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Abstract In this paper, we propose a locally enhanced PCANet neural network for fine-grained classification of vehicles.

The proposed method adopts the PCANet unsupervised network with a smaller number of layers and simple parameters

compared with the majority of state-of-the-art machine learning methods. It simplifies calculation steps and manual labeling,

and enables vehicle types to be recognized without time-consuming training. Experimental results show that compared with

the traditional pattern recognition methods and the multi-layer CNN methods, the proposed method achieves optimal

balance in terms of varying scales of sample libraries, angle deviations, and training speed. It also indicates that introducing

appropriate local features that have different scales from the general feature is very instrumental in improving recognition

rate. The 7-angle in 180◦ (12-angle in 360◦) classification modeling scheme is proven to be an effective approach, which

can solve the problem of suffering decrease in recognition rate due to angle deviations, and add the recognition accuracy in

practice.

Keywords fine-grained classification, PCANet, local enhancement, vehicle type recognition

1 Introduction

In recent years, many human and vehicle-based

image recognition techniques have been used in

the video investigation applications in terms of

face recognition[1-5], human and vehicle highlight

detection[6], license recognition, detection of individual

or crowd behaviors, calculation of crowd density and

vehicle flows, and the recognition of traffic violations.

Benefiting from these techniques, the researchers began

to perform in-depth studies on a lot of applications in

order to further distinguish genders, ages, and beha-

viors of passengers, determine whether the vehicles are

large-, medium- or small-sized, and check whether the

vehicles are motorcycles, electric assisted bicycles, tra-

ditional bicycles, or disabled cars. Even the brand[7]

or color of the vehicles is expected to be recognized for

subsequent fine-grained classification. The purpose of

vehicle type recognition in this paper is to identify a

vehicle’s model, not just its brand (manufacturer). For

example, given a vehicle, we attempt to not only tell

you that it is an Audi car, but also check whether it is

A6 or A8.

Due to the technical requirements on the attitude

angle of the target for face, body and vehicle recogni-

tion, many monitoring resources are abandoned, under-

scoring the need for full-angle and multi-attitude vehi-

cle recognition. Compared with the needs from general

car manufactures and consumers, those from public se-

curity management in evidence determination hope to

achieve a higher recognition accuracy. Considering the

timeliness of investigation, case analysis is usually ex-

pected to be performed as soon as possible. In extreme

cases like temporary monitoring in the wild, the scheme

that can operate in real time without high-performance

hardware is also required. To sum up, we need a full-

angle vehicle recognition technique that can operate
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accurately and efficiently without heavy resource con-

sumption.

In the past three to four years, a broad variety of

methods were proposed to classify objects that have a

high similarity to one another, such as cats, dogs, birds,

flowers, and trees. This kind of problems is called the

fine-grained categorization[2-3,8-10] problems. The vehi-

cle type recognition, as one of the most prominent fea-

tures of vehicles which could be identified by computer

vision, is also included in this categorization, but little

attention is paid to it. Since 2013, the research team

led by Li at Stanford University 1○ and the research

team led by Tang at the Chinese University of Hong

Kong 2○ have been engaged in vehicle type recognition.

The two teams constructed the Stanford Cars[11] and

the Compcar[12] datasets, respectively, offering bene-

fits to subsequent researches. But there is little in-

depth study on this issue. The fine-grained recogni-

tion algorithm represents the state-of-the-art one[12-15],

to the best of our knowledge. Existing methods have

the following limitations. 1) Pre-processing of images

like normalization and labeling involves heavy work-

loads and makes these methods infeasible for the case

with a large number of samples[1-2,13]. 2) The use of

too many interactive schemes[3,9] makes it impossible

to perform autonomous recognition quickly, easily with

little intervention. And some tasks like the work in [13-

14, 16] cannot be fulfilled by ordinary personnel with-

out relevant expertise. 3) They are mostly effective

for a particular scenario but not robust to other vari-

ous environments[7,17]. 4) Moreover, due to their ineffi-

ciency and high-level computational complexity, these

methods are unsuitable for subsequent applications and

cannot be implanted into real-time systems[3-5,18-19].

The paper focuses on the fine-grained recognition

of different vehicle types, and proposes a novel fine-

grained recognition algorithm based on the locally en-

hanced PCANet neural network[20]. The contribution

of this paper is as follows.

1) We construct a professional dataset with 1 797

vehicle types (90% vehicle types registered in Shang-

hai) and over 2.5 million vehicle images in total. These

images are carefully and standardly classified in a multi-

angle and multi-property manner. It surpasses the ex-

isting databases in terms of the number, type, stan-

dardization and classification grained.

2) We pioneer the use of PCANet for vehicle type

recognition and propose a 7-angle classification model-

ing scheme by sampling data at every 30◦ angle which is

the minimum interval in industry applications. Mean-

while, we implement a local feature selection scheme

based on simple labeling, and a fine-grained vehicle type

recognition algorithm that combines the weighted local

features with the general feature.

3) We propose an unsupervised network learning

algorithm, resulting in greatly reduced pre-processing

workloads at the early stage. Compared with other neu-

ral network algorithms, the proposed method adopts

fewer network layers and substantially reduces the num-

ber of training samples needed for network conver-

gence; optimal trade-off has been achieved for fewer

computational loads, greater calculating efficiency, and

higher recognition rate compared with popular convo-

lutional neural networks (CNNs). Results based on the

new dataset constructed in this paper and other open

datasets demonstrate the superiority of the proposed

algorithm, and also indicate that the proposed algo-

rithm is particularly effective for the medium and large

datasets and the dataset of extremely similar vehicle

types. Hence, the proposed algorithm is well suited for

practical applications.

2 Related Work

The vehicles originated from the period 1970∼1980.

Vehicle types represent different products among the

car manufacturers at different time. The vehicles are

unique in terms of production technology, quality, ap-

pearance and assembly. In this context, the vehicle

type is an important aspect of vehicle classification.

Due to the rapid advance of the modern manufacturing

industry and the heightened awareness of customiza-

tion, the types of private cars have exploded in re-

cent 10 years. In the past, there is no special dataset

that focuses on vehicles only, because the vehicle was

only collected as an ordinary sort of objects in some

datasets, such as the ImageNet 3○ which includes the

“car&elevator car” category as well as the category “au-

tomobile” in CIFAR-10 and CIFAR-100 dataset 4○. In

2013, Stanford Cars[11] (Scar, for short) collected 16 697

images about 197 mainstream vehicle types made since

1990. In 2015, Compcar[12] (Comp, for short) collected

1○http://vision.stanford.edu/index.html, Nov. 2017.
2○http://mmlab.ie.cuhk.edu.hk/, Nov. 2017.
3○http://image-net.org/synset?wnid=n02960352, Nov. 2017.
4○http://www.cs.toronto.edu/˜kriz/cifar.html, Nov. 2017.



Qian Wang et al.: A Novel Fine-Grained Method for Vehicle Type Recognition 337

141 727 images about 1 687 local vehicle types made in

the past 10 years. Regarding the source of data, most

images of Scar and Comp are derived from the Internet.

Comp has additional 5 000 images obtained through

video surveillance. Regarding the high-similarity types

and the variants of the same type (the same types made

in different years), Scar only includes 512 small-scale

images of 10 high-similarity sorts (BMW-10), and most

of the remaining images are large-scale distinguishable

ones (Car-197). Comp incorporates many variants of

the same vehicle types and regards them as different

sorts. Obviously, it adds difficulty to image recog-

nition. Note that both datasets attach great impor-

tance to the viewpoint of vehicles in the belief that

the viewpoint has a large influence on vehicle recog-

nition. Comp classifies the images at each angle and

computes the number of images accordingly. In addi-

tion to the two famous open datasets described above,

researchers built datasets according to their own needs.

But most of these datasets only contain a small number

of samples[14-16,19] of few categories[14-16,21] and some

of them are too special[14,16]. Note that the Car-333

dataset in [22] contains 157 023 non-labeled training im-

ages and 7 840 test images of 333 vehicle types. It is the

largest one of existing medium-sized datasets. But the

dataset that we construct using the monitoring images

contains 2.5 million labeled images in 1 797 types. Our

dataset is superior to Car-333 in terms of the number

of images and data standardization.

The increase of the number of vehicle types and

the development of open databases facilitate the stu-

dies on vehicle type recognition and some studies have

already been done to solve this problem. The au-

thors in [13] adopted the state-of-the-art SPM (Spa-

tial Pyramid Matching) and BB (BubbleBank) mod-

els. They concluded that extracting local features from

the small-scale datasets is more effective than extract-

ing general feature and local features, and the reverse

is true for large-scale datasets. The part-based DPM

(Deformable Parts Model) is adopted in [14-15]. Deep

learning theories, especially the currently popular CNN

algorithms, are used in [12, 16-17, 21-23] to classify

vehicle types. For example, a semi-supervised CNN

method is used in [21] to classify six types of vehi-

cles. The authors of [22] formulated the fine-grained

model and the hyper-class recognition model, and then

improved the recognition accuracy by mining the rela-

tionship between the two models. In [17], different lev-

els of relevance between images are studied to propose

a multi-task learning framework. In order to address

the problem of recognizing vehicle types under diffe-

rent viewpoints, the authors in [13-16, 24] proposed to

construct 3D features by applying the 2D features to

the 3D geometric model. The developers of Comp[12]

divided all images into five viewpoints using the an-

notator and then improved the recognition accuracy by

establishing viewpoint-wise models, and they concluded

that the CNN-based full-angle model is more accurate

than the angle-wise models. The authors of [16] pro-

posed to extract the unpacked version of the vehicles,

vehicle front, side and roof to constitute the rasterized

bounding boxes, which are then combined with the en-

coded viewpoints before being input to CNN. In [15],

the vehicle images are divided into eight angles, with 45

degrees as a sector to improve the recognition accuracy

by classifying the non-labeled images according to the

viewpoint. But over 12% vehicle images are misrecog-

nized to wrong angle divisions, resulting in a reduction

in recognition accuracy in some cases. A hyper class la-

bel is used in [22], which provides fresh insights into im-

age labeling. The authors of [13] and the authors of [12,

14] spent a lot of energy on manual landmarks based

on Scar and self-developed dataset respectively. It is re-

ported in [15] that non-labeled images cause considera-

ble reduction in recognition accuracy.

To sum up, the vehicle type recognition dataset was

developed very lately, only a small number of vehicle

types are included, the viewpoints (or angles) differ

greatly, and it is difficult to label the images. In addi-

tion, the vehicle type recognition methods mostly rely

on the fine-grained recognition theory. Due to what

mentioned above, the literature on vehicle type recog-

nition is much less than that on the recognition of other

objects. Hence, review of research on this issue is in-

corporated into the review of research on fine-grained

recognition methods and frameworks. Existing solu-

tions to the fine-grained classification problem can be

categorized into three types.

1) Classification Based on the Construction of

Middle-Level Local Features. SIFT (scale invariant fea-

ture transform)[25], SURF (speedup robust features)

and HOG (histogram of oriented gradient)[26] are typi-

cal examples of local features. Specifically, HOG is

robust, computationally efficient and invariant to illu-

mination variation and slight deviation. Currently, it

is still used to detect pedestrians and construct low-

level features. The work in [8] focuses on the search for

semantically meaningful features. The method in [9]

cannot be implemented without user interaction. The

authors of [10] proposed a non-parametric component
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transferring method and reduced the labeling time by

simply labeling the components in the datasets. The

method proposed in [1] is very effective in image classi-

fication and retrieval, as it uses the Fisher vector (FV)

as the low-level features to generate the middle-level

features through BoW (bag of words). This method

yields insights into structuring of video images. The

authors in [2] proposed the local POOF features, which

provide an effective approach to distinguish the location

and size of the same features between different classes.

This proposal is very inspirational but it needs sufficient

local features to represent the whole object, resulting

in increased labeling workload.

2) General Classification Based on Deep Learning.

In [3], an algorithm is proposed, which uses the learn-

ing similarity metrics to combine perceptual and visual

information for categorization in an integrated manner.

But the choice of features in this method mostly relies

on the color of the same type of animal hair. Convo-

lution neural network and recursive convolution neural

network are used very successfully in [18] to recognize

faces. Results indicate that by adjusting a large num-

ber of parameters, the method can recognize faces more

accurately than the traditional methods. DeepID[4] and

DeepID2
[5] perform face recognition using the convolu-

tion neural network. Specifically, DeepID2 introduces

the ideas of metrics learning and the fully connected

layer of the network incorporates features on different

scales which are important to final results. All of the

similar deep learning networks[4-5,18], however, require

hours or even days of training as well as a large sam-

ple library, in addition to the complicated process of

parameter tuning.

3) Construction of Features by Combining Locality

with Generality. This type of algorithms is mostly

seen in real-world applications. While flexibly adopt-

ing various classic and popular methods, this type of

algorithms adapt the advantages and disadvantages of

various methods according to application requirements.

PCANet[20] is a novel deep learning framework pro-

posed by Chan et al. in 2015. It is very simple in

structure (only two layers in current applications) and

highly extendable, needs few parameters, and allows

the parameters to be tuned without much expertise.

Moreover, it is rotation-invariant during feature extrac-

tion and very robust against the noise. Combining the

advantages of traditional pattern recognition and neu-

ral network methods, results on many databases indi-

cate that its recognition performance is comparable to

that of CNN with 10-plus or tens of layers, without

the use of a library of millions of samples as in the

deep neural network. Since the PCANet was proposed,

it has been used in fine-grained recognition field by

several researchers, such as road sign recognition[27],

grass seed classification[28], histopathological image

classification[29], loop closure detection[30], and even

image quality evaluation[31]. This algorithm is compa-

rable to CNN in terms of complexity, resource consump-

tion and recognition accuracy. The number of samples

and labels this algorithm requires is affordable in the

vehicle type recognition applications. Therefore, it is

our chief choice in this paper and its advantages will be

expounded in Section 3.

3 Proposed Vehicle Type Recognition

3.1 General Framework

Our proposed method for fine-grained classification

of vehicle types ensures recognition rate without the

compromise of efficiency and simplicity. The main idea

of the proposed method is to achieve fine-grained classi-

fication of vehicle types by using PCANet, which com-

bines the weighted small-scale local features and the

large-scale general feature. Finally, the vehicle types

are classified through the Softmax regression function

classifier.

3.2 Feature Extraction

In this paper, we will take the 0◦ modeling as an

example to illustrate the entire process of feature ex-

traction. But when we establish the model for each

angle, we will choose different parts of the vehicle for

local feature extraction and then fuse the extracted fea-

tures into the final feature vector. Details of the scheme

will be described below.

3.2.1 Choice and Extraction of General Feature

Extraction of general feature of vehicle types is il-

lustrated in Fig.1. The entire PCANet network can be

classified into five steps described as follows.

1) Input. Let I denote the set of front vehicle im-

ages with a size of 600 480 after being normalized. Also

let Itrain denote 80% of the images and Itest denote the

remaining 20%. We firstly define Itrain as the training

dataset and then convert it into matrices {Ii}N1 .

2) PCA Filter 1. We partition the images into

blocks according to the pixel with a size of k1 × k2.

After block sampling, all sampled blocks are cascaded
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Input PCA Filter 1 PCA Filter 2 Hash & Bhist Output

Fig.1. Extraction of general feature of vehicle types.

to represent each image xi,j as:

xi,j = xi,1xi,2xi,3 · · ·xi,m̃ñ ∈ R
k1k2 , (1)

where xi,j in (1) denotes the j-th block in the Ii image,

R
k1k2 represents the set of all blocks, and m̃ñ denotes

the number of blocks after the image is partitioned into

m̃×ñ blocks. Subtracting the average x̄i from each col-

umn to get N after-block-treated matrices to generate

X:

X = (x̄i,1, x̄i,2, x̄i,3, · · · , x̄i,N ) ∈ R
k1k2×Nm̃ñ. (2)

Let Ls denote the s-th filter. In order to minimize

the reconstruction error by searching for multiple or-

thonormal matrices, we acquire:

min
V ∈Rk1k2×L1

‖X − V V TX‖2F

s.t. V TV = IL1
. (3)

In (3), we determine Ls by converting it to the

simple PCA, where IL1
is the identity matrix of size

L1 × L1. That is, the sample image is reconstructed

by extracting the feature vectors of the first L1 feature

values of X calculated in (2). In this way, the output

of PCA filter 1 {W 1
l } is obtained as:

W 1
l = matk1,k2

(ql
(

XXT
)

) ∈ R
k1k2 ,

l = 1, 2, · · ·L1, (4)

where matk1,k2
(ql

(

XXT
)

) is a function that maps

R
k1k2 to W 1

l , and ql(XXT) in (4) is the s-th prin-

cipal eigenvectors feature vector of XXT. Then, by

computing the convolution of each image Ii with W 1
l ,

we can obtain L1 which denotes the number of Il
i , and

then make this set of images to be used as the input to

PCA filter 2.

3) PCA Filter 2. The algorithm for this layer is

almost the same as PCA filter1. The only difference

is that the input is changed to {Il
i}, inputting L1 ×N

image matrices. The feature vectors corresponding to

the first L2 feature values of Y are extracted to recon-

struct the sample images, yielding {W 2
l } as the output

of PCA filter 2:

W 2
l = matk1,k2

(

ql
(

Y Y T
))

∈ R
k1k2 , l = 1, 2, · · · , L2,

(5)

where Y in (5) denotes the NL1 training sample matri-

ces obtained after modularization, cascading and mean

subtraction of {Il
i}.

Y l
i = (ȳi,l,1, ȳi,l,2, · · · , ȳi,l,N ) ∈ R

k1k2×Nm̃ñ,

which can also be expressed as:

Y =
(

Y 1,Y 2, · · · ,Y L1

)

∈ R
k1k2×L1Nm̃ñ. (6)

According to the expressing of Y in (6), the corre-

sponding output is changed into L1 × L2 × N feature

graphs as the input for the next time:

Ol
i =

{

Il
i ·W 2

l

}L2

l=1
. (7)

4) Hash & Bhist.
{

Ol
i

}

acquired in (7) can be

treated as the L2 outputs of PCA filter 1. Performing

Hash encoding on these L2 outputs, we obtain
{

T l
i

}

as:

T l
i =

L2
∑

l=1

2l−1H
(

Il
i ·W 2

l

)

, (8)
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where

H(σ) =

{

0, if σ 6 0,
1, otherwise,

in (8) denotes the Heaviside step function. The coding

length is 2L2, yielding a total of L1 coding graphs T l
i .

Partitioning it into B blocks, we can determine B his-

tograms defined as Bhist
(

T b
i

)

(b ∈ [1, L1]) to describe

the frequency of each block at a decimal scale.

5) Output of the Cascaded Features. All of the B

histograms are cascaded to provide the final general

feature Fi as:

Fi = ((Bhist(T 1
i ), Bhist(T 2

i ), · · · , Bhist(TL1

i ))T

∈ R
(2L2)L1B. (9)

3.2.2 Extraction of Locally Enhanced Features

The extraction of local features is illustrated in

Fig.2. We empirically define points Pa, Pb (or symmet-

rical Pa′a′Pb′) corresponding to labeled points 1 ∼ 4 in

red as well as their symmetrical points 1 ∼ 4 in green

in Fig.2(a) due to two different area chosen strategies.

One area chosen strategy is to choose the center region

according to the situation of points Pa and Pb; another

is to choose the rectangle area according to Pa, Pb, and

symmetrical Pa′Pb′. The regions are allocated to the

chosen area and then normalized.

(a)

Labeled Points (1, 2, 3, 4)
Symmetrical Points (1', 2', 3', 4')

(b)

(c)

(d)

Fig.2. Extraction of local features in 0◦. (a) Important features
chosen area in 0◦. (b) Local 1: points 1 and 2 are defined as
Pa, Pb respectively according to strategy 1. (c) Local 2: points
3 and 4 are defined as Pa, Pb respectively according to strategy
1. (d) Local 3: points 1 and 2 are defined as Pa and Pb respec-
tively, and symmetrical points 2′ and 4′ are defined as Pa′Pb′

respectively, according to strategy 2.

PCANet-based feature extraction is performed on

these regions in the same way at possibly different

scales, and the extracted features are denoted with

{fk,i}. We define k as the number of regions that are

extracted, and K as the total number of local regions

that need to be extracted, and then it is clear that

1 6 k 6 K. Fig.2 shows the features that are the most

representative properties of the regions.

3.3 Feature Fusion and Classification

General feature in (9) and local features are fused

in a weighted manner. And the weight is for the gene-

ral feature and β for the local features. Alternatively,

the weight for each part can be set to βk (1 6 k 6 K)

for the purpose of adapting the weight to the choice of

components during the training of models with different

angles. Thus, we obtain Ffull as:







Ffull = αFi + βkfk,i,

α+
K
∑

k=1

βk = 1.
(10)

In real-world applications, in order to facilitate the

choice of labeling points for the annotator and reduce

the amount of labeling work while taking practical fac-

tors into account, we abandon some outlying feature

points and noise points. Repeated choices may be made

for some regions. Details are available in Section 4.

Hence, (10) is rewritten into:







Ffull = αFi + βkfk,i,

α+
K
∑

k=1

βk ≈ 1.
(11)

Through (11) we can obtain the weighted local features.

Finally, after being cascaded completely, Ffull is

used as the final feature for classification and input to

the softmax classifier.

4 Vehicle Type Recognition Algorithm Based

on Locally Enhanced PCANet

Honda ASX and Chevrolet EPICA are chosen here

and are denoted with “M” and “S” vehicle types, re-

spectively. Procedures of the proposed algorithm are

shown in Fig.3. The steps for feature extraction are

elaborated below.

4.1 General Feature Extraction

The image is resized to 200 × 160 (i.e., m = 200,

n = 160) and partitioned into k1 × k2 blocks, and the

vertical step and the horizontal step are both set to 10.

The block matrix has (19 × 19) × (19 × 15) = 102 885

dimensions. We cut out large blocks to make the gene-

ral feature more rotation-invariant. The fine-grained
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2D-PCA Hash &Bhist Output

FM

FS

Fig.3. PCANet-based vehicle type recognition. FM : general feature; FS : local feature.

features can be effectively complemented through sub-

sequent local features. Note that in the practical ope-

rations, in order to restore the image to the original size

after it passes through a filter, we need to add zero ope-

ration based on the image edge processing and change

the image into 210 160 blocks. The block matrix X

thus gains (19× 19)× (20× 16) = 115 520 dimensions.

We can obtain the first L1 feature values λl (l = 1,

2, . . . , L1) of XXT’s orthonormal feature vectors, λn

as well as their corresponding feature µl, based on (3)

as the classic method for solving PCA. The covariance

matrix ST is computed as:

ST =

N
∑

i=1

XXT. (12)

ST can be subjected to feature value decomposition

based on the principles of SVD[15]. That is, the l-th or-

thonormal feature λn of XXT in (12) can be obtained

using the feature value µn and the feature vector vn of

XXT.

λi =
1√
µi

Xvi.

The first eight features of λl are denoted as

ql(XXT). According to the following formula:

Wpca = argmax |WTSTW |, (13)

we can obtain the feature space matrix Wpca in (13)

from Ii to Il
i , i.e., W

1
l . Taking (5) into account, we

can compute the result of PCA filter 1 as {Il
i} = Y ,

where Y denotes the 8 200 160 features, which are in-

putted to the PCA filter 2 network.

The method for the second layer of PCA is the same

with that for the first layer. To facilitate subsequent

binary Hash coding, L2 is still set to 8, with the other

settings remaining unchanged. We extend the 8 200 160

matrices {Il
i} obtained at the first layer into 88 200 160

features matrices {Ol
i}.

Based on (7), we perform Hash coding on {Ol
i}, en-

coding the binary system into a decimal graph. Each

decimal encoding graph is converted into 40 × 40 hist

blocks. The repetitious coverage of each block is 50%

(overlap = 0.5). The coding graph can be partitioned

into 15 hist blocks (B = 15), yielding 1 600×15matrices

at last. The histogram statistical method is performed

on the obtained matrices. In this way, we can obtain B

block histograms from 256× 15 cascaded blocks.

Finally, all L1 histograms are cascaded to constitute

256× 15×L1 = 30 720 dimensional cascading features,

yielding the final general feature Fi in (9).

4.2 Local Features Extraction

Reasons for the choice of local features are as fol-

lows. First, we expect to improve recognition accuracy

by choosing the right local features modeling in diffe-

rent angles. Second, we help to facilitate the user’s

switch between angle-wise modeling and multi-angle

modeling for the purpose of obtaining a list of most
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probable vehicle types in the applications that enlarge

the search scope to reduce misdetection and omission.

We will use the classic FV algorithm[32] to obtain

the top 50 most representative feature points. The

manually labeled points are displayed with solid red

dots, and the automatically symmetrical points are dis-

played with solid green dots in Fig.4(a) and Fig.4(b),

The feature points of the vehicle front images are dis-

played with hollow red circles in Fig.4(c). The effective

regions are chosen under the rule of planning regions

that contain more feature points with manually labeled

points as few as possible. Few outlying feature points

and noise points that are not included will be aban-

doned. For example, the i the vehicle front window

shown as region “RB” in Fig.4(c) has a lot of interfe-

rences due to illumination, sticker locations and driver

features. Note that the choice of the labeled points

and regions differs with the angle during the modeling

process, as shown in Fig.4(a).

Choice of the region is illustrated in Fig.2, where

the red reference points are labeled in the 600 × 480

0◦ image and the green labeling points are obtained by

mapping along the symmetry axis. Because the feature

points of the vehicle’s front side are concentrated in the

front face around the headlight, we extract four feature

points from the left part of this region in Fig.2(a): 1)

point 1: left-top-point of the head lamp; 2) point 2:

left-top-point of the radiator grille; 3) point 3: left-

top-point of the bumper in the middle of the radiator

grille; 4) point 4: left-bottom-point of the bottom grille.

The labeling points at the right part can be determined

symmetrically. To guarantee that the middle region

of different vehicle types can be acquired completely,

we extract the image of this region using the following

method: let Pa and Pb denote the labeling points 1 and

2, respectively; firstly, we choose the middle region and

rotate the regional image to the horizontal line at the

middle of the two labeling points 1 and 2, and the pixel

value between the two points is equal to 20. We leave 5

pixels at the top and bottom sides, and leave 10 pixels

at the left and right sides in order to ensure the large-

light block is 3 020 in size (i.e., Fig.2(b)). Similarly, we

handle the labeling points 3 and 4 in the same way as

the labeling points 1 and 2 (i.e., Fig.2(c)), and set the

distance between them to 30 pixels. Secondly, we keep

15 pixels at the top and also the bottom, and leave 0

pixel at the left and right to obtain a 3 015 fog-lamp

block. Lastly, we focus on points 2 and 4, and sym-

metrically choose the right part of points 2′ and 4′ in

the image as the radiator region of the vehicle, which

is then resized to a 6 040 block (i.e., Fig.2(d)).

PCANet-based feature extraction is done on the

three regions shown in Fig.2(b), Fig.2(c) and Fig.2(d)

respectively. At this time, the region is no longer se-

Manually Labeled Point

Automatically Symmetrical Point

Top 50 Using FV

Little Bonus R
A
 (Being Ignored)

Noise R
B
 (Being Ignored)

Regions Being Chosen

180Ο

150Ο

120Ο

90Ο

60Ο

30Ο

0Ο

RB

RA

(a) (b) (c)

Fig.4. Example of BMW 5 in dataset Sh-vehicles (ShV). (a) Seven angles used to collect the vehicle image and the choice of locally
enhanced region at each angle (except 0◦). (b) Image of vehicle and the choice of locally enhanced region at 0◦. (c) Choices of local
features for the 0◦ image based on the top 50 feature points and the abandonment of related feature points.
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lected repetitiously for the last B block, i.e., overlap =

0. The steps for obtaining the 6×256×8+3×256×8+

6× 256× 8 = 30 720 local features fi are skipped here.

The local feature values are finally determined and the

extracted main features of the local blocks are shown

in Fig.2.

4.3 Features Fusion

Based on (11), the ratio of general feature to local

features is set to 1:1 by default, i.e., α = 0.5. Next,

we compute the proportion of the top 50 feature points

of each region as the weight of this region to represent

the general feature. The proportion of the abandoned

top 50 feature points is incorporated into the general

weight α again. In the example of vehicle front, we set

α = 0.6, β1 = 0.14, β2 = 0.06, β3 = 0.21 and then

gain weighted Ffull. Note that these local features rely

on different scales and parameters. The combination of

the existing general feature and the local features makes

the feature values more representative to the scale and

dimension of vehicular components. The dimensiona-

lity of the local features is almost the same with that

of the general feature. Hence, our proposed method is

very robust to angles, image qualities and the number

of samples. This property will be further discussed in

Section 5.

5 Experimental Results and Analysis

5.1 Datasets

In this paper, we choose open datasets Comp[12] and

Scar[11], and a large-scale self-built dataset called Sh-

vehicles (ShV) to implement relevant experiments and

comparisons. The property differences among the three

datasets are shown in Table 1, including published year

of the dataset (PYear, for short), the time of vehicles

made in factory or collected on roads (time, for short),

the source of data (source, for short), the scales of the

dataset (scale, for short) containing main and minor

data compositions (Main-C and Min-C respectively, for

short), the number of vehicles types according to the

model (MNum), the number of vehicles types accord-

ing to the year of manufacture (YNum, for short), view-

points (or angle) division model (angle, for short), and

the imbalance problem of samples (imbal, for short).

We firstly evaluate the performance of the proposed

algorithm on Comp and Scar in Subsection 5.2 and

Subsection 5.3 respectively before we present the ex-

perimental results on our own dataset. But because

of several differences among Scar, Comp and ShV, the

recognition accuracy of the proposed algorithm might

be reduced compared with that on ShV. The reason

why we design ShV rather than use the existing open

datasets is that our project has stricter requirements on

vehicle type collection rate and recognition accuracy.

Existing datasets based on the Internet are unable to

meet these requirements for their small scales, imba-

lanced samples, too-wide angle divisions, and the lack

of standardization of collected data.

ShV consists of images of 1 797 vehicle types ac-

cording to year of manufacture or 950 vehicle types ac-

cording to model. Ignoring the variants of the same

types designed in different years, the range properties

include 0◦, 30◦, 60◦, 90◦, 120◦, 150◦ and 180◦ shown in

Figs.4(a) and 4(b). That is, we capture images every

30◦ as a range from the left 0◦ to 180◦ of a slowly driv-

ing vehicle, gain 7 images from the vehicle from front,

and add the images into the dataset. In our opinion, the

180◦∼360◦ images can be obtained by mapping along

the vertical axis. Hence, full-angle vehicle type recog-

nition can be achieved without the need of repeated

collection from the right side. We collect 2.5 million

images for each vehicle which really ran on roads from

2014 to 2017. Among them, the 200 000× 7 (1.4 mil-

lion) full-angle complete images are strictly chosen and

Table 1. Comparison Among Comp[12], Scar[11] and ShV

Dataset PYear Time Source Scale YNum MNum Angle Imbal

Main-C Min-C

Comp[12] 2015 Made in
2006∼2014

Web-nature,
surveillance-
nature

136 727 5 000
(front view)

1 687 431 5 viewpoints
for 360◦

In viewpoint
& types

Scar[11] 2013 Made in
1990∼2000

Internet 16 185
(Car-197)

512
(BMW-10)

None 197+10 5 viewpoints
for 360◦

In viewpoint
& types

ShV 2017 Collected
during
2014∼2017
on roads in
Shanghai

Surveillances
on road

250 × 104 10 × 104 1 797 950 7 angles for 180◦

or 12 angles
for 360◦

Only in types
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labeled as the training dataset Ytrain, and the angle off-

set in a same angle range is less than 5◦. Let Ytest1 de-

note the remaining one million images with the limita-

tion of incomplete capturing angles and large deviations

or partial occlusions. Let Ytest2 denote the 100 000-

plus images that consist of different vehicle sample sizes

and noise background extracted from video monitoring

images. Ytest1 and Ytest2 constitute Ytest as the test

dataset of our new dataset.

Because we adopt the real-world data, the top 30

most popular vehicle types (occupying 1.7% of all ve-

hicle types, e.g., Volkswagen Santana, Buick Lacrosse)

account for 11.7% of all images. As for some large ve-

hicle types that occupy 16% of all vehicle types, their

images account for 45.1%. And the images of the first

33% vehicle types account for 73.6%. The changing

of partition of samples of more popular types driving

on roads (figured as Y axis) with the partition of more

popular types (figured as X-axis) is shown in Fig.5. Al-

though the images in ShV are not uniformly classified

in types, the samples are perfectly balanced in angles

in Ytrain, which will largely reduce the possibility of the

lack of samples in some angles in open datasets, espe-

cially Scar.
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Fig.5. Non-uniform distribution of samples in our database of
vehicle types.

5.2 Experiment on Comp[12]

To compare the performances among the overfeat

method which is proposed in [12] (overfeat, for short),

the PCANet algorithm[20] only using general feature Fi

(general PCANet, for short) and our proposed method,

we firstly test them on Comp, for Comp has a larger

scale and its vehicle models are more similar to vehicles

in domestic cities of China. The recognition accuracy

comparison among the three methods is shown in Ta-

ble 2. Due to that the proposed method is separately

modeling in different angles, the “angle-wise” value in

Table 2 of the proposed method cannot be calculated

and thus the average recognition accuracy of angle-wise

value is used as a substitute. Numerical results of the

experiment denoted with “>(avg)” in figures and tables

in this paper are all due to this reason. And they will

not be explained separately below.

The results show that the proposed algorithm is

slightly inferior to the overfeat method in [12] in terms

of the average recognition accuracy, but its recognition

accuracy for each angle is much higher than that of

general PCANet as shown in Table 2. Table 2 shows

that the proposed algorithm achieves the most perfor-

mance gains at viewpoints F (front), FS (front-side) and

R (rear), and its recognition accuracy for F and FS sur-

passes the angle-wise result of overfeat. The proposed

algorithm has greater advantages over the overfeat on

the test dataset of distinguishable viewpoints. This fur-

ther demonstrates the correctness of locally enhanced

modeling and also proves the effective label plays an

important role in fixing location on vehicles.

In addition, we use the proposed method on

Comp to do the misclassification analysis, and then

we find an interesting phenomenon that a vehicle

make[11-12](“make”, means manufacturer) always uses

a similar face or body (especially face) it likes to al-

most every product the vehicle make made. The pro-

portion of errors caused due to the use of same makes to

the total number of errors under different viewpoints is

Table 2. Accuracy Result Using Overfeat[12], General PCANet and Our Proposed Method on Comp Database

Method Rank F R S FS RS Angle-Wise

Overfeat[12] Top-1 0.524 0.432 0.428 0.563 0.598 0.767

Top-5 0.748 0.647 0.602 0.769 0.777 0.917

General PCANet Top-1 0.530 0.425 0.404 0.523 0.568 0.714

Top-5 0.731 0.640 0.593 0.734 0.752 0.847

Proposed Top-1 0.803 0.709 0.636 0.792 0.757 0.739>(avg)

Top-5 0.901 0.815 0.761 0.898 0.886 0.852>(avg)

Note: As for the viewpoints, F: front, R: rear, S: side, FS: front-side, RS: rear-side. Using the proposed method: the local F, R and S
angles are set to 0◦, 90◦, 180◦, respectively; the FS and the RS angles are set to 30◦ and 150◦, respectively.
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shown in Fig.6(a). And wrong samples are also shown

in Fig.6(b). This is consistent with the conclusion that

“most of the wrong predictions belong to the same car

make as the test images” in [12].

(a)

Wrong
Proportion
Due to the
Same Make

0.833 

0.715 

0.602 

0.657 

0.674 

0.6962

F

FS

S

R

RS

*(avg)

Viewpoint

(b)

Test Image Wrong Predcition

Volkswagen Line

Mazda Axela

Mercedes E260 Mercedes S350

Mazda Atenza

Volkswagen Lavida

Fig.6. Misclassification analysis on Comp using proposed
method. (a) Proportion for misclassification due to the same
make (manufacturer) using the proposed method in different
viewpoints. (b) Examples of misclassification due to the same
make.

5.3 Experiment on Scar[11]

The main component of Scar is car-197 for general

fine-grained classes. Compared with several algorithms

with higher recognition rates in [13], the performance of

our algorithm is in line with our expectations as shown

in Table 3.

Table 3. Comparison of Recognition Rates Training on

Car-197 and BMW-10 of Scar[11]

Method Accuracy in Accuracy in

Car-197 (%) BMW-10 (%)

BB[13] 92.60 58.70

BB-3D-G[13] 94.50 66.10

SPM[13] 84.50 58.30

SPM-3D-L[13] 85.70 58.70

General PCANet 87.30 57.90

Proposed 92.10>(avg) 71.60>(avg)

Note that the Scar dataset[11] has another small-

sample subset of BMW-10, which contains 512 im-

ages to evaluate the performance of recognizing non-

distinguishable objects. The 3D method produces the

highest accuracy of 66.1%[13]. The proposed algorithm

is applied to this dataset and achieves an accuracy of

71.6%. Detailed comparison results on BMW-10 are

also shown in Table 3. This result indicates that intro-

ducing local features to the proposed algorithm is very

effective in recognizing high-similarity objects. Fig.7

shows the samples of top 5 wrong predictions and their

error rates using the proposed algorithm.

Top n Pair Name Test Image
Wrong 

Prediction
Wrong 

Proportion

BMW5
BMW3

16.9%

BMW5   
BMW7

9.4%

M5    
M3

7.2%

BMW5   
BMW6

6.7%

BMW6    
BMW7       

5.9%

1

2

3

4

5

Fig.7. Top 5 wrong predictions of vehicle pairs using the pro-
posed method on Scar.

5.4 Experiment on ShV

5.4.1 Comparison with Other Algorithms

We apply various kinds of pattern recognition and

neural network training algorithms on Ytrain. The ave-

rage recognition accuracy of the proposed algorithm for

seven different angle ranges is highlighted in Table 4.

From this table, it can be seen that our recognition ac-

curacy is higher than that of the overfeat algorithm of

[12] and slightly smaller than the GoogleNet v1 algo-

rithm of [33]. But the operations number of the method

in [33] is equivalent to 5.35 GB floating-point operations

for one picture but merely 0.06 GB for one picture using

PCANet. Hence, its time consumption and computa-

tional complexity is much less than that of the CNN

like GoogleNet V1.

Table 4. Comparison of Recognition Rates on Ytrain of ShV

Method Accuracy (%)

HOG[26] 72.68

FV[32] 73.53

General PCANet 89.20

Proposed 93.28>(avg)

Classic 5-layer handwriting 68.93

Krizhevsky CNN[18] 89.94

Overfeat[12] 91.31

GoogleNet V1[33] 93.62

In order to study the influence of the number of

samples on the experimental results, we perform an

experiment using the data merge operations used in

[12]. That is, we adopt the first 431 popular types and

then mix them with the variants of the same sorts to
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generate the training subset. We compare the recog-

nition rates achieved with different subsets of 0◦ that

consist of different numbers of samples (test dataset

Ytest also makes corresponding changes according to

the training dataset). The results are shown in Fig.8

where N is the number of vehicle types chosen, and

i is the number of images for each vehicle type. The

traditional pattern recognition method is very effective

when the number of samples is small, but its perfor-

mance deteriorates in the case of many samples. CNN

is suitable for large-scale sets of samples, and its per-

formance may improve with the increase of the number

of samples. But the fine-grained intra-class classifica-

tion process involves the design of more PCA filters for

the neural network. This will inevitably cause expo-

nentially increased computational complexity and pro-

longed training time. Compared with traditional pat-

tern recognition and neural network schemes, our pro-

posed method is always robust to any size of sample

database and its performance is particularly excellent

for the multi-class medium-sized sample database.

5.4.2 Full-Angle Modeling vs Angle-Wise Modeling:
Role of Local Features

According to the experimental results in [12], the

CNN algorithm recognizes the vehicle types more ac-

curately than the angle-wise models after modeling the

full-angle images. Is this also true for PCANet? Table

5 compares the overfeat algorithm[12], general PCANet,

and the proposed algorithm on ShV. Unlike the view-

points division model used in [12], we replace the origi-

nal 5 viewpoints with seven different angle ranges. The

results show that the recognition accuracies in the an-

gle of 0◦, 30◦, and 180◦ are higher than those of the

other four left angles, and that the recognition accura-

cies in the angles near 90◦ are slightly higher than or

comparable to the full-angle recognition accuracy with-

out considering the local features. This means that the

front head and back of the vehicle have the most fine-

grained features. The recognition accuracy of the vehi-

cle side is largely dependent on the general feature like

the contours. This result enables us to choose the angle-

wise modeling method that provides greater recognition
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Fig.8. Variation of recognition rates with the sample 0◦ on different subsets of ShV using different algorithms.
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Table 5. Comparison of Experimental Results for Different Algorithms on Ytrain of ShV

Method Rank 0 30 60 90 120 150 180 Angle-Wise

Overfeat[12] Top 1 0.949 0.945 0.936 0.896 0.909 0.917 0.923 0.926

Top 5 0.960 0.967 0.969 0.937 0.942 0.939 0.942 0.956

General PCANet Top 1 0.914 0.912 0.900 0.874 0.883 0.904 0.908 0.892

Top 5 0.947 0.945 0.942 0.932 0.920 0.934 0.936 0.918

Proposed Top 1 0.971 0.954 0.933 0.892 0.905 0.916 0.927 0.933>(avg)

Top 5 0.991 0.972 0.955 0.922 0.930 0.942 0.943 0.951>(avg)

accuracy while we could accurately label the angles of

the test dataset.

5.4.3 Correctness of the Local Features Selection

By assigning various N and i shown in legend at

the top left of Fig.8, we build Y0, Y1, Y2, Y3 as sub-

sets from ShV respectively. It can be seen from the

analysis above that compared with the algorithms that

only use the PCANet scheme and adopt the same

parameter settings, the proposed algorithm based on

enhanced general and local features is more accurate

by 3%∼8% in different subsets of Y0, Y1, Y2, Y3. Do

we choose the correct local features? To verify this,

we test the variation of the recognition accuracy with

different combinations of local features on dataset Y1.

The results are shown in Table 6. It can be observed

that the front lamp, the fog lamp and the front grid of

vehicles shown in the table represent the main features

of the front face of vehicle types. The region RA does

not make many contributions to feature extraction; the

region RB renders the general feature irrelevant and re-

duces classification accuracy. RA and RB are showed in

Table 6. Influence of the Choice of Local Components on the

Recognition Rate on Y1 of ShV

Method Accuracy (%)

Proposed 97.89

General PCANet 93.10

J 84.56

+Front lamp 94.70

+Fog lamp 94.14

+Front grid 95.31

+Engine cover 93.36

+Windscreen 89.73

Note: J: only the local features of the previous three compo-
nents; +front lamp: general PCANet used the local feature of
the vehicle’s front lamp; +front grid: general PCANet used the
local feature of the vehicle’s front grid; +engine cover: general
PCANet used the local feature of the vehicle’s engine front cover;
+Windscreen: general PCANet + fused the local feature of the
vehicle’s front windscreen.

Fig.4(c). The local features include the main feature

points of most components. The scale of these local

features is different from that of the general feature.

And the different scales well complement the defects of

the global algorithm in terms of classifying fine-grained

features, thereby achieving a high recognition rate of

97.89%. As shown in Fig.8, in the case of small-sample

multi-class scenario of Y2 and Y3, small-scale local fea-

tures become an important factor in inhibiting decrease

in recognition rate, and they make more contributions

than the large-scale general feature.

5.4.4 Test on Correctness of Angle Classification

Is our angle classification scheme appropriate? To

answer this question, our first experiment is to check

whether the recognition accuracy is satisfactory when

the angle deviation of the test samples exceeds 30◦ com-

pared with the modeling samples at the angle of 0◦.

Next, we study whether modeling on samples of other

angles can gain similar performance, for example mod-

eling on 60◦ samples. Finally, we determine the optimal

angle classification scheme.

We firstly choose 50 sets of vehicle images (50×7 im-

ages) that are captured at an angle of 0◦∼30◦ and then

rotate them at a step length of 5◦ to constitute a train-

ing set Y1. Variation in the recognition rate is shown

in Fig.9(a), where the former is the general PCANet

algorithm that does not incorporate locally enhanced

features, and the latter is the proposed algorithm. It

can be found that the general PCANet is very robust

to variation in angles, as the recognition rate remains

almost the same when the angle ranges from 0◦ to 5◦.

But the recognition rate deteriorates quickly after the

angle exceeds 15◦. The small-scale local features make

no contribution to the final results when the angle is

30◦. This means that the large-scale general feature

contributes enormously to the robustness of the pro-

posed algorithm against variation in angles. Hence, it

is verified that the large-scale block largely contributes

to the feature’s rotation invariance.
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Fig.9. Variation of recognition rates on Y1 and Y
′

1 of ShV as a
function of angle deviation.

The 45◦ classification scheme in [15] is more unable

to recognize satisfactorily. To check the Y1 set in angle

of 0◦ is not accidental, thus we model samples at 60◦,

and incorporate the 15◦∼105◦ vehicle images into the

test dataset. The results are shown in Table 7. This

table shows that our angle range classification scheme

is appropriate.

Table 7. Comparison of Recognition Rates with Actually

Measured Angle Deviations Modeling on 60◦ Samples of ShV

Angle Accuracy (%)

15◦ 56.69

30◦ 79.17

45◦ 89.16

60◦ 93.34

75◦ 84.97

90◦ 71.21

105◦ 53.21

Considering the fact that the recognition rate de-

creases quickly after the angle exceeds 15◦, we enrich

the original dataset Y1 with the images of the same vehi-

cle types captured at an angle of 30◦. That is, the orig-

inal dataset Y1 is enlarged to a set of Y ′

1 , 150× 450× 2

in size. The variation of recognition rate as a function

of angle for Y
′

1 is shown in Fig.9(b). It is discovered

that after the addition of the 30◦ images, the highest

level of recognition rate achieved at an angle 0◦∼10◦

decreases by 1.3%. And the recognition rate at an an-

gle of 13◦∼17◦ exhibits a trough around 3%. But in the

case of angle equal to 20◦ and 30◦, the recognition rate

increases from 88.6% and 83.4% to 96.9% and 96.2%,

respectively. These results indicate that adding multi-

angle samples to the regionally clear images that are

captured at an angle of 30◦ at the face side can gene-

rally make the enlarged-modeling method (the method

that adds adjacent angle samples to Y1 dataset to build

enlarged Y ′

1) less sensitive to angle deviations. Thus,

the enlarged-modeling method is worthy of our choice.

We extend the enlarged-modeling method by adding

the 60◦ samples (local regions cannot be extracted for

use, and it only refers to general PCANet). As a re-

sult, the angle interval gaining high recognition rate

is reduced and the overall recognition rate is reduced

to less than 50%. This indicates that the enlarged-

modeling method can only be used in the case of small

angle deviation, and cannot obtain satisfactory recog-

nition rate in each angle or larger angle deviation. This

experiment further proves the correctness of our angle

classification scheme.

6 Conclusions

In this paper, we proposed a multi-scale PCANet

method based on the enhancement of local features,

and also developed a large and standard multi-class

dataset ShV. After comparing the classification per-

formance of the proposed method with that of other

methods on datasets with varying orders of magnitude,

i.e., Comp[12], Scar[11], and ShV, we demonstrated the

correctness of angle-wise modeling, choice of local fea-

tures, and angle classification. The experimental results

on Scar, Comp and ShV showed that the proposed al-

gorithm is superior to the other methods. Although the

proposed algorithm needs to label the fixed point of test

samples in an angle-wise manner, the amount of label-

ing work is very small and the labeling points are very

distinguishable. Compared with the traditional pattern

recognition algorithms which feature a large number of

labeling points and gain low recognition accuracy and

with the multi-level deep learning algorithms that need

many samples and consume heavy computational re-

sources, the proposed algorithm is the chief choice for

applications where objects from large and standardly
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classified datasets like ShV can be recognized accu-

rately and efficiently. Note that if the applications place

small demand on recognition accuracy, the angles are

not distinguishable in the dataset and the annotator is

not available, then the full-angle model with the recog-

nition scheme without considering local features is a

better option. This is because the error of manual la-

beling and the amount of labeling work can be reduced.

The CNN algorithm is recommended if a large number

of samples are available and a long period of training

time is affordable.

Given more samples, we plan to improve the conve-

nience of the proposed algorithm in the future and add a

small number of network layers to implement full-angle

labeling-free and adaptive recognition.
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