
Wang X, Fan JX, Lin CK et al. BCDC: A high-performance, server-centric data center network. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 33(2): 400–416 Mar. 2018. DOI 10.1007/s11390-018-1826-3

BCDC: A High-Performance, Server-Centric Data Center Network

Xi Wang1,2, Member, CCF, Jian-Xi Fan1,∗, Member, CCF, Cheng-Kuan Lin1, Member, CCF

Jing-Ya Zhou1, Member, CCF, and Zhao Liu1

1School of Computer Science and Technology, Soochow University, Suzhou 215006, China
2School of Software and Services Outsourcing, Suzhou Institute of Industrial Technology, Suzhou 215004, China

E-mail: {wangxi0414, jxfan, cklin, jy zhou, liuzhao}@suda.edu.cn

Received May 26, 2017; revised December 28, 2017.

Abstract The capability of the data center network largely decides the performance of cloud computing. However, the

number of servers in the data center network becomes increasingly huge, because of the continuous growth of the application

requirements. The performance improvement of cloud computing faces great challenges of how to connect a large number

of servers in building a data center network with promising performance. Traditional tree-based data center networks have

issues of bandwidth bottleneck, failure of single switch, etc. Recently proposed data center networks such as DCell, FiConn,

and BCube, have larger bandwidth and better fault-tolerance with respect to traditional tree-based data center networks.

Nonetheless, for DCell and FiConn, the fault-tolerant length of path between servers increases in case of failure of switches;

BCube requires higher performance in switches when its scale is enlarged. Based on the above considerations, we propose a

new server-centric data center network, called BCDC, based on crossed cube with excellent performance. Then, we study the

connectivity of BCDC networks. Furthermore, we propose communication algorithms and fault-tolerant routing algorithm

of BCDC networks. Moreover, we analyze the performance and time complexities of the proposed algorithms in BCDC

networks. Our research will provide the basis for design and implementation of a new family of data center networks.

Keywords data center network, interconnection network, crossed cube, server-centric, fault-tolerant

1 Introduction

With the development of cloud computing such as

on-line search, e-commerce, web gaming, on-line video,

cloud storage, and infrastructure services, giant data

center networks (DCNs) may operate hundreds of thou-

sands of servers. Microsoft doubled the number of

servers in its data centers with every 14 months, and

this speed outstripped the Moore’s law 1○. In particu-

lar, Microsoft ran more than a million servers in 2013[1].

Amazon Web services had 1.3 million servers in 2015

and will operate three million servers by the end of

2020[2]. Thus, we are faced by the challenge of inter-

connecting such a large number of servers in DCNs, at

a low cost, and without compromising performance.

The construction of DCNs should consider many

factors, such as scalability, cost, communication per-

formance, and fault-tolerance. In particular, we should

pay attention to making a balance among these factors

since they are mutually influenced and restricted with

one another in the construction of DCNs. Therefore, it

has important theoretical and practical significance to

design and construct new DCNs with desirable perfor-

mance.

So far, many kinds of DCNs have been proposed to

interconnect hundreds of thousands of or more servers

in DCNs[3-10]. In fact, a number of famous DCNs are in-

spired by some special interconnection networks[9,11-21].

Regular Paper

This paper was supported by the National Natural Science Foundation of China under Grant Nos. 61572337, 61702351, and
61602333, the Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks Foundation under Grant No. WSNL-
BKF201701, the China Postdoctoral Science Foundation under Grant No. 172985, the Natural Science Foundation of Jiangsu Higher
Education Institutions of China under Grant No. 17KJB520036, the Jiangsu Planned Projects for Postdoctoral Research Funds under
Grant No. 1701172B, and the Application Foundation Research of Suzhou of China under Grant No. SYG201653.

∗Corresponding Author
1○Harris D. Microsoft: Datacenter growth defies Moore’s law. 2013. http://www.pcworld.com/article/130921/article.html/, Jan.

2018.

©2018 Springer Science +Business Media, LLC & Science Press, China

Xi Wang et al.: BCDC: A High-Performance, Server-Centric Data Center Network 401

For example, fat-tree[3] was initiated by fat-trees inter-

connection network[12], BCube[6] was proposed based

on generalized hypercube[11], and CamCube[8] uses a

direct-connect 3D torus (k-ary 3-cube[13]) topology.

Moreover, a lot of interconnection networks have been

proposed in decades. Among them, hypercubes are

widely used in parallel computers due to their su-

per properties. Nevertheless, by changing links be-

tween some nodes in them, various variants of hyper-

cubes were proposed, such as crossed cubes[22], Möbius

cubes[23], and twisted cubes[24]. In [25], Fan and He

summarized that there exist two characteristics com-

mon to the hypercube and its variants: they are all bi-

jectively connected and recursively constructed. With

these two properties, a family of bijective connection

networks (BC networks for short) can be defined, which

includes many well-known networks such as hyper-

cubes, crossed cubes, locally twisted cubes, Möbius

cubes, and twisted cubes.

In this paper, we intend to choose a network with

good properties from BC networks, and use this struc-

ture to build a new type of data center network topo-

logy. Compared with n-dimensional Möbius cubes Mn,

crossed cubes provide better symmetry since Mn has

two non-isomorphic types: one is 0-Mn and the other

is 1-Mn; compared with twisted cubes, the dimensions

of crossed cubes can support all the positive integers

while those of twisted cubes are only limited to odd

integers; compared with the n-dimensional hypercube

Qn, crossed cube is superior to Qn in Hamiltonian-

connectivity[26], embeddability[27-28], diameter[22,29],

wide diameter[30], etc. Owing to its advantageous pro-

perties, the crossed cube, as a class of BC networks,

has become one of the attractive interconnection net-

works and many research achievements on it have been

obtained[22,26,28-41].

Therefore, in this paper, we propose BCDC, a high-

performance and server-centric DCN, based on a class

of BC networks, crossed cube. In BCDC, each server

is equipped with two ports for connecting two switches

and each switch is used to connect n servers. An n-

dimensional BCDC, Bn, can be defined as a recursive

network structure. Bn is constructed by two (n − 1)-

dimensional BCDCs and an independent set Sn. In this

way, the number of servers in BCDC increases quickly

with the dimensional growth of BCDC. For example,

if 16-port switches are used, B16 can support 524 288

servers (BCDC’s detail definition can be referred to Sec-

tion 2). Although we use the two ports of each server,

the server’s reliability is not compromised because it

still uses the other port when one fails.

In this paper, we have five main contributions as

follows.

1) We propose a high-performance and server-

centric DCN, based on a class of BC networks, crossed

cube.

2) We propose anO(n) one-to-one routing algorithm

in Bn. Then, we prove that the diameter of Bn is

⌈n+1
2 ⌉+1 for n > 3, which is small and can thus support

applications with real-time requirements.

3) We propose high-performance one-to-many and

one-to-all routing algorithms in Bn. Then, we prove

that the bisection width of Bn is (n− 1)2n−1 for n > 3,

which shows that BCDC has good fault-tolerance with

server/switch failures. Moreover, we prove that the

aggregate bottleneck throughput of Bn is larger than

2n+1 for n > 3, which shows that BCDC has high net-

work capacity for all-to-all routing applications such as

MapReduce.

4) We prove that the connectivity of Bn is 2n− 2.

Furthermore, we propose an O(⌈log2|F |⌉n3) algorithm

for finding a fault-free path between any two distinct

fault-free nodes in Bn for any faulty set F ⊂ V (Bn)

with |F | 6 2n − 3. Then, we prove that the maxi-

mal length of the fault-free path constructed by this

algorithm is no more than 6m + ⌈n−m+1
2 ⌉ + 1 with

m = ⌈log2|F |⌉ and |F | 6 2n− 3.

5) We show simulations and experiments of Bn

to evaluate the performance of routing algorithms in

BCDC networks.

In summary, our analysis and simulation experi-

ences demonstrate that BCDC is an attractive and

practical DCN for mega-data centers, due to its high

capacity communications, good fault-tolerance, and

manageable cabling complexity.

This paper is organized in this way. The formal

definition of the BCDC structure is given in Section 2.

We indicate in Section 3 that the connectivity of Bn is

2n − 2. In Section 4, fault-free routing algorithms for

Bn are described. Section 5 presents a fault-tolerant

routing algorithm for Bn. We show simulations and

experiments of Bn in Section 6. Section 7 discusses re-

lated work. The concluding remarks are mentioned in

Section 8.

2 Preliminaries

A DCN can be represented by a simple graph

G = (V (G), E(G)), where V (G) represents the node

set and each node represents a server, E(G) repre-

402 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

sents the edge set, and each edge represents a link be-

tween servers (switches can be regarded as transparent

network devices[4]). An edge with end nodes u and

v is denoted by (u, v). For each node v ∈ V (G), if

(u, v) ∈ E(G), we say u is a neighbor of v or u is adja-

cent to v. A (u1, un)-path in G is a sequence of nodes

P = (u1, u2, . . . , un), in which no node is repeated and

uj, uj+1 are adjacent for any integer 1 6 j < n. We also

write the path (u1, u2, . . . , un) as (u1, Q, ui, . . . , un),

where Q is the path (u2, u3, . . . , ui−1). The reverse of

P is (un, un−1, . . . , u1), denoted by P−1. The path,

starting from ui and ending with uj in a path P , can

be denoted by Path(P, ui, uj). The length of a path P ,

l(P), is the number of edges in P . We say P = (u) if the

path P satisfies l(P) = 0. Furthermore, we use P [i] to

denote the node ui for P = (u1, u2, . . . , un) for any in-

teger 1 6 i 6 n, and use P [−1] to denote the last node

in P . Similarly, V (P) and E(P) are used to represent

the node set and the edge set in P , respectively.

Given two distinct nodes u and v of G, the dis-

tance between u and v is defined as the length of

the shortest path between u and v in G, denoted by

dist(G, u, v). The diameter of G is defined as diam(G)

= max(dist(G, u, v)|u, v ∈ V (G), u 6= v). A graph is

connected when there is a path between each pair of

nodes. In a connected graph, there are no unreachable

nodes. A graph that is not connected is disconnected.

The edge-connectivity λ(G) of a connected graph G is

the smallest number of edges whose removal disconnects

G. The connectivity (or node connectivity) κ(G) of a

connected graphG (other than a complete graph) is the

minimum number of nodes whose removal disconnects

G.

If V ′ ⊆ V (G), we use G[V ′] to denote the subgraph

of G induced by the node subset V ′ in G. Further-

more, we use G−V ′ to denote G[V (G)\V ′]. We define

NG(V
′) = {x ∈ V (G)| there exists a node y ∈ V ′ such

that (x, y) ∈ E(G)}. If E′ ⊆ E(G), we use G[E′] to de-

note the subgraph of G induced by the edge subset E′

in G. Moreover, we use G−E′ to denote G[E(G) \E′].

A binary string u with length n can be written as

un−1un−2 · · ·u0, where un−1 is the most significant bit,

u0 is the least significant bit, and ui ∈ {0, 1} is the

i-th bit of u for integer i with 0 6 i 6 n − 1. The

complement of ui is denoted by ūi.

Like the n-dimensional hypercube, Qn, the n-

dimensional crossed cube, CQn, has 2n nodes. Each

node of CQn is represented by a unique binary string of

length n, called the address of the node. For i ∈ {0, 1},

let CQi
n−1 denote the graph obtained by prefixing the

address of each node of CQn−1 with i. In this paper,

we would not distinguish between nodes and their ad-

dresses. We adopt the definitions of CQn from [22, 29].

Definition 1. Two binary strings x = x1x0

and y = y1y0 of length 2 are said to be pair-

related (denoted by x ∼ y) if and only if (x, y) ∈

{(00, 00), (10, 10), (01, 11), (11, 01)}.

Definition 2. The n-dimensional crossed cube,

CQn, is recursively defined as follows. CQ1 is the com-

plete (undirected) graph on two nodes whose addresses

are 0 and 1 respectively. CQn consists of CQ0
n−1 and

CQ1
n−1. The most significant bits of the addresses of

the nodes in CQ0
n−1 and CQ1

n−1 are 0 and 1, respec-

tively. The nodes u = un−1un−2 · · ·u0 ∈ V (CQ0
n−1)

and v = vn−1vn−2 · · · v0 ∈ V (CQ1
n−1), where un−1 = 0

and vn−1 = 1, are joined by an edge in CQn if and only

if

1) un−2 = vn−2 if n is even, and

2) u2i+1u2i ∼ v2i+1v2i (see Definition 1), for

⌊n−1
2 ⌋ > i > 0.

Fig.1 demonstrates the 3-dimensional and the 4-

dimensional crossed cubes, in which Fig.1(a) shows

CQ3 and Fig.1(b) shows CQ4.

(a) (b)

Fig.1. (a) 3-dimensional crossed cube CQ3. (b) 4-dimensional
crossed cube CQ4.

Next, we will propose a new DCN, BCDC, based on

the crossed cube. We use nodes (resp. edges) of CQn

as switches (resp. servers) of the BCDC network. For

convenience, we do not distinguish each switch (resp.

server) from its address in this paper.

Each switch address of the BCDC network is de-

noted by a binary string u = un−1un−2 · · ·u0 with

length n. Then, we use f(u) to denote the decimal

value of the binary string u. Moreover, given two binary

strings u = un−1un−2 · · ·u0 and v = vn−1vn−2 · · · v0
with f(u) < f(v), each server address of the BCDC

network is denoted by an ordered pair [u, v]. A server

[u, v] connects a switch x if and only if x ∈ {u, v} and

(u, v) ∈ E(CQn). Then, we get the original graph of

n-dimensional BCDC, denoted by An. Clearly, An has

n2n−1 servers, 2n switches, and n2n links.

Xi Wang et al.: BCDC: A High-Performance, Server-Centric Data Center Network 403

When considering that switches are transparent in

BCDC networks, we give the definition of the logical

graph of BCDC networks Bn as follows.

Definition 3. The n-dimensional BCDC network,

Bn, is recursively defined as follows. B2 is a cycle

with 4 nodes [00, 01], [00, 10], [01, 11], and [10, 11]. For

n > 3, we use B0
n−1 (resp. B1

n−1) to denote the graph

obtained by Bn−1 with changing each node [x, y] of

Bn−1 to [0x, 0y] (resp. [1x, 1y]). Bn consists of B0
n−1,

B1
n−1, and a node set Sn = {[a, b]|a ∈ V (CQ0

n−1),

b ∈ V (CQ1
n−1), and (a, b) ∈ E(CQn)} according to

the following rules. For nodes u = [a, b] ∈ V (B0
n−1),

v = [c, d] ∈ Sn, and w = [e, f] ∈ V (B1
n−1):

1) (u, v) ∈ E(Bn) if and only if a = c or b = c;

2) (v, w) ∈ E(Bn) if and only if e = d or f = d.

Fig.2 demonstrates the original graph and logi-

Fig.2. (a) Original graph of 3-dimensional BCDC A3. (b) Logical graph of 3-dimensional BCDC B3. (c) Original graph of 4-dimensional
BCDC A4. (d) Logical graph of 4-dimensional BCDC B4.

404 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

cal graph of 3-dimensional BCDC and 4-dimensional

BCDC, in which Fig.2(a) shows A3, Fig.2(b) shows B3,

Fig.2(c) shows A4, and Fig.2(d) shows B4, respectively.

Bn is obviously a (2n − 2)-regular graph. Further-

more, the i-th element of a node u in Bn is denoted by

u[i] with i ∈ {0, 1}. Clearly, Bn has n2n−1 nodes and

n(n− 1)2n−1 edges.

The BCDC’s construction shows that switches are

only adjacent to servers and never adjacent to other

switches directly. Thus, we can treat the switches as

transparent network devices that connect several neigh-

boring servers adjacent to one another. With 16-port

switches, we can support up to 524 288 servers in a B16.

Therefore, BCDC meets our goal of using only low-end

commodity switches by putting routing computation

into servers purely.

3 Connectivity and Edge-Connectivity of

BCDC

As the number of nodes in a BCDC increases, node

failures may become the norm rather than exception.

Usually, reliable data transmission in a BCDC is based

on the condition of the set of arbitrary faulty nodes.

That is, any nodes in a BCDC can become faulty. Un-

der this condition, supposing that the connectivity of a

BCDC is κ and the number of faulty nodes in it is at

most κ−1, then there exists at least one fault-free path

(i.e., a path that does not contain any faulty nodes) be-

tween any two fault-free nodes, which can be used to

reliably communicate between them.

It is well-known that κ(G) 6 λ(G) 6 δ(G) for any

graph G[42], and κ(CQn) = λ(CQn) = n[29]. As a re-

sult, CQn achieves the maximum connectivity (resp.

edge-connectivity) possible for its resources. In what

follows, we prove that Bn also achieves the maximum

connectivity (resp. edge-connectivity) possible for its

resources.

Obviously, Definition 2 and Definition 3 imply the

following lemma.

Lemma 1. For any integer n > 3 and any two

nodes u = [a, b], v = [c, d] ∈ Sn, we have

|NB0
n−1

({u, v})| =

{

2n− 2, if (a, c) /∈ E(CQn),

2n− 3, if (a, c) ∈ E(CQn),

and

|NB1
n−1

({u, v})| =

{

2n− 2, if (b, d) /∈ E(CQn),

2n− 3, if (b, d) ∈ E(CQn).

Theorem 1. κ(Bn) = λ(Bn) = 2n− 2.

Proof. As Bn is (2n− 2)-regular, we have κ(Bn) 6

λ(Bn) 6 2n − 2. Thus, it suffices to prove that

κ(Bn) > 2n − 2. We only need to prove the follow-

ing claim.

Claim. For any F ⊂ V (Bn) with |F | 6 2n − 3,

then Bn − F is connected.

We prove the claim by induction on n. The claim

clearly holds for n 6 2. Supposing that the claim

holds for n = τ − 1 with τ > 3, we will prove that

the theorem holds for n = τ . Let F0 = F ∩ V (B0
τ−1),

F1 = F ∩V (B1
τ−1), F2 = F \(F0∪F1), G0 = B0

τ−1−F0,

G1 = B1
τ−1−F1, G2 = Bτ [Sτ \F2], G3 = Bτ [V (B0

τ−1)∪

Sτ]− F0 ∪ F2, and G4 = Bτ [V (B1
τ−1) ∪ Sτ]− F1 ∪ F2.

We deal with the following five cases for τ > 3.

Case 1. F0 = F or F1 = F or F2 = F . Then, we

have the following three subcases.

Subcase 1.1. F0 = F . Then, F1 = F2 = ∅. We

can verify that G4 is connected for F1 ∪ F2 = ∅. For

any integer τ > 3, we have |V (B0
τ−1)| = (τ − 1)2τ−2 >

2τ − 3 > |F | = |F0| and thus V (G0) 6= ∅. By Defini-

tion 3, we can verify that each node of G0 is adjacent

to two nodes in G2 ⊂ G4 for F2 = ∅. Therefore, Bτ −F

is connected.

Subcase 1.2. F1 = F . The argument is similar to

that for subcase 1.1.

Subcase 1.3. F2 = F . We can verify that G0 (resp.

G1) is connected for F0 = ∅ (resp. F1 = ∅). For any in-

teger τ > 3, we have |Sτ | = 2τ−1 > 2τ − 3 > |F | = |F2|

and thus Sτ \ F2 6= ∅. Then, we can verify that G3 is

connected for each node of Bτ [Sτ \ F2] is adjacent to

τ − 1 nodes in G0. Furthermore, we can verify that

each node of G2 ⊂ G3 is adjacent to τ − 1 nodes in G1.

Thus, Bτ − F is connected.

Case 2. F2 = ∅, F0 6= ∅, and F1 6= ∅. Without loss

of generality, suppose that |F0| 6 |F1|. For any integer

τ > 3, we have |F0| 6 ⌊ |F0|+|F1|
2 ⌋ = ⌊ |F |

2 ⌋ 6 ⌊ 2τ−3
2 ⌋ 6

τ − 2 6 2τ − 5. Thus, by the induction hypothesis, G0

is connected for τ > 3. By Definition 3, each node of Sτ

has τ − 1 > τ − 2 > |F0| neighbors in B0
τ−1 which im-

plies that G3 is connected. Furthermore, each node of

G1 is adjacent to two nodes in G2 ⊂ G3 by Definition 3

with F2 = ∅. Therefore, Bτ − F is connected.

Case 3. F2 6= ∅, F0 = ∅, and F1 6= ∅. For any

integer τ > 3, we have |Sτ | = 2τ−1 > 2τ − 3 and thus

|V (G2)| > 0. By Definition 3, each node of G2 has

τ − 1 > |F0| = 0 neighbors in B0
τ−1 which implies that

G3 is connected. We further have the following two

subcases.

Subcase 3.1. |F2| 6 |F1|.

Xi Wang et al.: BCDC: A High-Performance, Server-Centric Data Center Network 405

1) If |F1| 6 2τ − 5. By the induction hypothe-

sis, G1 is connected. For any integer τ > 3, we have

|F2| 6 ⌊ |F2|+|F1|
2 ⌋ = ⌊ |F |

2 ⌋ 6 ⌊ 2τ−3
2 ⌋ 6 τ − 2. Thus,

|Sτ \ F2| = 2τ−1 − |F2| > 2τ−1 − (τ − 2) > 2 for τ > 3.

Then, two distinct nodes u and v in Sτ \ F2 are cho-

sen. By Lemma 1, we have |NB1
τ−1

({u, v})| > 2τ − 3 >

|F2|+|F1| > |F1|. Thus, there exists at least one node of

G2 ⊂ G3, which is adjacent to a node in G1. Therefore,

Bτ − F is connected.

2) If |F1| > 2τ − 5. It is easy to verify that

|F1| = 2τ − 4 and |F2| = 1. By Definition 3, each

node of G1 is adjacent to two nodes in Sτ . Thus, we

can verify that each node of G1 is adjacent to at least

one node in G2 ⊂ G3 for |F2| = 1 < 2. Therefore,

Bτ − F is connected.

Subcase 3.2. |F2| > |F1|. For any integer τ > 3, we

have |F1| 6 ⌊ |F2|+|F1|
2 ⌋ = ⌊ |F |

2 ⌋ 6 ⌊ 2τ−3
2 ⌋ 6 τ − 2 6

2τ − 5. Thus, by the induction hypothesis, G1 is con-

nected for τ > 3. For any integer τ > 3, we have

|Sτ | = 2τ−1 > 2τ − 3 and thus |V (G2)| > 0. By Defi-

nition 3, each node of G2 has τ − 1 > τ − 2 > |F1|

neighbors in B1
τ−1. Thus, we can verify that each node

of G2 ⊂ G3 is adjacent to at least one node in G1.

Therefore, Bτ − F is connected.

Case 4. F2 6= ∅, F0 6= ∅, and F1 = ∅. The argument

is similar to that for case 3.

Case 5. F0 6= ∅, F1 6= ∅, and F2 6= ∅. Suppose

that |Fi| > 2τ − 5 with i ∈ {0, 1, 2}, and we have

|F | = |F0|+ |F1|+ |F2| > 2τ −5+1+1 = 2τ −3, a con-

tradiction. Thus, we have |Fi| 6 2τ −5 for i ∈ {0, 1, 2},

which implies that G0 and G1 are connected. We fur-

ther have the following two subcases.

Subcase 5.1. |F2| 6 τ − 2.

1) If |F0| 6 |F1|. For any integer τ > 3, we have

|F0| 6 ⌊ |F0|+|F1|+|F2|
2 ⌋ = ⌊ |F |

2 ⌋ 6 ⌊ 2τ−3
2 ⌋ 6 τ − 2. By

Definition 3, each node of G2 has τ − 1 neighbors in

B0
τ−1. Thus, we can verify that each node of G2 is ad-

jacent to at least one node in G0 for |F0| 6 τ−2, which

implies that G3 is connected. By Definition 3, we have

|Sτ \ F2| = 2τ−1 − |F2| > 2τ−1 − (τ − 2) > 2 for τ > 3.

Then, two distinct nodes u and v in Sτ \ F2 are cho-

sen. By Lemma 1, we have |NB1
n−1

({u, v})| > 2τ − 3 >

|F0|+ |F2|+ |F1| > |F1|. Thus, there exists at least one

node of G2 ⊂ G3, which is adjacent to a node in G1.

Therefore, Bτ − F is connected.

2) If |F0| > |F1|. The argument is similar to that of

|F0| 6 |F1| in subcase 5.1.

Subcase 5.2. |F2| > τ−1. Then, we have |F0| 6 τ−2

and |F1| 6 τ − 2. For any integer τ > 3, we have

|Sτ | = 2τ−1 > 2τ − 3 and thus |V (G2)| > 0. By Def-

inition 3, each node of G2 has τ − 1 > τ − 2 > |F0|

neighbors in B0
τ−1, which implies that each node of G2

is adjacent to at least one node in G0, and thus G3

is connected. By Definition 3, we can verify that each

node of G2 has τ − 1 neighbors in B1
τ−1, which implies

that each node of G2 ⊂ G3 is adjacent to at least one

node in G1 for |F1| 6 τ − 2. Therefore, Bτ − F is

connected.

In summary, the claim holds for n = τ . �

Theorem 1 shows that Bn achieves the maximum

connectivity possible for its resources. When the BCDC

network is used to model the topological structure of

a large-scale DCN, our result can provide an accurate

measure for the fault tolerance of the network.

4 Fault-Free Routings in BCDC

In this section, we will study one-to-one, one-to-

many, one-to-all, and all-to-all routings in BCDC with-

out any fault elements. Particularly, we prove that the

diameter of Bn is ⌈n+1
2 ⌉+1, the bisection width of Bn is

(n − 1)2n−1, and the aggregate bottleneck throughput

of Bn is larger than 2n+1.

4.1 One-to-One Routing in BCDC

In [22], Efe proposed an O(n2) algorithm to find a

shortest path between any two distinct nodes in CQn.

In [30], Chang et al. improved this algorithm. They

gave an O(n) algorithm, which we call CSH(CQn, u, v)

algorithm, to get a shortest path between any two dis-

tinct nodes u and v in CQn. Furthermore, they gave

the distance function between any two distinct nodes

u and v in CQn, denoted by ρ(u, v), and proved an

important result as follows: dist(CQn, u, v) = ρ(u, v).

For details on the CSH algorithm, please refer to [30].

The following lemma indicates the diameter of CQn.

Lemma 2. If n > 3, then diam(CQn) =

⌈n+1
2 ⌉[22,29].

The global link state routing scheme is not suit-

able for one-to-one routing in BCDC-based DCNs since

BCDC’s goal is to interconnect up to tens of thousands

of servers. Furthermore, one-to-one routing in BCDC

cannot use the hierarchical OSPF 2○, since it needs a

backbone area to interconnect all the other areas. This

results in both single point failure and bandwidth bot-

tleneck.

Bn uses a simple and efficient one-to-one (uni-

cast) routing algorithm, called BRouting, to get

2○Moy J. RFC 2328: OSPF version 2. 1998. https://datatracker.ietf.org/doc/rfc2328/, Jan. 2018.

406 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

the shortest path between any two distinct nodes

in Bn, as shown in Algorithm 1. BRouting is a

shortest-path routing scheme. It can be shown by

the following example. For a B8, the path us-

ing BRouting between nodes [01100110, 01100111]

and [01011110, 01011111] is ([01100110, 01100111],

[01100110, 01111110], [01010110, 01111110] [01010110,

01011110], [01011110, 01011111]) with length 4, which

is a shortest path.

Algorithm 1 . BRouting

Input: an n-dimensional BCDC, Bn, and two distinct nodes
u, v ∈ V (Bn)

Output: a shortest path from node u to node v in Bn

1: function BRouting(Bn, u, v)
2: u1 ← u[0], u2 ← u[1], v1 ← v[0], v2 ← v[1];
3: d1 ← ρ(u1, v1), d2 ← ρ(u1, v2), d3 ← ρ(u2, v1);
4: d4 ← ρ(u2, v2), d←min{d1, d2, d3, d4};
5: if d1 = d then

6: return (u, CPath(CQn, u1, v1), v);
7: else if d2 = d then

8: return (u, CPath(CQn, u1, v2), v);
9: else if d3 = d then

10: return (u, CPath(CQn, u2, v1), v);
11: else

12: return (u, CPath(CQn, u2, v2), v);
13: end if

14: end function

15: function CPath(CQn, u, v)
16: P ← (u), Q← CSH(CQn, u, v);
17: for i = 1; i < l(Q); i++ do

18: if Q[i] < Q[i+ 1] then
19: P ← (P, [Q[i],Q[i+ 1]]);
20: else

21: P ← (P, [Q[i+ 1], Q[i]]);
22: end if

23: end for

24: return P ;
25: end function

Obliviously, the path construction of BRouting is

dependent only on the addresses of the source and des-

tination nodes. Furthermore, BRouting can be per-

formed quickly when building large networks in prac-

tice. Chang et al. proved that CSH(CQn, u, v) and

ρ(u, v) can be computed in O(n) time[30]. Therefore,

the time complexity of constructing the whole routing

path in algorithm BRouting is O(n), which is within

the minimum possible order of magnitude.

The following theorem gives the diameter of the

BCDC network.

Theorem 2. The diameter of Bn is ⌈n+1
2 ⌉+ 1.

Proof. We firstly prove that the upper bound on

the diameter of Bn is ⌈n+1
2 ⌉ + 1. Two distinct nodes

u and v in Bn are chosen. Then, let u = [a, b] and

v = [c, d]. By Definition 3 and Lemma 2, we have

dist(Bn, u, v) 6 min{dist(CQn, a, c), dist(CQn, a, d),

dist(CQn, b, c), dist(CQn, b, d)} + 1 6 diam(CQn) +

1 = ⌈n+1
2 ⌉+ 1.

Thus, the upper bound on the diameter of Bn is

⌈n+1
2 ⌉+ 1.

Furthermore, we will prove that the lower bound

on the diameter of Bn is ⌈n+1
2 ⌉ + 1. Then, let

u = [0n, 0n−210] and v = [1n−3001, 1n−3011].

By Definition 3 in [22], we have dist(Bn, u, v) =

min{ρ(0n, 1n−3001), ρ(0n, 1n−3011), ρ(0n−210,

1n−3001), ρ(0n−210, 1n−3011)} + 1 = min{⌈n+1
2 ⌉,

⌈n+1
2 ⌉, ⌈n+1

2 ⌉, ⌈n+1
2 ⌉}+ 1 = ⌈n+1

2 ⌉+ 1.

Therefore, the lower bound on the diameter of Bn

is ⌈n+1
2 ⌉+ 1.

In summary, the diameter of Bn is ⌈n+1
2 ⌉+ 1. �

Obviously, the diameter of BCDC is small when

considering the total number of servers, which benefits

applications with real-time requirement.

4.2 One-to-Many Routing in BCDC

In one-to-many routing, a BCDC server can use its

multiple links to perform high throughput. This pro-

perty is useful for services such as GFS[43], which can

use multiple links at a server to speed up file replication

and recovery in DCN.

We introduce a simple and efficient one-to-

many (multicast) routing algorithm for Bn, called

BMulticast, showed in Algorithm 2. In order to ex-

press the algorithm compactly, we need some notations.

We use mT to denote a multicast tree rooted at node s

to a node set T onBn such that s ∈ V (Bn), T ⊂ V (Bn),

and {s} ∩ T = ∅. Similarly, V (mT) and E(mT) are

used to represent the node set and the edge set in mT ,

respectively. BMulticast could construct a multicast

tree from a source node s to a destination node set

T = {t1, t2, . . . , tm} in Bn with s /∈ T . It can be

shown by the following example. For a B8, a multicast

tree using BMulticast from node [01100110, 01100111]

to nodes {[01010110, 01010111], [01011110, 01011111],

[01100010, 01110010]} with the height 4 is shown in

Fig.3.

Obliviously, the construction of a multicast tree in

Algorithm 2 is dependent only on the addresses of the

source node and destination nodes. Furthermore, Algo-

rithm 2 can be carried out quickly when building large

networks in practice. We can find that the most time

is taken in lines 6∼11 of Algorithm 2, which can be

computed in O(n|T |) time. Since algorithm BRouting

and ρ(u, v) can be computed in O(n) time, the time

complexity to construct the whole multicast tree in Al-

gorithm 2 is O(n|T |2). Since the diameter of Bn is

⌈n+1
2 ⌉+ 1, the height of the multicast tree constructed

by algorithm BMulticast is no more than ⌈n+1
2 ⌉+ 1.

Xi Wang et al.: BCDC: A High-Performance, Server-Centric Data Center Network 407

Algorithm 2 . BMulticast

Input: an n-dimensional BCDC, Bn, and {s}, T ⊂ V (Bn) with
{s} ∩ T = ∅

Output: a multicast tree mT from a node s to a node set T on
Bn

1: function BMulticast(Bn, s, T)
2: V (mT)← {s}, E(mT)← ∅;
3: while |T | > 0 do

4: Find a node t ∈ T , P ←BRouting(Bn , s, t);
5: if E(mT) 6= ∅ then
6: U ← V (mT) ∩ V (P) \ {s};
7: if |U | > 0 then

8: d = max({ρ(s, u)|u ∈ U});
9: Find a node v ∈ U with d = ρ(s, v);
10: P ← Path(P, v, P [−1]);
11: end if

12: end if

13: E(mT)← E(mT) ∪ E(P);
14: V (mT)← V (mT) ∪ V (P);
15: T ← T \ V (mT);
16: end while

17: return mT ;
18: end function

Fig.3. Multicast tree from a source node [01100110, 01100111] to
destination nodes {[01010110, 01010111], [01011110, 01011111],
[01100010, 01110010]} in B8.

4.3 One-to-All Routing in BCDC

We demonstrate that BCDC can accelerate one-to-

all routing (broadcast) significantly. In broadcast, one

node delivers messages to all the other nodes. A simple

approach of constructing a spanning tree from one node

to all the other nodes, and then broadcasting messages

along the tree, is not fault-tolerant. When one node

is broken, the subtree in the spanning tree under that

node will not receive the broadcast message anymore.

To resolve the issue mentioned above, we introduce,

BBroadcast, a simple and robust broadcast scheme. In

BBroadcast, one node delivers the broadcast packet to

all its 2n−2 neighbors when broadcasting a packet. If a

node receives a broadcast packet, it first checks whether

this packet has been received before. Then, this node

drops a duplicate packet but broadcasts a new packet to

its other 2n−1 neighbors. BBroadcast is fault-tolerant

in that a broadcast packet can reach all the nodes while

the network is connected.

In BBroadcast, we limit the broadcast scope by

encoding a scope value n into each broadcast mes-

sage. The message is broadcasted only within the whole

BCDC network that contains the source node. Since

the diameter of Bn is ⌈n+1
2 ⌉ + 1, a broadcast message

needs ⌈n+1
2 ⌉+ 1 steps to reach all the nodes in Bn.

4.4 All-to-All Routing in BCDC

In computer networking, if the network is bisected

into two partitions, the bisection bandwidth of a net-

work topology is the bandwidth available between the

two partitions[42]. The bisection width of a network is

significant in the performance measurement of all-to-

all routing in a network. Then, we have the following

theorem.

Theorem 3. The bisection width of Bn, denoted by

ω(Bn), is (n− 1)2n−1 for n > 3.

Proof. Note that Bn is constructed from two iden-

tical (n − 1)-dimensional BCDCs, B0
n−1 and B0

n−1,

and a node set Sn. Choose W0,W1 ⊂ Sn such that

W0 ∩ W1 = ∅ and |W0| = |W1| =
|Sn|
2 = 2n−2. Let

Ei = {(a, b)|a ∈ V (Bi
n−1), b ∈ Wi, and (a, b) ∈ E(Bn)}

with i ∈ {0, 1}. By Definition 3, we have E0 ∩ E1 = ∅

and |E0| = |E1| = (n − 1)2n−2. Then, Bn − E0 ∪ E1

is disconnected, which follows ω(Bn) 6 2(n− 1)2n−2 =

(n− 1)2n−1.

We define an embedding of a complete graph of

n2n−1 nodes, denoted by K, into Bn, where each edge

in K is embedded into Bn. Suppose that ω(Bn) <

(n− 1)2n−1. It follows that Bn can be partitioned into

two subgraphs of equal size by removing a cut of ω(Bn)

edges. This cut of Bn also induces a bisection of K.

Since each edge of Bn is contained in no more than
n2

n−12
n−3 shortest paths for n > 3, denoted by C, it fol-

lows that ω(K) = ω(Bn)C < (n − 1)2n−1(n2

n−12
n−3) =

n222n−4, which is contradictory to ω(K) = (n2n−1)2

4 =

n222n−4. Thus, ω(Bn) > (n− 1)2n−1.

Therefore, we have ω(Bn) = (n− 1)2n−1. �

The large bisection width of BCDC implies that

there are numerous possible paths between any pair of

nodes. Therefore, BCDC is intrinsically fault-tolerant.

Theorem 3 also shows that BCDC can well support

MapReduce[44].

Under the all-to-all model, every server establishes

a flow with all other servers. Among all the flows, the

flows that receive the smallest throughput are called

the bottleneck flows[6].

To evaluate the capacity of BCDC, we use the met-

ric ABT (aggregate bottleneck throughput), defined in

408 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

[6] as the number of flows times the throughput of the

bottleneck flows, in the all-to-all traffic model. The

larger ABT, the shorter finish time of all-to-all job in a

network.

Theorem 4. The aggregate bottleneck throughput

for a BCDC network under the all-to-all routing is

larger than 2n+1 for n > 3.

Proof. Let ABT (Bn) be the aggregate bottleneck of

Bn. Then, let N = n2n (resp. M = n2n+1) denote the

number of nodes (resp. links) in BCDC. Moreover, we

use L to denote the average path length from one node

to the rest nodes using BRouting. For n > 3, we have

L < diam(Bn) = ⌈n+1
2 ⌉+1 6 n. Based on [6], we have

ABT (Bn) =
N(N−1)M
N(N−1)L = M

L
> n2n+1

n
= 2n+1. �

An advantage of BCDC is that it does not have

performance bottlenecks in the all-to-all routing since

all the links are used equally. As a result, the ABT

of BCDC increases linearly as the number of nodes in-

creases.

5 Fault-Tolerant Routing in BCDC

In this section, we first give algorithm BFRouting,

to construct a fault-free path between any two distinct

fault-free nodes in Bn with a faulty node set F ⊂ V (Bn)

and |F | 6 2n−3. Then, we analyze the time complexity

of the algorithm BFRouting. Furthermore, we analyze

the maximal length of paths constructed by algorithm

BFRouting.

Theorem 5. For any integer n > 3, any faulty

node set F ⊂ V (Bn) with |F | 6 2n − 3, and any

u ∈ V (Bi
n−1) − F with i ∈ {0, 1}, there exists at

least one fault-free path P = (α0 = u, α1, . . . , αl) of

length l with 2 6 l 6 3, from u into B1−i
n−1, such

that α0, α1, . . . , αl−2 ∈ V (Bi
n−1), αl−1 ∈ Sn, and

αl ∈ V (B ī
n−1).

Proof. Without loss of generality, suppose that

i = 0. Let β1, β2, α3, α4, . . ., and α2n−2 be all the 2n−2

neighbors of u in Bn with β1, β2 ∈ Sn and α3, α4, . . . ,

α2n−2 ∈ V (B0
n−1). 2n−4 nodes β3, β4, . . . , β2n−2 in Sn

are chosen such that (αi, βi) ∈ E(Bn) for 3 6 i 6 2n−2

with |{β1, β2, . . . , β2n−2}| = 2n−2. Then, 2n−2 nodes

γ1, γ2, . . . , γ2n−2 in B1
n−1 are chosen such that (βi, γi) ∈

E(Bn) for 1 6 i 6 2n − 2 with |{γ1, γ2, . . . , γ2n−2}| =

2n− 2.

As a sequence, we construct 2n − 2 disjoint paths

from B0
n−1 into B1

n−1 as follows (see Fig.4):

P1 = (u, β1, γ1),

P2 = (u, β2, γ2),

P3 = (u, α3, β3, γ3),

P4 = (u, α3, β4, γ4),

...

P2n−3 = (u, α2n−3, β2n−3, γ2n−3), and,

P2n−2 = (u, α2n−2, β2n−2, γ2n−2).

Since |F | 6 2n − 3 < 2n − 2, there exists at

least one fault-free path Pj among the 2n − 2 paths

P1, P2, . . . , P2n−2, where 1 6 j 6 2n− 2.

Bn֓

α

β

β

β

β

α

αn֓ βn֓

γ

γ

γ

γ

γn֓

u

Sn

Bn֓

...

Fig.4. Illustration of constructing 2n − 2 disjoint paths from
B0

n−1 into B1
n−1 in Theorem 5.

If 1 6 j 6 2, then Pj = (u, βj , γj) is a fault-free

path of length 2 from u ∈ V (B0
n−1) into B1

n−1, where

βj ∈ Sn and γj ∈ V (B1
n−1); otherwise, there exists

a fault-free path Pj = (u, αj , βj , γj) of length 3 from

u ∈ V (B0
n−1) into B1

n−1, where j > 2, αj ∈ V (B0
n−1),

βj ∈ Sn, and γj ∈ V (B1
n−1). �

Theorem 6. For any integer n > 3, any faulty

node set F ⊂ V (Bn) with |F | 6 2n − 3, and any two

distinct nodes u, v ∈ V (Bi
n−1 − F) with i ∈ {0, 1} and

(u, v) /∈ E(Bn), let P (resp. Q) be a fault-free path

from u (resp. v) into B ī
n−1. If V (P) ∩ V (Q) 6= ∅, then

the length of H = (Path(P, u, x), Path(Q, x, v)) satisfies

2 6 l(H) 6 6, where x be the first common node of the

two paths P and Q; otherwise, h = l(P)+ l(Q) satisfies

4 6 h 6 6.

Proof. Without loss of generality, suppose that

i = 0. We use {x1, x2} to denote NBn[Sn](u) and

{y1, y2} to denote NBn[Sn](v), respectively. Then, let

W1 = NB1
n−1

(x1), W2 = NB1
n−1

(x2), W3 = NB1
n−1

(y1),

and W4 = NB1
n−1

(y2). According to Theorem 5, we let

P =

(u, β1, γ1), if (x1 /∈ F and W1 \ F 6= ∅) or

(x2 /∈ F and W2 \ F 6= ∅),

(u, α2, β2, γ2), otherwise,

(resp.

Q =

(v, β3, γ3), if (y1 /∈ F and W3 \ F 6= ∅) or

(y2 /∈ F and W3 \ F 6= ∅),

(v, α4, β4, γ4), otherwise,

Xi Wang et al.: BCDC: A High-Performance, Server-Centric Data Center Network 409

) be a fault-free path from u (resp. v) into B1
n−1 with

α2 ∈ V (B0
n−1), β1, β2 ∈ Sn, and γ1, γ2 ∈ V (B1

n−1)

(resp. α4 ∈ V (B0
n−1), β3, β4 ∈ Sn, and γ3, γ4 ∈

V (B1
n−1)). We address the following two cases with

respect to P and Q.

Case 1. V (P) ∩ V (Q) 6= ∅. If β1 = β3, l(H) = 2; if

β1 = β4 or β2 = β3, l(H) = 3; if β2 = β4 or γ1 = γ3,

l(H) = 4; if γ1 = γ4 or γ2 = γ3, l(H) = 5; otherwise,

l(H) = 6 (see Fig.5(a)).

Bn֓ Sn
 Bn֓

(a)

Bn֓ Sn
 Bn֓

(b)

u P

Q Q

P

v v

u

Fig.5. Illustration for (a) case 1 in Theorem 6 and (b) case 2 in
Theorem 6.

Case 2. V (P) ∩ V (Q) = ∅. If γ1 ∈ V (P) and

γ3 ∈ V (Q), h = 4; if (γ1 ∈ V (P) and γ4 ∈ V (Q))

or (γ2 ∈ V (P) and γ3 ∈ V (Q)), h = 5; otherwise, h = 6

(see Fig.5(b)). �

Theorem 7. There exists an O(⌈log2|F |⌉n3) algo-

rithm for finding a fault-free path P between any two

distinct fault-free nodes in Bn with a faulty node set

F ⊂ V (Bn) and |F | 6 2n− 3.

Proof. Considering fault-tolerant one-to-one rout-

ing for the given two distinct nodes u and v in Bn − F

with a faulty node set F ⊂ V (Bn) and |F | 6 2n−3, we

propose an efficient algorithm, BFRouting. To simplify

the presentation of the proposed routing algorithm, we

first introduce two algorithms, namely BMapping and

BBinding, that will be the two core components of the

proposed algorithm.

Based on Theorem 5, we provide Algorithm 3,

BMapping. In line 2, it takes O(n) time to find the node

v in NG(u) \ F by using the connection rules given in

Definition 3. Thus, we can verify that the time comple-

xity of function BMapping1 in algorithm BMapping is

O(n). In lines 6∼10, it takes O(n2) time to construct a

required fault-free path P = (u, x, v) from u into B ī
n−1

with i ∈ {0, 1}, such that u ∈ V (Bi
n−1), x ∈ Sn, and

v ∈ V (B ī
n−1). In lines 11∼17, it takes O(n3) time to

construct a required fault-free path P = (u, x, y, v) from

u into B ī
n−1 with i ∈ {0, 1}, such that u, x ∈ V (Bi

n−1),

y ∈ Sn, and v ∈ V (B ī
n−1). Thus, we can verify that

the time complexity of function BMapping2 in algorithm

BMapping is O(n3).

In addition, we propose Algorithm 4, BBinding

based on Theorem 6. Given two distinct fault-free

nodes u, v ∈ V (Bn), a subgraph G ⊂ Bn, two paths P

and Q with u = P [1] and v = Q[1], and a faulty node

set F ⊂ V (Bn) with |F | 6 2n− 3, we construct a fault-

free path from u to v in Bn − F , which will be used

in algorithm BFRouting. In lines 2∼5, 13, and 19 of

algorithm BBinding, we will analyze the time comple-

xity of algorithm BBinding with algorithm BFRouting

in the next block since BFRouting is called in lines 3,

13, and 19 of algorithm BBinding. In lines 6 and 7 of

algorithm BBinding, it takes O(n) time to choose the

first common node from two paths P and Q and takes

O(1) time to join two sub-paths constructed by P and

Q. In lines 10∼12 and 16∼18 of algorithm BBinding,

Algorithm 3 . BMapping

Input: a node u ∈ V (Bn), three subgraphs H,S,G in Bn, and
a faulty node set F ⊂ V (Bn)

Output: a fault-free path from u into G
1: function BMapping1(u,G, F)
2: Choose a node v ∈ NG(u) such that u /∈ F ;
3: return (u, v);
4: end function

5: function BMapping2(u,H, S,G, F)
6: for v ∈ NS−F (u) do

7: if NG(v) 6⊆ F then

8: return (u, BMapping1(v, G, F));
9: end if

10: end for

11: for v ∈ NH−F (u) do

12: for x ∈ NS−F (v) do

13: if NG(x) 6⊆ F then

14: return (u, v, BMapping1(x,G, F));
15: end if

16: end for

17: end for

18: end function

Algorithm 4 . BBinding

Input: two nodes u, v ∈ V (Bn), a subgraph G ⊂ Bn, two paths
P and Q with u = P [1] and v = Q[1], and a faulty node set
F ⊂ V (Bn)

Output: a fault-free path from u to v in Bn − F
1: function BBinding1(G,F, u, v, P,Q)
2: if V (P) ∩ V (Q) = ∅ then
3: S ← BFRouting(G, F, P [−1],Q[−1]);
4: return (P , S, Q−1);
5: end if

6: Find the first common node x from P and Q;
7: return (Path(P, u, x), Path(Q−1, x, v));
8: end function

9: function BBinding2(G,F, u, v, Q)
10: if u ∈ V (Q) then

11: return Path(Q,u, v);
12: end if

13: return (BFRouting(G, F, u,Q[−1]), Q−1);
14: end function

15: function BBinding3(G,F, u, v, P)
16: if v ∈ V (P) then

17: return Path(P, u, v);
18: end if

19: return (P , BFRouting(G, F, P [−1], v));
20: end function

410 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

it takes O(1) time to return a sub-path constructed by

P (resp. Q) directly.

Accordingly, we propose our main algorithm, Algo-

rithm 5, BFRouting. Given two fault-free distinct nodes

u and v in Bn and a faulty node set F ⊂ V (Bn) with

|F | 6 2n− 3, we construct a fault-free path from node

u to node v in Bn − F . Suppose that a path in algo-

rithm BFRouting is saved by a doubly linked circular

list whose head u and tail v are pointed by two pointers.

Furthermore, each node is stored by a tuple.

Algorithm 5 . BFRouting

Input: an n-dimensional BCDC, Bn, a faulty node set F ⊂
V (Bn) with |F | 6 2n− 3, and two nodes u, v ∈ V (Bn − F)

Output: a fault-free path from node u to node v in Bn − F
1: function BFRouting(Bn, F, u, v)
2: if (u, v) ∈ E(Bn) then

3: return (u, v);
4: else if n = 2 then

5: return (a fault-free path between u and v in Bn−F);
6: else if |F | = 0 then

7: return BRouting(Bn , u, v);
8: else if |F | > 2n− 2 then

9: return BFS(Bn − F, u, v);
10: end if

11: F0 ← F ∩ V (B0
n−1), F1 ← F ∩ V (B1

n−1);

12: F2 ← F ∩ Sn, m←min{|F0|, |F1|}
13: for i ∈ {0, 1} do

14: B0 ← Bi
n−1, B1 ← Bī

n−1, and B2 ← Bn[Sn];

15: if u, v ∈ V (B0) and |Fi| = m then

16: return BFRouting(B0 , Fi, u, v);
17: else if u, v ∈ V (B0) and |Fī| = m then

18: P ←BMapping2(u, B0, B2, B1, F);
19: Q←BMapping2(v, B0, B2, B1, F);
20: return BBinding1(B1 , Fī, u, v, P,Q);
21: else if u, v ∈ Sn then

22: Choose j ∈ {0, 1} such that |Fj | = m;

23: P ←BMapping1(u, Bj
n−1, F);

24: Q←BMapping1(v, Bj
n−1, F);

25: return BBinding1(Bj
n−1 , Fj , u, v, P,Q);

26: else if u ∈ V (B0) and v ∈ V (B1) and |F1−i| = m
then

27: P ←BMapping2(u, B0, B2, B1, F);
28: return BBinding3(B1 , F1−i, u, v, P);
29: else if u ∈ V (B0) and v ∈ V (B1) and |Fi| = m then

30: P ←BMapping2(v, B1, B2, B0, F);
31: return BBinding2(B0 , Fi, u, v, P);
32: else if u ∈ V (B0) and v ∈ Sn and |Fi| = m then

33: P ←BMapping1(v, B1, F);
34: return BBinding2(B0 , Fi, u, v, P);
35: else if u ∈ V (B0) and v ∈ Sn and |Fī| = m then

36: P ←BMapping2(u, B0, Sn, B1, F);
37: Q←BMapping1(v, B1, F);
38: return BBinding1(B1 , F, u, v, P,Q);
39: else if u ∈ Sn and v ∈ V (B0) and |Fi| = m then

40: P ←BMapping1(u, B0, F);
41: return BBinding3(B0 , Fi, u, v, P);
42: else if u ∈ Sn and v ∈ V (B0) and |Fī| = m then

43: P ←BMapping1(u, B1, F);
44: Q←BMapping2(v, B0, B2, B1, F);
45: return BBinding1(B1 , Fī, u, v, P,Q);
46: end if

47: end for

48: end function

In what follows, we will analyze the time complexity

of two algorithms BFRouting and BBinding as follows.

In lines 2∼5 of Algorithm BFRouting, it takes constant

time to construct the required fault-free path. In lines

6 and 7 of algorithm BFRouting, it takes O(n) time to

construct the required path in fault-free Bn. In lines

8∼9 of algorithm BFRouting, we construct a fault-free

path from node u to node v in Bn − F using the fa-

mous BSF function. In lines 11, 12, and 14 of algorithm

BFRouting, it takes O(1) time to compute F0 (resp. F1,

F2, m, B0, B1, and B2).

We use U(u, v, n) to denote the time of finding a

fault-free path between u and v in Bn − F . Further-

more, we assume that n is sufficiently large. Let

T (n) = max{U(u, v, n)|u, v ∈ V (Bn) \ F and u 6= v}.

(1)

Accordingly, we have T (2) = O(1). We can claim the

following discussions with respect to n and a faulty node

set F for n > 3 and |F | 6 2n− 3. In lines 15 and 16 of

algorithm BFRouting, we have

T (n) 6 T (n− 1) +O(1). (2)

In lines 17∼31, 35∼38, and 39∼41 of algorithm

BFRouting, we have

T (n) 6 T (n− 1) +O(n3). (3)

In lines 32∼34 and 42∼45 of algorithm BFRouting, we

have

T (n) 6 T (n− 1) +O(n). (4)

Thus, based on (1)∼(4) and Definition 3, we have

T (n) 6 max{

⌈log2|F |⌉
∑

i=1

O((n− i+ 1)3) +

O(n− ⌈log2|F |⌉), O(n2), O(n)}

6 max{O(⌈log2|F |⌉n3), O(n2), O(n)}

6 O(⌈log2|F |⌉n3). (5)

Therefore, according to (5), under the worst case,

the time complexity of algorithm BFRouting is T (n) 6

⌈log2|F |⌉n3 when |F | 6 2n− 3. �

In order to analyze the maximal length of the fault-

free path constructed by algorithm BFRouting, we give

the following theorem.

Theorem 8. The maximal length of the fault-free

path constructed by algorithm BFRouting is no more

than 6m + ⌈n−m+1
2 ⌉ + 1 if a faulty node set |F | 6

2n − 3 satisfies |F | 6 2n − 3 in the worst case with

m = ⌈log2|F |⌉.

Xi Wang et al.: BCDC: A High-Performance, Server-Centric Data Center Network 411

Proof. We use M(n) to denote the length of path

P constructed by algorithm BFRouting between u and

v in Bn − F . Clearly, when |F | = 0, we have M(n) 6

⌈n+1
2 ⌉+1. We can claim the following discussions with

respect to n and F for n > 3 and |F | 6 2n− 3. In lines

15 and 16 of algorithm BFRouting, we have M(n) 6

M(n− 1). In lines 17∼20 of algorithm BFRouting, we

have M(n) 6 M(n − 1) + 6. In lines 21∼25 of algo-

rithm BFRouting, we have M(n) 6 M(n − 1) + 2. In

lines 26∼29 of algorithm BFRouting, we have M(n) 6

M(n− 1) + 3. In lines 32∼34 and 39∼41 of algorithm

BFRouting, we have M(n) 6 M(n − 1) + 1. In lines

35∼38 and 42∼45 of algorithm BFRouting, we have

M(n) 6 M(n− 1) + 4.

Thus, let m = ⌈log2|F |⌉, we have

M(n) 6 max{
m
∑

i=1

6 + ⌈
n−m+ 1

2
⌉+ 1, ⌈

n+ 1

2
⌉+ 1}

6 max{6m+ ⌈
n−m+ 1

2
⌉+ 1, ⌈

n+ 1

2
⌉+ 1}

6 6m+ ⌈
n−m+ 1

2
⌉+ 1. (6)

Therefore, according to (6), under the worst case,

the maximal length of the fault-free path constructed

by algorithm BFRouting is M(n) 6 6m+ ⌈n−m+1
2 ⌉+ 1

when |F | 6 2n− 3 and m = ⌈log2|F |⌉. �

6 Simulations

In this section, we focus on simulations of BCDC

related to routing. BCDC is conjectured to have

high degrees of regularity, high bandwidth, good fault-

tolerance, and other nice properties for DCNs.

6.1 Evaluation of BRouting

In Section 4, we discuss the performance of

BRouting. We use N to denote the number of sup-

ported servers and n to denote the number of switch

ports. Table 1 computes the average path lengths

(mean) and the standard deviations (stdev) under

BRouting and the shortest-path routing for BCDCs

with different n, respectively. In the experiment, we can

find that the expected path length gotten by BRouting

is equal to the value computed by the shortest-path

routing, while BRouting is much simpler than the

shortest-path routing.

Fig.6 demonstrates the simulation results of diame-

ters for different sized BCDCs and BCubes, where the

two structures utilize the dual-port configuration of

servers. It can be seen from Fig.6 that BCDC owns

a smaller diameter compared with BCube regardless of

the network size.

Table 1. Mean Value and Standard Deviation of Path Length

in Shortest-Path Routing and BRouting

n N Shortest-Path BRouting

mean stdev mean stdev

3 12 1.67 0.54 1.67 0.54

4 32 2.11 0.72 2.11 0.72

5 80 2.49 0.77 2.49 0.77

6 192 2.90 0.86 2.90 0.86

7 448 3.26 0.88 3.26 0.88

8 1 024 3.66 0.96 3.66 0.96

9 2 304 4.00 0.97 4.00 0.97

10 5 120 4.40 1.05 4.40 1.05

Number of Servers

D
ia

m
e
te

r

BCDC
BCube

Fig.6. Diameter difference between BCDC and BCube when
utilizing the dual-port configuration of servers.

6.2 Path Failure Ration Under Server/Switch
Failures

In this subsection, we use simulations to evaluate

the performance of fault-tolerant one-to-one routing in

BCDC networks. In our simulations, different types of

failures are randomly generated. The results are ob-

tained by averaging over 20 simulation runs.

We consider the path failure ration of fault-tolerant

routing under various server/switch failure ratios. This

is to emulate the performance of fault tolerant one-

to-one routing in BCDC. In a large data center, both

servers and switches are facing failures that cannot be

fixed immediately. We are interested in BCDC’s per-

formance to see whether our fault-tolerant one-to-one

routing works well under high server/switch failure ra-

tios.

In our simulations, we use a 9-dimensional BCDC

with 2 304 servers and 512 switches. The normal link

rate is 1 Gb/s for links between servers and switches,

while the high-speed link rate is 10 Gb/s for switches.

Fig.7 plots the path failure ration under various

server failure ratios versus that under various switch

412 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

failure ratios in B8. Then, Fig.7 shows the path fai-

lure ratio as the server/switch failure ratios vary from

0% to 20% in B8. The result demonstrates that BCDC

has good fault-tolerance even when the server/switch

failure ratio is as high as 20%. Particularly, the path

failure ratio achieves 9.7% in B8 while the bound of

server failure ratios is 10%. Moreover, Fig.7 shows that

the path failure ratio of B8 under the server failures

performs even better as dimension n gets larger.

10 12 14 16 18 20

Failure Ratio (%)

0

5

10

15

20

25

30

P
a
th

 F
a
il
u
re

 (
%

)

Server Failure
Switch Failure

0 2 4 6 8

Fig.7. Path failure ration under various server/switch failure
ratios in B8.

We see that the path failure ration increases with

the server/switch failure ratios. However, the path fai-

lure ratio is nearly 0% when the failure ratio is lower

than 1%. This is because very few nodes are discon-

nected from the graph (indicating the robustness of

our BCDC structure). Furthermore, the path failure

ratio under server/switch failures cannot achieve such

performance since it is not globally optimal when the

failure ratio is higher than 20%. Besides, the path fai-

lure ratios under the server failures are smaller than

those under the switch failure ratios, and smaller than

18.2% (resp. 29.6%) under the server (resp. switch) fai-

lure ratio 20%. From the information above, our result

demonstrates that the performance of robustness is ex-

cellent in our BCDC structure while the server/switch

failure ratios are as high as 20%.

6.3 ABT Under Failures

In this subsection, we use simulations to compare

the aggregate bottleneck throughput (ABT) of BCDC,

BCube[6], and fat-tree[3], under random server and

switch failures. In our simulations, different types of

failures are randomly generated. The results are ob-

tained by averaging over 20 simulation runs.

For all the three structures, we use 9-port switches

to build the network structures. In our simulations, we

use a 9-dimensional BCDC with 2 304 servers and 512

switches. The normal link rate is 1 Gb/s for links be-

tween servers and switches, while the high-speed link

rate is 10 Gb/s for switches. Furthermore, we use 9-

port switches to construct the network structures of

BCube of DCell. The BCube network we use is a par-

tial BCube3,9 with n = 9 that uses three full BCube2,9.

The DCell structure is a partial DCell2,9 which con-

tains 25 full DCell1,9 and six full DCell0,9. We use BSR

routing for BCube[6] and DFR for DCell[4].

In Section 4, ABT without failures of BCDC is

studied. In this simulation, we focus on the case

of all-to-all routing in B9 with 2 304 servers and 512

switches, and evaluate it by randomly choosing servers

or switches from the whole BCDC as the failed ones

in Fig.8. In BCDC, graceful performance degradation

states that when the server or switch failure ratio in-

creases, ABT decreases slowly and there are no dra-

matic performance falls. For server failures, resulted

from either server crash or hardware failure, we find

that ABT degrades smoothly for a reasonable failure

ratio: for the server failure ratio (resp. switch failure

ratios) of 2%, ABT drops by 4% (resp. 5.8%), from

1 152 to 1 106 (resp. from 1 152 to 1 086). ABT under

server failure ratio (resp. switch failure ratios) drops

by 36.2% (resp. 48.9%) at a high failure ratio of 20%.

0

500

1000

1500

2000

2500
BCDC
BCube
DCell

0

500

1000

1500

2000

2500

A
g
g
re

g
a
te

 B
o
tt

le
n
e
ck

T
h
ro

u
g
h
p
u
t

(G
b
/
s)

A
g
g
re

g
a
te

 B
o
tt

le
n
e
ck

T
h
ro

u
g
h
p
u
t

(G
b
/
s)

BCDC
BCube
DCell

10 12 14 16 18 20

Switch Failure Ratio (%)

0 2 4 6 8

10 12 14 16 18 20

Server Failure Ratio (%)

0 2 4 6 8

(a)

(b)

Fig.8. Aggregate bottleneck throughput in BCDC, BCube, and
DCell under various (a) server failure ratios and (b) switch fai-
lure ratios, respectively.

Xi Wang et al.: BCDC: A High-Performance, Server-Centric Data Center Network 413

Switch failure has higher impact on ABT than

server failure, and similar phenomena are also observed

in [6] for fat-tree, DCell, and BCube networks. In

BCDC, a failed switch breaks not only all links for

servers connected to it, but also all links using it. Note

that in our simulations, the maximum failure ratio of

20% rarely happens in a well managed data center.

Therefore, BCDC performs well under server/switch

failures.

Compared with DCell, BCDC performs well under

both server and switch failures. The result is due to

two main reasons. Firstly, the traffic is imbalanced at

different levels of links in DCell, and the low-level links

of DCell always carry much more traffic flow than high-

level links. Secondly, partial DCell makes traffic imba-

lanced even for links at the same level[4]. Compared

with BCube, BCDC performs worse under both server

and switch failures. In BCube, servers have more live

links under the server/switch failure. Thus, BCube has

more balanced traffic than BCDC. Actually, BCube has

larger ABT under the server/switch failure model than

BCDC and DCell[4,6].

7 Related Work

Data center networks have been extensively studied

in cloud computing in recent years[3-6]. In this section,

we compare BCDC with several representative DCN

architectures. Our comparisons show that BCDC is

a significant structure for data centers, due to its high

network capacity, good fault-tolerance, and manageable

cabling complexity.

Table 2 shows the comparison results. We use N to

denote the number of supported servers and n to denote

the number of switch ports. The metrics used are: 1)

server node degree (degree): small server degree means

few links, which leads to small deployment cost; 2) con-

nectivity: high connectivity typically results in high

fault-tolerant capacity; 3) network diameter: a small

diameter benefits routing applications with real-time

requirement; 4) bisection width (BiW): a large BiW

shows good fault-tolerance property and high network

capacity; 5) aggregate bottleneck throughput (ABT): a

large ABT means short finish time in all-to-all jobs.

Switch-centric DCNs use servers to connect a

switching fabric, such as tree and fat-tree[3,12]. How-

ever, they do not support all-to-all traffic well with ex-

isting Ethernet switches[4]. As we show in Table 2,

BCDC provides much better support for ABT (all-to-

all) than tree. In detail, tree provides the lowest aggre-

gate bottleneck throughput since the throughput is only

the capacity of the root switch[6]. Furthermore, com-

pared with fat-tree[3], BCDC provides better one-to-

many and one-to-all support and can be directly built

using commodity switches without any switch upgrade

(see Section 4).

DCell builds complete graphs at each level and

scales up with doubly exponential growth. As a re-

sult, DCell targets for huge data centers rather than

BCDC[4]. However, the traffic in DCell is imbalanced:

the level-0 links carry much higher traffic than other

links[4]. Therefore, the bisection width of DCell is

smaller than that of BCDC. BCDC does not have per-

formance bottlenecks and provides much higher net-

work capacity.

BCube forms a server-centric architecture, supports

various bandwidth-intensive applications by speeding

up one-to-x and all-to-all traffic patterns, and ex-

hibits graceful performance degradation as the server

and/or switch failure rate increases[6]. BCube pro-

vides high network capacity for all-to-all traffic rather

than BCDC[6]. However, BCDC has a smaller diame-

ter and utilizes the dual-port configuration existing in

most commodity DCN servers.

FiConn[5] is a recursively defined DCN architec-

ture. FiConn(n, 0) consists of n servers and an n-

port switch connecting these servers, which is the ba-

Table 2. Comparison of Data Center Network Structures

Structure Degree Connectivity Diameter BiW ABT

Tree 1 − 2logn−1N 1 n

Fat-tree 1 − 2log2N
N
2

N

DCell k + 1 n+ k + 1 < 2lognN − 1 N
4lognN

N

2k
′

+

BCube k + 1 (k + 1)(n − 1) k + 1 N
2

n(N−1)
n−1

FiConn 2− 1
2k

∗ n− 1 ≤ 4logn

4
N − 1 > N

2k+2 > N

2∗3k−1

BCDC 2 2n− 2 ⌈
log2

N

n

2
⌉+1

(n−1)N
n

> 4N
n

Note: ∗: F iConn(n, k) is an irregular graph, and thus we show the average server node degree; +: k′ is smaller than k.

414 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

sic construction unit. Let N denote the server num-

ber of FiConn(n, k) for k > 0, and the number of

FiConn(n, k−1)’s in an FiConn(n, k) is equal to N
2 +1.

In each FiConn(n, k − 1), N
2 servers out of the N

servers with one port remaining are selected to con-

nect the other N
2 FiConn(n, k−1)’s using their second

ports, each for one FiConn(n, k − 1). Compared with

FiConn[5], BCDC is a regular graph and can signifi-

cantly reduce the network complexity.

8 Conclusions

In this paper, we introduced BCDC, a high-

performance and server-centric data center network,

based on crossed cube. An n-dimensional BCDC de-

fines a recursive network structure. We pointed out

that a high-dimensional BCDC is constructed by two

low-dimensional BCDCs and a node set. Thus, the

number of servers in BCDC grows quickly with BCDC’s

dimension. The diameter of BCDC is ⌈n+1
2 ⌉+1, which

is small. Thus, BCDC can support applications with

real-time requirements. The bisection width of BCDC

is (n− 1)2n−1 for n > 3, showing that BCDC may well

tolerate server/link faults.

We showed that BCDC significantly accelerates

one-to-one, one-to-many, and one-to-all routing and

provides high network capacity for all-to-all routing.

BCDC also runs its fault-tolerant routing algorithm,

BFRouting. BFRouting performs distributed, fault-

tolerant routing without using global states and has

good performance. Moreover, BCDC offers high net-

work capacity under server/switch failures. In our ana-

lysis and simulations, BCDC is an attractive and prac-

tical data center network for mega-data centers, due

to its high network capacity, good fault-tolerance, and

manageable cabling complexity.

Acknowledgment We thank the anonymous re-

viewers and editors for their valuable suggestions that

help to improve the presentation of the paper.

References

[1] Harris D. Ballmer’s millionserver claim doesn’t seem so

crazy. https://gigaom.com/2013/07/17/ballmers-million-s-

erver-claim-doesnt-seem-so-crazy/#comments, July 2013.

[2] Dignan L. AWS financials on deck: The road to 3 million

servers in operation. http://www.zdnet.com/article/aws-

financials-on-deck-the-road-to-3-million-servers-in-operati-

on/, April 2015.

[3] Al-Fares M, Loukissas A, Vahdat A. A scalable, commodity

data center network architecture. In Proc. the ACM SIG-

COMM Conf. Data Communication, August 2008, pp.63-

74.

[4] Guo C X, Wu H T, Tan K, Shi L, Zhang Y G, Lu S W.

DCell: A scalable and fault-tolerant network structure for

data centers. In Proc. the ACM SIGCOMM Conf. Data

Communication, August 2008, pp.75-86.

[5] Li D, Guo C X, Wu H T, Tan K, Zhang Y G, Lu S W. Fi-

Conn: Using backup port for server interconnection in data

centers. In Proc. IEEE INFOCOM, April 2009, pp.2276-

2285.

[6] Guo C X, Lu G H, Li D, Wu H T, Zhang X, Shi Y F, Tian C,

Zhang Y G, Lu S W. BCube: A high performance, server-

centric network architecture for modular data centers. In

Proc. the ACM SIGCOMM Conf. Data Communication,

August 2009, pp.63-74.

[7] Greenberg A, Hamilton J R, Jain N, Kandula S, Kim C,

Lahiri P, Maltz D A, Patel P, Sengupta S. VL2: A scalable

and flexible data center network. In Proc. the ACM SIG-

COMM Conf. Data Communication, August 2009, pp.51-

62.

[8] Abu-Libdeh H, Costa P, Rowstron A, O’Shea G, Donnelly

A. Symbiotic routing in future data centers. In Proc. ACM

SIGCOMM, Aug.30-Sept.3, 2010, pp.51-62.

[9] Yu Y, Qian C. Space shuffle: A scalable, flexible, and high-

performance data center network. IEEE Trans. Parallel and

Distributed Systems, 2016, 27(11): 3351-3365.

[10] Zheng K, Wang L, Yang B H, Sun Y, Uhlig S. LazyCtrl:

A scalable hybrid network control plane design for cloud

data centers. IEEE Trans. Parallel and Distributed Sys-

tems, 2017, 28(1): 115-127.

[11] Bhuyan L N, Agrawal D P. Generalized hypercube and hy-

perbus structures for a computer network. IEEE Trans.

Computers, 1984, C-33(4): 323-333.

[12] Leiserson C E. Fat-trees: Universal networks for hardware-

efficient supercomputing. IEEE Trans. Computers, 1985,

34(10): 892-901.

[13] Dally W J. Performance analysis of k-ary n-cube intercon-

nection networks. IEEE Trans. Computers, 1990, 39(6):

775-785.

[14] Xiang D, Zhang Y L, Pan Y. Practical deadlock-free fault-

tolerant routing in meshes based on the planar network fault

model. IEEE Trans. Computers, 2009, 58(5): 620-633.

[15] Xiang D. Deadlock-free adaptive routing in meshes with

fault-tolerance ability based on channel overlapping. IEEE

Trans. Dependable and Secure Computing, 2011, 8(1): 74-

88.

[16] Lin D, Liu Y, Hamdi M, Muppala J. FlatNet: Towards a

flatter data center network. In Proc. IEEE Global Commu-

nications Conf., December 2012, pp.2499-2504.

[17] Wang T, Su Z Y, Xia Y, Qin B, Hamdi M. NovaCube: A low

latency Torus-based network architecture for data centers.

In Proc. IEEE Global Communications Conf., December

2014, pp.2252-2257.

[18] Wang T, Su Z Y, Xia Y, Liu Y, Muppala J, Hamdi M.

SprintNet: A high performance servercentric network ar-

chitecture for data centers. In Proc. IEEE Int. Conf. Com-

munications, June 2014, pp.4005-4010.

[19] Wang T, Su Z Y, Xia Y, Muppala J, Hamdi M. Designing ef-

ficient high performance server-centric data center network

architecture. Computer Networks, 2015, 79: 283-296.

[20] Wang T, Su Z Y, Xia Y, Hamdi M. CLOT: A cost-effective

low-latency overlaid Torus-based network architecture for

data centers. In Proc. IEEE Int. Conf. Communications,

June 2015, pp.5479-5484.

Xi Wang et al.: BCDC: A High-Performance, Server-Centric Data Center Network 415

[21] Li D W, Wu J, Liu Z Y, Zhang F. Towards the tradeoffs in

designing data center network architectures. IEEE Trans.

Parallel and Distributed Systems, 2017, 28(1): 260-273.

[22] Efe K. A variation on the hypercube with lower diameter.

IEEE Trans. Computers, 1991, 40(11): 1312-1316.

[23] Cull P, Larson S M. The Möbius cubes. IEEE Trans.

Computers, 1995, 44(5): 647-659.

[24] Abraham S, Padmanabhan K. The twisted cube topology

for multiprocessors: A study in network asymmetry. Jour-

nal of Parallel and Distributed Computing, 1991, 13(1):

104-110.

[25] Fan J X, He L Q. BC interconnection networks and their

properties. Chinese Journal of Computers, 2003, 26(1): 84-

90. (in Chinese)

[26] Wang D J. Hamiltonian embedding in crossed cubes with

failed links. IEEE Trans. Parallel and Distributed Systems,

2012, 23(11): 2117-2124.

[27] Kulasinghe P, Bettayeb S. Embedding binary trees into

crossed cubes. IEEE Trans. Computers, 1995, 44(7): 923-

929.

[28] Fan J, Lin X, Jia X. Optimal path embedding in crossed

cubes. IEEE Trans. Parallel and Distributed Systems, 2005,

16(12): 1190-1200.

[29] Efe K. The crossed cube architecture for parallel computa-

tion. IEEE Trans. Parallel and Distributed Systems, 1992,

3(5): 513-524.

[30] Chang C P, Sung T Y, Hsu L H. Edge congestion and topo-

logical properties of crossed cubes. IEEE Trans. Parallel

and Distributed Systems, 2000, 11(1): 64-80.

[31] Efe K, Blackwell P K, Slough W, Shiau T. Topological prop-

erties of the crossed cube architecture. Parallel Computing,

1994, 20(12): 1763-1775.

[32] Kulasinghe P D. Connectivity of the crossed cube. Infor-

mation Processing Letters, 1997, 61(4): 221-226.

[33] Fan J X, Jia X H. Edge-pancyclicity and path-

embeddability of bijective connection graphs. Information

Sciences, 2008, 178(2): 340-351.

[34] Yang X F, Dong Q, Tang Y Y. Embedding meshes/tori in

faulty crossed cubes. Information Processing Letters, 2010,

110(14/15): 559-564.

[35] Zhou S M. The conditional diagnosability of crossed cubes

under the comparison model. International Journal of

Computer Mathematics, 2010, 87(15): 3387-3396.

[36] Dong Q, Zhou J L, Fu Y, Yang X F. Embedding a mesh of

trees in the crossed cube. Information Processing Letters,

2012, 112(14/15): 599-603.

[37] Cheng B L, Fan J X, Jia X H, Zhang S K. Independent span-

ning trees in crossed cubes. Information Sciences, 2013,

233: 276-289.

[38] Cheng B L, Fan J X, Jia X H, Wang J. Dimension-adjacent

trees and parallel construction of independent spanning

trees on crossed cubes. Journal of Parallel and Distributed

Computing, 2013, 73(5): 641-652.

[39] Chen H C, Kung T L, Hsu L Y. 2-disjoint-path-coverable

panconnectedness of crossed cubes. The Journal of Super-

computing, 2015, 71(7): 2767-2782.

[40] Chen H C, Zou Y H, Wang Y L, Pai K J. A note on path

embedding in crossed cubes with faulty vertices. Informa-

tion Processing Letters, 2017, 121: 34-38.

[41] Cheng B L, Wang D J, Fan J X. Constructing completely

independent spanning trees in crossed cubes. Discrete Ap-

plied Mathematics, 2017, 219: 100-109.

[42] Diestel R. Graph Theory (4th edition). Springer, 2010.

[43] Ghemawat S, Gobioff H, Leung S T. The Google file system.

In Proc. the 19th ACM Symp. Operating Systems Princi-

ples, October 2003, pp.29-43.

[44] Dean J, Ghemawat S. MapReduce: Simplified data process-

ing on large clusters. Communications of the ACM, 2008,

51(1): 107-113.

Xi Wang received his B.S. degree

in management science from Jiangsu

University, Suzhou, in 2008. He received

his M.S. and Ph.D. degrees in com-

puter science from Soochow University,

Suzhou, in 2011 and 2015, respectively.

He is currently working as a post-doctor

in the School of Computer Science

and Technology at Soochow University, Suzhou. His

research interests include data center networks, parallel

and distributed systems, and interconnection architectures.

Jian-Xi Fan received his B.S., M.S.

and Ph.D. degrees in computer science

from Shandong Normal University,

Jinan, Shandong University, Jinan,

and City University of Hong Kong,

Hong Kong, in 1988, 1991, and 2006,

respectively. He is currently a professor

in the School of Computer Science

and Technology at Soochow University, Suzhou. He

was a visiting scholar in the Department of Computer

Science at Montclair State University (May 2017∼August

2017) and a senior research fellow in the Department of

Computer Science at City University of Hong Kong (May

2012∼August 2012). His research interests include parallel

and distributed systems, interconnection architectures,

data center networks, algorithms, and graph theory.

Cheng-Kuan Lin received his B.S.

degree in science applied mathematics

from the Chinese Culture University,

Taipei, in 2000, and received his M.S.

degree in mathematics from “National”

Central University, Taipei, in 2002. He

obtained his Ph.D. degree in computer

science from “National” Chiao Tung University, Hsinchu,

in 2011. He is currently an associate professor of computer

science at School of Computer Science and Techno-

logy at the Soochow University, Suzhou. His research

interests include graph theory, design and analysis of al-

gorithms, discrete mathematics, wireless sensor networks,

mobile computing, and parallel and distributed computing.

416 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

Jing-Ya Zhou received his B.S. and

Ph.D. degrees in computer science from

Anhui Normal University, Wuhu, and

Southeast University, Nanjing, in 2005

and 2013 respectively. He is currently

a lecturer with the School of Computer

Science and Technology, Soochow Uni-

versity, Suzhou. His research interests

include cloud computing, parallel and distributed systems,

online social networks, and data center networking.

Zhao Liu received his B.S. degree

from Zhengzhou University of Light

Industry, Zhengzhou, in 2003, and his

M.S. and Ph.D. degrees from Soochow

University, Suzhou, in 2006 and 2016,

respectively, all in computer science.

He is currently an engineer of computer

science with the School of Computer

Science and Technology at Soochow University, Suzhou.

His research interests include parallel and distributed

systems, algorithms, and interconnection architectures.

