the classic statistical tool martingales. As a testbed,

we considered large-scale real-world and synthetic so-

cial networks. As evaluation criteria, we considered

these standard measures: influence spread, coverage,

and performance. At this stage, we should notice that

CELF++, SMG, CDH, CINEMA and IMM require the

edge propagation probabilities in the social networks.

For this, we adopted exactly the same methods used

in [20, 29, 31, 61-62] for generating edges probabilities.

Hence, they were assigned as bu,v = 1/N in(v) for all

edges (u, v) ∈ E, where N in(v) is the set of nodes that

has an edge to v. In all experiments, we set the parame-

ters of HDM (Heat Diffusion Model)[29] which gives the

best performance in CDH, where the activation thresh-

old θ = 0.1, flow duration t = 0.1, and thermal conduc-

tivity α = 0.1 and we run 10 000 Monte Carlo simula-

tions in CELF++. All experiments were implemented

in the Java language, and were performed on a machine

with Intelr CoreTM I5 CPU at 3.20 GHz and 16 GB

memory running Ubuntu Linux environment.

4.1 Evaluation on Real Datasets

In this first set of runs, we chose two widely used real

datasets embedding the social actions. Both datasets

are described in Table 2. The first public dataset is Ten-

cent Weibo 2○. It is a sampled snapshot numbered in

millions of users provided with rich information includ-

ing demographics, profile keywords, follow history, inte-

raction records, etc. In this dataset, three social actions

are recorded, namely “retweet”, “comment” and “tag”.

We associated, empirically the following social impor-

tance factors to these social actions as αretweet = 0.50,

αcomment = 0.35, and αtag = 0.15. Doubtless, these

factors are ordered by the importance of the social ac-

tions. The second dataset is the Higgs Tweet available

in SNAP 3○. It is extracted from Twitter between the

1st and the 7th of July 2012 on a specific topic. Note

that this dataset has been updated on March 31, 2015.

It includes three diffusion periods (before, during, and

after the announcement) of the event. It includes three

user activities in Twitter presented in the form of four

directional networks. The user activities are “retweet”,

“reply” to existing tweets, and “mention” other users.

We associated, empirically, the following social impor-

tance factors to these social actions as αretweet = 0.50,

αreply = 0.35, and αmention = 0.15.

Table 2. Characteristics of the Real Networks

Dataset Tencent Weibo Higgs Tweet

Number of nodes 2 320 895.0 456 626.0

Number of edges 50 655 143.0 14 855 842.0

Maximum number of followers 456 827.0 67 502.0

Mean followers 55.0 67.0

Maximum number of followees 5 188.0 3 076.0

Mean tweets 113.3 102.4

Mean retweet 47.4 22.8

Mean comments 6.5 2.1

Mean At (mention) 12.3 10.1

Simulation results on these real-world datasets are

reported in Table 3∼Table 8. For a better readability,

in the simulation results outlined in this subsection,

the best value(s) with respect to each criterion is(are)

shown in bold. Table 3 shows the size of the final seeds

set obtained in our model and the influence spread by

each of the considered algorithms for both datasets.

Remind that the influence spread is the number of in-

fluenced nodes with the computed influential set. At

this stage, we should remind that a major advantage

of our model SAIM is that it does not require the

seed size as input. Instead, the latter is computed by

Algorithm 3. On the opposite the rest of the consi-

dered approaches (High, CELF++, CDH, SMG, IMM,

and CINEMA) require the seed size as input. To deal

Table 3. Final Seeds Size (#seeds) and the Influence Spread

(IS) for Real Social Networks

Algorithm Tencent Weibo Higgs Tweet

#seeds IS #seeds IS

High 124 1 859 645 138 408 311

CELF++ 106 1 936 733 126 416 927

CDH 97 1 997 241 103 438 945

SMG 114 2 194 057 86 443 709

CINEMA 359 2 260 955 263 449 718

IMM 148 2 068 514 121 437 503

SAIM 81 2 307 451 63 456 188

2○Kddcup. http://www.kddcup2012.org/c/kddcup2012-track1, Jan. 2018.
3○Snap. https://snap.stanford.edu/data/higgs-twitter.html, Jan. 2018.
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with this issue, for any given seed size s (varying from

5 to 50), we considered only the top-s seeds computed

by SAIM according to their influence power. Table 4

and Table 5 report the influence spread of the com-

puted influential set by varying the number of seeds

from 5 to 50. Naturally, the larger the number, the

better the algorithm. The first column in both tables

reports the number of seed nodes. It is clear that our

algorithm SAIM is able to compute the highest influ-

ence spread for both networks. The closest model to

SAIM is CINEMA (the 6th column in both tables). Un-

doubtedly, the reasons can be attributed to the impor-

tance of social actions between users. We should notice

that CINEMA[31] computes the influence by leveraging

the algorithm CASINO which labels the edges by the

signs (positive or negative) based on 5-level sentiment

(like, somewhat like, neutral, somewhat dislike, dislike).

However, our model SAIM does not treat social actions

equally but rather weights each of them according to

their importance (the level of influence). This explains

somewhat why SAIM outperforms CINEMA. In order

to get further insights on the pruning capabilities of

SAIM, we considered the number of black (or signifi-

cant) nodes, the maximal and the minimal length of

the computed black paths 4○. These measures are re-

ported in Table 6 and Table 7 for both datasets, where

#seeds is the number of seeds, #SN is the number of

significant nodes, MXB is the maximal length of black

paths, and MNB is the minimal length of black paths.

For example, if we consider the Tencent Weibo dataset,

we can see in the first row of Table 6 that our model

SAIM selects an influential set of size 5 out of 7 346

black (significant) nodes, and that it selects a single

black seed node among a black path composed of 1 863

nodes. If we define the pruning rate as the number of

pruned nodes (#SN −#seeds) divided by the number

of significant ones (#SN), then it is easy to see that

this pruning rate is above 99%.

In order to visualize the influence power of the

computed seed nodes, we extracted 115 509 nodes and

164 713 edges from the Tencent Weibo social network,

whereas we extracted 19 548 nodes and 22 977 edges

from Higgs Tweet social network. Plotting the whole

social graphs is inadequate. Thereafter, we visualize

these extracted parts as the “influence propagation

map” (IPM) depicted in Fig.7. In this map, we visua-

lize the influence power and the influence spread of the

nodes. In Fig.7, the node size and the color gradient are

Table 4. Influence Spread on Tencent Weibo Dataset

#seeds High CELF++ CDH SMG CINEMA IMM SAIM

5 518 741 520 773 533 291 542 640 544 211 539 784 544 901

10 734 807 738 921 747 112 750 243 757 152 751 392 758 643

15 890 711 899 674 902 022 902 065 907 614 904 871 907 737

20 989 709 1 001 588 1 005 317 1 018 723 1 034 337 1 027 162 1 036 582

25 1 100 862 1 107 410 1 112 702 1 138 143 1 149 266 1 146 418 1 150 796

30 1 183 544 1 196 157 1 243 339 1 244 020 1 244 483 1 244 211 1 244 605

35 1 254 038 1 272 513 1 299 076 1 313 524 1 317 927 1 319 386 1 324 528

40 1 293 041 1 337 368 1 380 708 1 383 713 1 387 092 1 385 015 1 390 656

45 1 340 218 1 395 455 1 410 129 1 426 770 1 436 851 1 427 939 1 445 623

50 1 382 844 1 452 363 1 468 203 1 471 641 1 482 309 1 473 561 1 487 089

Table 5. Influence Spread on Higgs Tweet Dataset

#seeds High CELF++ CDH SMG CINEMA IMM SAIM

5 63 097 63 814 64 014 64 212 64 311 64 293 64 335

10 101 235 102 781 104 541 105 393 106 601 105 212 106 745

15 138 872 140 002 142 282 145 036 147 932 143 947 148 557

20 174 011 175 048 177 099 181 557 183 627 179 906 187 480

25 205 784 207 833 208 762 213 038 219 378 216 521 221 995

30 233 779 235 325 237 783 242 616 245 063 242 987 249 814

35 258 133 259 887 263 961 268 219 271 938 268 314 275 292

40 280 417 281 232 288 759 292 156 296 344 293 775 298 971

45 298 509 301 451 309 301 312 302 315 079 313 479 317 763

50 315 806 317 009 326 106 329 648 329 966 327 947 330 448

qu 4○We should remind that the length of a black path is its number of edges.
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Table 6. Pruning Capability on Tencent Weibo Dataset

#seeds #SN MXB MNB Pruning Rate (%)

5 7 346 1 863 834 99.93

10 11 412 1 057 569 99.91

15 14 079 609 491 99.89

20 15 931 402 329 99.87

25 17 948 468 318 99.86

30 19 544 373 271 99.84

35 20 938 337 211 99.83

40 22 099 287 189 99.81

45 23 297 307 181 99.80

50 24 042 179 125 99.79

Table 7. Pruning Capability on Higgs Tweet Dataset

#seeds #SN MXB MNB Pruning Rate (%)

5 6 025 2 124 667 99.91

10 11 143 1 231 612 99.91

15 14 250 729 478 99.89

20 16 865 836 363 99.88

25 19 046 592 428 99.86

30 20 756 649 205 99.85

35 22 319 593 351 99.84

40 23 593 706 488 99.83

45 25 299 815 374 99.82

50 26 267 417 283 99.80

(a)

(b)

Fig.7. SAIM influence propagation shown for (a) Higgs Tweet
and (b) Tencent Weibo social networks.

proportional to the influence power value (i.e., per-

sona lized PageRank centrality), and the network

structure 5○ is presented using the algorithm proposed

by Hu[64]. For instance, in Fig.7(a) a focal node is rep-

resented by a dark green color and will be degraded to

light green in its neighbors. Now, we are ready to make

the following main observations on this IPM. First, we

remark that we have few focal nodes (with high influ-

ence power values) whose influence is spread through

the network following friends and “friends-of-friends”

links. For example, let us consider the IPM for the

Higgs Tweet network plotted in Fig.7(a). We can ob-

serve three prominent leaders whose influence spreads

following “friends-of-friends” paths until this influence

is no longer significant. Clearly, the “communities” in-

fluenced by each seed are highlighted in distinct colors

that are gradient to transparency to explain the pro-

portion of direct and indirect influence. In fact, we can

observe in Fig.7(a) that this color decays as we move

from a focal node to its neighbors, i.e., as the distance

from the focal nodes augments. The same remarks ap-

ply to the Tencent Weibo network in Fig.7(b) where in

addition we have observed that 38% of the nodes re-

ceive information from the focal nodes with a distance

less than 10 edges.

As a final criteria, we considered the running time of

all algorithms averaged over 50 trials for each dataset,

i.e., using seed number varying from 1 to 50. CELF++

and SMG as suggested by their authors[61-62] were

simu lated with Monte Carlo simulation using R =

10 000 samples. The running time (in minutes) is re-

ported in Table 8. We should remark that the compu-

tation time for CINEMA is reported for the l-way par-

titioning algorithm because the partition using the BFS

technique takes much longer. We can see Table 8 that

our model SAIM is slower than CELF++, SMG, CDH

and IMM, and is faster than CINEMA. This is mainly

due to the costly computing time of PageRank 6○.

Table 8. Average Running Time (min)

Algorithm Tencent Weibo Higgs Tweet

CELF++ 201.54 193.42

SMG 10.61 7.08

CDH 27.28 25.38

CINEMA 726.43 401.54

IMM 38.91 29.18

SAIM 494.20 241.34

5○This figure is spotted using Gephi[63] and its electronic version can be zoomed in for clarity using any PDF viewer.
6○We refer here to the complexity analysis of the algorithm where it is clear that the PPR step is the most expensive.
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4.2 Evaluation on Artificial Networks

In the second set of runs, we used synthetic datasets

generated by the standard LFR[64] benchmarks. At this

stage, we should remark that LFR generator has several

parameters. Among these parameters, let us mention

the number of nodes (N), the average degree of incom-

ing edges (k), and the maximum degree of the incoming

edges (maxk). For this, we designed two experiments

in order to deal with distinct network complexities. In

both experiments, we generated random social graphs

along with their social actions of 5 000 nodes. Simi-

larly, the random 5-level sentiment was generated to

simulate CINEMA and CASINO algorithms. However,

in the first experiment, we considered nodes with low

degrees (k = 20 and maxk = 50), whereas in the sec-

ond experiment, we considered nodes with high degrees

(k = 50 and maxk = 80). Simulation results regard-

ing the spreading criteria for both experiments are re-

ported in Table 9. It is clear that CDH gives the best

results for low-degree networks and that SAIM is not

so far from it. One can observe that the number of

seeds computed by SAIM is the lowest, but still having

a significant influence spread especially for high degree

networks where SAIM reached the highest spread with

the lowest number of seeds. Naturally, this can be seen

as a good indicator for performance. We can also notice

in Table 9 that SMG, CDH and our model SAIM tend

to give better results for high-degree networks. This

seems to be “natural” since in high degree networks,

influential nodes tend to have high connectivity and

thereby are able to spread information much faster.

Table 9. Final Seeds (#seeds) Set and Influence Spread (IS)

for Synthetic Datasets with Low and High Degrees

Algorithm Low Degree Network High Degree Network

#seeds IS #seeds IS

High 113 3 477 137 3 592

CELF++ 102 3 705 128 3 873

CDH 74 4 841 89 4 021

SMG 87 4 328 68 4 366

IMM 112 4 577 139 4 537

CINEMA 157 4 801 124 4 783

SAIM 63 4 673 56 4 815

As a conclusion according to these extensive ex-

perimental results on both synthetic and real-world so-

cial networks, we can say that our proposal SAIM gives

good performance compared with the state-of-the-art

models. Indeed, SAIM ensures a large spread using the

minimal number of seeds. This clearly shows the effec-

tiveness of “social action” based models for influence

maximization.

5 Conclusions

In this paper, we presented a new model called

SAIM for the influence maximization (IM) problem in

social networks. In SAIM, the IM problem is perceived

as a social-actions influence maximization problem and

focuses on the introduction of the activities of members

to identify the most active users in the network. More-

over, SAIM assigns weights to social actions reflecting

their levels of influence. SAIM is mainly composed of

two major steps: 1) computation of influence power,

and 2) selection of influential users. The main goal of

the first phase is to define a new measure based on the

social action that aims at computing the influence score

for each user. A key feature of our model is the dis-

tinction between social actions that an individual can

receive. In the second phase, we compute the set of

influential nodes using a new concept called “influence-

BFS tree”. Hence, the most influential nodes are those

having the influence-BFS trees that ensure the fastest

spread of information. An experimental comparison

of our model with the recent models reveals its good

performance in computing optimal influential seeds on

both real and synthetic social networks. As any re-

search, the current work could be enhanced in several

ways. Our immediate concern is to cast SAIM within

a Hadoop/MapReduce framework in order to deal with

social networks composed of billions of nodes.
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